Характерные химические свойства водорода и галогенов.
Химические свойства водорода
Атом водорода имеет электронную формулу внешнего (и единственного) электронного уровня 1s1. С одной стороны, по наличию одного электрона на внешнем электронном уровне атом водорода похож на атомы щелочных металлов. Однако, ему, так же как и галогенам не хватает до заполнения внешнего электронного уровня всего одного электрона, поскольку на первом электронном уровне может располагаться не более 2-х электронов. Выходит, что водород можно поместить одновременно как в первую, так и в предпоследнюю (седьмую) группу таблицы Менделеева, что иногда и делается в различных вариантах периодической системы:
С точки зрения свойств водорода как простого вещества, он, все-таки, имеет больше общего с галогенами. Водород, также как и галогены, является неметаллом и образует аналогично им двухатомные молекулы (H2).
В обычных условиях водород представляет собой газообразное, малоактивное вещество. Невысокая активность водорода объясняется высокой прочностью связи между атомами водорода в молекуле, для разрыва которой требуется либо сильное нагревание, либо применение катализаторов, либо и то и другое одновременно.
Взаимодействие водорода с простыми веществами
с металлами
Из металлов водород реагирует только с щелочными и щелочноземельными! К щелочным металлам относятся металлы главной подгруппы I-й группы (Li, Na, K, Rb, Cs, Fr), а к щелочно-земельным — металлы главной подгруппы II-й группы, кроме бериллия и магния (Ca, Sr, Ba, Ra)
При взаимодействии с активными металлами водород проявляет окислительные свойства, т.е. понижает свою степень окисления. При этом образуются гидриды щелочных и щелочноземельных металлов, которые имеют ионное строение. Реакция протекает при нагревании:
Следует отметить, что взаимодействие с активными металлами является единственным случаем, когда молекулярный водород Н2 является окислителем.
с неметаллами
Из неметаллов водород реагирует только c углеродом, азотом, кислородом, серой, селеном и галогенами!
Под углеродом следует понимать графит или аморфный углерод, поскольку алмаз — крайне инертная аллотропная модификация углерода.
При взаимодействии с неметаллами водород может выполнять только функцию восстановителя, то есть только повышать свою степень окисления:
Взаимодействие водорода со сложными веществами
с оксидами металлов
Водород не реагирует с оксидами металлов, находящихся в ряду активности металлов до алюминия (включительно), однако, способен восстанавливать многие оксиды металлов правее алюминия при нагревании:
c оксидами неметаллов
Из оксидов неметаллов водород реагирует при нагревании с оксидами азота, галогенов и углерода. Из всех взаимодействий водорода с оксидами неметаллов особенно следует отметить его реакцию с угарным газом CO.
Смесь CO и H2 даже имеет свое собственное название – «синтез-газ», поскольку из нее в зависимости от условий могут быть получены такие востребованные продукты промышленности как метанол, формальдегид и даже синтетические углеводороды:
c кислотами
С неорганическими кислотами водород не реагирует!
Из органических кислот водород реагирует только с непредельными, а также с кислотами, содержащими функциональные группы способные к восстановлению водородом, в частности альдегидные, кето- или нитрогруппы.
c солями
В случае водных растворов солей их взаимодействие с водородом не протекает. Однако при пропускании водорода над твердыми солями некоторых металлов средней и низкой активности возможно их частичное или полное восстановление, например:
Химические свойства галогенов
Галогенами называют химические элементы VIIA группы (F, Cl, Br, I, At), а также образуемые ими простые вещества. Здесь и далее по тексту, если не сказано иное, под галогенами будут пониматься именно простые вещества.
Все галогены имеют молекулярное строение, что обусловливает низкие температуры плавления и кипения данных веществ. Молекулы галогенов двухатомны, т.е. их формулу можно записать в общем виде как Hal2.
Галоген | Физические свойства |
F2 | Светло-желтый газ с резким раздражающим запахом |
Cl2 | Желто-зеленый газ с резким удушливым запахом |
Br2 | Красно-бурая жидкость с резким зловонным запахом |
I2 | Твердое вещество с резким запахом, образующее черно-фиолетовые кристаллы |
Следует отметить такое специфическое физическое свойство йода, как его способность к сублимации или, иначе говоря, возгонке. Возгонкой, называют явление, при котором вещество, находящееся в твердом состоянии, при нагревании не плавится, а, минуя жидкую фазу, сразу же переходит в газообразное состояние.
Электронное строение внешнего энергетического уровня атома любого галогена имеет вид ns2np5, где n – номер периода таблицы Менделеева, в котором расположен галоген. Как можно заметить, до восьмиэлектронной внешней оболочки атомам галогенов не хватает всего одного электрона. Из этого логично предположить преимущественно окисляющие свойства свободных галогенов, что подтверждается и на практике. Как известно, электроотрицательность неметаллов при движении вниз по подгруппе снижается, в связи с чем активность галогенов уменьшается в ряду:
F2 > Cl2 > Br2 > I2
Взаимодействие галогенов с простыми веществами
Все галогены являются высокоактивными веществами и реагируют с большинством простых веществ. Однако, следует отметить, что фтор из-за своей чрезвычайно высокой реакционной способности может реагировать даже с теми простыми веществами, с которыми не могут реагировать остальные галогены. К таким простым веществам относятся кислород, углерод (алмаз), азот, платина, золото и некоторые благородные газы (ксенон и криптон). Т.е. фактически, фтор не реагирует лишь с некоторыми благородными газами.
Остальные галогены, т.е. хлор, бром и йод, также являются активными веществами, однако менее активными, чем фтор. Они реагируют практически со всеми простыми веществами, кроме кислорода, азота, углерода в виде алмаза, платины, золота и благородных газов.
Взаимодействие галогенов с неметаллами
водородом
При взаимодействии всех галогенов с водородом образуются галогеноводороды с общей формулой HHal. При этом, реакция фтора с водородом начинается самопроизвольно даже в темноте и протекает со взрывом в соответствии с уравнением:
Реакция хлора с водородом может быть инициирована интенсивным ультрафиолетовым облучением или нагреванием. Также протекает со взрывом:
Бром и йод реагируют с водородом только при нагревании и при этом, реакция с йодом является обратимой:
фосфором
Взаимодействие фтора с фосфором приводит к окислению фосфора до высшей степени окисления (+5). При этом происходит образование пентафторида фосфора:
При взаимодействии хлора и брома с фосфором возможно получение галогенидов фосфора как в степени окисления + 3, так и в степени окисления +5, что зависит от пропорций реагирующих веществ:
При этом в случае белого фосфора в атмосфере фтора, хлора или жидком броме реакция начинается самопроизвольно.
Взаимодействие же фосфора с йодом может привести к образованию только триодида фосфора из-за существенно меньшей, чем у остальных галогенов окисляющей способности:
серой
Фтор окисляет серу до высшей степени окисления +6, образуя гексафторид серы:
Хлор и бром реагируют с серой, образуя соединения, содержащие серу в крайне не свойственных ей степенях окисления +1 и +2. Данные взаимодействия являются весьма специфичными, и для сдачи ЕГЭ по химии умение записывать уравнения этих взаимодействий не обязательно. Поэтому три нижеследующих уравнения даны скорее для ознакомления:
Взаимодействие галогенов с металлами
Как уже было сказано выше, фтор способен реагировать со всеми металлами, даже такими малоактивными как платина и золото:
Остальные галогены реагируют со всеми металлами кроме платины и золота:
Реакции галогенов со сложными веществами
Реакции замещения с галогенами
Более активные галогены, т.е. химические элементы которых расположены выше в таблице Менделеева, способны вытеснять менее активные галогены из образуемых ими галогеноводородных кислот и галогенидов металлов:
Аналогичным образом, бром вытесняет серу из растворов сульфидов и сероводорода:
Хлор является более сильным окислителем и окисляет сероводород в его водном растворе не до серы, а до серной кислоты:
Взаимодействие галогенов с водой
Вода горит во фторе синим пламенем в соответствии с уравнением реакции:
Бром и хлор реагируют с водой иначе, чем фтор. Если фтор выступал в роли окислителя, то хлор и бром диспропорционируют в воде, образуя смесь кислот. При этом реакции обратимы:
Взаимодействие йода с водой протекает в настолько ничтожно малой степени, что им можно пренебречь и считать, что реакция не протекает вовсе.
