Резонанс физика – Физика и музыка – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

Резонанс | Физика

Отличительной особенностью вынужденных колебаний является зависимость их амплитуды А от частоты ν изменения внешней силы. Для изучения этой зависимости можно воспользоваться уже знакомой нам установкой, изображенной на рисунке 36. Если вращать ручку кривошипа очень медленно, то груз вместе с пружиной будет перемещаться вверх и вниз так же, как и точка подвеса О. Амплитуда вынужденных колебаний при этом будет невелика. При более быстром вращении груз начнет колебаться сильнее, и при частоте вращения, равной собственной частоте пружинного маятника (ν= νсоб), амплитуда его колебаний достигнет максимума. При дальнейшем увеличении частоты вращения ручки амплитуда вынужденных колебаний груза опять станет меньше. А очень быстрое вращение ручки оставит груз почти неподвижным: из-за своей инертности пружинный маятник, не успевая следовать изменениям внешней силы, будет просто «дрожать на месте».

Резкое возрастание амплитуды вынужденных колебаний при ν = νcoб называется резонансом.

График зависимости амплитуды вынужденных колебаний от частоты изменения внешней силы изображен на рисунке 38. Этот график называют

резонансной кривой. Максимум этой кривой приходится на частоту ν, равную собственной частоте колебаний νсоб.
Резонансная кривая
Явление резонанса можно продемонстрировать и с нитяными маятниками. Подвесим на рейке массивный шар 1 и несколько легких маятников, имеющих нити разной длины (рис. 39). Каждый из этих маятников имеет свою собственную частоту колебаний, которую можно определить, зная длину нити и ускорение свободного падения.

Теперь, не трогая легких маятников, выведем шар 1 из положения равновесия и отпустим. Качания массивного шара вызовут периодические изгибания рейки, вследствие которых на каждый из легких маятников начнет действовать периодически изменяющаяся сила упругости. Частота ее изменений будет равна частоте колебаний шара. Под действием этой силы маятники начнут совершать вынужденные колебания. При этом мы увидим, что маятники 2 и 3 останутся почти неподвижными. Маятники 4 и 5 будут колебаться с немного большей амплитудой. А у маятника 6, имеющего такую же длину нити и, следовательно, собственную частоту колебаний, как у шара 1, амплитуда окажется максимальной. Это и есть резонанс.

Резонанс нитяных маятников
Резонанс можно наблюдать и с помощью установки, изображенной на рисунке 40. Основание маятника метронома 1 соединяют нитью 3 с нитью маятника 2. Маятник в этом опыте качается с наибольшей амплитудой тогда, когда частота колебаний метронома («дергающего» за нить маятника) совпадает с частотой свободных колебаний этого маятника.

Резонанс возникает из-за того, что внешняя сила, действуя в такт со свободными колебаниями тела, все время совершает положительную работу. За счет этой работы энергия колеблющегося тела увеличивается и амплитуда колебаний возрастает.

Явление резонанса может играть как полезную, так и вредную роль.

Известно, например, что тяжелый язык большого колокола может раскачать даже ребенок, но лишь тогда, когда будет действовать на веревку в такт со свободными колебаниями языка.

На применении резонанса основано действие язычкового частотомера. Этот прибор представляет собой набор укрепленных на общем основании упругих пластин различной длины. Собственная частота каждой пластины известна. При контакте частотомера с колебательной системой, частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.

С резонансом можно встретиться и тогда, когда это совершенно нежелательно. Так, например, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи колебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.

В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.

В 1906 г. из-за резонанса разрушился и так называемый Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.

Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу» и идти не строевым, а вольным шагом.

Если же через мост переезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).

Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.

С резонансом можно встретиться не только на суше, но и в море и даже в воздухе. Так, например, при некоторых частотах вращения гребного вала в резонанс входили целые корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.

1. Что такое резонанс? При каком условии он возникает? 2. Опишите опыты, в которых можно наблюдать явление резонанса. 3. Какую роль — полезную или вредную — играет резонанс в жизни людей? Приведите примеры.

Вынужденные колебания. Резонанс — Класс!ная физика

Вынужденные колебания. Резонанс

«Физика — 11 класс»

Как получить незатухающие колебания, — те, которые могут длиться неограниченно долго?

Для этого на колебателььную систему должна действовать внешняя периодическая сила.
Такие колебания называются вынужденными.

Работа внешней силы над системой обеспечивает приток энергии к системе извне, который не дает колебаниям затухнуть, несмотря на действие сил трения.

Например, раскачивание ребенка на качелях.
Качели — это маятник, т. е. колебательная система с определенной собственной частотой.
Если начать в правильном ритме подталкивать качели, то можно без большого напряжения раскачать их очень сильно.
При этом произойдет накопление результатов действия отдельных толчков, и амплитуда колебаний качелей станет большой.

В этом случае возникает возможность увеличения амплитуды колебаний системы, способной совершать почти свободные колебания, при совпадении частоты внешней периодической силы с собственной частотой колебательной системы.

Спустя некоторое время колебания качелей приобретут установившийся характер: их амплитуда перестанет изменяться со временем.

При установившихся вынужденных колебаниях частота колебаний всегда равна частоте внешней периодически действующей силы.

Резонанс

Как амплитуда установившихся вынужденных колебаний зависит от частоты внешней силы?
При увеличении частоты внешней силы амплитуда колебаний постепенно возрастает.
Она достигает максимума, когда частота вынужденных колебаний становится равной частоте внешней периодически действующей силы.
При дальнейшем увеличении частоты амплитуда установившихся колебаний уменьшается.

Резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой ее свободных колебаний называется резонансом

.

Почему возникает резонанс?

При резонансе внешняя сила действует в такт со свободными колебаниями.
Ее направление совпадает с направлением скорости мммаятника, поэтому эта сила совершает только положительную работу.
При установившихся колебаниях положительная работа внешней силы равна по модулю отрицательной работе силы сопротивления.

Большое влияние на резонанс оказывает трение в системе.
Чем меньше коэффициент трения, тем больше амплитуда установившихся колебаний.

Изменение амплитуды вынужденных колебаний в зависимости от трения:

кривая 1 — минимальное трение,
кривая 3 — максимальное трение.
Возрастание амплитуды вынужденных колебаний при резонансе выражено тем отчетливее, чем меньше трение в системе.

При малом трении резонанс «острый», а при большом «тупой».

Согласно закону сохранения энергии вызвать в системе колебания с большой амплитудой при небольшой внешней силе можно только за продолжительное время.
Если трение велико, то амплитуда колебаний будет небольшой, и для установления колебаний не потребуется много времени.

Воздействие резонанса и борьба с ним

Если колебательная система находится под действием внешней периодической силы, и если частота этих периодических усилий совпадает с частотой свободных колебаний системы, то может наступить резонанс и резкое увеличение амплитуды колебаний.

Любое упругое тело, будь то мост, вал двигателя, корпус корабля, представляет собой колебательную систему и характеризуется собственными частотами колебаний.
В то же время железо, сталь и другие материалы при переменных нагрузках со временем теряют прочность, после чего внезапно разрушаются.

Обычно принимаются специальные меры, чтобы не допустить наступления резонанса или ослабить его действие.

Для этого увеличивают трение или же добиваются, чтобы собственные частоты колебаний не совпадали с частотой внешней силы.
Известны случаи, когда приходилось перестраивать океанские лайнеры, чтобы уменьшить вибрацию.
Или при переходе через мост воинским частям запрещается идти в ногу, т.к. строевой шаг приводит к периодическому воздействию на мост.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин



Механические колебания. Физика, учебник для 11 класса — Класс!ная физика

Свободные, затухающие и вынужденные колебания — Условия возникновения свободных колебаний. Математический маятник — Динамика колебательного движения. Уравнение движения маятника — Гармонические колебания — Фаза колебаний — Превращение энергии при гармонических колебаниях — Вынужденные колебания. Резонанс — Примеры решения задач — Краткие итоги главы

Резонанс | Формулы и расчеты онлайн

При заданных возмущающей силе Fmax.возм и коэффициенте трения β амплитуда Ym является функцией только угловой частоты возмущающей силы.

Резонанс

На рисунке показана зависимость Ym от ω (резонансная кривая). Параметром служит коэффициент затухания δ.

При ωω0 она достигает особенно большого значения (резонанс).

При самых малых значениях δ величина Y

m резко возрастает.

Если δ > 0, то в случае резонанса ω < ω0; величина Ymax.ст представляет собой статическое отклонение системы под действием постоянной силы Ymax.возм (ω = 0).

Для определения резонансной частоты необходимо найти максимум функции Ym = Ym(ω) и приравнять первую производную нулю; тогда, если

ωрезрезонансная частота, при которой амплитуда максимальна,радиан/сек
ω0частота собственных незатухающих колебаний системы,радиан/сек
mмасса колебательной системы,кг
βкоэффициентом вязкого трения,кг/сек
δкоэффициентом затухания,радиан/сек

Частота резонанса

\[ ω_{рез} = \sqrt[-1.2]{ω_{0}^2 — \frac[-1.2]{β^2}{2m^2}} = \sqrt[-0.5]{ω_{0}^2 — 2δ^2} \]

Условие отсутствия резонанса

\[ δ ≥   \frac{ω_{0}}{\sqrt{2}} \]

Амплитуда резонанса

Чтобы найти величину амплитуды в резонансном случае, нужно подставить формулу (1) в формулу отклонения при вынужденных колебаниях.

Если

Ymax.резрезонансная амплитуда колебаний системы,метр
Fmax.возммаксимальное значение возмущающей силы,Ньютон
mмасса колебательной системы,кг
ωрезрезонансная частота, при которой амплитуда максимальна,радиан/сек
ω0частота собственных незатухающих колебаний системы,радиан/сек
ωчастота колебаний системы с затуханием,радиан/сек
βкоэффициентом вязкого трения,кг/сек
δкоэффициентом затухания,радиан/сек

то имеем

\[ Y_m = \frac[-2.65] { F_{max.возм} } { β \sqrt[-1.25]{ ω_{0}^2 — \frac[-1.2]{β^2}{4m^2} } } \]

\[ Y_m = \frac{F_{max.возм}}{βω} \]

\[ Y_m = \frac{F_{max.возм}}{2δmω} \]

Согласно формуле, разность фаз α также зависит от частоты возмущающей силы. Параметром служит коэффициент δ.

Резонанс

На рисунке представлена зависимость α от частоты.

Независимо от величины затухания при ω = ω0 разность фаз составляет

\[ α = 90° \]

Резонанс играет большую роль в технике и в повседневной жизни. В большинстве механических устройств под действием внешних периодических сил могут возникать колебания. При резонансе происходит нарастание амплитуды колебаний, и это может привести к разрушениям («резонансная катастрофа»). В случае вращательного движения резонансную частоту называют критическим числом оборотов.

