Резистор на: Эта страница ещё не существует

Содержание

Как выбрать подходящий резистор

Все, что вам нужно знать о том, как правильно выбрать резистор для вашего первого проекта печатной платы

Вы планируете приступить к вашему первому проекту печатной платы? Есть множество радиодеталей, которые вы в конечном итоге будете использовать. Однако нет другой такой детали, которая была бы так печально известна, как простой резистор. Если вы когда-либо видели печатную плату, то могли заметить резисторы по всей ее поверхности. Они контролируют силу тока и заставляют светиться светодиоды. Но что именно представляет собой резистор? Как он работает? Как вообще выбрать подходящий резистор для вашего первого проекта печатной платы? Не бойтесь, мы поможем вам и подскажем все необходимое, что вам нужно знать.

Итак… что такое резистор?

Резисторы – это одни из множества пассивных компонентов. Их задача относительно проста, но очень важна – создавать сопротивление току в электрической цепи. Видели, как загорается светодиод? За эту возможность необходимо поблагодарить резистор. Устанавливая в электрическую цепь резистор последовательно со светодиодом, вы получаете яркое свечение, при этом ничего не перегорает!

Основной характеристикой резистора является сопротивление, измеряемое в Омах (Ом). Если раньше вы прослушали базовый курс электроники, то, скорее всего, изучили закон Ома. При работе с резисторами вы будете вновь и вновь иметь с ними дело.

Закон Ома — это единственная формула для нахождения сопротивления

Найти обозначение резистора на схеме легко. Международное обозначение – стандартизированный прямоугольник, но в стандартах США резистор обозначается зигзагообразной линией – это сделано для простоты его нахождения. Вне зависимости от внешнего вида символа, каждый резистор на концах имеет выводы, обозначенные на схеме.

Обозначения резистора на схемах, принятое в США (слева) и соответствующее международным стандартам (справа). На схемах можно встретить оба обозначения.

Какие бывают резисторы?

Повсеместно встречаются резисторы совершенно разных конструкций. Все резисторы можно разделить на две категории по типу конструкции и по резистивному материалу. Рассмотрим обе категории.

Тип конструкции

Постоянные резисторы – как следует из названия, эти резисторы имеют постоянное сопротивление и точность, не зависящие от изменения температуры, освещенности и так далее.

Переменные резисторы – эти радиоэлементы обладают переменным сопротивлением. Потенциометр – великолепный пример такого резистора. У него есть регулятор, который можно вращать для увеличения или уменьшения сопротивления. Другие разновидности переменных резисторов – это подстроечный резистор и реостат.

Нелинейные резисторы – эти резисторы как хамелеоны, они могут изменять свое сопротивление в зависимости от той или иной физической величины, воздействующей на резистор – температуры, уровня освещенности и даже магнитного поля. Нелинейные резисторы – это термистор, фоторезистор, варистор и магниторезистор.

Резистивный материал

Все резисторы можно разбить на группы по материалам, из которых они изготовлены и которые в огромной степени влияют на их способность оказывать сопротивление электрическому току. Вот эти резисторы по используемым материалам:

  • Углеродистые композиционные резисторы;

  • Углеродистые пленочные резисторы;

  • Металлопленочные резисторы;

  • Тонко и толстопленочные резисторы;

  • Фольговые резисторы;

  • Проволочные резисторы.

Углеродистые композиционные резисторы – это резисторы, изготовленные по самой старой технологии, популярной в производстве резисторов малой точности. Их все еще можно найти в схемах, где могут быть импульсы высоких энергий.

Старый углеродистый пленочный резистор.

Такие резисторы все еще используются там, где точность не важна

Из всех вышеперечисленных типов резисторов по резистивному материалу старейшими являются проволочные резисторы. Их все еще можно встретить на старых печатных платах устройств большой мощности, в которых необходимо сопротивление, заданное с большой точностью. Эти древние резисторы широко известны благодаря тому, что большой надежностью обладают даже резисторы с малым сопротивлением.

Проволочный резистор – старейший и наиболее точный из доступных резисторов

Сегодня наиболее широко применяются металлопленочные и металлооксидные резисторы, они лучше всего обеспечивают с неизменной точностью номинальное сопротивление, а также меньше подвержены влиянию изменения температуры.

Наиболее широко применяемый металлооксидный резистор

обеспечивает неизменную точность номинального сопротивления

Как используются резисторы?

Можно найти резисторы, используемые самыми различными способами. Они применяются не только для того, чтобы оказывать сопротивление электрическому току. Резисторы используются в делителях напряжения, для производства тепла, в цепях сопряжения и нагрузки, для управления усилением и для настройки постоянных времени. Практическое применение резисторов можно найти в цепях питания электрических тормозов поездов, здесь они помогают высвобождению всей накопленной кинетической энергии.

Серьезное сопротивление – взгляните на тормоза у этого поезда,

которые высвобождают накопленную кинетическую энергию

Вот еще несколько замечательных устройств, в которых используются эти универсальные резисторы:

  • Измерение величины электрического тока – вы можете измерять падение напряжения на включенном в цепь прецизионном резисторе с заранее известным сопротивлением. Расчет тока производится по закону Ома;

  • Питание светодиодов – слишком большой ток, протекающий через светодиод, сожжет этот прекрасный фонарик. Соединив последовательно со светодиодом резистор, вы можете контролировать силу тока через светодиод, обеспечивая его яркое сияние.

  • Питание электромоторов вентиляторов – сердцем системы автомобильной вентиляции является электромотор вентилятора печки. Специальный датчик используется для управления скоростью вращения крыльчатки вентилятора. Резистор такого типа, используемый в датчике, называется, (кто бы мог подумать!) резистором мотора вентилятора!

Резистор мотора вентилятора в ответе за движение воздуха в машине

Как измеряется номинал резистора?

Эта характеристика, с которой вы будете сталкиваться снова и снова, называется сопротивлением. Величина сопротивления наносится на резистор различными способами. В настоящее время существуют два стандарта нанесения значения сопротивления резистора на корпус резистора – это цветовая маркировка или маркировка SMD-резисторов.

Цветовая маркировка

Возможно, вы уже сталкивались с системой цветовой маркировки, если когда-либо возились с макетом электронной схемы. Эта техника была изобретена в 20-х годах прошлого века. Значения величины сопротивления и точности резистора отображалась при помощи нескольких цветных полос, нанесенных на корпус резистора.

Обратите внимание, что цветные полосы на резисторах различаются,

обозначая их уникальные номинальные значения сопротивления и точности.

Большинство резисторов, которые могут попасть к вам в руки, будет иметь четыре цветные полосы. Вот как следует их читать:

  • Первые две полосы указывают первые цифры номинального значения сопротивления;

  • Третья полоса указывает множитель, на который следует умножить число, состоящее из двух цифр, указанных первыми двумя полосами.

  • И, наконец, четвертая полоса указывает точность резистора. Точность очень сильно влияет на стоимость используемого резистора и на цену готового изделия. Поэтому чтобы сэкономить деньги на производстве печатных плат, точность резисторов следует выбирать разумно.

Каждый цвет на резисторе соответствует определенному числу. Вы можете воспользоваться удобным калькулятором номинала резистора по его цветовому коду для быстрого определения номинала в будущем. Если вам легче запомнить наглядную информацию, то ниже мы приводим великолепное видео, в котором рассказано о принципе цветовой маркировки резисторов.

Резисторы для поверхностного монтажа – SMD-резисторы

Не у всех резисторов размеры позволяют нанести на него цветовую маркировку. Это особенно актуально, когда речь идет о радиоэлементах для поверхностного монтажа (SMD). Чтобы маркировка смогла поместиться на небольшой поверхности устройства, SMD-резисторы имеют цифровую маркировку. Если вы посмотрите на современную печатную плату, то заметите, что SMD-резисторы еще имеют одинаковые размеры. Это помогает стандартизировать процесс производства с использованием высокоскоростных автоматов размещения деталей.

Как читать номинал на верхней стороне SMD-резисторов

Как выбрать подходящий резистор

Итак, пришло время наиболее важной части нашей статьи. Давайте узнаем, как определить, какой именно резистор нам нужен для вашего первого проекта печатной платы. Мы разобьем эту задачу на следующие три шага:

  1. Расчет требуемого сопротивления;

  2. Расчет номинальной мощности;

  3. И, наконец, выбор резистора исходя из двух значений найденных ранее.

Шаг 1 – Расчет требуемого сопротивления

Именно здесь для расчета требуемого сопротивления нам понадобится закон Ома. Вы можете воспользоваться одной из стандартных формул ниже, если значения напряжения и силы тока известны.

Шаг 2 – Расчет номинальной мощности

Теперь необходимо выяснить, какое количество энергии должен будет рассеивать резистор. Эту величину можно рассчитать по следующей формуле:

В данной формуле P – мощность рассеивания в Ваттах, V – падение напряжения на резисторе в Вольтах, а R – сопротивление резистора в Омах. Ниже мы привели краткий пример использования данной формулы для расчета в конкретной цепи.

Простая цепь для демонстрации расчета номинальной мощности

Цепь выше содержит светодиод, падение напряжения на котором составляет 2 В, резистор с сопротивлением 350 Ом и источник питания 9 В. Какая мощность будет рассеиваться на искомом резисторе? Давайте посмотрим. Сначала нам необходимо найти падение напряжения на резисторе. Поскольку источник питания дает 9 В, а на светодиоде падает 2 В, то получим:

9 В – 2 В = 7 В

Эти значения можно подставить в формулу:

P = 7 В * 7 В / 350 Ом = 0,14 Ватта

Шаг 3 – Выбор резистора

Теперь, когда у нас есть величины сопротивления и мощности, пора подобрать подходящий радиоэлемент у поставщика радиодеталей. Мы всегда рекомендуем выбирать из стандартных резисторов, которые поставляются в продажу каждым продавцом. Выбирая стандартные резисторы, вы значительно упростите себе жизнь, когда дело дойдет до производства устройства. В США тремя ведущими поставщиками радиоэлементов, качество которых не вызывает сомнений – это Digikey, Mouser и Farnell/Newark.

Сопротивление сильно

Теперь мы охватили всю информацию о резисторах, которая может вам понадобиться для вашего первого проекта печатной платы. Резисторы настолько многофункциональны, что вы увидите, как раз за разом используете их россыпи в своих электронных устройствах. В следующий раз, когда вам понадобиться выбрать резистор, вспомните три простых шага – рассчитайте сопротивление, найдите мощность и выберите поставщика!

Прежде чем вы броситесь размечать обозначения резисторов и их корпусов в вашем приложении для конструирования печатных плат, не было бы проще, если бы кто-то сделал это за вас? Уже сделали! Для многих систем проектирования печатных плат существует большое количество бесплатных библиотек радиоэлементов. И резисторы там тоже есть!

Что такое резистор | joyta.ru

Резистор – это наиболее распространенный электронный компонент. Он является важной частью практически каждой электронной схемы. Основная характеристика резистора — сопротивление, играющее главную роль в нашем любимом уравнении закона Ома.

Что такое резистор

Резистор — это электронный компонент, который имеет определенное, никогда не меняющееся электрическое сопротивление. Сопротивление резистора ограничивает поток электронов через цепь. Резистор пассивный компонент, т. е. он только потребляют энергию (не генерирует ее).

Резисторы обычно добавляют в цепь, где они дополняют активные компоненты, такие как операционные усилители, транзисторы, микроконтроллеры и.т.д.

Как правило, резисторы используются для ограничения тока, в схемах делителя напряжения и в качестве подтягивающих резисторов на линии ввода/вывода. Существует несколько видов резисторов.

Обзор типов и материалов резисторов

Резисторы могут быть разделены по типу конструкции, а также материалу, из которого они изготовлены.

Существует несколько типов резисторов:

  • Постоянные резисторы;
  • Переменные резисторы, такие как: потенциометры, реостаты, подстроечные резисторы;
  • Термисторы ( NTC и PTC ), у которых изменение сопротивления происходит из-за изменения внешней температуры;
  • Фоторезистор (LDR), изменение сопротивления вследствие изменения освещения фоторезистора;
  • Варистор (VDR), изменение сопротивления по причине меняющегося напряжения;
  • Магниторезистор (MDR), изменение сопротивления в результате меняющегося магнитного поля;
  • Тензорезистор, изменение сопротивления в результате механической деформации. 