Взаимодействие галогенов с растворами щелочей
Фтор при взаимодействии с водным раствором щелочи опять же выступает в роли окислителя:
Умение записывать данное уравнение не требуется для сдачи ЕГЭ. Достаточно знать факт о возможности такого взаимодействия и окислительной роли фтора в этой реакции.
В отличие от фтора, остальные галогены в растворах щелочей диспропорционируют, то есть одновременно и повышают и понижают свою степень окисления. При этом, в случае хлора и брома в зависимости от температуры возможно протекание по двум разным направлениям. В частности, на холоду реакции протекают следующим образом:
а при нагревании:
Йод реагирует с щелочами исключительно по второму варианту, т.е. с образованием йодата, т.к. гипоиодит не устойчив не только при нагревании, но также при обычной температуре и даже на холоду:
Галогены, молекулярная структура — Знаешь как
Содержание статьи
Рассмотрение элементов мы начнем с главной подгруппы седьмой группы — галогенов, которые являются типичными неметаллами
Особенности атомной и молекулярной структуры галогенов
Элементы группы галогенов очень сходны по свойствам, поэтому рассматриваются вместе. Несколько отличен от других фтор. «Галогены» в переводе означает «солероды». Действительно, все галогены — фтор F, хлор Сl, бром Вr и иод I — при непосредственном взаимодействии с металлами образуют соли. Галогеном является и астат At, открытый в 1940 г.
Электронные конфигурации галогенов: F — 1s22s22p5; Cl — 1s22s22p63s23p5; Br — 1s22s22p63s23p63d104s24p5; I — 1s2s2
Число электронов | Величина атомного радиуса,Å | |||||||
Распределение по орбиталям электронов внешнего электронного слоя у всех галогенов однотипное
Галогены имеют много общего в строении атомов и молекул. У них завершается застройка р-оболочки внешнего слоя, поэтому все они принадлежат к числу р-элементов. Внешнему электронному слою атомов галогенов недостает до завершения одного электрона, поэтому электроотрицательность у этих элементов выражена ярко и в окислительно-восстановительных реакциях они ведут себя в основном как окислители.
Атомы разных галогенов различаются числом электронных слоев, в связи с чем радиусы атомов галогенов различны (табл. 11). С возрастанием зарядов ядер радиусы атомов увеличиваются, что ведет к постепенному уменьшению величины электроотрицательности от фтора к иоду и снижению неметалличности свойств. Наиболее ярко выраженным неметаллом среди галогенов является фтор, наименее ярким — йод.
■ 1. Как меняется величина атомного радиуса в зависимости от возрастания заряда ядра атома?
2. Какого типа химическая связь в молекулах галогенов?
3. Какого типа кристаллическая решетка у галогенов?
4. Какова валентность галогенов в свободном состоянии?
5. Почему при образовании молекулы галогена между атомами возникает лишь одна электронная пара?
6. Как меняется величина электроотрицательности с возрастанием радиусов атомов? (См. Ответ)
Физические свойства галогенов
Все свойства галогенов, как физические, так и химические, зависят от строения атомов элементов. Эти свойства различных галогенов во многом сходны, но в то же время каждому галогену присущ ряд особенностей.
Хлор — газ желто-зеленого цвета. Он также ядовит, имеет резкий, удушливый, неприятный запах. Хлор тяжелее воздуха, сравнительно хорошо растворяется в воде (на 1 объем воды 2 объема хлора), образуя хлорную воду; Cl2agi при температуре— 34° превращается в жидкость, а при— 101° затвердевает. Плотность 1,568 г/см3..
Бром —единственный жидкий неметалл. Это вещество красно-бурого цвета, тяжелое, летучее. Сосуд, в котором находится бром, всегда окрашен его парами в красно-бурый цвет.
Если к бромной воде прилить небольшое количество бензола и хорошенько взболтать, то после расслаивания жидкостей можно заметить, как окраска бромной воды исчезает, а собравшийся наверху бензол окрашивается растворенным бромом в ярко-оранжевый цвет. Это объясняется тем, что бензол извлек из воды бром вследствие его лучшей растворимости в бензоле.
Хранят бром в склянках с притертыми пробками и притертыми колпаками. Резиновые пробки для работы с бромом, как и для работы с хлором, неприменимы, так-как они быстро разъедаются. Бром намного тяжелее воды (плотность 3,12 г/см
Йод — вещество кристаллическое, темно-серого цвета, в парах — фиолетового. Плотность йода 4,93 г/см3, температура плавления 113°, температура кипения 184°. Довести йод до плавления, а тем более до кипения при обычных условиях не удается, так как уже при слабом нагревании он из твердого состояния сразу переходит в пар —возгоняется. Переход вещества из твердого состояния в газообразное, минуя жидкое, и обратно называется возгонкой. Это свойство характерно не только для йода, но и для некоторых других веществ. Его удобно использовать для очистки веществ от примесей.
Если в йодную воду I2aq добавить немного бензола, то при встряхивании на поверхности также образуется окрашенное бензольное кольцо, но только малинового цвета.
■ 7. Как меняется интенсивность окраски галогенов с возрастанием зарядов ядер?
8. Какое название имеют растворы хлора, брома и иода в воде?
9. Как меняется плотность галогенов с возрастанием зарядов ядер? (См. Ответ)
Агрегаторное состояние | Температура кипения | Температура плавления | Наилучшие растворители | ||||
Фтор F Хлор Cl Бром Br Йод I |
10. Составьте и заполните таблицу «Физические свойства галогенов» по следующему образцу:
11. Как объяснить с точки зрения строения кристаллической решетки низкие температуры плавления и кипения галогенов?
12. Какова относительная плотность фтора и хлора по воздуху и водороду? Если вы не знаете, что такое относительная плотность газов, как она определяется и как ею пользоваться при расчетах, обратитесь к приложению II, стр. 387. После этого вы сможете ответить на вопрос.
13. Какой объем займут 20 кг хлора при нормальных условиях? Если вы забыли, как вычислять объем газа при нормальных условиях, обратитесь к приложению. (См. Ответ)
Физиологическое действие галогенов
Все галогены ядовиты по своему физиологическому действию. Особенно ядовит фтор: при вдыхании в небольших количествах он вызывает отек легких, в больших — разрушение легочной ткани и смерть.
Хлор — также вещество очень ядовитое, хотя в несколько меньшей степени. Во время первой мировой войны он применялся как боевое отравляющее вещество, потому что он тяжелее воздуха и хорошо удерживается над поверхностью земли, особенно при безветренной погоде. Предельно допустимая концентрация свободного хлора в воздухе 0,001 мг/л.
Хроническое отравление хлором вызывает изменение цвета лица, легочные и бронхиальные заболевания. При отравлениях хлором в качестве противоядия нужно применять смесь паров спирта с эфиром, а также водяных паров с примесью нашатырного спирта, причем предварительно обязательно вынести пострадавшего на свежий воздух.
Пары брома вызывают удушье. Ядовит и жидкий бром, причиняющий при попадании на кожу сильные ожоги. Переливать бром из одного сосуда в другой рекомендуется в резиновых перчатках и под тягой.
При попадании на кожу бром следует смывать органическим растворителем — бензолом или четыреххлористым углеродом, протирая пораженное место ватой, смоченной этими растворителями. При смывании брома водой нередко ожога избежать не удается.
Иод наименее ядовит из всех галогенов. Вдыхание паров иода при его нагревании может вызвать отравление, но работать с парообразным иодом приходится редко, например при очистке его возгонкой. Кристаллический иод руками брать не следует, так как при попадании на кожу он вызывает появление характерных желтых пятен. Все работы с галогенами следует производить в вытяжном шкафу.
Вместе с тем галогены являются жизненно важными элементами. Хлор в виде поваренной соли постоянно применяется в пищу, а также входит в состав зеленого вещества растений — хлорофилла. Недостаток соединений фтора в питьевой воде вызывает разрушение зубов. Иод необходим всем живым организмам, как растительным, так и животным. Он участвует в регулировании обмена веществ. В организме человека иод сосредоточен главным образом в щитовидной железе и участвует в образовании ее гормона. Недостаток иода вызывает болезненные изменения щитовидной железы. Для предотвращения заболевания в пищу в очень небольших количествах добавляют иод, разводя несколько капель йодной настойки на стакан воды, но чаще в виде иодида натрия и иодида калия.
• Запишите в тетрадь меры техники безопасности в работе с галогенами и первой помощи при отравлениях.
Химические свойства галогенов
По характеру химических свойств, как отмечено выше, все галогены являются типичными неметаллами, обладающими значительной электроотрицательностью. Наиболее электроотрицательным элементом, обладающим наибольшей неметаллической активностью, является фтор, наименее активен иод.
Рис. 21. Горение водорода в хлоре. 1- хлор 2- водород
Взаимодействие галогенов с простыми веществами. Проследить уменьшение химической активности от фтора к хлору можно на примерах разных реакций. Особенно интересно взаимодействие разных галогенов с водородом. Условия реакций у них при этом разные.
Так, фтор реагирует с водородом со вз рывом даже в темноте. При этом образуется фтористый водород по уравнению.
h3 + F2 = 2HF
Фтористый водород является наиболее прочным соединением среди галогеноводородов.
Взаимодействие хлора с водородом происходит со взрывом только на свету:
Сl2+ Н2 = 2НСl
Если же поджечь струю водорода в атмосфере хлора, то он будет сгорать спокойно бесцветным пламенем (рис. 21).
С водородом бром образует бромистый водород.
Вr2 + Н2 = 2НВг
Процесс идет при слабом нагревании.
Иод с водородом реагирует только при нагревании с образованием йодистого водорода:
Н2 + I2 = 2НI
Однако это соединение весьма неустойчивое и легко распадается с образованием водорода и иода. Во всех этих случаях галогены ведут себя как окислители. Галогено-водороды при растворении в воде образуют кислоты.
Окислительные свойства галогены проявляют и при взаимодействии с металлами, которое протекает обычно очень активно.
Фтор реагирует практически почти со всеми металлами. Легко проследить взаимодействие х л о р а с металлами. Многие металлы в хлоре горят, например сурьма самовоспламеняется (рис. 22). Другие металлы реагируют с хлором при нагревании, например натрий (рис. 23).
2Na + Сl2 = 2NaCl
Если металлы могут иметь различную степень окисления, то при реакции с хлором они обычно проявляют высшую.
Рис. 22. Самовоспламенение сурьмы в хлоре
Например.
2Fe + 3Сl2 = 2FeCl3
Сu + Сl2 = СuСl2
Здесь железо в реакции с хлором проявляет степень окисления, равную +3 — Fe+3, а медь равную +2— Cu+2. Во всех приведенных случаях хлор ведет себя как окислитель .
Бурно реагирует с металлами и бром. Если насыпать в пробирку с жидким бромом немного алюминиевых опилок, то они сгорают в броме с образованием бромистого алюминия, что сопровождается выделением бурых паров брома и снопом искр. Реакция идет по следующему уравнению:
2Аl + ЗВr2 = 2АlВr3
Опыт производится в приборе, изображенном на рис. 24. Длинная трубка 1 выполняет роль воздушного холодильника. Горят в броме также олово, сурьма, а калий с бромом дает сильный взрыв.
Рис. 22. Самовоспламенение сурьмы в хлоре
Иод также реагирует с металлами, образуя йодистые соли. Особенно интересно происходит реакция алюминия с иодом. Для этого кристаллы иода растирают в ступке до образования мелкого порошка, а затем на асбестированной сетке смешивают иод с алюминиевой пылью. Смесь, посуда и материалы должны быть совершенно сухими. Если после этого добавить к смеси каплю воды, которая является катализатором в этом процессе, то смесь воспламеняется и горит, выделяя фиолетовые клубы паров иода
2Аl + 3I2 = 2АlI3
Следует отметить, что иод реагирует с металлами труднее, чем хлор и бром.
В отличие от большинства других простых веществ галогены в непосредственное взаимодействие с кислородом не вступают, так как кислород и галогены обладают близкими значениями электроотрицательности. Вместе с тем кислородные соединения галогенов косвенным путем получены и существуют.
Рис. 23. Горение натрия в хлоре.
1- металлический натрий
2- хлоркальцивая трубка
3- хлор
4- едкий калий
■ 14. Докажите путем составления электронного баланса, что в реакциях с водородом и металлами галогены ведут себя как окислители. Обоснуйте такое поведение строением атома галогенов.
15. Какой объем хлористого водорода может быть получен при реакции с водородом 20 л хлора? (эта задача решается целиком в объемах).
16. Для того чтобы образующийся хлористый водород не был загрязнен хлором, при взаимодействии хлора с водородом последнего берут на 5% больше требуемого количества. Рассчитайте, какой объем водорода следует взять для получения 50 л хлористого водорода. (См. Ответ)
Статья на тему Галогены
Галогены
Модуль V
Химия Элементов
Неметаллы VIIА-подгруппы
Элементы VIIА-подгруппы являются типичными неметаллами с высокой
электротрицательностью, они имеют групповое название – «галогены».
Основные вопросы, рассматриваемые в лекции
Общая характеристика неметаллов VIIА-подгруппы. Электронное строение, важнейшие характеристики атомов. Наиболее характерные сте-
пени окисления. Особенности химии галогенов.
Простые вещества.
Природные соединения.
Соединения галогенов
Галогенводородные кислоты и их соли. Соляная и плавиковая ки-
слота, получение и применение.
Галогенидные комплексы.
Бинарные кислородные соединения галогенов. Неустойчивость ок-
сидов.
Кислородсодержащие кислоты и их соли
Окислительно-восстановительные свойства простых веществ и со-
единений. Реакции диспропорционирования. Диаграммы Латимера.
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Химия элементов VIIA-подгруппы
Общая характеристика
|
| периоды |
|
|
|
| группа | |
|
|
|
| ряды |
| VII | ||
|
|
|
|
|
|
| ||
|
|
|
|
|
|
| F | 9 |
| II | 2 |
| Фтор | ||||
|
|
|
|
|
|
| 18,998 | |
|
|
|
|
|
|
| Cl | 17 |
| III | 3 |
| Хлор | ||||
|
|
|
|
|
|
| 35,453 | |
|
|
|
|
|
|
| 25 | Mn |
|
|
|
| 4 |
| Марганец | ||
| IV |
|
|
| 54,938 | |||
|
|
|
| Br | 35 | |||
|
|
|
|
|
|
| ||
|
|
|
| 5 |
| Бром | ||
|
|
|
|
|
|
| 79,904 | |
|
|
|
|
|
|
| 43 | Tc |
|
|
|
| 6 |
| Технеций | ||
| V |
|
|
| 98,906 | |||
|
|
|
| I | 53 | |||
|
|
|
|
|
|
| ||
|
|
|
| 7 |
| Йод |
| |
|
|
|
|
|
|
| 126,905 | |
|
|
|
|
|
|
| 75 | Re |
|
|
|
| 8 |
| Рений | ||
| VI |
|
|
| 186,207 | |||
|
|
|
| At | 85 | |||
|
|
|
|
|
|
| ||
|
|
|
| 9 |
| Астат | ||
|
|
|
|
|
|
| [210] |
|
|
|
|
|
|
|
| 107 | Bh |
| VII | 10 |
| Борий | ||||
|
|
|
|
|
|
| [262] |
|
VIIА-группу образуют р-элементы: фтор F, хлор
Cl, бром Br, иод I и астат At.
Общая формула валентных электронов – ns2np5.
Все элементы VIIА-группы – типичные неметаллы.
| ns |
|
| np |
| Как видно из распреде- | |
|
|
|
|
|
|
| ления валентных электронов |
| |
| | |
| | |
|
|
|
|
|
|
|
|
по орбиталям атомам | не хватает всего одного электрона |
для формирования устойчивой восьмиэлектронной обо-
лочки, поэтому у них сильно выражена тенденция к
присоединению электрона.
Все элементы легко образуют простые однозаряд-
ные анионы Г –.
В форме простых анионов элементы VIIА-группы находятся в природной воде и в кристаллах природных солей, например, галита NaCl, сильвина KCl, флюорита
CaF2.
Общее групповое название элементов VIIА-
группы «галогены», т. е. «рождающие соли», связано с тем, что большинство их соединений с металлами пред-
ставляет собой типичные соли (CaF2, NaCl, MgBr2, KI), ко-
торые могут быть получены при непосредственном взаи-
модействии металла с галогеном. Свободные галогены получают из природных солей, поэтому название «галогены» также переводят, как «рожденные из солей».
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Минимальная степень окисления (–1) является наиболее устойчивой
у всех галогенов.
Некоторые характеристики атомов элементов VIIА-группы приведены в
таблице.
Таблица
Важнейшие характеристики атомов элементов VIIА-группы
Эле- | Радиус | Относитель- | Первая | Сродство |
|
|
|
мент | атома, | ная электро- | энергия | к элек- |
|
|
|
| нм | отрицатель- | ионизации, | трону, |
|
|
|
|
| ность (по | кДж/моль | кДж/моль |
|
|
|
|
| Поллингу) |
|
|
|
|
|
F | 0,064 | 4,0 | 1682 | 333 |
| увеличение числа |
|
Cl | 0,099 | 3,16 | 1255 | 345 |
| электронных слоев; |
|
Br | 0,114 | 2,96 | 1143 | 325 |
| увеличение размера |
|
I | 0,133 | 2,66 | 1009 | 290 |
| атома; |
|
At | – | 2,0 | 889 | 270 |
| уменьшение элек- |
|
|
|
|
|
|
| троотрицательности |
|
Галогены отличаются высоким сродством к электрону (максимальным у
Cl) и очень большой энергией ионизации (максимальной у F) и максимально
возможной в каждом из периодов электроотрицательностью. Фтор – самый
электроотрицательный из всех химических элементов.
Наличие одного неспаренного электрона в атомах галогенов обуславли-
вает объединение атомов в простых веществах в двухатомные молекулы Г2.
Для простых веществ галогенов наиболее характерны окислитель-
ные свойства, наиболее сильные у F2 и ослабевающие при переходе к I2.
Галогены характеризуются наибольшей реакционной способностью из всех неметаллических элементов. Фтор даже среди галогенов выделя-
ется чрезвычайно высокой активностью.
Элемент второго периода – фтор наиболее сильно отличается от дру-
гих элементов подгруппы. Это общая закономерность для всех неметаллов.
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Фтор, как самый электроотрицательный элемент, не проявляет поло-
жительных степеней окисления. В любых соединениях, в том числе с ки-
слородом, фтор находится в степени окисления (-1).
Все остальные галогены проявляют положительные степени окис-
ления вплоть до максимальной +7.
Наиболее характерные степени окисления галогенов:
F : -1, 0;
Cl, Br, I: -1, 0, +1, +3, +5, +7.
У Cl известны оксиды, в которых он находится в степенях окисления: +4 и +6.
Наиболее важными соединениями галогенов, в положительных сте-
пенях окисления, являются кислородсодержащие кислоты и их соли.
Все соединения галогенов в положительных степенях окисления яв-
ляются сильными окислителями.
Для соединений | галогенов в промежуточных степенях окисления | и |
для простых веществ | характерны реакции диспропорционирования. | В |
этих реакциях галоген | одновременно и понижает и увеличивает свою проме- |
жуточную степень окисления. Диспропорционированию способствует щелочная среда.
Практическое применение простых веществ и кислородных соедине-
ний галогенов связано главным образом с их окислительным действием.
Самое широкое практическое применение находят простые вещества Cl2
и F2. Наибольшее количество хлора и фтора расходуется в промышленном ор-
ганическом синтезе: в производстве пластмасс, хладоагентов, растворителей,
ядохимикатов, лекарств. Значительное количество хлора и йода используется для получения металлов и для их рафинирования. Хлор используется также
для отбеливания целлюлозы, для обеззараживания питьевой воды и в произ-
водстве хлорной извести и соляной кислоты. Соли оксокислот используются в производстве взрывчатых веществ.
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Широкое практическое применение находят кислоты – соляная и плави-
ковая.
Фтор и хлор принадлежат к двадцати самым распространенным элемен-
там, значительно меньше в природе брома и иода. Все галогены находятся в природе в степени окисления (–1). Лишь йод встречается в виде соли KIO3,
которая как примесь входит в чилийскую селитру (KNO3).
Астат – искусственно полученный радиоактивный элемент (его нет в природе). Неустойчивость At отражается в названии, которое происходит от греч. «астатос» – «неустойчивый». Астат является удобным –излучателем для радиотерапии раковых опухолей.
Простые вещества
Простые вещества галогенов образованы двухатомными молекулами Г2.
В простых веществах при переходе от F2 к I2 с увеличением числа элек-
тронных слоев и возрастанием поляризуемости атомов происходит усиление
межмолекулярного взаимодействия, приводящее к изменению агрегатного со-
стояния при стандартных условиях.
Фтор (при обычных условиях) – желтый газ, при –181оС переходит в
жидкое состояние.
Хлор – желто-зеленый газ, переходит в жидкость при –34оС. С цветом га-
за связано название Cl, оно происходит от греческого «хлорос» – «желто–
зеленый». Резкое повышение температуры кипения у Cl2 по сравнению с F2,
указывает на усиление межмолекулярного взаимодействия.
Бром – темно-красная, очень летучая жидкость, кипит при 58,8оС. На-
звание элемента связано с резким неприятным запахом газа и образовано от
«бромос» – «зловонный».
Йод – темно-фиолетовые кристаллы, со слабым «металлическим» бле-
ском, которые при нагревании легко возгоняется, образуя фиолетовые пары;
при быстром охлаждении | паров до 114оС |
| образуется жидкость. Температура | ||||||||||||||||
Исполнитель: |
|
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
кипения йода равна 183оС. От цвета паров йода происходит его название –
«иодос» – «фиолетовый».
Все простые вещества имеют резкий запах и являются ядовитыми.
Вдыхание их паров вызывает раздражение слизистых оболочек и дыхательных органов, а при больших концентрациях – удушье. Во время первой мировой войны хлор применяли в качестве отравляющего вещества.
Газообразный фтор и жидкий бром вызывают ожоги кожи. Работая с га-
логенами, следует соблюдать меры предосторожности.
Поскольку простые вещества галогенов образованы неполярными моле-
кулами, они хорошо растворяются в неполярных органических растворителях:
спирте, бензоле, четыреххлористом углероде и т. п. В воде хлор, бром и иод ограниченно растворимы, их водные растворы называют хлорной, бромной и иодной водой. Лучше других растворяется Br2, концентрация брома в насы-
щенном растворе достигает 0,2 моль/л, а хлора – 0,1 моль/л.
Фтор разлагает воду:
2F2 + 2h3O = O2 + 4HF
Галогены проявляют высокую окислительную активность и перехо-
дят в галогенидные анионы.
Г2 + 2e– 2Г–
Особенно высокой окислительной активностью обладает фтор. Фтор окисляет благородные металлы (Au, Pt).
Pt + 3F2 = PtF6
Взаимодействует даже с некоторыми инертными газами (криптоном,
ксеноном и радоном), например,
Xe + 2F2 = XeF4
В атмосфере F2 горят многие очень устойчивые соединения, например,
вода, кварц (SiO2).
SiO2 + 2F2 = SiF4 + O2
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
В реакциях с фтором даже такие сильные окислители, как азотная и сер-
ная кислота, выступают в роли восстановителей, при этом фтор окисляет вхо-
дящий в их состав О(–2).
2HNO3 + 4F2 = 2NF3 + 2HF + 3O2 h3SO4 + 4F2 = SF6 + 2HF + 2O2
Высокая реакционная способность F2 создает трудности с выбором кон-
струкционных материалов для работы с ним. Обычно для этих целей использу-
ют никель и медь, которые, окисляясь, образуют на своей поверхности плотные защитные пленки фторидов. Название F связано с его агрессивным действи-
ем, оно происходит от греч. «фторос» – «разрушающий».
В ряду F2, Cl2, Br2, I2 окислительная способность ослабевает из-за уве-
личения размера атомов и уменьшения электроотрицательности.
В водных растворах окислительные и восстановительные свойства ве-
ществ обычно характеризуют с помощью электродных потенциалов. В таблице приведены стандартные электродные потенциалы (Ео, В) для полуреакций вос-
становления галогенов. Для сравнения также приведено значение Ео для ки-
слорода – самого распространенного окислителя.
Таблица
Стандартные электродные потенциалы для простых веществ галогенов
Элемент |
| F |
|
| Cl |
|
| Br |
|
| I |
| Ео, В, для реакции |
|
|
|
|
|
|
|
|
| O2+ 4e– + 4H+ 2h3O | ||||
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ео, В |
|
|
|
|
|
|
|
|
|
|
|
|
|
для электродной | +2,87 |
| +1,36 |
| +1,02 |
| +0,54 | +1,23 | |||||
реакции |
|
|
| ||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
| |
2Г– +2е – = Г2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Уменьшение окислительной активности
Как видно из таблицы, F2 – окислитель значительно более сильный,
чем О2, поэтому F2 в водных растворах не существует, он окисляет воду,
восстанавливаясь до F–. Судя по значению Eо окислительная способность Cl2
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
также выше, чем у О2. Действительно при длительном хранении хлорной воды происходит ее разложение с выделением кислорода и с образованием HCl. Но реакция идет медленно (молекула Cl2 заметно прочнее, чем молекула F2 и
энергия активации для реакций с хлором выше), быстрее происходит диспро-
порционирование:
Cl2 + h3O HCl + HOCl
В воде оно не доходит до конца (К = 3,9 .10–4), поэтому Cl2 существует в водных растворах. Еще большей устойчивостью в воде характеризуются Br2 и I2.
Диспропорционирование это очень характерная окислительно-
восстановительная реакция для галогенов. Диспропорционирование уси-
ливается в щелочной среде.
Диспропорционирование Cl2 в щелочи приводит к образованию анионов
Cl– и ClO–. Константа диспропорционирования равна 7,5 . 1015.
Cl2 + 2NaOH = NaCl + NaClO + h3O
При диспропорционировании йода в щелочи образуются I– и IO3–. Ана-
логично йоду диспропорционирует Br2. Изменение продукта диспропорцио-
нирования обусловлено тем, что анионы ГО– и ГО2– у Br и I неустойчивы.
Реакция диспропорционирования хлора используется в промышленно-
сти для получения сильного и быстро действующего окислителя гипохлорита,
белильной извести, бертолетовой соли.
Белильную известь получают по реакции: |
| |
Cl2 + Ca(OH)2 | = CaCl(ClO) + h3O | |
При диспропорционировании Cl2 в | горячем растворе щелочи образуется бер- | |
толетова соль KClO3, выпадающая в осадок после охлаждения раствора. | ||
0 | –1 | +5 |
3Cl2 + 6 KOH = 5KCl + KClO3 + 3h3O
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Взаимодействие галогенов с металлами
Галогены энергично взаимодействуют со многими металлами, например:
Mg + Cl2 = MgCl2 Ti + 2I2 TiI4
ГалогенидыNa+, в которых металл имеет низкую степень окисления (+1, +2),
– это солеобразные соединения с преимущественно ионной связью. Как прави-
ло, ионные галогениды – это твердые вещества с высокой температурой плав-
ления.
Галогениды металлов, в которых металл имеет высокую степень окисле-
ния, – это соединения с преимущественно ковалентной связью.
Многие из них при обычных условиях являются газами, жидкостями или легкоплавкими твердыми веществами. Например, WF6 – газ, MoF6 – жидкость,
TiCl4 – жидкость.
Взаимодействие галогенов с неметаллами
Галогены непосредственно взаимодействуют со многими неметаллами:
водородом, фосфором, серой и др. Например:
h3 + Cl2 = 2HCl 2P + 3Br2 = 2PBr3 S + 3F2 = SF6
Связь в галогенидах неметаллов преимущественно ковалентная.
Обычно эти соединения имеют невысокие температуры плавления и кипения.
При переходе от фтора к йоду ковалентный характер галогенидов усиливается.
Ковалентные галогениды типичных неметаллов являются кислотными соединениями; при взаимодействии с водой они гидролизуются с образованием кислот. Например:
PBr3 + 3h3O = 3HBr + h4PO3
PI3 + 3h3O = 3HI + h4PO3
PCl5 + 4h3O = 5HCl + h4PO4
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Две первые реакции используются для получения бромо- и иодоводород-
ной кислоты.
Интергалиды. Галогены, соединяясь друг с другом, образуют интерга-
лиды. В этих соединениях более легкий и более электроотрицательный галоген находится в степени окисления (–1), а более тяжелый – в положительной сте-
пени окисления.
За счет непосредственного взаимодействия галогенов при нагревании получаются: ClF, BrF, BrCl, ICl. Существуют и более сложные интергалиды:
ClF3, BrF3, BrF5, IF5, IF7, ICl3.
Все интергалиды при обычных условиях – жидкие вещества с низкими температурами кипения. Интергалиды имеют высокую окислительную ак-
тивность. Например, в парах ClF3 горят такие химически устойчивые вещества, как SiO2, Al2O3, MgO и др.
2Al2O3 + 4ClF3 = 4 AlF3 + 3O2 + 2Cl2
Фторид ClF3 – агрессивный фторирующий реагент, действующий быст-
рее F2. Его применяют в органических синтезах и для получения защитных пленок на поверхности никелевой аппаратуры для работы с фтором.
В воде интергалиды гидролизуются с образованием кислот. Например,
ClF5 + 3h3O = HClO3 + 5HF
Галогены в природе. Получение простых веществ
В промышленности галогены получают из их природных соединений. Все
процессы получения свободных галогенов основаны на окислении галоге-
нид-ионов.
2Г – Г2 + 2e–
Значительное количество галогенов находится в природных водах в виде анионов: Cl–, F–, Br –, I–. В морской воде может содержаться до 2,5 % NaCl.
Бром и иод получают из воды нефтяных скважин и морской воды.
Исполнитель: |
| Дата: |
|
|
|
|
|
|
|
|
|
| Мероприятие № | 4 | 2 | 7 | 1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Галогены Википедия
Группа → | 17 (VIIA) | ||||||
---|---|---|---|---|---|---|---|
↓ Период | |||||||
2 | |||||||
3 | |||||||
4 | |||||||
5 | |||||||
6 |
| ||||||
7 |
|
Галоге́ны (от греч. ἁλός — «соль» и γένος — «рождение, происхождение»; иногда употребляется устаревшее название гало́иды) — химические элементы 17-й группы периодической таблицы химических элементов Д. И. Менделеева (по устаревшей классификации — элементы главной подгруппы VII группы)[1].
Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F−, Cl−, Br−, I−, At− уменьшается.
К галогенам относятся фтор F, хлор Cl, бром Br, иод I, астат At, а также (формально) искусственный элемент теннессин Ts.
Фтор F | Хлор Cl | Бром Br | Иод I |
---|---|---|---|
Физические свойства галогенов — ГДЗ по Химии
Во всех агрегатных состояниях галогены сохраняют молекулярное строение, а уменьшение летучести объясняется усилением межмолекулярного Ван-дер-ваальсова взаимодействия из-за большого числа электронов.
Фтор
Молекула фтора имеет относительно не большую массу и достаточно подвижна, поэтому фтор при обычных условиях – газ с резким и очень неприятным запахом, растворимый в жидком HF. Твердый фтор (температура ниже -228 °C) имеет моноклинную структуру, а выше этой температуры – кубическую молекулярную решетку.
Хлор
Обладает резким раздражающим запахом. Под давлением около 0,6 МПа уже при комнатной температуре превращается в жидкость. Сжиженный хлор обычно хранят и транспортируют в стальных баллонах или цистернах, т.к. сухой хлор с железом не взаимодействует. Жидкий хлор имеет желтую окраску.
Бром
Красно-бурая тяжелая жидкость с плотностью 3,10 г/см3. Пары брома имеют красную окраску (желто-бурый цвет). Обладает высокой упругостью паров.
Йод.
При комнатной температуре представляет собой темно-фиолетовые кристаллы со слабым металлическим блеском, с ромбической молекулярной решеткой. Плотность йода 4,94 г/см3. Пары йода имеют фиолетовую окраску.
Скорость испарения йода при комнатной и тем более, повышенной температуре настолько велика, что если небольшое количество йода нагревать в достаточно большом сосуде, он успевает полностью испариться, прежде чем расплавится. Это явление известно как возгонка или сублимация. Но если парциальное давление паров йода превысит 80 мм. рт. ст., что происходит при нагревании его в сосуде небольшого объема, то подобно большинству обычных веществ, он сначала плавится, а закипает лишь при дальнейшем нагревании.
При охлаждении пары йода кристаллизуются, минуя жидкую фазу. Этим пользуются на практике для очистки йода от нелетучих примесей.
Астат
Твердое вещество металлического вида.
Основные характеристики простых веществ галогенов:
Агрегатное состояние при о.у. (в скобках указан тип кристаллической решетки) | Желтоватый газ. | Желто-зеленый газ. | Красно-бурая жидкость. | Черно-фиолетовые кристаллы (молекулярная ромбическая). | Черно-синие кристаллы (молекулярная). |
Плотность, г/см3 (293 °К) | 1,696 | 3,214 | 3,1226 | 4,93 | — |
Т°пл., °C | -219,5 | -101,0 | -7,25 | 113,7 | 244 |
Т°кип., °C | -188,1 | -34,1 | 59,2 | 185,5 | 317 |
Длина связи Hal-Hal, нм | 0,141 | 0,199 | 0,228 | 0,267 | — |
ΔHдис. Hal2, кДж/моль (25 °C) | 155 | 239,2 | 190,1 | 148,8 | 109 |
Стандартная энтальпия атомизации элементов ΔH°298, кДж/моль | 79,55 | 121,21 | 111,91 | 106,69 | 90,85 |
ΔH°пл., кДж/моль | 0,51 | 6,41 | 10,60 | 15,56 | — |
ΔH°кип., кДж/моль | 6,55 | 20,42 | 30,31 | 41,81 | — |
ΔH°гидр. Hal—, кДж/моль | -535,9 | -405,7 | -386,0 | -301,7 | — |
pKдис. Hal2 | 2,4 | 6,8 | 4,5 | 2,6 | — |
Степень термической диссоциации молекул Hal2 при 1000 °K и при 2000 °K | 0,043 и 0,99 | 0,00035 и 0,37 | 0,0023 и 0,72 | 0,28 и 0,89 | — |
Удельное электрическое сопротивление (298 °K), мкОм·м | — | 1014 | 1,3·1017 | 1,3·1019 | — |
Относительная электропроводность (Hg = 1, 298 °K) | — | 9,66·10-15 | 7,43·10-18 | 7,43·10-20 | — |
Стандартная энтропия S°298, Дж/моль·К | 202,85 | 223,1 | 151,77 | 116,81 | 121,42 |
Растворимость в воде (25 °C), моль/л | Разлагает воду | 0,091 | 0,21 | 0,0013 | — |
Растворимость в воде (25 °C), г/л | Разлагает воду | 6,5 | 34,6 | 0,3 | — |
Степень гидролиза в насыщенном растворе, % | — | 33 | 0,55 | 0,49 | — |
Все галогены образуют двухатомные молекулы, имеющие однотипное электронное строение. Строение молекул различных галогенов отличается в основном количественно. Кратность связи у них равна единице.
Энергетическая диаграмма молекулы галогена:
Энергетическая диаграмма молекулы галогенаПрочность молекулы фтора, несмотря на наименьшее межъядерное расстояние относительно других галогенов намного меньше по сравнению с молекулами хлора и брома. Во внешней электронной оболочке атома фтора отсутствует d-подоболочка, которая есть у остальных галогенов. За счет d-подоболочки имеет место дополнительное донорно-акцепторное взаимодействие, упрочняющее связь за счет p-электронов и d атомной орбитали. По величинам энтальпии и константы диссоциации молекула фтора сравнима с молекулой йода. В то же время силовая константа связи в молекуле фтора в 2 с лишним раза превосходит таковую у молекулы хлора. Другими словами, химическая связь в молекуле фтора менее прочная, но более жесткая.
Схема образования химической связи в молекулах фтора и хлора:
Схема образования химической связи в молекуле фтора Схема образования химической связи в молекуле хлораПри образовании молекулы фтора понижение энергии электронов достигается за счет взаимодействия 2p атомных орбиталей с неспаренными электронами атомов фтора (система 1 + 1). Остальные p-АО неподеленных электронных пар можно считать не учавствующими в образовании химической связи. Химическая связь в молекуле хлора, кроме аналогичного взаимодействия валентных 3p-АО атомов хлора, также образуется за счет взаимодействия 3p-АО неподеленной электронной пары одного атома хлора с вакантной 3d-АО другого (система 2 + 0). В результате порядок связи в молекуле хлора (1,12) больше, чем в молекуле фтора, а химическая связь прочнее.
Сродство к электрону у атома фтора также меньше, чем у хлора. Фтор является менее электрофильным элементом по сравнению с хлором. Это объясняется кайносимметричностью 2p-электронов атома фтора и связанным с ней эффектом обратного экранирования. Дело в том, что 2p-АО в атоме фтора сильнее притянуты к ядру и лежат глубже полностью заполненной электронами некайносимметричной 2s-АО. Последняя, будучи полностью заселенной, отталкивает присоединяемый атомом фтора электрон, уменьшая электронное сродство и повышая ионизационные потенциалы. С повышением в ряду F-At радиуса атомов возрастает и поляризуемость молекул. В результате усиливается межмолекулярное дисперсионное взаимодействие, что обуславливает повышение температур плавления и кипения галогенов.
В ряду Cl2-Br2-I2 прочность связи между атомами в молекуле постепенно снижается, что находит отражение в уменьшении энтальпии диссоциации молекул галогенов на атомы. Причины этого заключаются в следующем. С увеличением размеров внешних электронных облаков взаимодействующих атомов степень их перекрывания понижается, а область перекрывания располагается все дальше от атомных ядер. Поэтому при переходе от хлора к брому и йоду притяжение ядер атомов к области перекрывания электронных облаков уменьшается. Кроме того, в ряду Cl-Br-I возрастает число промежуточных электронных слоев, экранирующих ядро, что также ослабляет взаимодействие атомных ядер с областью перекрывания.
Цвет простых веществ, образуемых галогенами, определяется главным образом поглощением света, связанным с переходом электрона с одной из занятых π*-орбиталей на свободную σ*-орбиталь. У фтора этот переход соответствует границе ультрафиолетовой и фиолетовой областей спектра, из-за чего цвет вещества оказывается бледно-желтым; у хлора – в фиолетовый, что влечет появление желто-зеленой окраски; красно-коричневый цвет брома связан с поглощением в сине-фиолетовой области, а фиолетовый цвет йода, хорошо видимый в парообразном состоянии, вызван дальнейшим смещением поглощения в зеленую область спектра.
Биологическая роль галогенов
Все галогены обладают очень резким запахом. Вдыхание паров фтора, хлора и брома даже в небольших количествах вызывает сильное раздражение дыхательных путей и воспаление слизистых оболочек, а больших – удушение и тяжелое отравление. Жидкий бром, попадая на кожу, вызывает сильные ожоги и долго не заживающие язвы. В то же время, галогены необходимы для жизни.
Фтор важен для млекопитающих, в т.ч. и человека. Его соединения содержатся в костях и эмали зубов (0,01%). Колебания в содержании фтора в питьевой воде приводят к различным заболеваниям зубов. В то же время фтор и его соединения сильноядовиты, исключение составляют CF4, SF6 и некоторые другие химически инертные вещества.
Хлор существенно важен для многих форм жизни, включая человека. Ионы хлора в организме активируют некоторые ферменты, служат источником для образования соляной кислоты, создающей благоприятную среду для действия ферментов желудочного сока, влияют на электропроводность клеточных мембран и т.д. Соединения хлора содержатся в плазме крови и желудочном соке.
Необходим для поддержания жизни и хлорид натрия. Солевой обмен связан с водным балансом организма. Повышенное содержание хлорида натрия в организме удерживает воду в тканях.
Йод также важен для многих живых существ, в т.ч. и для человека. Соединения йода необходимы для нормальной работы щитовидной железы. Йод содержится не только в щитовидной железе, но и в надпочечниках. Гормон щитовидной железы тироксин (соединение йода) определяет общий темп процессов жизнедеятельности. Пары йода ядовиты.
Недостаток всех вышеперечисленных элементов приводит к серьезным заболеваниям.
Биологическая роль брома и астата не установлена. В небольших количествах соединения брома оказывают успокаивающее действие на центральную нервную систему. Бром очень токсичен, соединения брома, содержание анионы брома малотоксичны. Астат токсичен в силу своей радиоактивности.
Растворимость галогенов
Молекулы галогенов неполярны и, как обычно для неполярных веществ, умеренно растворимы в воде (за исключением фтора, который энергично взаимодействует с водой), причем растворимость брома максимальна. Один объем воды растворяет при комнатной температуре около 2,5 объемов хлора. Этот раствор называется хлорной водой (для брома и йода – бромная и йодная вода соответственно). При пропускании хлора в охлажденную до 0 °C воду из раствора выделяются зеленовато-желтые кристаллы клатратных соединений Cl2·8H2O и Cl2·6H2O. Это вещество плавится инконгруэнтно при 9,6 °C.
Значительно лучше неполярные галогены растворяются в неполярных органических растворителях (за исключением хлора и фтора, которые интенсивно реагируют практически со всеми органическими растворителями). CS2, C2H5OH, C2H5OC2H5, CHCl3, CCl4, C6H6, бензине – «подобное растворяется в подобном». Для растворения хлора можно использовать CCl4. Йод также хорошо растворим в растворах иодидов металлов за счет образования комплексного иона I3-. Это свойство позволяет легко экстрагировать галогены из водных растворов. Если, например, взболтать водный раствор йода с небольшим количеством CS2 (не смешивающегося с водой), то почти весь йод перейдет из воды в CS2, окрашивая его в фиолетовый цвет.
Особенностью галогенов является то, что растворение в воде процесс не только физический, но и химический:
H2O + Hal2 ↔ Hhal + HhalO, Hal = Cl, Br
В водном растворе галогены диспропорционируют – подробнее см. химические свойства галогенов.
Галогены
Галогены
Галогены – это элементы VII A группы главной подгруппы. К ним относятся: фтор, хлор, бром, йод и астат, который очень редко встречается в природе.
Все эти элементы являются типичными неметаллами. Галогены, означает «рождающие соли».
Так как это элементы VII A группы, значит на внешнем энэргетическом уровне у них семь электронов. До завершения уровня им не хватает одного электрона, поэтому они берут этот недостающий электрон у атомов металлов, при этом образуется ионное соединение – соль, где степень окисления галогена -1.
Галогены – сильные окислители, самый сильный из них фтор, который может быть только окислителем и проявлять степень окисления -1.
Остальные галогены могут проявлять и восстановительные свойства при взаимодействии с более электроотрицательным элементом – фтором, кислородом или азотом. Поэтому для них возможны степени окисления +1, +3, +5, +7. Так, в соединении HClO степень окисления хлора +1, в соединении HBrO2 степень окисления брома +3, в соединении BrF5 степень окисления брома +5, в соединении H5IO6 степень окисления йода +7.
В группе сверху вниз – от фтора к йоду – радиус атома увеличивается, поэтому усиливаются восстановительные и металлические свойства.
Все галогены представляют собой двухатомные молекулы, связь между атомами – ковалентная полярная. Все галогены имеют молекулярную кристаллическую решётку.
Галогены в природе существуют только в виде соединений с другими элементами. Наиболее распространены хлор и фтор, их содержание составляет 0,19% и 0,03% от массы земной коры.
Например, фтор входит в соcтав плавикового шпата, хлор входит в состав каменной соли, бром содержится в морской воде, а йод в подземных буровых водах.
Рассмотрим таблицу, в которой отражены физические свойства галогенов. Фтор является светло-жёлтым газом, хлор – жёлто-зелёный газ, бром – бурая жидкость, а йод – твёрдое вещество чёрно-серого цвета.
Вещество |
Агрегатное состояние при н.у. |
Цвет |
Плотность, г/см3 |
Температура плавления, 0С |
Температура кипения, 0С |
Фтор F2 |
Газ |
Светло-жёлтый |
0,0017 |
-220 |
-188 |
Хлор Cl2 |
Газ |
Жёлто-зелёный |
0,0032 |
-101 |
-34 |
Бром Br2 |
Жидкость |
Буровато-коричневый |
3,1 |
-7 |
+58 |
Йод I2 |
Твёрдое вещество |
Чёрно-серый (пары фиолетовые) |
4,9 |
+114 |
+186 |
Из таблицы видно, что с ростом молекулярной массы увеличиваются температуры кипения и плавления галогенов, их плотность. Это связано, прежде всего, с увеличением размеров атомов и молекул, а, следовательно, и силами межмолекулярного взаимодействия. От фтора к йоду усиливается интенсивность окраски галогенов, а у кристаллов йода появляется металлический блеск.
Галогены – химически активные соединения, их активность уменьшается от фтора к йоду.
Фтор самый активный галоген, который при нагревании реагирует даже с золотом, серебром и платиной. Алюминий и цинк в атмосфере фтора воспламеняются. Так, в реакции цинка с фтором образуется фторид цинка. Цинк повышает свою степень окисления с 0 до +2, а фтор, наоборот, понижает степень окисления с 0 до -1. Атом цинка отдаёт по два электрона молекуле фтора. Цинк является восстановителем, а фтор – окислителем.
Остальные галогены реагируют с металлами в основном только при нагревании. Нагретый порошок железа загорается при взаимодействии с хлором. В результате этого взаимодействия образуется хлорид железа три. Железо повышает свою степень окисления с 0 до +3, а хлор понижает свою степень окисления с 0 до -1. При этом каждый атом железа отдаёт по 3 электрона молекуле хлора. Железо окисляется и является восстановителем, а хлор восстанавливается и является окислителем.
Медная проволока также сгорает в парах брома. При этом образуется бромид меди два. Медь повышает свою степень окисления с 0 до +2, а бром понижает свою степень окисления с 0 до -1. Каждый атом меди отдаёт по 2 электрона молекуле брома. Медь – восстановитель, а бром – окислитель.
Йод реагирует с алюминием, катализатором в этой реакции является вода. Алюминий повышает свою степень окисления с 0 до +3, а йод понижает свою степень окисления с 0 до -1. Каждый атом алюминия отдаёт по 3 электрона молекуле йода. Алюминий является восстановителем, а йод – окислителем. В результате этого взаимодействия образуется йодид алюминия.
Галогены также вытесняют друг друга из солей. Так, более активный галоген вытесняет из раствора соли менее активный.
Например, хлор вытесняет бром из раствора его соли, потому что хлор более активный галоген, чем бром. Хлор в данной реакции понижает свою степень окисления с 0 до -1, а бром повышает с -1 до 0. В результате чего, каждый бром отдаёт по 2 электрона молекуле хлора. Образуется новая соль – хлорид натрия и молекулярный бром. Хлор является окислителем, а бром – восстановителем.
Бром вытесняет йод из раствора йодида калия. В этой реакции бром понижает свою степень оксиления с 0 до -1, а йод повышает свою степень окисления с -1 до 0. При этом 2 электрона от йода переходят к молекуле брома. В результате взаимодействия образуется соль – бромид калия и простое вещество – йод. Бром является окислителем, а йод – восстановителем.
Для фтора эта реакция не характерна, потому что он взаимодействует с водой, а эти реакции протекают в растворе.
Галогены реагируют с водородом с образованием галогеноводородов. Например, с фтором водород реагирует со взрывом, с хлором – в присутствии света, а с бромом – при нагревании. В результате взаимодействия водорода с фтором образуется фтороводород, в результате взаимодействия водорода с хлором – хлороводород, в результате взаимодействия водорода с бромом – бромоводород.
Получение галогенов оказалось сложным процессом. Например: фтор в свободном виде получен впервые только в 1886 году французским химиком Муассаном, который был удостоен за это Нобелевской премии. Своё название элемент получил от греческого фторос – «разрушающий».
Хлор открыт шведским химиком Шееле в 1774 году. Элемент получил название за цвет простого вещества (от греческого хлорос – жёлто-зелёный).
Бром открыт в 1826 г. французским химиком Баларом. Элемент назван так за запах простого вещества (от греческого бромос – зловонный).
Йод получен в 1811 г. французским учёным Куртуа, а название он получил за цвет паров простого вещества (от греческого иодэс – фиолетовый).
Таким образом, галогены – это элементы VII A группы, их молекулы двухатомны. Они являются сильными окислителями, самый сильный – фтор. Степень окисления фтора – -1, остальные галогены могут иметь степень окисления и +1, +3, +5, +7. В природе встречаются только в виде соединений. Физические свойства их разнообразны: это газы (фтор и хлор), жидкость – бром и твёрдое вещество – йод. С увеличением молекулярной массы у галогенов увеличиваются температуры кипения и плавления. Они вступают во взаимодействие с металлами, с водородом и растворами солей, при этом более активный галоген вытесняет из соли менее активный.
Галогены: характеристика, свойства и примеры
Общая характеристика галогенов
Электронная конфигурация внешнего энергетического уровня галогенов ns2np5. Поскольку, до завершения энергетического уровня галогенам не хватает всего 1-го электрона, в ОВР они чаще всего проявляют свойства окислителей. Степени окисления галогенов: от «-1» до «+7». Единственный элемент группы галогенов – фтор – проявляет только одну степень окисления «-1» и является самым электроотрицательным элементом.
Молекулы галогенов двухатомны: F2, Cl2, Br2, I2. С ростом заряда ядра атома химического элемента, т.е. при переходе от фтора к йоду окислительная способность галогенов снижается, что подтверждается способностью вытеснения нижестоящих галогенов вышестоящими из галогеноводородных кислот и их солей:
Br2 + 2HI = I2 + 2HBr
Cl2 + 2KBr = Br2 + 2KCl
Физические свойства галогенов
При н.у. фтор – газ светло-желтого цвета, обладающий резким запахом. Ядовит. Хлор – газ светло-зеленого цвета, также как и фтор имеет резкий запах. Сильно ядовит. При повышенном давлении и комнатной температуре легко переходит в жидкое состояние. Бром – тяжелая жидкость красно-бурого цвета с характерным неприятным резким запахом. Жидкий бром, а также его пары сильно ядовиты. Бром плохо растворяется в воде и хорощо в неполярных растворителях. Йод – твердое вещество темно-серого цвета с металлическим блеском. Пары йода имеют фиолетовый цвет. Йод легко возгоняется, т.е. переходит в газообразное состояние из твердого, при этом минуя жидкое состояние.
Получение галогенов
Галогены можно получить при электролизе растворов или расплавов галогенидов:
MgCl2 = Mg + Cl2 (расплав)
Наиболее часто галогены получают по реакции окисления галогенводородных кислот:
MnO2 + 4HCl = MnCl2 + Cl2↑ +2H2O
K2Cr2O7 + 14HCl = 3Cl2↑ + 2KCl +2CrCl3 +7H2O
2KMnO4 +16HCl = 2MnCl2 +5Cl2↑ +8H2O +2KCl
Химические свойства галогенов
Наибольшей химической активностью обладает фтор. Большинство химических элементов даже при комнатной температуре взаимодействует с фтором, выделяя большое количество теплоты. Во фторе горит даже вода:
2H2O + 2F2 =4HF + O2↑
Свободный хлор менее реакционноспособен, чем фтор. Он непосредственно не реагирует с кислородом, азотом и благородными газами. Со всеми остальными веществами он взаимодействует подобно фтору:
2Fe + Cl2 = 2FeCl3
2P + 5Cl2 = 2PCl5
При взаимодействии хлора с водой на холоде происходит обратимая реакция:
Cl2 + H2O↔HCl +HClO
Смесь, представляющую собой продукты реакции, называют хлорной водой.
При взаимодействии хлора с щелочами на холоде образуются смеси хлоридов и гипохлоритов:
Cl2 + Ca(OH)2 = Ca(Cl)OCl + H2O
При растворении хлора в горячем растворе щелочи происходит реакция:
3Cl2 + 6KOH=5KCl +KClO3+3H2O
Бром, как и хлор растворяется в воде и, частично реагируя с ней, образует так называемую «бромную воду», тогда как йод в воде практически нерастворим.
Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие йода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:
Н2 + I2 = 2HI — 53 кДж.