В помощь студенту

Резонанс
стр. 556

Доклады на тему » Резонанс — бывает вредный, а бывает полезный

Резонанс является одним из интереснейших физических явлений. И чем глубже становятся наши познания об окружающем нас мире, тем явственнее прослеживается роль этого явления, в различных сферах нашей жизни — в музыке, медицине, радиотехнике и даже на детской площадке.

Каков же смысл этого понятия, условия его возникновения и проявление?

Собственные и вынужденные колебания. Резонанс

Вспомним простое и приятное развлечение — раскачивание на подвесных качелях.

Прикладывая в нужный момент совсем незначительное усилие, ребёнок может раскачивать взрослого. Но для этого частота воздействия внешней силы должна совпасть с собственной частотой раскачивания качелей. Только в этом случае амплитуда их колебаний заметно вырастет.

Итак, резонанс это явление резкого возрастания амплитуды колебаний тела, когда частота его собственных колебаний совпадет с частотой действия внешней силы.

Прежде всего, разберемся в понятиях — собственные и вынужденные колебания. Собственные — присущи всем телам — звёздам, струнам, пружинам, ядрам, газам, жидкостям… Обычно они зависят от коэффициента упругости, массы тела и других его параметров. Такие колебания возникают под воздействием первичного толчка, осуществляемой внешней силой. Так, чтобы привести в колебания груз, подвешенный на пружине, достаточно оттянуть его на некоторое расстояние. Возникшие при этом собственные колебания будут затухающими, поскольку энергия колебаний затрачивается на преодоление сопротивления самой колебательной системы и окружающей среды.

Вынужденные колебания возникают при воздействии на тело сторонней (внешней) силы с определенной частотой. Эту стороннюю силу ещё называют вынуждающей силой. Очень важно, чтобы эта внешняя сила действовала на тело в нужный момент и в нужном месте. Именно она восполняет потери энергии и увеличивает её при собственных колебаниях тела.

Механический резонанс

Очень ярким примером проявления резонанса является несколько случаев обрушения мостов, когда по ним строевым шагом проходила рота солдат.

Чеканный шаг солдатских сапог совпал с собственной частотой колебаний моста. Он стал колебаться с такой амплитудой, на которую его прочность не была рассчитана и… развалился. Тогда и родилась новая воинская команда «…не в ногу». Она звучит, когда пешая или конная рота солдат проходит по мосту.

Если вам случалось путешествовать на поезде, то самые внимательные из вас обратили внимание на заметные покачивания вагонов, когда его колеса попадают на стыки рельс. Это так вагон откликается, т. е. резонирует с колебаниями, возникающими при преодолении этих зазоров.

Корабельные приборы снабжают массивными подставками или подвешивают на мягких пружинах, чтобы избежать резонанса этих корабельных деталей с колебаниями корабельного корпуса. При запуске корабельных двигателей судно так может войти в резонанс с их работой, что это грозит его прочности.

Приведенных примеров достаточно, чтобы убедиться в необходимости учитывать резонанс. Но мы иногда и используем механический резонанс, не замечая этого. Выталкивая машину, застрявшую в дорожной грязи, водитель и его добровольные помощники вначале раскачивают её, а затем дружно толкают вперёд по направлению движения.

Раскачивая тяжелый колокол, звонари тоже неосознанно используют это явление.

Они ритмично в такт с собственными колебаниями языка колокола, дергают за прикрепленный к нему шнур, всё увеличивая амплитуду колебаний.

Существуют приборы, измеряющие частоту электрического тока. Их действие основано на использовании резонанса.

Акустический резонанс

На страницах нашего сайта мы познакомили вас с важнейшими сведениями о звуке. Продолжим наш разговор, дополнив его примерами проявления акустического или звукового резонанса.

Для чего у музыкальных инструментов, особенно у гитары и скрипки такой красивый корпус? Неужели лишь для того, чтобы красиво выглядеть? Оказывается, нет. Он нужен для правильного звучания, всей издаваемой инструментом звуковой палитры. Звук, издаваемый самой гитарной струной достаточно тихий. Чтобы его усилить струны, располагают поверх корпуса, имеющего определенную форму и размеры. Звук, попадая внутрь гитары, резонирует с различными частями корпуса и усиливается.

Сила и чистота звука зависит от качества дерева, и даже от лака, которым покрыт инструмент.

Имеются резонаторы и в нашем голосовом аппарате. Их роль выполняют самые различные воздушные полости, окружающие голосовые связки. Они-то усиливают звук, формируют его тембр, усиливая именно те колебания, частота которых близка к их собственной. Умение использовать резонаторы своего голосового аппарата — это одна из сторон таланта певца. Им в совершенстве владел Ф.И. Шаляпин.

Рассказывают, что когда этот великий артист пел во всю мощь, гасли свечи, тряслись люстры и трескались гранёные стаканы.

Т.е. явление звукового резонанса играет громадную роль в восхитительном мире звуков.

Электрический резонанс

Не миновало это явление и электрические цепи. Если частота изменения внешнего напряжения совпадет с частой собственных колебаний цепи, то может возникнуть электрический резонанс. Как всегда он проявляется в резком возрастании и силы тока и напряжения в цепи. Это чревато коротким замыкание и выходом из строя приборов, включённых в цепь.

Однако именно резонанс позволяет нам настроиться на частоту определенной радиостанции. Обычно на антенну поступает множество частот от различных радиостанций. Вращая ручку настройки, мы меняем частоту приёмного контура радиоприёмника.

Когда одна из пришедших на антенну частот совпадет с этой частотой, тогда мы и услышим эту радиостанцию.

Волны Шумана

Между поверхностью Земли и ее ионосферой существует слой, в котором очень хорошо распространяются электромагнитные волны. Этот небесный коридор называют волноводом. Рождающиеся здесь волны могут несколько раз огибать Землю. Но откуда они берутся? Оказалось, что они возникают при разрядах молний.

Профессор Мюнхенского технического университета Шуман рассчитал их частоту. Выяснилось, что она равна 10 Гц. Но именно с таким ритмом происходят колебания человеческого мозга! Этот удивительный факт не мог быть простым совпадением. Мы живём внутри гигантского волновода, который своим ритмом управляет нашим организмом. Дальнейшие исследования подтвердили это предположение. Оказалось, что искажение волн Шумана, например, при магнитных бурях ухудшает состояние здоровья людей.

Т.е. для нормального самочувствия человека ритм важнейших колебаний человеческого организма должен резонировать с частотой волн Шумана.

Электромагнитный смог от работы бытовых и промышленных электроприборов искажают природные волны Земли, и разрушает наши тонкие взаимосвязи со своей планетой.

Законам резонанса подчинены все объекты Вселенной. Этим законам подчиняются даже взаимоотношения людей. Так, выбирая себе друзей, мы ищем себе подобных, с которыми нам интересно, с которыми находимся «на одной волне».

Автор: Драчёва Светлана Семёновна


Если это сообщение тебе пригодилось, буда рада видеть тебя в группе ВКонтакте. А ещё — спасибо, если ты нажмёшь на одну из кнопочек «лайков»:

Вы можете оставить комментарий к докладу.

Физика и музыка – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

  • Участник:Колесников Максим Игоревич
  • Руководитель:Щербинина Галина Геннадиевна
Цель работы: теоретическое определение и опытное подтверждение явления резонанса.

Введение

Все связи между явлениями устанавливаются исключительно путем разного рода простых и сложных резонансов — согласованных вибраций физических систем.

Н. Тесла

Что может объединять оркестр, играющий на струнных и духовых музыкальных инструментах, мычащее пение себе под нос во время прогулки, дребезжащие от проезжающего трамвая окна в доме, вой ветра за окном? Лишь одно явление, которое легло в основу всего названного – акустический резонанс. Это явление является видом резонанса и сопровождает нас в жизни на каждом шагу.

На это великое явление впервые обратил внимание Галилео Галилей. Оно было описано им в 1602 году в работах, посвященных исследованию маятников и музыкальных струн.

Я учусь в музыкальной школе, мой мир наполнен звуками. Дома у меня несколько музыкальных инструментов: гитара, варган, флейта, синтезатор. А в музыкальной школе в классах по соседству раздаются звуки балалайки, аккордеона саксофона и гитары. Я давно задавался вопросом: как устроены все эти инструменты, почему они созвучны человеку. Разбираясь с этими вопросами, я невольно анализировал явление под названием «акустический резонанс».

Итак, объектом исследования является акустический резонанс.

Цель работы: теоретическое определение и опытное подтверждение явления резонанса.

Поставленная цель для своего разрешения определила следующие задачи:

  • Образовательно-теоретическая: расширить, обобщить полученные на уроке физики знания и представления о физических законах и явлениях.
  • Практическая: экспериментальным путем доказать действие резонанса.
  • Общественно-полезная: продемонстрировать эксперименты и доказать наличие явления резонанса.

Методы исследования, использованные при работе над темой:

  • накопительно-статистический (формирование знаний, накопление необходимой информации),
  • аналитический (анализ накопленной информации),
  • сравнительно-экспериментальный (доказательство наличия резонанса, на практике путем разработки эксперимента и демонстрации опыта).

Гипотеза: Человек, хочет он того или нет, никогда не существует сам по себе, никогда не пребывает в изоляции. Человек непрерывно взаимодействует с широчайшим спектром всевозможных существ и явлений, которые воздействуют на него. И одним из самых распространенных явлений, которые необходимо учитывать человеку в его деятельности – явление резонанса.

Практическая значимость работы

Данная тема изучается в курсе физики 9 класса (раздел « Механические колебания и волны. Звук», учебник для общеобразовательных школ, авторы: А.В.Перышкин, Е. М. Гутник, издательство «Дрофа», 2013 г.). Темы учебных занятий и соответствующие им параграфы представлены в таблице.

Тема учебного занятия

Параграф, в котором изложен данный материал.

Распространение колебаний в среде. Волны. Длина волны. Скорость распространения волн.

§ 31-33

Физический диктант. Источники звука. Звуковые колебания. Высота и тембр звука. Громкость звука.

§ 34, 35, 36

Распространение звука. Скорость звука. Отражение звука. Эхо. Звуковой резонанс.

§ 37-40

Этот материал я изучал самостоятельно ( обучаюсь в 8 классе), однако форма изложения материала в учебнике проста и доступна, поэтому каких -либо значительных проблем не возникло.

В моей работе представлены опыты для демонстрации на уроках физики в средней общеобразовательной школе. Их можно демонстрировать как на уроке при изучении явлений (надеюсь, что это поможет сформировать некоторые понятия при изучении физики), так и в качестве домашних заданий учащимся.

Глава 1. Теоретическая часть

1.1. Виды колебаний. Общее понятие резонанса

Для лучшего понимания явления резонанса необходимо дать определение такому понятию как колебания. Это движения, которые точно или приблизительно повторяются через определённые промежутки времени (например, движение поршня в двигателе, поплавок на волне, ветка дерева на ветру).

Собственные колебания — это колебания, происходящие в отсутствие внешних воздействий на систему. Они происходят под действием внутренних сил после выведения системы из положения равновесия со строго определеннойчастотой, называемой частотой собственных колебаний системы. Примерами могут служить груз на пружине, стрелка компаса, звучание колокола, гонга, струны рояля и т.п.

Вынужденные колебания — колебания, происходящие под воздействием внешних периодических сил. Колебания мембраны телефона, иглы швейной машины, поршня в цилиндре автомобильного двигателя, периодическое раскачивание качелей, рессор автомобиля, движущегося по неровной дороге, океанические приливы под действием Луны и др.[1]”

Для начала нужно сказать, что все тела, в каком бы они состоянии не казались, имеют свою изначальную частоту и амплитуду колебаний. Таким образом, любой объект можно рассматривать в виде системы колебательных движений, а воздействующие звуковыеколебания в виде силы воздействия на частоту этой самой колебательной системы. Поэтому полный резонанс, а точнее сказать наибольшее отклонение от состояния равновесия колебательной системы будет возникать тогда и только тогда, когда частота колебаний вынуждающей силы будет совпадать с собственной частотой колебательной системы.

“Итак, резона́нс (фр. resonance, от лат. resono — откликаюсь) — явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами системы.[3]”

Суть явления резонанса: многократное усиление эффекта от воздействия на объект при совпадении частоты внешнего воздействия с собственной частотой объекта.

1.2. Акустический резонанс

“Под акустическим резонансом понимают явление совпадения частоты колебаний звуковых волн, падающих на акустическую систему, с собственной частотой этой системы.

Вообще, звуковые волны, встречаясь с любым телом, вызывают вынужденные колебания. Если же частота собственных свободных колебаний тела совпадает с частотой звуковой волны, то условия для передачи энергии от звуковой волны телу являются наилучшими – тело является акустическим резонатором.[1]”

Амплитуда вынужденных колебаний при этом достигает максимального значения – наблюдается акустический резонанс.

Истории известны случаи, когда стекло разбивалось лишь от силы и частоты человеческого голоса. Это проделывал не только Шаляпин. Великий тенор Энрико Карузо мог заставить стеклянный бокал разлететься вдребезги, спев в полный голос ноту надлежащей высоты. В этом случае звук вызывает вынужденные колебания стенок бокала. При резонансе колебания стенок могут достичь такой амплитуды, что стекло разбивается.

Кстати, интересно, что звуки с частотами 55, 110, 220, 440, 880, 1760, 3520 герц – это звук «ля». Наблюдается зависимость: каждая последующая частота в два раза больше предыдущей.

Корпусы скрипок и гитар, трубы духовых инструментов и органа являются резонаторами, а полость рта – резонатором для голосовых связок. Почему же резонатор камертона представляет собой обычный ящик, тогда как корпуса балалайки, виолончели, скрипки и рояли имеют сложные формы? Дело в том, что резонатор камертона должен усиливать только один – основной тон, а корпуса музыкальных инструментов – множество тонов и гармоник. Вид резонатора определяет, какие из обертонов будут усилены, а какие ослаблены или вовсе подавлены.

“От качества дерева, из которого изготовлена гитара, зависит не только сила, но и чистота, и тембр извлекаемого звука. Влияет на это и покраска, и лак на дереве. Именно поэтому изготовить качественную гитару или скрипку совсем не просто, и качественные инструменты стоят больших денег. Так, явление звукового резонанса из физики перекочевало в иные сферы и плотно там обосновалось.[2]”

Акустический резонанс может оказывать на организм человека как благоприятное, так и пагубное воздействие.

“Доктор медицинских наук Сергей Шушарджан, врач со стажем и профессиональный певец, в своих исследованиях о воздействии музыки установил, что даже кожа является проводником звуков в организм. Музыка, имея волновую природу, передается через виброрецепторы в коже, воспринимающие звуковые волны в широком диапазоне. При воздействии на виброрецепторы звуковых волн определенной частоты «запускается» тот или иной механизм реакции организма на воздействие извне. 

Ритмы, характерные для большинства органов и систем организма «человека», лежат в инфразвуковом диапазоне. Внутренние органы нашего тела имеют достаточно низкие собственные частоты: брюшная полость и грудная клетка – 5-8 Гц, голова – 20-30 Гц. Среднее значение резонансной частоты для всего тела составляет 6 Гц. Сокращения сердца – 1-2 Гц; дельта-, альфа-, бета-ритмы мозга; ритм кишечника – 2-4 Гц; вестибулярного аппарата – около 6 Гц и так далее. Мозговая активность живого человека не прекращается даже во время глубокого сна, и мозг постоянно излучает ритмические волны, характеризующие происходящие в нем процессы.

В дельта-состоянии (δ) мозг излучает волны с частотой колебаний от 0 до 4 Гц. Это может быть либо глубокий сон без сновидений, либо состояние глубокого расслабления, бессознательное состояние (такое, как кома), летаргический сон. Даже во сне мозг продолжает обработку информации, накопленной человеком, и не успевшую стать осознанной.

В тэта-состоянии (θ) частота колебаний мозга составляет от 4 до 7 Гц. Это глубокое расслабление или медитация; это может быть неглубокий сон. Во время этого ритма возникают особенно яркие видения или интуитивные догадки. Тэта-волны формируют состояния, переходные от спокойного бодрствования к фазам сонливости, предваряющим глубокий сон. Но частоты 5-6 Гц опасны для работы печени и вызывают чувство усталости.

Альфа-состояние (α) — это частота волновых колебаний головного мозга от 7 до 14 Гц. Диапазон частот от 7 до 8 Гц чрезвычайно опасен для здоровья, так как этот тип вибраций способен спровоцировать эпилептические приступы, смертельно поразить внутренние органы и даже реально деформировать их. Длительное воздействие на мозг звука частотой 7 Гц пагубно влияет на сердце, вплоть до его остановки. С 10 до 14 Гц – это колебания, способствующие одновременно и глубокому сосредоточению, и расслаблению; это – покой и душевное равновесие в активном состоянии, мозг способен более продуктивно обрабатывать получаемую информацию. Такое состояние наиболее благоприятно для творческих процессов, принятия более логичных и взвешенных решений.

Ученые считают, что, возможно, именно из-за возбуждения резонансных колебаний (особенно когда частота волны совпадает с альфа-ритмом головного мозга) в биологических системах жизнеобеспечения и возникает такое крайне негативное воздействие инфразвуковых вибраций. Это влияние даже используется полицией в ряде стран мира для разгона толпы и предотвращения беспорядков. Включаются мощные генераторы, частоты которых отличаются на 5-9 Гц. Биения, возникающие вследствие различия частот этих генераторов, имеют инфразвуковую частоту и вызывают у большинства людей неприятные зрительные эффекты, необъяснимые страх и тревогу, желание скорее покинуть опасное место.

Иными словами, если частота инфразвуковой волны того же порядка, что и волна вибрации органа, то при очень большой интенсивности они приводят органы к вибрационному резонансу или диссонансу в частотном диапазоне работы органа и способны привести к их дисфункциям. Вибрационный резонанс вызывается мощными внешними генераторами, например, усилителями громкости звука на современной эстраде и рок-концертах.[3]”

Российский исследователь Борис Островский, несколько десятилетий изучающий тайну бермудского треугольника, заинтересовался случаями с «летучими голландцами», рассекающими морские просторы без экипажа, а также судами, на которых всех моряков находили мертвыми, но без признаков насилия

По данным, собранным Борисом Островским, в Атлантике ежегодно происходит до 50 тысяч подводных землетрясений разной силы, а эпицентры их почти всегда сосредоточены вдоль геологического разлома, пересекающего Бермудский треугольник.

При зарождении подводного землетрясения, когда «тряской» охвачены сотни квадратных километров поверхности океана, поперечные звуковые волны передаются через толщу воды. Большинство из них доходит до ионосферы. Если в этот район попадет корабль, он примет часть инфразвуковых волн на себя. Продолжительное воздействие инфразвуковых колебаний делает из корабля резонатор, который в несколько раз повышает интенсивность звуковых волн и передает их подобно динамику. «Люди, находящиеся на судне, буквально сходят с ума от этого воздействия и ищут любые пути, чтобы избавиться от невыносимого и необъяснимого воздействия», — считает исследователь. Немудрено, что экипажи «летучих голландцев» полностью исчезали — люди просто прыгали за борт, спасаясь от сводящего с ума инфразвука.

Глава 2. Практическая часть

Опыт 1

Нам понадобятся звуковые колонки, соль либо песок и пластиковый поднос. Установив пластиковый поднос на колонки, засыпаем на поднос соль и воспроизводим через колонки звуковые волны, падающие на акустическую систему – поднос с солью.

Рисунок 4

Рис. 4. Эксперимент, подтверждающий явление акустического резонанса

Как видим, не на всех частотах соль имеет высокую амплитуду колебаний. То есть для полного резонанса, в данном случае акустического, должна быть определенная частота колебаний (опыт 1,видео).

О звуковом резонансе можно узнать из учебника А.В. Пёрышкина, §40, стр. 133-135.

Опыт 2

Музыкальный инструмент варган. Относится к самозвучащим язычковым музыкальным инструментам. При игре варган прижимают к зубам или к губам, ротовая полость служит резонатором. Изменение артикуляции рта и дыхания даёт возможность менять амплитуду колебаний, а в результате – тембр инструмента. Продемонстрируем этот уникальный инструмент ( опыт 2, видео).

Данное физическое явление по физике рассматривается в учебнике А.В. Пёрышкина ( §40, стр. 134-135).

Рис. 5. Варган

Рис. 5 Варган (алтайский комус)

Если возбудить язычок варгана без резонатора, то звук будет совсем слабый. Когда же мы играем на варгане (зажав его между зубами или хотя бы губами – резонатором является ротовая полость), рождаются мощные вибрации – колебания.

“При игре на нем во рту возникает стоячая звуковая волна. И можно подобрать такое звучание инструмента, которое будет вступать в резонанс с основными ритмами вибраций человека. Это достигается как особенностями изготовления инструмента, так и особенностями игры на нём. В биологии известны так называемые альфа-, бета-, гамма-ритмы, свойственные головному мозгу человека. Звуковая волна, входя в резонанс с этими ритмами, вызывает измененные состояния сознания.[8]”

С древних времен обертоны использовались в молитвенных песнопениях и целительских практиках, известных нам, в основном, по тибетской и тувинской традициям.

Опыт 3

Звук, издаваемый самой гитарной струной не слишком громкий. Для того чтобы усилить этот звук, струны располагают поверх корпуса, который делают специальной формы и размера. В середине корпуса обязательно имеется отверстие круглой формы для выхода звука. Звук струны, попадая внутрь корпуса, резонирует и усиливается, отчего гитара звучит намного громче ( опыт 3, видео).

Данное физическое явление по физике рассматривается в учебнике А.В. Пёрышкина ( §35, стр. 125 и §40, стр. 134).

Настройка гитары – это также пример явления звукового резонанса. Если настроить первую струну по камертону, а потом зажать вторую струну на определенном ладу (определенная нота) и дернуть ее, то можно увидеть, как первая струна слегка поддергивается (при условии, что гитара настроена правильно).

Заключение

В ходе подготовки к конкурсу я:

  • изучил теоретический материал по выбранной мною теме;
  • подготовил опыты, выявляющие и демонстрирующие явление акустического и иных видов резонанса;
  • выяснил механизм явления акустического резонанса.

Выводы

Итак, резонанс – это очень эффективный инструмент для решения многих практических задач, но одновременно он может быть причиной серьёзных разрушений, вреда здоровью и других негативных последствий.

Явление резонанса мы используем в различных устройствах, использующих радиоволны, таких как телевизоры, радиоприемники, мобильные телефоны и так далее. Оно используется в музыкальных инструментах. Но вместе с тем, несмотря на все преимущества, которые можно получить при помощи резонанса, не следует забывать и об опасности, которую он способен принести. Землетрясения или сейсмические волны, а также работа сильно вибрирующих технических устройств могут вызвать, например, разрушения части зданий или даже зданий целиком.

Акустический резонанс мне был наиболее интересен в процессе игры на музыкальных инструментах.

Надеюсь, что собранный мною материал и опыты будут интересны моим друзьям и одноклассникам и помогут лучше разобраться в законах физики, применимых к нашей повседневной жизни.

Я же буду намерен продолжать свои изыскания по поводу резонансных явлений, особенно – связанных с музыкой.

РЕЗОНАНС • Большая российская энциклопедия

  • рубрика
  • родственные статьи
  • image description

    В книжной версии

    Том 28. Москва, 2015, стр. 336-337

  • image description

    Скопировать библиографическую ссылку:


Авторы: В. В. Клиньшов, В. И. Некоркин

РЕЗОНА́НС (франц. resonance, от лат. resono – от­кли­кать­ся), из­би­ра­тель­ный от­клик ко­ле­бат. сис­те­мы на внеш­нее пе­рио­дич. воз­дей­ст­вие оп­ре­де­лён­ной час­то­ты. Яв­ле­ние Р. про­ис­хо­дит при при­бли­же­нии час­то­ты внеш­не­го воз­дей­ст­вия ω к час­то­те собств. ко­ле­ба­ний сис­те­мы ω0 и за­клю­ча­ет­ся в рез­ком воз­рас­та­нии ам­пли­ту­ды её вы­ну­ж­ден­ных ко­ле­ба­ний. В этом слу­чае час­то­та воз­дей­ст­вия на­зы­ва­ет­ся ре­зо­нанс­ной (ωр). Её ве­ли­чи­на оп­ре­де­ля­ет­ся свой­ст­ва­ми ко­ле­бат. сис­те­мы. Впер­вые Р. опи­сан Г. Га­ли­ле­ем для ме­ха­нич. сис­тем. От Р. при внеш­нем воз­дей­ст­вии сле­ду­ет от­ли­чать па­ра­мет­ри­че­ский ре­зо­нанс, воз­ни­каю­щий при пе­рио­дич. из­ме­не­нии па­ра­мет­ров ко­ле­бат. сис­те­мы.

Суть эф­фек­та Р. мож­но по­нять на при­ме­ре рас­ка­чи­ва­ния ка­че­лей пу­тём их пе­рио­дич. под­тал­ки­ва­ния. Для эф­фек­тив­но­го рас­ка­чи­ва­ния ка­че­лей час­то­та внеш­не­го под­тал­ки­ва­ния долж­на сов­па­дать с час­то­той их собств. ко­ле­ба­ний. В этом слу­чае ка­ж­дый тол­чок про­ис­хо­дит в од­ной и той же фа­зе дви­же­ния ка­че­лей, спо­соб­ст­вуя уве­ли­че­нию раз­ма­ха ко­ле­ба­ний. При не­пра­виль­но вы­бран­ной час­то­те под­тал­ки­ва­ния толч­ки про­ис­хо­дят в раз­ных фа­зах дви­же­ния, то ус­ко­ряя, то за­мед­ляя ка­че­ли, и су­ще­ст­вен­ной рас­кач­ки ко­ле­ба­ний не про­ис­хо­дит.

image description

Рис. 1. Резонансная кривая линейной системы.

Осн. свой­ст­ва Р. мож­но на­блю­дать при воз­дей­ст­вии внеш­не­го гар­мо­нич. сиг­на­ла на ли­ней­ную сис­те­му с од­ной сте­пе­нью сво­бо­ды, та­кую как ко­ле­бат. кон­тур или ма­те­ма­тич. ма­ят­ник. За­ви­си­мость ам­пли­ту­ды A вы­ну­ж­ден­ных ко­ле­ба­ний та­кой сис­те­мы от час­то­ты внеш­не­го сиг­на­ла ω (ре­зо­нанс­ная кри­вая) име­ет чёт­ко вы­ра­жен­ный мак­си­мум на ре­зо­нанс­ной час­то­те ωр (рис. 1). Для опи­са­ния ре­зо­нанс­ных свойств ли­ней­ной ко­ле­бат. сис­те­мы час­то ис­поль­зу­ют по­ня­тие доб­рот­но­сти, ха­рак­те­ри­зую­щее сте­пень за­ту­ха­ния ко­ле­ба­ний в сис­те­ме. Ве­ли­чи­на доб­рот­но­сти оп­ре­де­ля­ет фор­му ре­зо­нанс­ной кри­вой: чем боль­ше доб­рот­ность, тем мень­ше ши­ри­на пи­ка ре­зо­нанс­ной кри­вой, т. е. тем бо­лее из­би­ра­тель­ной яв­ля­ет­ся ко­ле­бат. сис­те­ма. С рос­том доб­рот­но­сти уве­ли­чи­ва­ет­ся вы­со­та пи­ка и умень­ша­ет­ся раз­ни­ца ме­ж­ду ре­зо­нанс­ной и собств. час­то­та­ми.

image description

Рис. 2. Резонансная кривая нелинейной системы.

В не­ли­ней­ных сис­те­мах Р. име­ет су­ще­ст­вен­ные осо­бен­но­сти по срав­не­нию с ли­ней­ны­ми. Во-пер­вых, ре­зо­нанс­ная час­то­та не­ли­ней­ной сис­те­мы за­ви­сит от ам­пли­ту­ды внеш­не­го воз­дей­ст­вия. Во-вто­рых, при дос­та­точ­но силь­ных воз­дей­ст­ви­ях ис­че­за­ет од­но­знач­ное со­от­вет­ст­вие ам­пли­ту­ды вы­ну­ж­ден­ных ко­ле­ба­ний па­ра­мет­рам внеш­не­го сиг­на­ла. При од­ной и той же час­то­те внеш­ней си­лы воз­мож­ны ре­жи­мы ко­ле­ба­ний с разл. ам­пли­ту­да­ми (рис. 2). Штри­хо­вой кри­вой на ри­сун­ке по­ка­за­на ветвь, со­от­вет­ст­вую­щая не­ус­той­чи­во­му ре­жи­му ко­ле­ба­ний. Пе­ре­клю­че­ние ме­ж­ду разл. ре­жи­ма­ми при пе­ре­строй­ке час­то­ты про­ис­хо­дит в ви­де скач­ков ам­пли­ту­ды и име­ет гис­те­ре­зис­ный ха­рак­тер.

Для ли­ней­ных сис­тем с не­сколь­ки­ми сте­пе­ня­ми сво­бо­ды и для рас­пре­де­лён­ных сис­тем, в ко­то­рых собств. ко­ле­ба­ния мо­гут про­ис­хо­дить на раз­ных час­то­тах, Р. на­блю­да­ет­ся при при­бли­же­нии час­то­ты внеш­не­го сиг­на­ла к од­ной из этих час­тот. В этом слу­чае ре­зо­нанс­ная кри­вая ха­рак­те­ри­зу­ет­ся на­ли­чи­ем не­сколь­ких мак­си­му­мов, и внеш­нее воз­дей­ст­вие рас­пре­де­ля­ет­ся по отд. ко­ор­ди­на­там сис­те­мы.

Р. иг­ра­ет важ­ную роль в при­ро­де, нау­ке и тех­ни­ке. В не­ко­то­рых слу­ча­ях он яв­ля­ет­ся не­же­ла­тель­ным, т. к. при­во­дит к не­га­тив­ным по­след­ст­ви­ям. Напр., при сов­па­де­нии час­то­ты на­бе­гаю­щих на ко­рабль волн с собств. час­то­той ки­ле­вой кач­ки воз­ни­ка­ет рез­кое уве­ли­че­ние ам­п­ли­ту­ды ко­ле­ба­ний ко­раб­ля, при ко­то­рых его нос «за­ры­ва­ет­ся» в вол­ну. Р. мо­жет вы­зы­вать силь­ные ко­ле­ба­ния и по­сле­дую­щие раз­ру­ше­ния при ра­бо­те виб­ри­рую­щих стан­ков, ма­шин, дви­га­те­лей внутр. сго­ра­ния. Из­вест­ны слу­чаи раз­ру­ше­ния мос­тов под дей­ст­ви­ем рит­мич. толч­ков от про­хо­дя­щих по ним войск. С др. сто­ро­ны, на яв­ле­нии Р. ос­но­ва­на ра­бо­та мн. при­бо­ров и уст­ройств. Напр., на­строй­ка час­то­ты ко­ле­бат. кон­ту­ра ра­дио­при­ём­ни­ка на час­то­ту элек­тро­маг­нит­но­го сиг­на­ла по­зво­ля­ет осу­ще­ст­в­лять его при­ём. Яв­ле­ние Р. ле­жит в ос­но­ве прин­ци­па дей­ст­вия СВЧ элек­трон­ных при­бо­ров, напр. клис­тро­нов, ис­поль­зую­щих вы­со­ко­доб­рот­ные объ­ём­ные ре­зо­на­то­ры для уси­ле­ния СВЧ-сиг­на­лов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *