СХЕМА УПРАВЛЕНИЯ РЕЛЕ
Многие современные радиоэлектронные устройства оснащаются небольшими реле, которые, в свою очередь, коммутируют другие, в том числе и сетевые узлы и приборы. А вот как управлять самими реле — мы и разберёмся на примере трёх схем. Все они довольно просты — меньше десяти деталей.
Схема драйвера управления для реле
Технические характеристики:
- Питание драйвера — 12 В на 40 мА
- Выход реле — 5 A на 230 В
- Управление входа — 2-15 В постоянного тока
- Светодиодный индикатор показывает состояние реле
- Габариты платы 27 x 70 мм
Это одноканальный релейный драйвер, подходящий для разнообразных проектов. Очень простой и удобный способ взаимодействия реле для переключения мощных потребителей, которое само управляется слабым током и напряжением.
Схема управления реле одной кнопкой
Данная электрическая схема управления реле выполняется всего одной кнопкой с одной контактной группой на замыкание и без фиксации. Работает схема следующим образом: при подаче питания конденсатор С1 через резистор R1 и замкнутые контакты К1.1 заряжается практически до напряжения питания. При нажатии на кнопку S1 через её замкнувшиеся контакты, через замкнутые контакты K1.1 и резистор R1 напряжение питания подается на катушку реле К1, что приводит к включению реле. Контактная группа К1.1 переключается и теперь питание на реле поступает через резистор R1 и замкнувшиеся контакты К1.1. На время пролёта контактов реле при переключении питание катушки осуществляется за счёт накопленного заряда конденсатора С1.
После замыкания контактов реле конденсатор С1 разряжается через резистор R2. При следующем нажатии на кнопку S1, происходит заряд конденсатора С1 из-за чего напряжение на катушке реле падает и происходит размыкание её контактов. Схема возвращается в исходное состояние. Элементы R1 и C1 образуют цепь с постоянной времени в 150 миллисекунд, что достаточно для срабатывания большинства типов электромагнитных реле.
Обратите внимание, что резистор R1 является подстроечным, и следует подбирать под каждое реле индивидуально.
Схема реле с управлением одной кнопкой
Эта схема представляет собой аналог кнопки с фиксацией. Вся конструкция очень проста и реализована на самом реле и одном транзисторе. При первом нажатии на кнопку транзистор открывается током разряда конденсатора, реле замыкается и блокируется по базовой цепи транзистора своими же контактами. Конденсатор при этом отключается от питания и, если отпустить кнопку, быстро разряжается через диод и резистор. Если теперь нажать на кнопку вторично, то транзистор запрется и отключит реле. Естественно, реле должно иметь вторую пару контактов.
Правда если надо таким образом управлять включением сетевого питания, то возникает проблема, заключающаяся в том, что в начале схема обесточена. В телевизорах при включении их от пульта или в компьютерах с корпусами АТХ это решается тем, что при подключении шнура питания подобная схема сразу получает питание, а уж включать основное питание будем позже. Что касается твердотельных реле — информация по ним находится в этой статье.
Форум по автоматике
Схемы автоматикиИмпульсное реле для управления освещением — схема бистабильного реле
Как управлять лампой из нескольких местах, да ещё и используя обычные кнопки вместо клавишных переключателей? Для того, чтобы это работало, нужно иметь импульсное (бистабильное) реле. В некоторых источниках его называют импульсным, в некоторых бистабильным, так что оба названия подходящие — выбирайте какое нравится.
С помощью схемы состоящей из бистабильного реле плюс любого количества кнопок (типа как от звонка) можно управлять освещением из любого количества мест. Такое дело нужно в длинных коридорах, помещениях где есть возможность входа в комнату с двух сторон, в спальнях где основной свет можно зажечь как у двери, так и у кровати.
Структурная схема бистабильного реле
Принцип работы импульсного реле показан на анимированом рисунке (присмотритесь к нему внимательно):
- Фазовый потенциал ( L ) идёт как на кнопу, так и на реле.
- Когда используем кнопку ( S1 ), чтобы подать потенциал на реле, оно замыкает внутренний контакт реле и подает питание для лампы, даже если кнопка ( S1 ) будет отпущена.
- Последующая подача на реле потенциала с помощью кнопки отключит лампу до тех пор, пока кнопка не будет нажата снова.
- И лампа, и реле должны быть подключены к нейтральному ( N ) проводу, чтобы все функционировало так, как должно.
Схема простого подключения
В простейшей схеме есть одна кнопка и бистабильное реле, расположенное с этой кнопкой. Такая система имеет смысл только тогда, когда реле может управляться из другого источника, например, с помощью пульта дистанционного управления или центральной системы управления (элемент умный дом).
- Сетевое питание 220V подключено к клемме ( L ) кнопки ( S1 ).
- Электрический потенциал от клеммы ( L ) передается непосредственно на клемму реле ( 1 ) ( PB ). Потенциал от этого провода будет передаваться на лампу при работе реле.
- Соединяем нейтральные ( N ) и защитные ( PE ) провода за пределами кнопки ( P1 ). Защитный провод ( PE ) подключается к клемме PE в лампе, а нейтральный провод — к клемме N лампы и к клемме ( A2 ) реле.
- Когда кнопка используется для индикации потенциала на клемме ( A1 ) реле, то реле соединяет клеммы ( 1 ) и ( 2 ) вместе с контактом, и лампа включается. После отпускания кнопки контакт останется замкнут, поэтому лампа останется включенной.
- Изменение произойдет когда кнопка снова будет нажата и реле отключит контакт разорвав соединение между клеммами ( 1 ) и ( 2 ).
Управление реле из двух мест
Электрический потенциал от фазового провода ( L ) передается на клемму ( 2 ) кнопки ( S1 ), как при нажатии кнопки ( S1 ), так и ( S2 ). Внутри на схеме вы видите символ катушки, который управляет контактом реле, когда мы подаем напряжение на клеммы ( A1 ) и ( A2 ).
Таким образом мы можем прикрепить любое количество кнопок для независимого управления светом из разных мест. Если вы хотите добавить дополнительный элемент управления из другого места, просто введите в цепь еще одну кнопку и подключите её параллельно к любой другой кнопке, которая управляет этой лампой, или непосредственно к реле.
Бистабильное реле на две кнопки
Теперь возьмём бистабильное реле, которое может быть установлено вне коробки, например, в домашнем коммутационном аппарате. Так что вот для изучения еще одна схема подключения.
Это по-сути то же, что и в предыдущем рисунке, изменилась только форма реле.
Как выглядит импульсное реле
Вот тестовая система. Кнопка звонка будет установлена в коробе и подключена к бистабильному реле. С правой стороны реле установлены 3 независимых электрических соединителя, соединяющих фазные, нейтральные и защитные провода. В данный момент к ним подключен шнур питания.
- Клеммы ( A1 ) и ( A2 ) управления.
- Клеммы ( 2 ) и ( 1 ), к которым подключаем шнур питания и фазовый провод к лампе.
- В центральной части реле черная кнопка, которая может быть нажата вручную без контактных кнопок звонка, подключенных проводами.
Практическое подключение реле
Перед началом работ обязательно отключаем напряжение в электро цепи и проверяем с помощью тестера наличие потенциала 220 В на проводах, с которыми будем работать.
Подключите кабель питания ( 2 ) к разъему фазного провода.
Между коробом и реле проведем двухпроводный кабель. Коричневый провод подключим к разъему, чтобы могли нажать внешнюю кнопку.
Второй провод — синий, на нем будет потенциал. Подключим его к управляющему контакту ( A2 ) реле.
Следующий шаг — соединить зажим ( A1 ) с разъемом нейтрального провода, а также подключить провода к лампе. Проводники и защита нейтрали подключаются к соответствующим разъемам, а коричневый провод (фаза) к клемме ( 1 ) реле так, чтоб оно работало получая потенциал, подаваемый на зажим ( 2 ).
Соединение кнопки классическое. Подключите шнур питания к клемме ( L ) и к клемме ( 2 ) провода, с помощью которого передадим короткие импульсы управления реле.
Затем присоединяем к схеме еще одну кнопку. Для этого проведем двухпроводный кабель между двумя коробками.
Во второй можем установить кнопку звонка с подсветкой чтоб видеть изменения потенциала на ней. Метод подключения аналогичен. Соединяем провода по цвету также, как и в первой кнопке.
Всё готово — понажимайте и проверьте работу тестовой системы.
Вопросы и практические советы
Имеет ли значение, какой терминал (A1) или (A2) будет подключать провод фазы управления?
Не имеет значения. Для катушки реле разница в потенциале важна на уровне 220 В, если один провод (который нейтраль) прикрутить к одному терминалу, а фазовый провод (на котором есть потенциал) к другому — между ними будет нормальное напряжение и реле заработает.
Может ли отличаться напряжение на клеммах управления (A1, A2) и на контактных клеммах (1, 2)?
Да. Каждое реле предназначено для определенного управляющего напряжения. В нашем случае это 220 В ( A1, A2 ). Контакт, соединяющий клеммы ( 1, 2 ), является так называемым беспотенциальным. Любой потенциальный уровень задается на терминале ( 1 ), он будет передан на терминал ( 2 ), когда контакт закроется.
Благодаря этому мы можем, например, управлять цепью питания 12 В с кнопками, которые передают управляющий сигнал 220 В.
Каждое бистабильное реле подключается так же?
Да, но всегда проверяйте схему подключения и руководство по эксплуатации, прежде чем приступать к сборке. Не каждый производитель использует ту же методологию, количество соединений и стандарт описания. Однако обозначение терминалов ( A1 ) и ( A2 ) популярно практически для всех реле.
Можно даже собрать реле с беспроводным управлением, где можно управлять освещением как с кнопки, так и с помощью радио пульта дистанционного управления.
В общем управление светом с помощью бистабильного реле, безусловно, стоит рассмотреть. С точки зрения управления из большего числа мест, это более простое решение, чем классическое (клавишными переключателями). К тому же оно имеет большие возможности по беспроводному контролю.
Электромагнитное реле | Практическая электроника
Электромагнитное реле представляют из себя изделие радиотехнической промышленности, которое используется для коммутации электрического тока.
Электромагнит
Думаю, все уже в курсе , что поле – это не только гектары земли с пшеницей, картошкой, коноплей 🙂
В нашей жизни существуют еще и другие виды полей, невидимые для человеческого глаза. Это может быть гравитационное, электрическое или даже магнитное поле. Давайте рассмотрим, что же из себя представляет магнитное поле?
Магнитное поле образуется вокруг любого куска магнита. Не зависимо от размеров этого кусочка, этот магнит всегда будет иметь два полюса: северный (N – North) и южный (S – South). Стрелки магнитного поля начинаются с Севера и заканчиваются на Юге, но они нигде не разрываются. Даже в самом магните (доказано наукой). Как вы знаете, Земля – это тот же самый кусочек магнита очень большого размера. Она также имеет эти два полюса, покрытые льдинами. На полюсах Земли, как вы знаете, компас не работает.
Но самый смак заключается в том, что провод, по которому течет электрический ток, вокруг себя образует то же самое магнитное поле как и простой магнит. Буквой I отмечают направление тока, а В – это линии магнитного поля. Они представляют собой замкнутые круги.
Направление линий магнитного поля определяется правилом буравчика
Даже не знаю, кто первый придумал навернуть провод пружиной и пропустить через него электрический ток, но это того стоило.
В результате этого получили нечто иное, как соленоид. Если на концы такого соленоида подать электрический ток, то он будет обладать магнитными свойствами! Правильнее было бы его назвать электромагнит. Смотрите, сколько силовых линий образуется в соленоиде, при подаче на его концы электрического тока!
А если обмотать какую-нибудь железяку этими витками и подать на них напряжение, то эта железяка станет электромагнитом и будет притягивать к себе металлические предметы.
Электромагнитное реле
Дело как раз в том, что принцип электромагнита используется в очень важном электротехническом изделии: в электромагнитном реле.
Возьмем простое электромагнитное реле
Давайте же посмотрим, что на нем написано:
TDM ELECTRIC – видимо производитель. РЭК 78/3 – название реле. Дальше идет самое интересное. Мы видим какие то полоски и цифры. Контакты с 1 по 9 – это и есть коммутационные контакты реле, 10 и 11 – это катушка реле.
Теперь обо всем по порядку. Реле состоит из коммутационных контактов. Что значит словосочетание “коммутационные контакты”? Это контакты, которые осуществляют переключение. Катушка – это медный провод, намотанный на цилиндрическую железку. В результате, соленоид превращается в электромагнит, если на его концы подать напряжение.
Еще чуть ниже мы видим такие надписи, как 5А/230 В~ и 5А 24 В=. Это максимальные параметры, которые могут коммутировать контакты реле. Эти параметры желательно не превышать и брать с большим запасом. Иначе при превышении допустимых параметров контакты реле могут обгореть, либо полностью выгореть, что в свою очередь приведет к полному выходу из строя электромагнитного реле.
Когда напряжение на катушку мы НЕ подаем, то контакт 1 соединяется с 7, 2 с 8, 3 с 9
Иными словами, если достать мультиметр, то можно прозвонить контакты 1 и 7, 2 и 8, 3 и 9. Мультиметр должен показать 0 Ом.
Если же мы подаем напряжение на катушку, то группа контактов перебрасывается. В результате соединяется 4 с 7, 5 с 8, 6 с 9.
Какое же напряжение подавать на катушку? На катушке уже есть ответ. Написано 12 VDC. DC – это постоянный ток, АС – переменный. Значит, на катушку подаем 12 Вольт постоянного тока.
С другой стороны мы видим те самые контакты. Слева-направо и сверху-вниз идет нумерация контактов:
Как работает электромагнитное реле
Но как же так оно работает? Все оказывается очень просто. Давайте внимательно рассмотрим фото ниже:
При подаче на катушку напряжения, ярмо притягивается к электромагниту. На ярме находится коммутационный контакт и он движется вслед за ярмом. В результате этого, “пипочка” на коммутационном контакте перебрасывается на нижний контакт и происходит переключение.
При пропадании напряжения на катушке, пружинка оттягивает ярмо назад и реле принимает свой первозданный вид.
Как проверить реле
Давайте же проверим реле с помощью мультиметра и блока питания. Прозваниваем контакт 1 и 7 и смотрим, что у нас они звонятся, значит эти контакты соединены. Видно даже визуально.
Подаем напряжение на катушку 12 Вольт с блока питания и смотрим, что у нас получилось.
В результате у нас ярмо “приклеилось” к электромагниту (катушке) и потянула за собой коммутационный контакт. Цепь 1 и 7 у нас оборвалась, но зато восстановилась цепь контактов 7 и 4. Вот таким образом проверяются контакты реле.
Если контакты с налетом, то следует протереть их карандашным ластиком. Если прилично поджарились, а другого реле под рукой нет, то здесь поможет только шкурка-микронка. Но этот случай уже критический, так как наждачная бумага сдирает тонкий слой из благородного металла, которым покрыты “пипочки”.
Целостность катушки реле проверяется с помощью мультиметра в режиме омметра. Для этого проверяем сопротивление катушки. Оно зависит от самого реле. У всех оно разное. Если сопротивления нет или оно очень маленькое – порядка пару Ом, то значит в катушке либо обрыв, либо короткое замыкание.
На схемах электромагнитные реле обозначаются вот так:
Также контакты обозначают уже просто цифрами. В данном случае:
11 – это общий контакт
11-12 – это нормально замкнутые контакты
11-14 – нормально разомкнутые контакты
Прямоугольником обозначается сама катушка реле, а выводы катушки обозначаются буквами A1 и A2.
При подаче напряжения на катушку в данном реле у нас контакт перекинется, то есть картина будет выглядеть следующим образом:
Без подачи напряжения:
После подачи напряжения:
Плюсы и минусы реле
Плюсы реле
- Управляемое напряжение и управляющее напряжение никак не связаны между собой. Выражаясь домашним языком – напряжение на катушке никак не связано с напряжением на контактах реле. Они гальванически развязаны, что делает реле безопасным устройством для человека и самой аппаратуры в электро- и радиопромышленности.
- коммутируемые токи могут достигать сотни ампер у промышленных видов реле (пускатели, контакторы)
- большой срок службы при правильной эксплуатации. До сих пор на некоторых зарубежных станках ЧПУ стоят реле 70-ых годов, чьи коммутационные контакты выглядят почти как новые.
- неприхотливость в работе и надежность. Реле до сих пор используются в средствах автоматического управления (САУ), так как они неприхотливы и готовы работать безотказно, хотя уже давненько разработаны твердотельные реле (ТТР), которые опережают простые электромагнитные реле по многим параметрам.
Минусы реле
- время задержки срабатывания, в течение которого коммутационный контакт “летит” с одного контакта до другого. В очень быстродействующей аппаратуре реле не применяются. Производители обеспечивают электротехническую промышленность различными видами реле и других устройств на их принципе.
- щелкающий звук при переключении. Кого-то он может раздражать, особенно если реле будет очень часто срабатывать.
- габариты даже самого маленького электромагнитного реле достаточно много занимают место на печатной плате.
Не знаете, где можно купить нужное вам электромагнитное реле? Вот каталог, где вы найдете подходящее по параметрам реле для своих нужд 😉
Управление мощной нагрузкой постоянного тока. Часть 1
О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.
Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.
Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй — везде жопа. Что делать?
Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.
Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется Ic, в наших Iк. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде 🙂 Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:
Обратите внимание на коллекторный ток — Ic = 100мА (Нам подоходит!) и маркировку выводов.
Цоколевка нашего КТ315 определяется так
Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.
Берем транзистор и подключаем его по такой схеме:
Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.
Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления hfe.
hfe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.
Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет Ic=Ibe*hfe=0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.
Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.
Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.
Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.
Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:
При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.
Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!
В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.
Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.
Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.
Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.
разрешается ли включать или отключать?
Разрешается ли включать или отключать контакты реле – это распространенный вопрос среди начинающих электриков, которым приходится подключать этот прибор. Ведь это устройство является автоматическим выключателем, который при достижении опасных условий разъединяет электрические цепочки.
В настоящее время имеется большое разнообразие реле (переключателей), которые отличаются по конструкционным особенностям, скорости срабатывания и другим характеристикам. Для того, чтобы разобраться в этом вопросе, следует подробно рассмотреть устройства такого типа.
Контакты реле
Содержание статьи
Где используется реле?
Этот прибор приобрел широкое распространение в промышленной отрасли. Применяется он с целью автоматизации каких-либо действий, а также для предотвращения поломок электрических установок. На сегодняшний день используются как электроника, где за функционирование отвечает специальная схема, так и аналогичные приборы, которые работают от резисторов.
Таблица №1. Разновидности переключателей по принципу работы.
Вид | Описание |
---|---|
Электромагнитные | Позволяют выполнять включение и выключения различных приборов, работающих от электричества. Кроме того, они используются для прекращения подачи электроэнергии и увеличения контактов. Управление устройством зависит от нескольких причин: степени напряжения в общей сети, мощности, нагрузки и количества соединений.Чаще всего эти устройства используются при наличии энергоемких производственных электроустановок, где они функционируют при ручных настройках. Поэтому в целях автоматизации устройства не применяют. |
Электротепловые | Эти устройства представляют собой систему, состоящую металлических пластинок, которые ко всему являются контактами. Принцип функционирования основан на том, что сплав металлов расширяется при воздействии тепла. В зависимости от сплава, существуют приборы, которые отличаются по степени расширения. В основном их применяют в качестве системы защиты, ведь при нагревании происходит разъединение контактов. |
Временные | Это устройство применяются с целью управления оборудованием на производстве. В приборы встраиваются специальные схемы замедления, которые отличаются по интервалам времени, поэтому пользователь может самостоятельно настраивать это оборудование. |
Ящик с выключателями выносного типа
Видео – Как работает реле?
Из истории
Многие исторические источники утверждают, что первые устройства, которые по принципу функционирования были похожи на электромагнитные переключатели, появились еще в 30-х годах 18 века в Америке. Создали их с целью получения нового телеграфного аппарата. Так, уже через несколько лет эти устройства поступили в массовую продажу. Тем не менее, первые приборы не выполняли таких функциональных задач, как современные разновидности.
По другим данным отмечали, что первое реле в те же годы появилось в России тоже в процессе разработки нового телеграфа. Тем не менее, это устройство имело слишком много соединений, кабелей, поэтому использовать его было нецелесообразно. К концу 30-х годов 18 века это устройство было официально запатентовано под называнием реле, изобретаем этого устройства стал С. Морзе.
Первый переключатель в телеграфе
Устройство переключателя и принцип функционирования
Наиболее примитивное устройство состоит из сердечника с обмоткой, пружины возврата и элементов, которые соединяют выключатель – основы, каркаса. При поступлении тока происходит срабатывание электромагнита, что позволяет получить соединение контакта с якорем. Подобные действия замыкают электрическую цепочку.
Если подача тока останавливается или снижается до минимума, то пружина возврата перемещает якорь на место, благодаря чему цепочка размыкается. Только кроме основных компонентов, в состав новых приборов входит резистор для обеспечения слаженной работы и конденсатор, предотвращающий последствия колебаний напряжения.
Элементы электромагнитного реле
Так, цепочки, которые подключены с использованием переключателя называют управляемыми, а линию поступления сигнала называют управляющей. Как правило, соединения реле являются дополнительным усилением, потому что они замыкают мощные цепочки за счет подачи минимального напряжения.
Принцип функционирования приборов еще зависит от типа, ведь некоторые из них предназначены для переменного тока, а другие для постоянного тока. Переключатели переменного тока срабатывают от частоты сигнала. Приборы постоянного тока функционируют в следующих ситуациях:
- Магнитоэлектрические – проявляют восприимчивость к полярности тока, в зависимости от того, подается он на плюсовой или минусовой контакт. Движущийся элемент при этом отклоняется по сторонам.
- Нейтральные – даже когда ток движется в двух направлениях, происходит колебание якоря в одну сторону.
Характеристики реле
Вне зависимости от принципа функционирования, существуют определенные характеристики, по которым отличаются устройства:
- Период срабатывания. Это промежуток времени, за который сигнал поступает на вход, а затем воздействует на цепочку.
- Мощность коммутации. Это мощность цепочки или прибора, который находится под управлением реле.
- Мощность при срабатывании. Так называют минимальное значение, при котором происходит срабатывание прибора.
- Уставка. Значение тока срабатывания, которое изменяется.
- Значение тока, напряжения и при втягивании, отпадания. Величины характеризуются наименьшими и наибольшими значениями электричества, при которых движущийся элемент возвращается на место и происходит разрыв цепи.
Параметры промежуточного реле
Классификация переключателей и применение
Реле – это надежное устройство коммутации, поэтому оно получило распространение в различных сферах. Часто эти переключатели используют в промышленном оборудовании, бытовых электроприборах.
Каждое реле предназначается для выполнения той или иной задачи
По областям применения, устройства подразделяют на группы:
- контроль работы электронных и электрических систем;
- защита оборудования;
- автоматизация процессов.
Расположение переключателя в стиральной машине
Разновидности и назначения устройств
Современное оборудование делают таким образом, чтобы оно срабатывало при определенных значениях тока, который поступает на входные зажимы. Для того, чтобы разобраться с этим оборудованием, мы рассмотрим различные виды приборов.
Реле постоянного тока
Эти устройства могут быть электромагнитными, где происходит движение якоря к сердечнику из-за образования электромагнитного поля в катушке. Кроме того, они могут быть индукционными, где магнитное поле формируется в движущемся элементе.
Из плюсов такого оборудования следует отметить отличную устойчивость к колебаниям напряжения, прочим помехам. Главным минусом является необходимость установки питающего блока, из-за чего увеличивается цена прибора и его становится сложнее подключить.
Реле постоянного тока
Такие переключатели чаще всего требуются для управления автоматикой транспорта (в основном железнодорожного).
Реле переменного тока
В данном случае уже не требуется установка специального питающего блока, ведь устройство подсоединяется в сеть с переменным током, над которой будет осуществляться контроль. Тем не менее, у них тоже имеются некоторые отрицательные стороны:
- во время работы часто возникают вибрации, которые приходится устранять;
- эти приборы уступают предыдущим по степени восприимчивости.
Миниатюрное реле, которое предназначено для работы в сети при напряжении 220 В
Цены на реле напряжения
Реле тока
Из-за вышеперечисленных недостатков, переключатели в основном используют в бытовых электрических приборах и промышленном оборудовании с минимальной мощностью.
Электромагнитные
Это самый популярный вид из всех существующих на рынке устройств. Такое распространение обуславливается некоторыми преимуществами:
- Возможность коммутации электрических сетей мощностью до четырех кВт, но при этом переключатель имеет минимальные габариты.
- Высокая степень устойчивости к высокому напряжению и другим помехам, которые возникают во время работы.
- Безопасность использования. Так, между катушкой с обмоткой и контактами имеется надежный изоляционный слой, который соответствует стандартам безопасности.
- Минимальный уровень выделения тепла.
Тем не менее, такие устройства тоже имеют определенные недостатки:
- низкая скорость функционирования;
- наличие ограниченного ресурса электромагнитной катушки;
- при срабатывании контактов возникают помехи;
- возникают проблемы при коммутации токов большой нагрузки.
Первое вычислительное устройство с переключателем
Как выбрать электромагнитное реле
Электронные устройства
За последние годы взамен стандартным, начали выпускать электронные устройства. Их главным положительным качеством является точность определения напряжения, нагрузки, мощности и прочих параметров. Поэтому устройства часто используют при подключении мощных электроустановок. Тем не менее, они не вытеснили с рынка аналогичные приборы только из-за чрезмерной стоимости и меньшего срока эксплуатации.
Электронное реле, которое предназначается для управления насосом
Переключатель времени
Здесь принцип работы основывается на постепенном замедлении. Происходит это с помощью маятника, электрических двигателей или магнитного поля. Выдержка времени замедления тоже отличается, она бывает от нескольких секунд до суток. Применяются подобные реле как для автоматизации бытового оборудования, так и промышленного.
Реле времени с двумя каналами
Тепловые переключатели
Принцип работы тепловых приборов основан на воздействии тепла на контакты, которые изготавливаются из различных сплавов металлов. В зависимости от типа оборудовании, эти контакты отличаются степенью расширения. Тепло при этом выделяется как от тока, так и от нагревательного элемента. Чаще всего такие устройства используются с целью предотвращения перегрева приборов.
Модель цифрового теплового реле
Цены на тепловые реле
Тепловое реле
Как переключатель обозначают на схемах?
Для того, чтобы выполнить ремонтные работы устройства или собрать новое, необходимо знать его точное обозначение на стандартных схемах. В таблице, представленной ниже, имеются основные графические обозначения, с которыми предстоит ознакомиться.
Таблица №2. Обозначение реле на схемах.
Иллюстрация | Описание |
---|---|
На графических изображениях обмотка представляет собой прямоугольник с двумя выходами для питания. Кроме того, на схемах это оборудование часто отображают буквой – К. | |
На схеме, контакты устройства коммутации обозначаются, как и контакты любого другого переключателя. | |
Поляризованные устройства коммутации на схемах выглядят как прямоугольники, но только на одном из выходов стоит точка. Внутри самого прямоугольника располагается буква Р, что подтверждает полярность. | |
Часто во внутренней части прямоугольника оставляют значения некоторых характеристик. Например, изображения с двумя линиями под наклоном – это обозначение двойной обмотки катушки. |
Контакты устройства
В зависимости от особенностей конструкции, контакты бывают:
- Разомкнутыми. До тех пор, пока напряжение не поступает на сердечник, контакты остаются разомкнутыми. Затем после подачи напряжения, происходит их замыкание.
- Замкнутыми. Замкнутые контакты функционируют наоборот, потому что они размыкаются только после поступления импульса.
- Перекидными. В этом случае при отсутствии тока, центральный контакт, закрепленный на сердечнике, считается общим и замыкается с неподвижными контактами. После срабатывания он вместе с движущимся элементом перемещается в сторону этого контакта, где замыкается с ним.
Важно. Многие переключатели имеют сразу несколько групп контактов, что позволяет выполнить подключение к нескольким цепочкам с целью управления.
Схема подключения реле напряжения: пошаговая инструкция
Здесь мы рассмотрим процесс подключения устройства с другими элементами электрощита. Кроме того понадобится подготовить следующее:
- переключатель напряжения;
- проводники с сечением до 6 миллиметров;
- монтажная рейка для установки прочей автоматики;
- саморезы.
Схема подключения оборудования выглядит следующим образом
Шаг 1: выключаем автоматику и выкручиваем пробки.
Закрепляем монтажную планку на саморезы
Шаг 2: фиксируем переключатель напряжения на планку с помощью креплений, которые располагаются в задней части корпуса.
Фиксируем устройство
Шаг 3: с помощью специального тестера необходимо обнаружить на контактах автоматических выключателей фазу.
Проверяем контакты фазы индикатором
Цены на различные виды мультиметров
Мультиметр
Шаг 4: далее необходимо сделать разрез проводки, которая отходит от главного автомата в квартиру.
Выполняем разрез проводки
Шаг 5: далее оставшийся конец провода от автоматического выключателя необходимо подключить к реле напряжения на контакт входа.
Подключаем провод к реле
Шаг 6: другой конец проводника после обрезки следует подсоединить к контакту выхода.
Подключаем проводник к выходящему контакту
Шаг 7: далее отрезок провода необходимо подключить нейтральному проводнику на автомате. В современных щитках подключение осуществляют на нулевую шину.
О том, как правильно подключить автоматы в электрическом щитке, можно прочитать в нашей специальной статье.
Подключаем отрезок провода к нейтрали
Шаг 8: оставшийся конец необходимо подключить к нейтральному контакту переключателя.
Далее останется только включить питание
Существует и другой вариант устройства, который подключается к розетке. В этом случае с процессом монтажа справится каждый человек, потому что прибор напоминает стандартный тройник.
Другая схема подключения реле
На изображении, которое находится ниже, можно найти схему подключения реле нагрузке и сети. Так, на первый силовой контакт необходимо подключить питание, на второй подключается нагрузка, а нейтраль ставят на другой вывод нагрузки.
Схема подключения реле
Описанным выше способом происходит подключение силовой части. Далее необходимо выполнить сборку управляющей линии: необходимо питающий блок или аккумулятор (для реле постоянного тока) подсоединить к сердечнику. В случае с устройством переменного тока, схема практически не отличается, только придется подать на сердечник переменное напряжение.
Далее мы рассмотрим пример управления релейным устройством центрального замка автомобиля, где имеется управление с двумя полями.
Получается, что для того, чтобы привести в движение активатор, необходимо выполнить подключение плюса и минуса к катушке. Чтобы вернуть якорь на место, потребуется изменить полярность. Делается это с помощью двух реле и пяти контактов.
Схема подключения
При подаче напряжения к левому реле, происходит подача плюса по нижнему проводнику. Через замкнутые контакты от правого реле происходит соединение нижнего проводника с отрицательным выводом. Если подать напряжение на сердечник правого реле, то полярность буде в обратном порядке.
Это распространенный случай, когда приходится не только включать реле на нагрузку, но и создавать всевозможные схемы подключения с переплюсовками.
Видео – Как подключить реле?
Возможные ошибки при подключении
Для того, чтобы избежать ошибок при подключении реле, необходимо рассмотреть их подробнее:
- Распространенной ошибкой является использование того или иного релейного устройства в цепи, которое для него не подходит. Из-за такой халатности наблюдается выход из строя переключателя уже после первого срабатывания.
- Еще одной проблемой является установка реле, которое не предназначено для погодных условий этой местности. В таком случае не следует рассчитывать на длительную эксплуатацию прибора.
Важно. Выполнить подключение реле получится, используя готовые схемы. Работать в этом случае рекомендуется внимательно, чтобы не перепутать контакты, иначе устройство не будет функционировать.
Бистабильное реле, схема подключения реле для управления освещением
Автоматика управления электроприборами, разнообразной техникой и освещением создает дополнительный комфорт потребителю на любых объектах недвижимости. Многие из нас, кто интересуется электротехникой наверняка слышали о такой продукции, как маршевые или проходные выключатели.
С помощью этих простых коммутирующих устройств можно реализовать схему управления бытовыми приборами, в том числе и освещением, из нескольких разных мест, используя в качестве элементов управления кнопки вместо выключателей. Такой подход удобен для организации освещения в больших помещения, где существует необходимость включения/выключения осветительных приборов из различных точек месторасположения человека.
Но ознакомившись со схемой электропроводки с использованием проходных выключателей, даже у оптимистически настроенных потребителей опустятся руки. Она довольно сложна и имеет множество соединений на каждую распредкоробку. Есть ли вариант попроще? Конечно, есть. Подключение импульсного реле для управления освещением или электроприборами из разных точек — это простое решение данной задачи. Такой тип реле позволяет управлять освещением по одному проводу.
В этой статье мы расскажем о том, что такое импульсное реле, как оно работает, а также рассмотрим схему подключения импульсного реле и можно ли изготовить его собственными руками.
Импульсное реле — что это такое
Ответ на этот вопрос заложен в самом название изделия. Импульсное реле, которое по-другому называется бистабильным, имеет одно существенное отличие от обычного электромагнитного варианта, которое подключает или отключает нагрузку при постоянном прохождение электрического тока через катушку индуктивности. При отсутствии на ней напряжения контакты устройства возвращаются в исходное состояние. Бистабильный переключатель управляется коротким импульсом, поступающим на электронный или электромеханический модуль включения/выключения изделия. При этом контакты реле удерживаются в постоянном положении за счет специального магнитопровода.
Таким образом, импульсный бистабильный переключатель работает как триггер. Контакты такого реле постоянно находятся в одном стабильном положении. При подаче короткого импульса напряжения в цепь управления они меняют свое состояние, а для возвращения их на исходные позиции необходимо подать еще один импульс. Управляющие сигналы подаются на бистабильное импульсное реле с помощью простой кнопки, но если к этому изделию подключить таймер, то включать и выключать нагрузку можно в автоматическом режиме, по заранее запрограммированному алгоритму. Коротко мы рассказали что такое бистабильный переключатель и как в принципе работает импульсное реле. Далее будут освещены следующие темы: виды импульсных контакторов, их назначение и схемы подключения.
Типы импульсных реле — их достоинства и недостатки
На современном рынке электротехнической продукции присутствуют разнообразные модификации бистабильных коммутирующих устройств, отличающихся друг от друга как принципом работы, так и другими конструктивными особенностями. По своему назначению все импульсные реле объединены в одну группу бистабильных коммутаторов нагрузки, а вот по принципу функционирования делятся на следующие два основных вида.
- Электромеханические. Этот тип бистабильных контакторов мало чем отличается от электромагнитного реле: такая же пружинная система, контактная группа и катушка индуктивности. Только в состав импульсных изделий входит постоянный магнит, который и удерживает контакты в стабильном положении. Импульсное электромеханическое реле не критично к перепадам напряжения, электромагнитным помехам, а также стоит недорого. Главными недостатками этих устройств являются низкая функциональность (может выполнять только одну функцию включения/выключения нагрузки) и отсутствие визуальной индикации положения контактной группы. Но за счет низкой цены и надежности электромеханические бистабильные реле получили широкое распространение в различных областях электротехники.
- Электронные. Такой тип импульсных контакторов значительно отличается от электромеханических как по принципу действия, так и по внутреннему содержанию. Изделие построено на электронных комплектующих. Управляет устройством микроконтроллер, а на выходе расположена контактная группа. Электронные бистабильные реле обладают широкими функциональными возможностями при управлении освещением и другими электроприборами. Они безопасны и на их основе можно создавать эффективные системы управления электроцепями. К главным недостаткам этих изделий можно отнести высокую стоимость, низкую помехоустойчивость и чувствительность к скачкам напряжения.
Внимание! На рынке можно встретить бистабильные контакторы, полностью выполненные на электронных комплектующих. В этих устройствах роль контактной группы выполняют полупроводниковые ключи: тиристоры и симисторы. Правда, называть такой электронный блок импульсным реле будет не совсем корректно, хоть они и имеют одинаковое предназначение – включение и выключение нагрузки.
Оба вида импульсных реле получили широкое распространение в различных промышленных сферах. В бытовых условиях эти устройства в основном используются для создания систем освещения с расширенными функциональными возможностями. Ниже мы рассмотрим стандартные схемы их подключения для управления осветительными приборами.
Схема подключения бистабильного реле для управления освещением
Электромеханические импульсные контакторы делятся на биполярные и поляризованные. Биполярные управляются импульсами одной полярности, а для переключения поляризованного реле в другое состояние потребуется импульс противоположной полярности. Ниже приведена схема подключения импульсного биполярного реле к системе освещения.
Современный рынок электротехнической продукции предлагает потребителю разнообразные модели подобных устройств от ведущих мировых производителей. Конструкция таких изделий отличается большим разнообразием, но для управления освещением чаще всего используются модульные бистабильные реле, которые устанавливаются на DIN-рейки в распределительных щитах. У потребителей часто возникает вопрос: можно ли подключить импульсное реле своими руками! Конечно, можно! Это позволит сэкономить на монтажных работах. Ниже мы рассмотрим этот вопрос подробнее.
Подключение бистабильного реле собственными руками
Монтаж импульсного переключателя можно выполнить как в электрощите, так и в отдельной установочной коробке. Мы рассмотрим частный случай: подключение модульного бистабильного реле в распределительном щите. Но следует сказать, что для этого необходимо иметь отдельную линию в электропроводке для подачи напряжения на приборы освещения. Стандартная монтажная схема управления освещением на базе бистабильного переключателя состоит из самого устройства, выключателей кнопочного типа, кабелей электропроводки и автомата включения/выключения. При наличии необходимой линии с выключателями все монтажные работы выполняются в распределительном щите.
На выше представленной схеме система управления освещением выполнена на базе электромеханического импульсного переключателя РИО-1, одного из самых популярных в настоящее время. Это устройство модульного типа и монтируется на DIN-рейку в распределительном щите. Нулевой провод подключается к реле и осветительным приборам. Фазный провод с автомата заводится на соответствующий контакт переключателя, а также на кнопочные выключатели без фиксации, которых может быть неограниченное количество. При нажатии на один из них свет либо включается, либо выключается. Все достаточно просто и такой монтаж сможет выполнить человек, обладающий элементарными познаниями в электротехнике.
Заключение
В настоящее время импульсные реле набирают популярность с каждым днем. Они позволяют создавать комфортные системы освещения, которые управляются из разных точек помещения. К тому же дополнительное оснащение бистабильных переключателей таймерами времени и датчиками движения позволяет значительно экономить электроэнергию, что при постоянном повышении тарифов на электричество очень важная характеристика. Если вы правильно установите и настроите такое устройство, то получите комфортную и энергосберегающую систему освещения!
Видео по теме
Импульсные реле (Бистабильные). Виды и работа. Применение
Бистабильные реле это реле, управляющееся импульсами, из-за чего приборы также принято называть импульсные реле. Эти устройства связывают своими контактами цепи и сети различной мощности при индуктивных, активных и прочих нагрузках.
Устройство и назначение
Назначение бистабильных реле заключается в регулировании цепями освещения либо другими потребителями. Их устройство базируется на таких элементах:
- Постоянный магнит.
- Катушка.
- Якорь.
- Система контактов.
- Полюсные наконечники магнитопровода.
- Винты для регулировки.
- Корпус.
Якорь прикрепляется к металлическому основанию в середине катушки вместе с контактами. В бистабильных реле подвижные контакты, за исключением штепсельного типа реле, в котором группа контактов содержит подвижные и неподвижные контакты. Корпус выполняется в виде прозрачного колпачка с ручкой.
В некоторых моделях внутри колпачка монтируют переключатели для ручного управления переключением реле и блинкеры для индикации контактов. Блинкеры представляют собой механические элементы.
Принцип действия
Бистабильное реле контролируется импульсами, это значит, чтобы включить устройство требуется подать управляющий импульс для замыкания контактов и такой же импульс для размыкания контактов, чтобы выключить прибор.
Размыкание и замыкание контактной группы обеспечивает катушка, установленная в реле. С её помощью реле при подаче напряжения втягивает сердечник. После чего контактная система замыкается либо размыкается, в зависимости от её исходного положения.
Для подачи питания на катушку реле необходимо кратковременно нажать на кнопочный выключатель. Тогда питание на катушку замкнёт свой силовой контакт и при этом подаст питание к нагрузке. После следующего нажатия на кнопку силовые контакты импульсного реле размыкаются, а цепь нагрузки разрывается.
Разновидности бистабильных реле
На рынке можно обнаружить различные модификации импульсных реле. Они могут отличаться своим корпусом, принципом работы или иметь другие различия. Объединяются бистабильные реле в одну группу по своему назначению, но по принципу действия их делят на два вида:
- Электромеханические.
- Электронные.
Конструктивное исполнение электромеханических бистабильных реле имеет сходство с устройством модульных контакторов. Катушка модульного контактора, находящегося в рабочем режиме, всегда под напряжением, а катушка импульсного реле получает только кратковременные импульсы. Реле, основанное на импульсах, потребляет электроэнергию исключительно в момент коммутации.
Главными составляющими являются следующие элементы:
- Катушка.
- Контактная группа.
- Пружинная система.
- Рычажная система.
Работа электромеханических бистабильных реле практически не отличается от простых электромеханических реле. Они способны поочерёдно включать и отключать устройства, когда поступают импульсы на катушку.
Электронные реле отличаются своей конструкцией от электромеханических. Так как у них нет сердечника и собраны эти реле на основе микроконтроллера. Приборы имеют полупроводниковый элемент (ключ) с микропроцессором или релейный вход. Контроллеры предназначены для управления коммутацией нагрузки и слежения за сигнальным входом. В некоторых моделях микроконтроллёры соединены с таймерами, благодаря этому можно собирать своеобразные схемы на базе одного реле.
Импульсные реле выпускаются разных мощностей и могут иметь следующие отличия:
- Количество контактов.
- Тип контактов.
- Число полюсов.
- Тип поляризации.
- Номинальный ток силовых контактов (16 А, 32А).
- Способ установки:- навесной;- на DIN рейку в распределительный щит.
Реле навесного типа часто устанавливают под навесным потолком, а также в распределительной коробке.
Основное применение
Импульсные реле имеют разное назначение. Некоторыми моделями пользуются на тепловых и атомных станциях, другими в быту для управления разными светильниками из нескольких точек в доме. Широко распространено реле этого типа в железнодорожной сфере, его применяют для улавливания импульсов рельсовых цепей, контролирующих рельсовые линии на станциях. Также приборы эксплуатируются для автоматизации разных процессов в сфере телемеханики и производстве.
С помощью бистабильных реле организовывают регулирование освещением, как и с помощью проходных выключателей. Но в реле, управляющихся импульсами, намного больший функционал, поэтому их можно применять в конструкциях систем автоматического управления. Они позволяют управлять не одной группой освещения из разных мест при помощи кнопочных выключателей соединённых параллельно. Благодаря чему можно создать централизованное управление всеми осветительными приборами в доме, чтобы уходя из дому, гасить полностью освещение в здании, путём нажатия на один выключатель.
Импульсные электронные реле с таймером удобно использовать на лестничных пролётах либо проходных коридорах.
Плюсы и минусы
Бистабильные реле электромеханического типа имеют такие плюсы:
- Надёжность.
- Устойчивость к перенапряжениям сети.
Недостатки электромеханических реле:
- Низкая функциональность (выполняют одну функцию).
- Отсутствует индикации положения контактов.
Плюсы электронных импульсных реле:
- Эффективное управление осветительными приборами в помещении.
- Безопасность.
- Возможность монтажа вспомогательных приспособлений.
- Широкие возможности регулирования электроцепями.
- Высокая функциональность.
- Наличие индикаторных светодиодов.
Недостатки электронных импульсных реле:
- Высокая чувствительность к уровню напряжения сети.
- Восприимчивость к импульсным перенапряжениям.
- Вероятность ложного срабатывания, обусловленная реакцией на помехи в сети.
Электромеханические импульсные реле зарекомендовали себя как более удобные и надёжные приборы по сравнению с электронными. Так как электронные реле нуждаются в полноценном и стабильном питании, при этом фаза и ноль должны непрерывно подаваться на них. Также у них низкая защита от помех, но высокая безопасность в отличии от электромеханических реле.