Для каждого из вышеперечисленных типов резисторов в принципиальных схемах имеется свое обозначение.

Еще одна классификация резисторов: по типу материала, из которого они изготовлены:

  • композиционный резистор на основе углерода;
  • пленочный резистор на основе углерода;
  • пленочный резистор на основе оксида металла;
  • металлопленочный резистор;
  • проволочный резистор;
  • фольгированный резистор.

Для каждого конкретного случая используют тот или иной тип материала. Зачастую это компромисс между затратами на производство, точность и другими необходимыми условиями.

Hantek 2000 — осциллограф 3 в 1

Портативный USB осциллограф, 2 канала, 40 МГц….

Резисторы на основе углерода являются морально устаревшими и обладают достаточно большим процентом отклонением, но они до сих пор используется в определенных устройствах, где протекают импульсы высокого напряжения. Они изготовлены из смеси графитового порошка и неэлектропроводного наполнителя, как правило, керамики.

Резисторы, изготовленные на основе углеродной пленки, имеют более высокую точность, по сравнению с углеродными резисторами. Они изготовлены из керамического основания (цилиндра), на которое нанесена тонкая углеродная пленка. Этот углеродный слой протравливают, в результате чего получается спираль, от толщины которой зависит величина сопротивления конкретного резистора.

Металлопленочные резисторы и резисторы на основе оксида металлов, на сегодняшний день, обладают лучшими показателями стабильности и точности. Кроме того, они менее подвержены влиянию температурных изменений. По технологии изготовления они схожи с резисторами на основе углеродной пленки. Резисторы на метало-оксидной пленке, как правило, более долговечны.

Проволочные резисторы, наверно, самый старый тип резистора, который может быть использован как для схем, где требуются сопротивления высокой точности, так и для схем высокой мощности. Они изготавливаются путем намотки на керамическое основание специальной металлической проволоки.

Обычно это металлы или их сплавы с высоким удельным сопротивлением, такие как манганин, нихром или константан. Они долговечны, точны и могут иметь очень низкое значение сопротивления. Недостатком их является то, что они имеют паразитную индуктивность на высоких частотах.

Если необходим резистор с очень высокой точностью и стабильностью, то используют металлический фольгированный резистор. Они изготавливаются путем цементирования самой металлической фольги с керамической подложкой.

Характеристики резисторов

Поскольку основное предназначение резистора заключается в ограничении потока электрического тока, то ключевым его параметром, конечно же, является сопротивление. При производстве резисторов точность номинала (отклонение от номинала) указывается в процентах.

Так же есть и другие параметры характеризующие работу резистора в тех или иных условиях, например, температурный коэффициент сопротивления, индуктивность и емкость резистора, электрический шум резистора.

Температурный коэффициент, как правило, берется во внимание, когда необходимо добиться высокой стабильности сопротивления, которое определяется типом резистивного материала, а также конструкцией самого резистора.

В высокочастотных схемах, например, в радиочастотных схемах, емкость и индуктивность резистора может привести к нежелательным последствиям. Фольгированные резисторы, как правило, обладают низкой паразитной реактивностью, в то время как проволочные резисторы являются одними из худших.

В схемах аудио усилителей, электрический шум резистора, должен быть на минимальном уровне. Электрический шум измеряется в микровольт на вольт приложенного напряжения  для полосы пропускания в 1 МГц.

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Обозначение мощности резистора на схеме, как её увеличить, что делать, если нет подходящего по мощности резистора

Резистор — пассивный элемент электрических цепей, обладающий определённым или переменным значением электрического сопротивления, предназначенный для линейного преобразования силы тока в напряжение и напряжения в силу тока, ограничения тока, поглощения электрической энергии и др. Весьма широко используемый компонент практически всех электрических и электронных устройств.

В схемах радиоэлектронной аппаратуры одним из наиболее часто встречающихся элементов является резистор, другое его название это сопротивление. У него есть целый ряд характеристик, среди которых есть мощность. В этой статье мы поговорим о резисторах, что делать, если у вас нет подходящего по мощности элемента, и почему они сгорают.

Характеристики резисторов

1. Основной параметр резистора – это номинальное сопротивление.

2. Второй параметр, по которому его выбирают – это максимальная (или предельная) рассеиваемая мощность.

3. Температурный коэффициент сопротивления – описывает, насколько изменяется сопротивление, при изменении его температуры на 1 градус Цельсия.

4. Допустимое отклонение от номинала. Обычно разброс параметров резистора от одного заявленного в пределах 5-10%, это зависит от ГОСТ или ТУ по которому он произведен, существуют и точные резисторы с отклонением до 1%, обычно стоят дороже.

5. Предельное рабочее напряжение, зависит от конструкции элемента, в бытовых электроприборах с напряжением питания 220В могут применяться практически любые резисторы.

6. Шумовые характеристики.

7. Максимальная температура окружающей среды. Это такая температура, которая может быть при достижении максимальной рассеиваемой мощности самого резистора. Об этом подробнее поговорим позже.

8. Влаго- и термоустойчивость.

Есть еще две характеристики, о которых начинающие чаще всего не знают, это:

1. Паразитная индуктивность.

2. Паразитная ёмкость.

Оба параметра зависят от типа и конструктивных особенностей резистора. Индуктивность имеет в любом проводнике, вопрос в её величины. Типовые величины паразитных индуктивностей и емкостей приводить бессмысленно. Паразитные составляющие следует учитывать при проектировании и ремонте высокочастотных приборах.

На низких частотах (например, в пределах звукового диапазона до 20 кГц), существенного влияния в работу схемы они не вносят. В высокочастотных приборах, с рабочими частотами в сотни тысяч и выше герц существенное влияние вносит даже расположение дорожек на плате и их форма.

Мощность резистора

Из курса физики многие отлично помнят формулу мощности для электричества, это: P=U*I

Отсюда следует, что она линейно зависит от тока и напряжения. Ток же через резистор зависит от его сопротивления и приложенного к нему напряжению, то есть:

I=U/R

Падение напряжения на резисторе (сколько на его выводах остаётся напряжения от приложенного к цепи, в которой он установлен), так же зависит от тока и сопротивления:

I=U/R

Теперь объясним простыми словами, что такое мощность у резистора и куда она выделяется.

У любого металла есть своё удельное сопротивление, это такая величина, которая зависит от структуры этого самого металла. Когда носители зарядов (в нашем случае электроны), под воздействием электрического тока протекают через проводник, они сталкиваются с частицами, из которого состоит металл.

В результате этих столкновений затрудняется движение тока. Если очень обобщенно сказать, то получается, так, что чем плотнее структура металла, тем сложнее протекать току (тем больше сопротивление).

На картинке пример кристаллической решетки, для наглядности.

Из-за этих столкновений выделяется тепло. Это можно представить, как если бы вы шли через толпу (большое сопротивление), где вас еще и толкают, или если бы шли по пустому коридору, где вы сильнее вспотеете?

То же самое происходит и с металлом. Мощность выделяется в виде тепла. В некоторых случаях это плохо, потому что так снижается коэффициент полезного действия прибора. В других ситуациях – это полезное свойство, например в работе ТЭНов. В лампах накаливания за счет своего сопротивления спираль раскаляется до яркого свечения.

Но как это относится к резисторам?

Дело в том, что резисторы применяют для ограничения тока при питании каких-либо устройств, или элементов цепи, или для задания режимов работы полупроводниковым приборам.2/1=144/1=144 Вт.

Всё сходится. Резистор будет выделять тепло с мощностью в 144Вт. Это условные значения, взятые в качестве примера. На практике таких резисторов вы не встретите в радиоэлектронной аппаратуре, исключением являются большие сопротивления для регулирования двигателей постоянного тока или пуска мощных синхронных машин в асинхронном режиме.

Какие бывают резисторы и как они обозначаются на схеме

Ряд мощностей резисторов стандартен: 0.05 (0.62) – 0.125 – 0.25 – 0.5 – 1 – 2 – 5

Это типовые номиналы распространенных резисторов, бывают и большие значения, или другие величины. Но этот ряд наиболее распространен. При сборке электроники используют схему электрическую принципиальную, с порядкового номера элементов. Реже указываться номинальное сопротивление, еще реже указывается номинальное сопротивление и мощность.

Чтобы быстро определить мощность резистора на схеме были введены соответствующие УГО (условные графические обозначения) по ГОСТ. Внешний вид таких обозначений и их расшифровка представлены в таблице ниже.

Вообще эти данные, а также название конкретного типа резистора указываются в перечне элементов, там же указывается и разрешенный допуск в %.

Внешне, они отличаются размером, чем мощнее элемент, тем больше его размер. Больший размер увеличивает площадь теплообмена резистора с окружающей средой. Поэтому тепло, которое выделяется при прохождении тока через сопротивление, быстрее отдаётся воздуху (если окружающая среда воздух).

Это значит, что резистор может греться с большей мощностью (выделять определенное количество тепла в единицу времени). Когда температура сопротивления достигает определенного уровня, сначала начинает выгорать внешний слой с маркировкой, дальше сгорает резистивный слой (пленка, проволока или что-то другое).

Чтобы вы оценили, как сильно может греться резистор, взгляните на нагрев спирали разобранного мощного резистора (более 5 Вт) в керамическом корпусе.

В характеристиках был такой параметр, как допустимая температура окружающей среды. Она указывается, для правильного подбора элемента. Дело в том, что раз мощность резистора ограничена способностью отдать тепло и, при этом, не перегреться, а для отдачи тепла, т.е. охлаждения элемента путем конвекции или принудительным потоком воздуха должна быть как можно большая разница температур элемента и окружающей среды.

Поэтому если вокруг элемента слишком жарко он быстрее нагреется и сгорит, даже если электрическая мощность на нем ниже максимально рассеиваемой. Нормальной температурой является 20-25 градусов Цельсия.

Что делать, если нет резистора нужной мощности?

Частой проблемой радиолюбителей является отсутствия резистора нужной мощности. Если у вас есть резисторы мощнее, чем нужно – ничего страшного в этом нет, можно ставить не задумываясь. Лишь бы он влез по размеру. Если все имеющиеся резисторы по мощности меньше, чем нужно – это уже проблема.

На самом деле решить этот вопрос достаточно просто. Вспомните законы последовательного и параллельного соединения резисторов.

1. При последовательном соединении резисторов сумма падений напряжений на всей цепочке равняется сумме падений на каждом из них. А ток, протекающий через каждый резистор равен общему току, т.е. в цепи из последовательно соединенных элементов протекает ОДИН ток, но приложенные к каждому из них напряжения РАЗНЫЕ, определяются по закону Ома для участка цепи (см. выше) Uобщ=U1+U2+U3

2. При параллельном соединении резисторов падение на всех напряжения равны, а ток, протекающий в каждой из ветвей обратно пропорционален сопротивлению ветви. Общий ток цепочки из параллельно соединенных резисторов равен сумме токов каждой из ветвей.

На этой картинке изображено всё вышесказанное, в удобной для запоминания форме.

Так, как при последовательном соединении резисторов снизится напряжение на каждом из них, а при параллельном соединении ток, то если P=U*I

Мощность, выделяемая на каждом из них, снизится соответствующим образом.

Поэтому, если у вас нет резистора 100 Ом на 1 Вт, его можно почти всегда заменить 2 резисторами на 50 Ом и 0.5 Вт соединенными последовательно, или 2 резисторами на 200 Ом и 0.5 Вт соединенными параллельно.

Я не просто так написал «ПОЧТИ ВСЕГДА». Дело в том, что не все резисторы одинаково хорошо переносят ударные токи, в некоторых цепях, например связанные с зарядом конденсаторов большой ёмкости, в первоначальный момент времени переносят большую ударную нагрузку, которая может повредить его резистивный слой. Такие связки нужно проверять на практике или путем долгих расчетов и чтением технической документации и ТУ на резисторы, чем почти никогда и никто не занимается.

Заключение

Мощность резистора – это величина не менее важная, чем его номинальное сопротивление. Если не уделять внимания подбору сопротивлений нужно мощности, то они будут перегорать и сильно греться, что плохо в любой цепи.

При ремонте аппаратуры, особенно китайской, ни в коем случае не пытайтесь ставить резисторы меньшей мощности, лучше поставить с запасом, если есть такая возможность поместить его по габаритам на плате.

Для стабильной и надежной работы радиоэлектронного устройства нужно подбирать мощность, как минимум, с запасом в половину от предполагаемой, а лучше в 2 раза больше. Это значит, что если по расчетам на резисторе выделяется 0.9-1 Вт, то мощность резистора или их сборки должна быть не меньше, чем 1.5-2 Вт.

Ранее ЭлектроВести писали, что JinkoSolar объявила, что она установила новый рекорд эффективности для монокристаллических PERC-панелей, который составил 24,38%. Компания также разработала модуль мощностью 469,3 Вт. Кроме того, китайский производитель фотоэлектрических элементов поравнялся с фирмой Trina Solar, которая на прошлой неделе заявила о рекордном 24,58% показателе КПД монокристаллических панелей n-типа.

По материалам: electrik.info.

Обозначение резисторов на схемах — Основы электроники

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Резистор для автомобиля 27w

Администратор 06.07.2018

Я думаю хватит. Нагрузка хорошая, плюс ваши светодиодные лампы, думаю не меньше 2в каждая.

Константин 04.07.2018

Планирую поставить на каждую сторону поворотников мотоцикла. Спереди 21В сзади 10В лампы . Поворотники диодные. Хватит 27В на сторону ? или что предложите. Сейчас при включении — просто горят а не мигают

Администратор 04.05.2017

Алексей, здравствуйте. В Вашем случае необходимы резисторы на 55Вт

алексей 03.05.2017

здравствуйте купил светодиодные лампы h7 мощность каждой 36W,у родных 55W.Хватит ли резисторов по 27W?

Администратор 24.03.2014

Лучше на каждую лампу поставить.

Здравствуйте ! хотел узнать одного резистора 27 w хватит на одну сторону поворотов или это для каждой лампы ?

Администратор 24.08.2013

Я думаю, что при включении поротников у вас нет сопротивления, резистор на 27W точно решит эту проблему.

Владимир 10.08.2013

Здравствуйте! Поставил на Skoda Octavia TOUR в задние поворотники вместо ламп светодиоды. При аварийке работает исправно, при включении поворотов они работают в ускоренном режими. Подскажите, пожалуйста, какие нагрузочные резисторы поставить. Подойдут ли «нагрузочные резисторы 27W» ?

Администратор 15.05.2013

Иван , температура нагриева этих резисторов порядка 60 градусов.

Подскажите насколько сильно при использовании нагреваются эти резисторы??

Администратор 22.04.2013

да надо 6 обманок

Здравствуйте, у меня ваз 2115 поставил задние светодиодные фонари, начал гореть чек неисправности ламп, посоветуйте какую обманку лучше поставить и ещё вопрос- в фонарях 6 ламп значит надо ставить 6 обманок?

Решил на своей «японке» поменять всю потику на додную. Все бы ничего, ну компьютер постоянно выдавал ошибки. Использование таких резисторов помогло избавиться от всех ошибок. главное подобрать нужный номинал мощности.

Администратор 23.11.2012

вот такие https://dled.ru/products/svetodiodnaja-obmanka-t10-w5w

есть ли резистор на 5 ватт на бокоые указатели поворота?

Здравствуйте подскажите существуют ли разновидность обманок или единственный параметр изображен выше?

Подскажите как правильно он крепится на провод в цеп. На + или — . Или как то особенно….

Администратор 05.01.2012

да, есть. Но лучше использовать более мощные светодиодные габаритные огни, тогда компьютер не будет выдавать сообщение о сгоревшей лампе.

Владимир 04.01.2012

а есть резисторы, только на 4-4,5 Вт для обмана бортовика на габаритных огнях???

Администратор 29.12.2011

Да обманка решит эту проблему. А так же вы можете установить мощеные светодиодные лампы, в габаритные лампы, а на противотуманные фары придётся устанавливать обманки, т.к. в данной модели очень придирчивый бортовой компьютер.

Здравствуйте у меня Volkswagen Touareg, хочу поставить себе светодиодные габаритные огни цоколь W5W и противотуманные фары цоколь HB4 9006. Читал на форумах, что компьютер выдаёт ошибку при установки светодиодных ламп на данную модель. Обманка решит эту проблему ?

Оставить свой отзыв:

Резисторы

Резистор (или сопротивление) — пассивный элемент электрической цепи. Он может обладать конкретным значением сопротивления или переменным. Резисторы используются практически во всех электронных и электрических устройствах. В электрических цепях резисторы используют в разных целях:

  • Для преобразования силы тока в напряжение
  • Для преобразования напряжения в силу тока
  • Для ограничения тока
  • Для поглощения эл. энергии

Их основные технические параметры — номинальное сопротивление (номинал) в Омах, максимальная рассеиваемая мощность, максимальное рабочее напряжение и класс точности. Есть и другие параметры, такие как температурный коэффициент, термостойкость, влагоустойчивость и другие. Так же имеются паразитные параметры — емкость и индуктивность. Эти параметры важно учитывать при разработке устройств, предназначенных для работы в сложных условиях или требующих высокой точности, но можно опустить при небольших самоделках на Arduino.

Обозначение резисторов

В мире есть несколько общепринятых условных графических обозначений резисторов на схемах. В США рисунок резистора похож на зигзаг, а в России и Европе он выглядит как прямоугольник.

Пример рисунка резисторов в России и Европе (а), и в США (б)

В России существует ГОСТ 2.728-74, в соответствии с которым постоянные резисторы на схемах должны обозначаться так:

Обозначения постоянных резисторов по ГОСТ 2.728-74

По тому же ГОСТу нелинейные, переменные и подстроечные резисторы должны обозначаться так:

Обозначение переменных резисторов по ГОСТ 2.728-74

Маркировка резисторов

Постоянные резисторы обычно имеют очень небольшие размеры. Есть и крупные резисторы, но они используются для более специфических задач, так как они способны выдерживать большие токи, напряжения и температуры.

Резистор большой мощности

Для удобства обозначения основных параметров мелких постоянных резисторов используется цветовая маркировка. На корпус резистора наносятся несколько цветных полос, цвета которых имеют свое значение. Для расшифровки используется либо таблица постоянных резисторов либо онлайн калькуляторы цветовой маркировки.

Цветовая маркировка резисторов

Виды резисторов

Классификаций резисторов очень много:

  • По области применения:
    • Высокоомные (обладающие сопротивление более 10 МОм)
    • Высокочастотные (с уменьшенной паразитарной индуктивностью и емкостью)
    • Высоковольтные (способные пропускать через себя тысячи вольт)
    • Прецизионные (повышенной точности с допуском менее 1%)
  • По способности изменять сопротивление
    • Переменные подстроечные
    • Постоянные
    • Переменные регулировочные
  • По влагозащищенности
    • Обычные незащищенные
    • Покрытые лаком
    • Залитые компаундом
    • Впрессованные в пластмассу
    • Вакуумные
  • По способу монтажа
    • Для навесного монтажа
    • Для монтажа на печатных платах
    • Для микромодулей и микросхем
  • По виду ВАХ (вольт-амперной характеристики)
    • Линейные
    • Нелинейные (фоторезисторы, терморезисторы, варисторы и другие)
  • В зависимости от используемых проводящих элементов
    • Проволочные
    • Непроволочные
  • По виду используемых материалов
    • Углеродистые
    • Металлопленочные
    • Интегральные
    • Проволочные

Далее рассмотрим несколько видов резисторов такие как постоянные, переменные и некоторые нелинейные резисторы.

Постоянный резистор

Постоянный резистор — это тот резистор, характеристики которого предопределены и не изменяются. Иначе говоря это элемент электрической цепи с фиксированным сопротивлением, предельным напряжением, классом точности. Такие резисторы изображены на картинках выше.

Расчет постоянного резистора для светодиода

Постоянные резисторы мы использовали во многих проектах. Например в проекте с подключением светодиода к Ардуино. Выход ардуино имеет напряжение 5 вольт и способен подать ток гораздо выше допустимого для светодиода. Так же необходимо учитывать, что сопротивление светодиода и без того низкое, так еще и падает во время работы.

Используя закон Ома мы можем увидеть, что сила тока будет расти при падении сопротивления и при одинаковом напряжении. Это значит что светодиод требующий 20 мА для работы, будет пропускать через себя более сильный ток и попросту сгорит. Тут то нам и поможет обычный постоянный резистор.

Что бы вычислить необходимый номинал резистора нам необходимо знать характеристики источника питания и характеристики светодиода. Источником питания для нашего светодиода выступает плата Arduino Uno. А характеристики светодиода можно посмотреть в его техническом описании, или спросить у продавца. Обычно это ток 20 мА и падение напряжения 2 В.

  • Vps — напряжение источника питания (5 Вольт)
  • Vdf — падение напряжения на светодиоде (2 Вольта)
  • If — номинальный ток светодиода (20 миллиампер или 0.02 Ампера)

Теперь подставим наши данные в формулу закона Ома для расчета сопротивления. Если кто забыл то напомню: R = U / I (сопротивление равно напряжению деленному на силу тока). Подставляем наши данные: R = (Vps — Vdf) / If = (5В — 2В) / 0.02А = 150 Ом

Теперь мы просто берем резистор на 150 Ом и ставим его перед или после светодиода (без разницы).

Подключение светодиода к Arduino

Переменный резистор

Переменный резистор — это электротехническое устройство, используемое для регулирования параметров электрической цепи (напряжение, сила тока) за счет заданного изменения сопротивления.

У переменного резистора есть множество названий и подвидов: реостат, потенциометр, переменное сопротивление, подстроечный резистор, регулировочный резистор. Попробуем разобраться в чем отличия. Переменное сопротивление, переменный резистор и реостат — это всё названия одного класса резисторов. «Потенциометр» — это жаргонное название переменного резистора, подключенного как делитель напряжения (о резисторных сборках и делителях напряжения мы расскажем в отдельной статье).

Реостат, потенциометр, переменный резистор, переменное сопротивление
  • Регулировочный резистор — переменный резистор, предназначенный для многократной регулировки параметров электрической цепи.
  • Подстроечный резистор — это тоже переменный резистор, который используется для подстройки параметров электрической цепи, у которого число перемещений подвижной системы значительно меньше, чем у регулировочного резистора.
Подстроечные резисторы в разных исполнениях

Нелинейные резисторы

Нелинейные резисторы — это резисторы сопротивление которых изменяется в зависимости от внешних факторов. Внешними факторами могут быть: температура, количество света, магнитное поле, напряжение в электрической цепи и другие. Вот некоторые примеры нелинейных резисторов, подробнее о которых вы сможете почитать по ссылкам в википедии:

  • терморезисторы — сопротивление меняется в зависимости от температуры;
  • варисторы — сопротивление меняется в зависимости от приложенного напряжения;
  • фоторезисторы — сопротивление меняется в зависимости от освещённости;
  • тензорезисторы — сопротивление меняется в зависимости от деформации резистора;
  • магниторезисторы — сопротивление меняется в зависимости от величины магнитного поля.

Не путайте такие резисторы с датчиками, они не показывают реальные величины, воздействующих на них сил. Изменяется лишь сопротивление. Можно откалибровать данные и привязать значение сопротивления, например терморезистора, к определенной температуре, но это не лучший вариант.

На сегодня это всё. В отдельной статье мы поговорим о соединении резисторов в разных комбинациях, таких как делители напряжения, подключение резисторов последовательно и параллельно.

Сопротивление бесполезно — The virtual drink — LiveJournal

Всегда хотелось иметь размеры компонентов поменьше. Резисторов в том числе. Начинал с резисторов ВС, добытых из ламповых приемников. Позже стали доступны МЛТ. Долгое время, еще до эпохи SMD, самыми миниатюрными были МЛТ-0.125.

Было сложно найти некоторые номиналы таких резисторов, тогда более распространены были МЛТ-0.25. Но я постепенно собрал весь ряд именно 0.125, который хранил в кассетнице из спичечных коробков, которая до сих пор жива (уже более 30-ти лет). Такие резисторы я иногда паял на манер SMD просто к площадкам, не делая отверстий в плате. На фото ниже видна плата кварцевой стабилизации частоты вращения ведущего вала самодельной кассетной деки. Некоторые резисторы на ней запаяны именно так.

Очень редко можно было встретить в советской технике резисторы еще меньших габаритов, чем МЛТ-0.125. Они были тонкие продолговатые, обычно красного цвета, не имели никакой маркировки. Цветные кольца тогда у нас не применялись, а нанести цифры на такой маленький корпус было сложно. Что это за тип – точно не знаю. В советском справочнике были резисторы С2-23 мощностью 0.062 Вт диаметром 1.6 мм и длиной 4.6 мм. Возможно, это они. Но доступность их была нулевая. Вот они, на фото справа внизу.

Позже появились SMD-резисторы. Первыми для меня были P1-12, которые имели размер 1206 и не имели маркировки. В то время монтаж был в основном в отверстия, только резисторы иногда применялись SMD. Полной гаммы SMD- компонентов тогда не было. Позже появились импортные SMD-резисторы, а вместе с ними и все другие компоненты для поверхностного монтажа. Пришлось отвыкать от микросхем в корпусах DIP и привыкать к SOIC. Резисторы сразу стал применять размера 0805, планируя перейти на размер поменьше. Переход на 0603 у меня почти состоялся, сделал на них несколько проектов, но тут ухудшилось зрение, от перехода пришлось отказаться. Теперь почти всегда использую 0805, и только в очень тесных местах – 0603.

Одновременно с импортной комплектацией начала появляться импортная техника. В компьютерах очень быстро появился SMD-монтаж. А вот в бытовой технике, в частности, аудиотехнике, до сих пор много монтажа в отверстия. Мне он как-то близок, такой монтаж очень красив. Плата напоминает город с многочисленными разноцветными строениями, не то что плоская SMD-доска.

В бытовой импортной технике я начал постоянно видеть красивейшие резисторы. Они заметно меньше, чем МЛТ-0.125, имеют другие пропорции (они немного «пузатые»). На фото ниже приведен фрагмент печатной платы кассетной деки Technics RS-B965. Практически все резисторы на этой плате именно такие.

Несмотря на то, что уже вовсю использовался SMD-монтаж, обычные компоненты иногда тоже были нужны. Например, для макетов. А в некоторых случаях они использовались и в конечных платах. Хотелось иметь именно такие маленькие красивые резисторы. Но нигде в продаже я их ни разу не видел. Поэтому начал выпаивать их со старых плат от импортной техники.

Постепенно накопился приличный запас таких резисторов. Регулярно их использую: когда макетирую, или когда вношу корректировки в платы с SMD. Такие резисторы вполне сносно влезают на площадки для SMD, а при необходимости за счет длины выводов можно что-то «перешагнуть». Рядом с этими резистрами некогда заветные МЛТ-0.125 смотрятся совсем не круто. Их использовать уже не поднимается рука.

Недостатка два: добывать красивые резисторы распайкой плат довольно трудоемко, и выпаянные резисторы имеют короткие выводы. Еще одной проблемой стало разбирать выпаянные резисторы по номиналам и раскладывать по коробкам.

Время шло, но таких резисторов как не было в продаже, так и нет. А в импортной технике они по прежнему массово применялись. Решил изучить вопрос – что это за резисторы, и где их можно взять. Возникли проблемы даже с определением типа. В некоторых источниках указывалось, что в таком корпусе (длина 3.2 мм, диаметр 1.5 мм) бывают наши резисторы С1-4 мощностью 0.062 Вт, или 0.125 Вт в варианте исполнения mini. Но где они бывают, так и не понял.

Еще встречается информация, что это резисторы серии CF мощностью 1/6 или 1/8 Вт. И опять же, есть исполнение резисторов мощностью 1/4 Вт в таком корпусе (тогда добавляется буква «S»).

Действительно, в datasheet на резисторы CF значится вариант CFS1/4 с такими размерами.

Но где их купить, по-прежнему непонятно. Они есть в каталогах типа Mouser, но ни на рынке, ни в магазинах их нет. В таких совершенно безнадежных ситуациях спасение может быть только одно – Aliexpress. Очень долго пришлось искать, чтобы по всем признакам резисторы были именно такими. Для одной и той же мощности бывают разные корпуса, что пришлют в итоге – лотерея. Все равно решил рискнуть.

Первый лот значился как «600 шт./компл. 30 видов 1/8 Вт 1/6 Вт Сопротивление 5% угольный осажденный резистор пакет Ассорти Комплект 1-10 K 100K 220ohm 1 м». Это углеродистые резисторы с корпусом коричневого цвета. 600 резисторов обойдутся 1.77$, плюс 0.20$ доставка.

Рядом нашел другой лот: «300 шт. 1/6 Вт и 1/8 Вт 1% Резистор для металлической пленки комплект 10 Ом-1 м Ом Сопротивление цветного кольца 10R-1MR резистор Ассорти набор 30 значений». Эти резисторы заявлены как металлопленочные и имеют корпус синего цвета. 300 резисторов обойдутся 1.43$ с бесплатной доставкой.

Все это дело я заказал, и вот сегодня они пришли (заглавное фото). Размер именно тот, что я хотел, ножки немного тоньше, чем у фирменных со старых плат, но не критично. Ножки магнитятся, чашки резисторов тоже. У фирменных ножки не магнитятся, но чашки тоже магнитятся. У МЛТ ни ножки, ни чашки не магнитятся. Низкоомные (до 1 кОм) не магнитятся вообще. А более высокоомные немного магнитятся (сам проводящий слой).

Имея не очень хороший опыт общения с китайскими резисторами (об этом тут был пост), я решил новые резисторы проверить. Проще всего оценить температурный коэффициент сопротивления (ТКС), по нему можно многое сказать. Для измерений взял несколько разных резисторов с номиналами 1 кОм, 10 кОм, 100 кОм и 1 МОм. Вот они, подопытные:

С помощью тестера UT71C решил сначала замерить сопротивление резисторов при комнатной температуре (20°C), а затем в струе горячего воздуха от фена. Чтобы получить реальную разницу температур примерно 100°C, установил фен на 150°C (с учетом комнатной температуры и разницы между термодатчиком фена и температурой проверяемого резистора). Эти измерения очень приблизительные, их даже измерениями назвать нельзя. Так, оценка. К тому же, каждого типа и номинала был взят всего один резистор. Накапливать нормальную статистику было выше моих сил.

Вот какие типы резисторов участвовали в сравнении:

1. Обычный дешевый толстопленочный SMD размера 0805.
2. МЛТ-0.125
3. С2-29
4. Выпаянные со старых плат миниатюрные резисторы синего цвета.
5. Выпаянные со старых плат миниатюрные резисторы коричневого цвета.
6. Китайский резистор синего цвета с размером примерно как у МЛТ-0.125.
7. Китайский миниатюрный резистор синего цвета (новый).
8. Китайский миниатюрный резистор коричневого цвета (новый).

Резистор С2-29 номиналом 1 кОм я не нашел, взял 1.01 кОм. Миниатюрного резистора синего цвета со старых плат номиналом 1 МОм у меня не оказалось.

Результаты измерения сведены в таблицу:

На результаты для номинала 1 МОм можно особо не смотреть, там показания сильно прыгали из-за наводок.

Сначала о хорошем. Самые обычные резисторы SMD 0805 показали себя очень хорошо, практически на уровне металлопленочных МЛТ-0.125.

А вот китайские резисторы – все без исключения плохие. Причем независимо от цвета корпуса. Внутри находится одинаковая ерунда типа очень посредственного углеродистого резистора. Они проигрывают SMD 0805 по ТКС раз в 5, как коричневые, так и синие. Синие китайские резисторы совсем не похожи на металлопленочные. А вот выпаянные со старых плат – все четко, если синий, значит металлопленочный. Это хорошо видно по результатам, в таблице металлопленочные под номером 2, 3 и 4. Но даже углеродистые со старых плат в два раза лучше китайских. Поэтому распаивайте платы, господа!

Пусковые резисторы сброса конденсатора

Резисторы сброса пускового конденсатора

Пусковой конденсатор , резистор (также называемый «спускным резистором») используется для сброса остаточного напряжения в пусковом конденсаторе после того, как он был удален из цепи двигателя после запуска. Не во всех пусковых конденсаторах используются резисторы, поскольку есть другие способы уменьшить остаточное напряжение в конденсаторе.

Важно отметить, что если конденсатор, который вы заменяете, имел спускной резистор, вам нужно будет заменить резистор в вашем новом пусковом конденсаторе.Вы можете либо проверить, исправен ли старый резистор, либо заменить его новым. Значение сопротивления должно быть от 10 до 20 кОм и около 2 Вт. Резисторы обычно обжимаются или припаиваются к клеммам пускового конденсатора.


Технические характеристики и выбор продукции

Использование для пусковых конденсаторов:
Напряжение: от до 330 В
Емкость: от до 1200 мкФ
Тип монтажа: Пайка
Диаметр корпуса резистора: 0.1255 дюймов
Длина корпуса резистора: 0,363 дюйма
Общая длина (включая выводы): 2,363 дюйма
Длина вывода: 1 дюйм на сторону
Диаметр вывода: 0,19 дюйма

Ознакомьтесь с нашей подборкой резисторов пусковых конденсаторов. Все цены указаны с учетом , бесплатная доставка включена.


Замена резистора

Большинство пусковых конденсаторов не имеют резистора. Но если вам нужно заменить пусковой конденсатор, у которого он есть, вам также необходимо использовать резистор на новом конденсаторе.Вы можете либо проверить, исправен ли старый резистор, либо просто использовать новый.

Просмотрите наш видеоурок о том, как установить резистор сброса пускового конденсатора.

Как выбрать правильный резистор

Все, что вам нужно знать, чтобы выбрать правильный резистор для вашего первого проекта разработки печатной платы

Планируете ли вы приступить к разработке своей первой печатной платы? Существует так много типов компонентов, которые вы в конечном итоге будете использовать, но ни один из них не может превзойти печально известный из них — простой резистор.Если вы когда-либо смотрели на печатную плату, вы обнаружите, что резисторы повсюду, они контролируют ток и заставляют светиться светодиоды. Но что такое резистор, как он работает и как выбрать подходящий резистор для своей первой конструкции печатной платы?

Не бойтесь, мы предоставим вам все, что вам может понадобиться.

Итак… Что такое резистор? Резисторы

являются одним из нескольких пассивных электрических компонентов, и то, что они делают, относительно простое, но жизненно важное — создание сопротивления в потоке электрического тока.Вы когда-нибудь видели, как загорается светодиод? Это стало возможным благодаря надежному резистору. Поместив резистор позади светодиода в цепи, вы получите яркий свет, но ничего не перегорят!

Номинал резистора — это его сопротивление, измеряемое в Ом (Ом). Если вы когда-либо проходили базовый курс электроники, то ваш инструктор, вероятно, вбил вам в голову закон Ома. При работе с резисторами вы будете снова и снова использовать закон Ома. Подробнее об этом:

Найти символ резистора на схеме очень просто.Международный символ имеет стандартную прямоугольную форму, но в стандарте США есть зигзагообразная линия, которая упрощает идентификацию. Независимо от формы, оба стиля имеют набор клемм, соединяющих концы.

Обозначение резистора как в американской, так и в международной версиях.

Какие бывают типы резисторов?

Вокруг плавает тонна резисторов, разделенных на две категории — конструкционный тип и резистивный материал .Давайте рассмотрим оба:

Конструкция Тип

  • Постоянные резисторы — Как следует из названия, эти резисторы имеют фиксированное сопротивление и допуск независимо от любых изменений внешних факторов, таких как температура, свет и т. Д.
  • Переменные резисторы — Эти детали имеют изменяемое сопротивление. Потенциометр — отличный пример, у которого есть циферблат, который можно поворачивать, чтобы увеличивать или уменьшать сопротивление. К другим переменным резисторам относятся подстроечный резистор и реостат.
  • Резисторы физического качества — Эти резисторы похожи на хамелеонов и могут изменять свое сопротивление в зависимости от множества физических свойств, включая температуру, уровень освещенности и даже магнитные поля. К резисторам физического качества относятся термистор, фоторезистор, варистор и магниторезистор.

Материал сопротивления Резисторы

также можно разделить на материал, из которого они сделаны, что оказывает огромное влияние на их сопротивление току.Эти материалы включают:

  • Состав углерода
  • Карбоновая пленка
  • Металлическая пленка
  • Толстая и тонкая пленка
  • Фольга
  • Проволочная обмотка

Углеродный состав — это более старая технология, которая существует уже некоторое время и позволяет производить резисторы с низкой степенью точности. Вы по-прежнему найдете их для использования в приложениях, где возникают импульсы высокой энергии.

Из всех типов материалов резисторов проволочные обмотки являются самыми старыми из всех, и вы все равно найдете их, когда вам потребуется точное сопротивление для приложений с большой мощностью.Эти древние резисторы широко известны своей надежностью даже при низких значениях сопротивления.

Сегодня резисторы из металлов и оксидов металлов являются наиболее широко используемыми, они лучше обеспечивают стабильные допуски и сопротивление, а также меньше подвержены влиянию изменений температуры.

Как использовать резисторы?

Вы найдете резисторы, которые используются во многих приложениях, помимо сопротивления току.Другие приложения включают разделение напряжения, генерирование тепла, согласование и нагрузку цепей, управление усилением и фиксацию временных ограничений. В более практических приложениях вы обнаружите, что большие резисторы используются для питания электрических тормозов в поездах, что помогает высвободить всю накопленную кинетическую энергию.

Вот еще несколько интересных приложений, для которых используется универсальный резистор:

  • Измерение электрического тока — Вы можете измерить падение напряжения на прецизионном резисторе с известным сопротивлением, когда он подключен к цепи.Это рассчитывается по закону Ома.
  • Питание светодиодов — Подача на светодиод слишком большого тока приведет к сгоранию этого прекрасного света. Подключив резистор за светодиодом, вы можете контролировать, какой ток получает светодиод, чтобы свет продолжал светиться.
  • Электродвигатели нагнетателя — Эта система вентиляции в вашем автомобиле приводится в действие электродвигателем нагнетателя, а для управления скоростью вентилятора используется специальный резистор. Этот тип резистора, что неудивительно, называется резистором двигателя вентилятора!

Как измерить резистор?

Значение, которое вы будете видеть снова и снова, — , сопротивление (R).Это значение отображается по-разному, и в настоящее время существует два стандарта для измерения того, как сопротивление отображается с помощью цветных маркеров или SMD-кодов.

Цветовое кодирование

Возможно, вы знакомы с системой цветового кодирования, если когда-либо возились с макетной платой. Этот метод был изобретен в 1920-х годах, и значения сопротивления и допусков отображаются в виде нескольких цветных полос, нарисованных на корпусе резистора.

Большинство резисторов, которые вы видите, имеют четыре цветных полосы.Вот как они распадаются:

  • Первые две полосы определяют основные цифры значения сопротивления.
  • Третья полоса определяет коэффициент умножения, который дает значение сопротивления.
  • И, наконец, четвертая полоса предоставляет вам значение допуска.

Все разные цвета на резисторе соответствуют разным номерам. Вы можете использовать удобный калькулятор цветового кода резистора, чтобы быстро определить эти значения в будущем.Если вы в большей степени визуально обучаетесь, то вот отличное видео, которое мы нашли, показывает вам, как разобраться в цветовой кодировке:

Резисторы SMD

Не каждый резистор достаточно велик, чтобы его можно было идентифицировать по цветовой кодировке, особенно при использовании устройств поверхностного монтажа или SMD. Чтобы компенсировать меньшее пространство, резисторам SMD присваивается числовой код. Если вы посмотрите на современную печатную плату, вы заметите, что резисторы SMD также примерно одинакового размера.Это помогает стандартизировать производственный процесс с помощью этих быстросъемных машин.

Как выбрать подходящий резистор?

Хорошо, время для самой важной части — научиться точно определять, какой резистор вам нужен для вашей первой конструкции печатной платы. Мы разбили это на три простых шага, которые включают:

  1. Расчет необходимого сопротивления
  2. Расчет номинальной мощности
  3. И, наконец, выбор резистора на основе этих двух значений.

Шаг 1. Расчет сопротивления

Здесь вы будете использовать закон Ома для расчета сопротивления. Вы можете использовать одну из стандартных формул ниже, когда известны ваше напряжение (В) и ток (I).

Шаг 2 — Расчет номинальной мощности

Затем вам нужно выяснить, сколько мощности потребуется вашему резистору для рассеивания. Это можно рассчитать по следующей формуле:

В этой формуле P — ваша мощность в ваттах, В, — падение напряжения на резисторе, а R — сопротивление резистора в Ом.Вот краткий пример того, как эта формула будет работать в действии:

В приведенной выше схеме у нас есть светодиод с напряжением 2 В, , резистор со значением 350 Ом (Ом) и блок питания, дающий нам 9 В . Итак, сколько мощности будет рассеиваться на этом резисторе? Подведем итоги. Сначала нам нужно найти падение напряжения на резисторе, которое составляет 9 В от батареи и 2 В от светодиода, поэтому:

9В — 2В = 7В

Затем вы можете вставить всю эту информацию в формулу:

P = 7V * 7V / 350 Ом = 0.14 Вт

Шаг 3 — Выбор резистора

Теперь, когда у вас есть значения сопротивления и номинальной мощности, пора выбрать реальный резистор у дистрибьютора компонентов. Мы всегда рекомендуем использовать стандартные резисторы, которые есть в наличии у каждого дистрибьютора. Использование стандартных типов резисторов значительно упростит вашу жизнь, когда придет время их производить. Три надежных поставщика компонентов, у которых вы можете найти качественные детали, включают Digikey, Mouser и Farnell / Newark.

Сопротивление сильно в этом

Итак, вот и все, что вам может понадобиться знать о резисторах для вашего первого проекта по разработке печатной платы. Резисторы обладают такой универсальностью, что вы будете использовать их снова и снова в каждом проекте электроники, который вы завершаете. В следующий раз, когда вам нужно будет выбрать резистор, запомните простой трехэтапный процесс: 1. рассчитайте сопротивление, 2. затем номинальную мощность, 3. а затем найдите поставщика!

Теперь, прежде чем вы начнете создавать собственные символы резисторов и посадочные места в программном обеспечении для проектирования печатных плат, не было бы проще, если бы они уже были сделаны для вас? Они уже есть! Ознакомьтесь с огромным количеством бесплатных библиотек деталей, доступных только в Fusion 360.Попробуйте электронику Fusion 360 бесплатно сегодня.

Использование одного резистора на светодиодах RGB с общим анодом / катодом?

В нашем обсуждении того, как работает светодиод RGB, мы упоминали, что светодиод RGB — это в основном светодиодный корпус с тремя внутренними светодиодами (красным, зеленым и синим) внутри него. Чтобы получить желаемый цвет от светодиода RGB, нам нужно направить смещение и контролировать интенсивность каждого внутреннего светодиода.

В корпусе светодиодов RGB у светодиодов внутри почти всегда общий анод или катод.Это заставляет людей думать, что они могут просто использовать один резистор для ограничения тока для всех трех светодиодов, как показано на принципиальной схеме ниже. Когда вы просто хотите, чтобы только один из светодиодов излучал свет, конечно, он сработает. Однако, когда вы попытаетесь получить желаемый цвет, вам будет трудно, когда вы будете использовать только один резистор.

Например, у меня есть обычный катодный светодиод RGB, и я использую один резистор для красного, зеленого и синего светодиодов. Когда включаю светодиоды по отдельности, все хорошо.Но когда я включаю красный и синий светодиоды, чтобы смешивать их цвета, это не имеет большого значения. И если я попытаюсь полностью включить красный, зеленый и синий светодиоды, ожидая, что я получу довольно чистый белый свет, я получу очень красный оттенок.

Итак, что происходит? Проблема здесь в прямом напряжении светодиодов. В нашем руководстве «Как уменьшить яркость светодиода» мы обсуждали, что сила света светодиода зависит от прямого тока. Однако прямой ток светодиода также зависит от прямого напряжения или падения напряжения на светодиодах.Таким образом, если падения напряжения на светодиоде недостаточно для получения необходимого прямого тока, вы не получите желаемой силы света светодиода.

Теперь давайте обсудим, что происходит, когда мы используем один резистор на светодиодах RGB. Мы можем предположить, что наш источник питания составляет 5 В, тогда типичное прямое напряжение красного светодиода составляет 2 В, в то время как зеленый и синий светодиоды будут около 4 В. Как показано на схеме, светодиоды, очевидно, подключены параллельно, что является важным аспектом этой проблемы. С идеальными светодиодами только красный светодиод мог бы проводить здесь, так как он имеет самое низкое прямое напряжение, тогда падение напряжения на зеленом и синем светодиодах будет таким же, как у красного светодиода, 2 В.Если у вас есть 2 В на светодиоде с прямым напряжением 4 В, у вас не будет никакого тока через него.

Скорее всего, через другие светодиоды будет протекать небольшой ток, потому что зеленый и синий светодиоды начнут проводить немного меньше, чем их прямое напряжение, а фактическое напряжение на красном светодиоде будет немного больше, чем Прямое напряжение 2 В, потому что вы немного превышаете номинальное прямое напряжение. Несмотря на это, определенно будет огромный дисбаланс между током, проходящим через разные светодиоды в массиве.

С массивом светодиодов, в котором все светодиоды одного цвета, вы все равно столкнетесь с этой проблемой. Прямое напряжение будет немного отличаться от светодиода к светодиоду даже в пределах одного и того же массива, поэтому яркость будет различаться. Честно говоря, это не самая большая проблема при совместном использовании резистора на общем катоде или аноде в массиве. Хотя это не основная проблема светодиодов RGB, у вашего единственного резистора есть еще одна проблема.

Если у вас один резистор и один светодиод, вы можете рассчитать максимальный ток, который будет проходить через этот резистор.Но с одним резистором и несколькими светодиодами этот резистор теперь должен направлять ток, протекающий через ВСЕ светодиоды. По мере того, как отдельные светодиоды включаются и выключаются, единственный способ поддерживать постоянную яркость каждого светодиода — это изменять напряжение на резисторе, что обычно невозможно и никогда не имеет смысла. Поскольку напряжение на резисторе не меняется, это означает, что ток остается постоянным, а это означает, что теперь ток распределяется между несколькими светодиодами. Если они все включены, это делает их более тусклыми по отдельности, чем если бы они были включены только по одному, и хорошо спроектированная схема не приведет к тому, что один свет станет тусклее или ярче просто потому, что вы включили или выключили другой свет.

И , что — вот почему нельзя использовать резистор на общем аноде или общем катоде RGB-светодиода или даже на светодиодной матрице.

Таким образом, вам действительно нужно иметь один определенный резистор для каждого из светодиодов в светодиодах RGB или светодиодной матрице. Когда вы проверяете техническое описание светодиода RGB, проверьте прямое напряжение каждого цвета. Например, этот светодиод RGB — Kingbright WP154A4SUREQBFZGC:

. Вы увидите, что красный имеет типичное прямое напряжение 1,9 В, а синий и зеленый — 3.3В. Исходя из этого, вы можете рассчитать сопротивление резистора, который вы собираетесь использовать для каждого из светодиодов.

Итак, я надеюсь, что это объясняет, почему нельзя просто использовать один резистор на общем аноде или общем катоде RGB светодиода. Если вы нашли этот учебник интересным или полезным, поставьте ему лайк, а если у вас есть вопросы, оставьте его в комментариях ниже. Чтобы получать уведомления о новых учебных курсах по технологиям и электронике, подпишитесь на нашу рассылку новостей!

Не используйте резистор, который я говорил вам использовать

Автоматически, мы устанавливаем одинаковые импедансы на оба входа операционного усилителя, как нас учили много лет назад.В этой статье исследуется, почему появилось это эмпирическое правило и следует ли нам следовать этому правилу.

То, что вам сказали

Если вы выросли с операционным усилителем 741 1, он был просверлен вам в голову, чтобы уравновесить сопротивления, наблюдаемые на входах операционного усилителя. Со временем, с использованием различных схемотехники и различных процессов ИС, это может оказаться неправильным поступком. Фактически, это может привести к большей погрешности по постоянному току, большему шуму и большей нестабильности. Почему мы начали это делать и что изменилось, так что это может быть неправильным поступком сегодня?

В 1960-х и 1970-х годах операционные усилители первого поколения производились по простому биполярному процессу.Чтобы получить приемлемые скорости, ток хвоста дифференциальной пары обычно находился в диапазоне от 10 мкА до 20 мкА.

Следовательно, при бета-диапазоне от 40 до 70 входной ток смещения составлял примерно один микроампер. Однако согласование транзисторов было не таким близким, поэтому входные токи смещения не были равны, что приводило к разнице входных токов смещения (называемых входным током смещения) на 10-20% от входного тока смещения.

Добавляя сопротивление (R3 на рис. 1) на неинвертирующем входе к земле, равное параллельной комбинации входного резистора и резистора обратной связи, импедансы становятся равными.Проделав некоторые алгебраические манипуляции, можно показать, что ошибка уменьшена до I , смещение × R обратной связи . Поскольку смещение I составляло от 10% до 20% от смещения I , это помогло бы уменьшить ошибку смещения выходного сигнала.

Рисунок 1. Классический инвертирующий усилитель.

Ошибка постоянного тока

Чтобы уменьшить входной ток смещения в биполярных операционных усилителях, подавление входного тока смещения было интегрировано во многие конструкции операционных усилителей. Пример этого можно найти в OP07.При добавлении подавления входного тока смещения, 2 ток смещения значительно уменьшается, но входной ток смещения может составлять от 50% до 100% от оставшегося тока смещения, поэтому добавление резистора имеет очень незначительный эффект. В некоторых случаях добавление резистора может привести к увеличению погрешности вывода.

Шум

Тепловой шум резистора равен √4kTRB, поэтому резистор 1 кОм будет иметь значение 4 нВ / √Гц. Добавление резистора добавит шума. На Рисунке 2 удивительно, но несмотря на то, что резистор компенсации 909 Ом имеет наименьшее значение из-за усиления шума от этого узла к выходу, он вносит наибольший шум на выходе Рисунка 2.Выходной шум из-за R1 составляет 40 нВ / √Гц, для R2 — 12,6 нВ / √Гц, а для R3 — 42 нВ / √Гц. Так что не используйте резистор. С другой стороны, если операционный усилитель питается от раздельных источников питания и один источник питания появляется раньше другого, могут возникнуть проблемы с фиксацией в сети ESD, и в этом случае может быть желательно добавить некоторое сопротивление для защиты часть. Но если он используется, на резистор необходимо установить байпасный колпачок, чтобы уменьшить вклад резистора в шум.

Рисунок 2. Анализ шума.

Стабильность

Все операционные усилители имеют некоторую входную емкость, как дифференциальную, так и синфазную.Если операционный усилитель подключен как повторитель, а импедансы уравновешены путем добавления резистора в цепь обратной связи, система может стать склонной к колебаниям. Причина в том, что с большим резистором обратной связи, входной емкостью операционного усилителя и паразитной емкостью на печатной плате формируется RC-фильтр нижних частот (LPF). Этот фильтр вызывает фазовый сдвиг и уменьшает запас по фазе замкнутой системы. Если его уменьшить слишком сильно, операционный усилитель будет колебаться. Заказчик использовал КМОП операционный усилитель AD8628 в схеме фильтра нижних частот Саллена-Ки с частотой 1 Гц.Из-за низкой частоты среза резисторы и конденсаторы были довольно большими (см. Рисунок 3). Входной резистор был 470 кОм, поэтому заказчик поставил 470 кОм в цепи обратной связи. Этот резистор в сочетании с входной емкостью восемь пикофарад (см. Рисунок 4) давал заказчику полюс на частоте 42 кГц. AD8628 имеет произведение коэффициента усиления на полосу пропускания 2 МГц, поэтому он по-прежнему имеет достаточное усиление на частоте 42 кГц и колеблется по схеме «rail-to-rail». Замена резистора 470 кОм на перемычку 0 Ом решила проблему. Поэтому избегайте больших резисторов в обратной связи, которые зависят от ширины полосы усиления операционного усилителя.Для высокочастотных операционных усилителей, таких как ADA4817-1 с полосой усиления более 400 МГц, обратная связь 1 кОм будет большой. Всегда читайте технические данные для получения рекомендаций.

Рисунок 3. Что вы видите.

Рис. 4. Что видят электроны.

Сводка

С годами были разработаны практические правила, которые служат определенной цели. При проверке дизайна всегда полезно внимательно изучить эти правила и посмотреть, применимы ли они по-прежнему. Что касается добавления балансировочного резистора, если операционный усилитель CMOS, JFET или биполярный с подавлением входного тока смещения, вам, вероятно, он не понадобится.

Прочитав эту статью, вы, возможно, удивитесь, что викторина посвящена шуму.

Вот вам три вопроса:

В. Какой шум возникает в резисторе?

  • Попкорн шум
  • Красный шум
  • Розовый шум
  • 1 / f шум
  • Белый шум
  • Шум Джонсона
  • шум Найквиста
  • Белый шум

В. Каков среднеквадратичный шум, создаваемый резистором 10 кОм при комнатной температуре (20 ° C) в эквивалентной полосе шума 20 кГц?

В.Имея 24-битный аудио-АЦП с входным диапазоном 2,5 В — сколько битов мерцания мы получили бы с этим V NOISE ?

Вы можете найти ответ в блоге StudentZone.

использованная литература

1 Кен Ширрифф. «Понимание кремниевых схем: внутри универсального операционного усилителя 741». 2015.

2 «MT-038 Учебное пособие по входному смещению операционного усилителя». Analog Devices Inc., 2009. (PDF)

Электронные компоненты — резисторы | FDA

[Предыдущая глава] [Содержание] [Следующая глава]

ОТДЕЛ.ЗДРАВООХРАНЕНИЯ, ОБРАЗОВАНИЯ И
WELFARE ОБЩЕСТВЕННАЯ СЛУЖБА ЗДРАВООХРАНЕНИЯ
АДМИНИСТРАЦИЯ ПРОДУКТОВ И НАРКОТИКОВ
* ORA / ORO / DEIO / IB *

Дата: 16.01.78 Номер: 31
Смежные программные области:
Радиологическое здоровье


ITG ТЕМА: ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ — РЕЗИСТОРЫ

Этот ITG был написан для ознакомления исследователя с одним из электронных компонентов, обычно используемых в медицинских устройствах.Этот ITG охватывает теорию, применение и тестирование резистора, а также некоторые конструктивные особенности, которые следует учитывать при использовании резисторов. Если к этому подходу проявится достаточный интерес, дополнительные компоненты будут рассмотрены в будущих выпусках ITG.

Теория

Резисторы

— это устройства, изготовленные специально для обеспечения постоянного или переменного сопротивления, подходящего для конкретной области применения электрической цепи. Функцию резистора или сопротивления можно просто объяснить, используя аналогию между переменным резистором в последовательной цепи с дополнительными постоянными резисторами и клапаном в ватерлинии.Предположим, что у нас есть единственный регулируемый клапан в водопроводе, подключенном к источнику воды под некоторым давлением. Как вы знаете, мы можем уменьшить или увеличить поток воды через линию, частично закрывая или открывая клапан. Точно так же, если у нас есть регулируемое сопротивление в электрической цепи, мы можем эффективно уменьшить или увеличить ток в цепи, увеличивая или уменьшая сопротивление цепи. Давление воды в водопроводе аналогично напряжению в электрической цепи. По мере того, как мы постепенно открываем водяной клапан, поток воды увеличивается, а перепад давления на клапане уменьшается до тех пор, пока не будет значительной разницы давлений между каждой стороной клапана, когда водяной клапан полностью открыт.Точно так же, когда мы уменьшаем сопротивление переменного резистора (открываем клапан), разность напряжений на резисторе уменьшается до тех пор, пока мы не достигнем конца сопротивления (где, по сути, происходит короткое замыкание), не будет заметной разницы напряжений на резисторе. резистор. Разница напряжения на резисторе в любой момент времени называется «падением напряжения». По мере того, как клапан постепенно закрывается, перепад давления на клапане увеличивается до тех пор, пока при полностью закрытом клапане и отсутствии потока воды перепад давления на клапане не станет таким же, как давление в источнике.Точно так же предположим, что у нас есть резистор, который можно настроить на очень большое значение. По мере увеличения сопротивления разность напряжений на сопротивлении увеличивается до тех пор, пока при максимальном значении резистора (представляющем разомкнутую цепь) ток через резистор практически не протекает, а напряжение на резисторе не будет таким же, как и на источнике напряжения. . Абсолютная достоверность приведенной аналогии зависит от других схемных факторов, но аналогия достаточно близка для нашего использования.

Вероятно, самая простая формула, которую нужно усвоить при работе с электричеством, — это закон Ома -.

Напряжение (В) = ток (I) X сопротивление (R)

Другой способ записать закон Ома —

Напряжение (В) Ток (I) = ————— Сопротивление (R)

Используя эту формулу, легко увидеть, что по мере уменьшения общего сопротивления (R) (при условии постоянного напряжения) ток (I) будет увеличиваться. И наоборот, с увеличением сопротивления ток будет уменьшаться.Соответственно, единицей измерения сопротивления являются омы. Напряжение — это электродвижущая сила, и в приведенных формулах иногда может обозначаться буквой «Е».

Заявление

Резисторы используются, чтобы сделать выход одной цепи совместимым с входом другой (согласование импеданса), чтобы ввести сопротивление в электрическую или электронную цепь, чтобы установить количество используемого тока (нагрузка), установить рабочие уровни напряжения и тока. для активных компонентов, таких как транзисторы (смещение), а также для ограничения протекания тока и снижения напряжения для многих других приложений.Регулятор громкости автомобильного радио, телевизора или стереосистемы представляет собой регулируемый резистор.

Типы резисторов

Существует два основных типа резисторов в зависимости от режима работы; фиксированные и переменные. Как следует из названий, постоянный резистор имеет фиксированное значение, а переменный резистор можно изменять или настраивать на разные значения сопротивления. Схематические обозначения постоянных и переменных резисторов следующие:

(Обозначения)

(размер изображения 5 КБ)

Имеющиеся в продаже резисторы, обычно используемые в медицинских устройствах, можно подразделить на три основных типа в зависимости от технологии изготовления; композиция, проволока и пленка.Эти базовые технологии резисторов различаются по размеру, стоимости и электрическим характеристикам. Тип, который выбирается для конкретной конструкции, зависит от ограничений по размеру и необходимых электрических параметров, а также от среды, в которой, как ожидается, будет работать резистор. Некоторые из них лучше других для конкретных целей, ни один отдельный тип не обладает всеми лучшими характеристиками.

Состав — составные резисторы, вероятно, являются наиболее распространенными резисторами, которые изготавливаются путем объединения резистивного материала, такого как углерод, со связующим.Связующее используется для удержания углерода вместе, так что ему можно формовать или придавать различные желаемые формы.

Из-за несоответствий в материалах и методах, используемых при производстве резисторов, все резисторы имеют указанное допустимое отклонение (указанное в процентах) изготовленного значения от указанного «номинального» значения при указанных условиях окружающей среды (обычно при 25 ° C). Это указанное отклонение называется «допуском». Каждый резистор имеет определенный диапазон допуска, в котором значение сопротивления может изменяться; где-нибудь примерно от 0.От 1% до 20% от номинальной стоимости. Большинство применений резисторов допускают вариации допусков, но для резисторов, используемых в критических положениях, где необходим жесткий или ограниченный допуск сопротивления, любое изменение параметров, которое приводит к их отклонению за пределы выбранных значений, может привести к дефектному продукту (± 1% или меньше будет считаться жестким допуском).

Составной резистор считается резистором общего назначения. Обычно композиционные резисторы доступны с допуском от ± 5% до ± 20%.Составные резисторы не следует использовать в критических приложениях, где можно ожидать изменений окружающей среды. Воздействие влажности, температуры и давления, а также нормальное старение может привести к тому, что состав резистора может отличаться на ± 15% или более за пределами указанного диапазона допусков.

С проволочной обмоткой — резистор с проволочной обмоткой считается одним из самых стабильных резисторов с коммерчески доступными допусками до ± 0,1%. Проволочные резисторы конструируются путем наматывания резистивного провода вокруг изолированной формы и покрытия конечного продукта изоляционным материалом.

Пленка — Пленочные резисторы изготавливаются путем формирования тонкого слоя резистивного материала на изолированной форме. Наиболее часто используемые пленочные резисторы можно разделить на типы в зависимости от используемых материалов: углеродная пленка, металлический сплав и металлооксид. Один популярный металлопленочный резистор изготавливается путем нанесения металлической пленки на керамический цилиндр. Одним из обычно используемых материалов для этих резисторов является металлокерамика. Кермет представляет собой комбинацию керамических и металлических материалов, отсюда и название кермет.’

Одной из последних технологий в области производства пленочных резисторов является производство толстых и тонких пленочных резисторов, которые используются в микроэлектронных и гибридных схемах. Толстопленочные резисторы формируются путем нанесения резистивной металлической пасты или краски по трафарету на основу почти так же, как это делается при шелкографии. Обычно резистивные материалы считаются собственностью. Тонкопленочные резисторы образуются путем осаждения из паровой фазы тонкого слоя резистивного материала на основу. Толстые и тонкопленочные резисторы обычно подгоняются до определенного значения путем травления резистивного материала с помощью лазера, пескоструйной обработки и т. Д.

Большинство составных и проволочных фиксированных резисторов имеют цилиндрическую форму с осевыми выводами. Толстые и тонкопленочные резисторы производятся различных форм и размеров. Сети пленочных резисторов упаковываются в пластиковые двухрядные корпуса (DIP), однорядные пакеты (SIP), плоские корпуса и круглые металлические корпуса, идентичные тем, в которых упакованы интегральные схемы. Отдельные резисторы могут быть упакованы в виде чипов и таблеток. Микросхема в микроэлектронике — это любой небольшой (обычно квадратный или продолговатый) кусок материала, содержащий схему или компонент.Толстопленочные резисторы обычно используются в гибридных схемах, где они наносятся непосредственно на подложку схемы. Подложка — это крошечная платформа, на которой размещены схемы. Толстые и тонкопленочные резисторы нашли множество применений при разработке микроэлектроники, поскольку их можно сделать меньше, чем резисторы других сопоставимых типов. Пленочные резисторы часто используются в критических местах схемотехники. Их можно приобрести в готовом виде с минимальным допуском ± 0,1%, они мало изменяются в стоимости при изменении температуры и обычно стабильны при изменении влажности и давления.

Силовые резисторы — силовые резисторы должны пропускать большой ток и впоследствии рассеивать много тепла. Следовательно, они обычно больше, чем те, которые рассчитаны на меньшее количество тока. Силовые резисторы обычно заключены в материалы, которые способствуют отводу тепла, и обычно проектируются таким образом, чтобы их можно было установить на радиаторе или шасси оборудования для облегчения отвода тепла за счет теплопроводности. Обычные силовые резисторы могут быть составными, проволочными или пленочными.

Переменные резисторы — Переменный резистор обычно называют «горшком»; имеется в виду потенциометр. Потенциометр содержит элемент из непрерывного резистивного материала со скользящим контактом, который пересекает элемент по круговой или прямой линии, в зависимости от типа потенциометра. Обычно он регулируется валом, соединенным с круговой шкалой или винтом с накатанной головкой, либо с помощью отвертки или регулировочного инструмента. Переменные резисторы могут быть проволочными, композиционными или пленочными. Маленькие прецизионные регулируемые резисторы называются «подстроечными резисторами» и используются для точной настройки в слаботочных приложениях.Переменные резисторы, которые сконструированы так, чтобы выдерживать большие значения тока или мощности, называются «реостатами» и обычно используются для регулировки скорости двигателя и температуры печи и нагревателя.

На резисторах

обычно есть маркировка, указывающая номинал, допуск, а иногда и состав и рейтинг надежности. Рейтинг надежности выражается в процентах отказов на 1000 часов работы. Эти значения могут быть записаны на резисторах или могут иметь цветовой код, как показано на резисторе из углеродного состава на Рисунке 1.(Рисунок) Цветовой код обычно представлен четырьмя или пятью цветными полосами (представленными в различных цветовых оттенках на черно-белой фотографии) вокруг корпуса резистора. Интерпретация этого цветового кода приведена в таблице 1. Приведенный цветовой код является общим кодом военного стандарта для цветных полос или точек, используемых на электронных компонентах и ​​используемых большинством производителей.

На рисунке 2 (рисунок) показаны некоторые типы резисторов, обычно используемых в схемах медицинских устройств. Как видите, металлические пленочные, проволочные и композиционные резисторы слева выглядят практически одинаково.Это делает чрезвычайно трудным определение конструкции резистора простым наблюдением, если наблюдатель не знаком с продуктом производителя. Разница в размере в пределах каждой показанной группы резисторов связана с изменением номинальной мощности и ее значения. Обычно в резисторе одного типа, чем выше номинальная мощность (ватт), тем больше резистор. Например, номинальная мощность показанных резисторов из углеродного состава варьируется от 1/4 Вт (показано наименьшее значение) до 2 Вт (показано наибольшее значение). Но конкретная мощность в одном типе резистора может быть больше или меньше, чем такая же мощность в другом типе.Например, самый большой из показанных резисторов из углеродного состава составляет 2 Вт, в то время как мощность резистора с проволочной обмоткой, расположенного непосредственно над ним, составляет 3 Вт, хотя углеродный резистор немного больше, чем резистор с проволочной обмоткой.

Таблица I — Код цветовой маркировки (MIL-STD-1285A)

1-й цвет 2-й цвет 3-й цвет 4-й цвет 5-й цвет, отказ

Цвет 1-й номер 2-й номер Множитель Уровень допуска Символ

Черный 0 0 1 ± 20% L (Как указано)

Коричневый 1 1 10 ± 1% M (1% / 1000)

Красный 2 2100 ± 2% P (0.1% / 1000)

Оранжевый 3 3 1,000 R (0,01% / 1000)

Желтый 4 4 10,000 S (0,001% / 1000)

Зеленый 5 5 100,000

Синий 6 6 1,000,000

Фиолетовый 7 7 10,000,000

Серый 8 8 —

Белый 9 9 —

Золото — — — ± 5%

Серебро — — — ± 10%

Определите значение, начиная с цвета, ближайшего к концу резистора. Если цвета равноудалены от обоих концов, начните с конца, наиболее удаленного от золотой или серебряной полосы (допуск).

(размер изображения 1 КБ)

Тестирование

Предлагаемые GMP для медицинских устройств потребуют, чтобы электронные компоненты, когда это необходимо, подвергались проверке, отбору образцов и тестированию на соответствие спецификациям. Если готовое устройство является критическим устройством, а резистор используется в критическом положении, предлагаемые GMP потребуют индивидуального тестирования критических партий резисторов, либо 100%, либо на основе выборки. Следующие ниже тесты резисторов могут проводиться в плановом порядке производителями критических медицинских устройств.

Значение сопротивления — значение резистора измеряется с помощью омметра или резистивного моста, чтобы убедиться, что значение сопротивления находится в пределах допуска, указанного в технических характеристиках резистора. Номиналы резисторов обычно указываются в Ом (X1), Киломах (X1000) или МОмах (X1 000 000). Типичные допуски составляют от ± 0,1% до ± 20%.

Устойчивость к растворителям — некоторые фирмы проводят испытание на устойчивость к растворителям, чтобы убедиться, что маркировка компонентов не обесцвечивается или не удаляется при воздействии производственных чистящих растворителей.Испытание также проводится для проверки того, что растворители не повредят материал или отделку компонента.

Паяемость — Цель испытания на паяемость — определить, восприимчивы ли выводы компонентов к процессу пайки. В основном этот тест определяет, будет ли припой полностью прилипать к выводам компонентов.

Burn-in — Этот тест иногда проводится на толстых и тонкопленочных резисторах и цепях резисторов (см. ITG №19).

Предлагаемые GMP потребуют, чтобы все инструменты, используемые для измерения приемлемости компонентов, были откалиброваны в соответствии с письменными процедурами.

Режимы отказа

Отказ резистора считается электрическим обрывом, коротким замыканием или радикальным отклонением от технических характеристик резистора. Виды отказов зависят от типа конструкции. Резистор фиксированного состава обычно выходит из строя в разомкнутой конфигурации при перегреве или чрезмерном напряжении из-за удара или вибрации.

Чрезмерная влажность может вызвать повышение сопротивления. Резистор переменного состава может изнашиваться после длительного использования, а изношенные частицы могут вызвать короткое замыкание с высоким сопротивлением.Резисторы с проволочной обмоткой могут иметь разомкнутые обмотки из-за перегрева или напряжения или короткое замыкание обмоток из-за скопления грязи, пыли, разрушения изоляционного покрытия или высокой влажности. Пленочные резисторы выходят из строя по тем же причинам, что и проволочная обмотка и состав, но также выходят из строя из-за изменений в характеристиках резистивного материала, что приводит к уменьшению и увеличению значения сопротивления.

Соображения по конструкции

Следующая информация предоставлена, чтобы помочь исследователю в оценке отказов резисторов и правильного использования и встраивания резисторов в медицинское устройство.Это только рекомендации, поскольку нет официальных стандартов или правил, регулирующих эти области. Это некоторые из факторов, которые производитель должен учитывать на этапе проектирования, и если их не учитывать, они могут легко привести к неисправному устройству.

При оценке правильного использования резисторов в конструкции температура является одним из наиболее важных факторов, поскольку перегрев является основной причиной отказа резистора. Воздействие слишком большого количества тепла обычно не сразу, но если оно продолжительное, обычно приводит к ухудшению качества в течение определенного периода времени, пока в какой-то момент резистор не выйдет из строя, что обычно приводит к обрыву цепи.Если резистор является критическим компонентом, это может привести к катастрофическому отказу устройства, в которое он встроен.

Помимо воздействия окружающей среды, резисторы генерируют собственное внутреннее тепло, поскольку они оказывают сопротивление протеканию тока. Это внутреннее тепло представляет собой потерю энергии или мощности, которую резистор поглощает и рассеивает. Потери энергии измеряются в «ваттах», и каждый резистор рассчитывается в ваттах в зависимости от того, сколько мощности он может безопасно рассеивать.Эта «номинальная мощность» обычно устанавливается при температуре окружающей среды (обычно 25 ° C) и учитывает, насколько повысится внутренняя температура резистора при приложенной номинальной мощности.

Хотя большинство производителей электронных компонентов указывают электрические параметры своих продуктов при 25 ° C, очень немногие компоненты фактически работают при таких низких температурах после включения в работающее устройство. Это особенно верно в отношении цепей питания, например, используемых в источниках питания.Обычно электронные схемы медицинских устройств содержатся в каком-то корпусе. Комбинированное нагревание всех компонентов схемы внутри корпуса вскоре поднимает внутреннюю температуру воздуха намного выше 25 C. Часто резистор является основным источником этого тепла, особенно когда используются резисторы большой мощности, когда блоки питания являются частью устройства. . Когда резисторы должны пропускать значительные токи, их следует размещать с учетом воздействия их собственного тепла на соседние компоненты.Тепло от горячего резистора может вызвать преждевременный выход из строя соседнего пограничного компонента. Силовые резисторы, которые должны рассеивать много тепла, должны иметь надлежащий отвод тепла и располагаться таким образом, чтобы охлаждающий воздух свободно циркулировал вокруг резисторов. Радиаторы обычно представляют собой металлические приспособления с «лопатками» или «лопатками», на которых устанавливаются компоненты, способствующие отводу тепла от устройства за счет теплопроводности. Иногда компоненты монтируются непосредственно на металлический корпус устройства, и корпус действует как радиатор.Иногда в дополнение к радиаторам необходим охлаждающий вентилятор. Предпочтительно, резисторы должны быть установлены так, чтобы рассеиваемое тепло могло быть немедленно отведено, а не передано через другие компоненты. Электронный компонент, работающий в прохладной среде, прослужит намного дольше, чем горячий компонент, и надежность устройства будет повышена.

Когда в устройство встроены источники питания или генерируется высокое напряжение, на стадии проектирования прототипа следует проводить исследования «распределения тепла» внутри корпуса устройства.При измерении горячих точек или чрезмерных температур необходимо установить охлаждающие вентиляторы, вентиляционные отверстия, источники питания и т. Д., Чтобы исключить неблагоприятные условия.

Если медицинское устройство будет использоваться в операционной, где используются взрывоопасные газы, воспламеняемость резисторов может быть важным фактором, который следует учитывать. Если они нагреются достаточно сильно, некоторые резисторы действительно загорятся. Примером могут служить резисторы из углеродного состава, которые используются во всех электронных устройствах. Если воспламеняемость является фактором, проектировщик должен указать требования к устойчивости к воспламенению при заказе компонентов.

Все электронные компоненты, включая резисторы, следует устанавливать так, чтобы они не могли двигаться относительно выбранной монтажной базы. Большинство медицинских устройств подвержены вибрации и ударам, и, если они не установлены надежно, компоненты могут замыкаться на соседние компоненты или провода, а соединения могут быть ослаблены или сломаны. Если компоненты, предназначенные для установки горизонтально к монтажной поверхности, должны стоять вертикально, выводы должны быть изолированы для предотвращения коротких замыканий.Компоненты также должны быть установлены так, чтобы предотвратить скопление грязи и влаги между проводниками, что может привести к короткому замыканию.

При проектировании электронного устройства необходимо учитывать изменения электрических параметров из-за других изменений окружающей среды и старения. Колебания могут привести к выходу ограниченных допусков критического компонента за установленные пределы, в результате чего медицинское устройство будет выходить за пределы его рабочих пределов.

Резистор является простым компонентом, поскольку он не выполняет активных функций, и исторически он был самым надежным компонентом, используемым в электрических схемах.Но в последние несколько лет из-за экономической ситуации и увеличения стоимости материалов было введено множество резистивных материалов для использования в резисторах, особенно толстых и тонких пленках. Часто пользователь не знает идентичности используемых материалов, поскольку некоторые из них являются собственностью. Нельзя ожидать, что все резисторы будут надежно работать, если их надежность не будет подтверждена путем длительного использования в выбранном приложении или путем обширной квалификации и испытаний.

Артикул:

  1. MIL-STD-199B Выбор и использование резисторов
  2. MIL-STD-202E Методы испытаний электронных и электрических компонентов
  3. MIL-STD-1285A Маркировка электрических и электронных деталей

Общие типы резисторов

(размер изображения 11 КБ)

[Предыдущая глава] [Содержание] [Следующая глава]

Как использовать резисторы в гитаре и хитрости

Когда вы думаете о формировании тона, на ум может прийти пара вещей.Все мы используем звукосниматели, конденсаторы (колпачки тона) и потенциометры в качестве формирователей тона. Однако использование резисторов в гитаре также может открыть новые тональные возможности.

A Резистор — это устройство с измеримым сопротивлением. Проще говоря, резистор препятствует прохождению или «сопротивляется» электричеству. Один из способов представить себе резистор — использовать «аналогию с трубой».

Представьте себе трубу, в которой течет вода. Затем представьте, что вода должна пройти через трубу гораздо меньшего диаметра, где поток «сопротивляется».Эта аналогия описывает, как работает резистор, простым языком: он создает более высокую точку сопротивления в потоке электричества.

Я уверен, вы думаете: «Круто. Но как резистор влияет на мою гитару? » Мы рады, что вы спросили! Сегодня мы собираемся проиллюстрировать основных примеров использования резисторов в гитаре.


ЧАСТИЧНЫЙ РАЗЪЕМНЫЙ РЕЗИСТОР:

Один из самых простых примеров резисторов в гитаре — наш Partial Split Resistor.Частичный разделительный резистор придает хамбакерам с низким выходом более сильный звук с одной катушкой при разделении. Это обычная проблема при разделении вашего хамбакера — не все хамбакеры одинаковы.

Удаление одной катушки из хамбакера с более низким выходом, такого как наш Pure P.A.F., оставляет у вас слабо звучащий звук сингла. Использование резистора может иметь решающее значение. Подробную статью о разделении катушек вы можете найти в нашей статье здесь.

КАК ЭТО ПОДКЛЮЧИТЬ:

Использование частичного ответвительного резистора — простой способ объяснить резисторы в гитаре. Он заменяет все, что вы используете для заземления. Вместо того, чтобы использовать провод в качестве заземления, используйте резистор. Использование одного из них даст вам более сильный звук при нажатии на катушку при подтягивании. См. Ниже иллюстрацию, которая поможет вам подключить его.

КАК ЭТО РАБОТАЕТ:

Простой. Резистор «сопротивляется» потоку электричества, поэтому, когда вы подтягиваете, вместо того, чтобы отправить 50% хамбакера на землю, он отправит, скажем, только 33% его.Это позволяет получить более сильный звук сингла при подъеме вверх.


УДАЛЕНИЕ ОДНОЙ КАТУШКИ С РЕЗИСТОРАМИ:

Хорошо, «обмануть» кажется немного мстительным. Однако, когда у вас есть Telecaster с хамбакером в грифе и одиночной катушкой в ​​бридже, может быть сложно заставить эти два звукоснимателя хорошо играть вместе (прочтите нашу подробную статью по этой теме здесь).

КОГДА ЭТО СДЕЛАТЬ:

Давайте подготовим почву: у вас есть Telecaster с хамбакером в грифе и одиночной катушкой в ​​бридже.Для хорошего звучания хамбакеру нужен горшок 500K, а Single Coil лучше всего звучит на горшках 250K. У вас только один горшок для объема — как вы можете пойти на компромисс? Подключите резистор мостового датчика к земле.

КАК ЭТО ПОДКЛЮЧИТЬ:

КАК ЭТО РАБОТАЕТ?

Давайте объясним это с помощью простой формулы. Когда вы используете два резистора параллельно, одна сторона каждого резистора подключается к одному и тому же месту. Например, ваш Volume Pot — это резистор: 250K, 500K, это значения сопротивления.

Одна сторона горшка — это «горячий» или «входной», а одна сторона — земля. Если вы подключите резистор от «горячего» датчика и одну ножку к «земле», вы подключите этот резистор параллельно. См. Ниже уравнение использования 2 резисторов параллельно:


Как видите, если вы поместите резистор 500 кОм параллельно с потенциометром на 500 кОм, то мостовой звукосниматель «увидит» потенциометр 250 кОм. Это отлично подходит для вашего Telecaster, так как у вас будет великолепно звучащий шейный хамбакер и идеально звучащая бридж-одиночная катушка.

ПРИМЕЧАНИЕ:

Вышеупомянутая формула хорошо работает только при использовании звукоснимателя для грифа или бриджевого звукоснимателя. Однако, когда вы попадаете в среднее положение, вы добавляете еще один резистор. Звукосниматель грифа (500 кОм). Звукосниматель бриджа (500 кОм) и параллельный резистор (~ 470 кОм). Когда вы объединяете шею и мост, используя этот трюк с резистором, в среднем положении вы увидите потенциометр 163K, что сделает его темнее, чем обычно.


ПРЕОБРАЗОВАТЬ СВОИ КОРПУСКИ:

В нашем последнем примере вы можете использовать резистор в гитаре, чтобы изменить значение потенциометра.Это удобно, когда у вас на руках только банк 500K, но вам нужен банк 250K. Если у вас есть резистор ~ 500 кОм, вы можете это сделать! См. Ниже схему подключения:

На изображении выше у вас есть резистор 470K, подключенный параллельно к регулятору громкости. Сопротивление потенциометра составляет 500 кОм, а вашего резистора — 470 кОм, а общее сопротивление составляет 242 кОм. Довольно аккуратно!

Вы также можете использовать этот трюк, чтобы немного повысить качество ваших горшков. Допустим, у вас есть 500-килобайтный банк, и ваши звукосниматели на них слишком яркие: вы можете добавить резистор 1Meg, как на изображении выше, и вы превратили свой 500-килобайтный банк в 333K-банк. Это приручит некоторые максимумы.


Спасибо за внимание. Есть много отличных статей, чтобы узнать, как работают резисторы и для чего их можно использовать. Есть множество способов добавить резистор к вашей гитарной установке. Как ты это делаешь?

Сделайте графитовый резистор

Чтобы проверить контакты на Adafruit Circuit Playground Express, мы сделаем наш собственный резистор из угольного графита.

Резисторы

Резистор — это электрический компонент, который контролирует «протекание» тока в цепи.Думайте об этом как о кране, который контролирует поток воды, чтобы выходить только нужное количество. Многие резисторы сделаны из углерода, потому что он имеет умеренную проводимость. Резисторы изготавливаются с разным сопротивлением. У некоторых есть фиксированная величина сопротивления, а у других — переменная. Переменный резистор также называют потенциометром .

Сопротивление измеряется в единицах Ом . Возможно, вы слышали о законе Ома:

.
  • Напряжение = Ток * Сопротивление или В = I * R
  • Ток = Напряжение / Сопротивление или I = В / R
  • Сопротивление = Напряжение / Ток или R = В / I

В Adafruit Circuit Playground Express мы часто используем напряжение питания для наших проектов и экспериментов.Это 3,3 В , и есть несколько контактов, которые дают нам это напряжение. Если бы мы использовали резистор 10 кОм с этим напряжением питания, то мы бы потребляли от платы ток I = 3,3 В / 10 000 Ом = 0,33 мА.

Входной резистор

Слаботочный резистор имеет большое сопротивление. При подключении контактов для входа необходимо высокое сопротивление. Мы можем создать слаботочный резистор, сделав тонкий слой графита на листе бумаги.

Материалы

  • Кусок бумаги (карточка для заметок работает очень хорошо)
  • Карандаш с заточкой # 2
  • (3) Поводки с зажимом типа «крокодил»
  • Линейка измерительная

Рисуем резистор

Чтобы сделать резистор, мы просто рисуем его на бумаге! Возьмите лист бумаги (или карточку) и отметьте 4.Прямоугольник 0 см x 0,5 см у края бумаги карандашом №2.

Также сделайте несколько отметок для измерения расстояния вдоль прямоугольника.

Теперь заполните прямоугольник карандашом. Убедитесь, что весь прямоугольник полностью заполнен, и никакая бумага под ним не видна. Когда весь прямоугольник станет полностью темным и блестящим, у вас будет хорошее и устойчивое покрытие графитом для обеспечения проводимости.

Возьмите два провода зажима типа «крокодил» и прикрепите их к любому концу прямоугольника резистора.Убедитесь, что зажимы хорошо «прикусывают» графит с каждого конца. Теперь наш резистор готов к работе!

Сколько сопротивления?

Графит из грифеля № 2 даст вам сопротивление где-то между 5 кОм и 40 кОм сопротивления на сантиметр. Если у вас есть мультиметр, проверьте свой резистор и посмотрите, какое у него сопротивление. Мультиметр не нужен, но нам любопытно узнать, какое сопротивление дает графитовый резистор.В нашем примере у нас есть около 29 кОм на 4,0 сантиметра, что означает хорошее покрытие графита. Это хорошее значение для сопротивления, поскольку оно позволяет удерживать ток от Adafruit Circuit Playground Express на безопасном и небольшом уровне.

Переменное сопротивление

Можно предположить, что если один из зажимов переместить в прямоугольник, сопротивление изменится. Правильно, уменьшится. Мы воспользуемся этим фактом, чтобы помочь в некоторых наших экспериментах.

Выходной резистор

Сильноточный резистор имеет низкое сопротивление. Резистор с низким сопротивлением используется со штырьковой выходной цепью. Мы можем снова использовать графит, но на этот раз нам нужно его больше, чтобы пропустить большее количество тока. К счастью, мы снова можем использовать для этого карандаш №2.

Материалы

  • (4) # 2 карандаша
  • (5) Поводки с зажимом типа «крокодил»
  • Точилка для карандашей
  • Кусачки или ножницы
  • Лента или резинка

Резистор-карандаш

Обычный эксперимент с выводом вывода — это питание светодиода.При выходном напряжении 3,3 В для платы безопасное значение сопротивления для управления током через светодиод составляет около 80 Ом. Из-за толщины и длины графита сопротивление провода карандаша №2 от одного конца до другого составляет примерно 20-30 Ом. Если мы соединим 4 карандаша последовательно, мы сможем сделать резистор, который будет поддерживать выходной ток светодиода на безопасном уровне.

Заточите концы карандашей.

Найдите 4 полноразмерных карандаша №2. Если у них есть ластик на одном конце, отрежьте ластик кусачком или ножницами.

Заточите оба конца каждого карандаша, чтобы было видно достаточно грифеля.

Соедините карандаши

Теперь соедините карандаши в серию, используя 3 зажима типа «крокодил». Используйте один зажим-крокодил, чтобы соединить каждый конец карандаша с концом другого.

Проверка сопротивления

Если у вас есть мультиметр, включите его и установите самый низкий диапазон для измерения сопротивления. Подключите измерительные провода к каждому концу стержневого резистора.Что вы видите для значения сопротивления?

Если ваше измерение меньше 80 Ом, то добавьте в серию еще один карандаш. Если измеренное сопротивление превышает 130 Ом, вы можете удалить один из карандашей в серии резисторов.

Свяжите резистор

Используйте скотч или резинку, чтобы связать резистор, как показано на рисунке ниже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *