Реле контакты обозначение: 1.2. Условные графические обозначения реле и их контактов в схемах СЦБ

Содержание

6. Реле и соединители — Условные графические обозначения на электрических схемах — Компоненты — Инструкции

 Наряду с выключателями и переключателями в радиоэлектронной технике для дистанционного управления и различных развязок широко применяют электромагнитные реле (от французского слова relais). Электромагнитное реле состоит из электромагнита и одной или нескольких контактных групп. Символы этих обязательных элементов конструкции реле и образуют его условное графическое обозначение [4].

 
 Электромагнит (точнее, его обмотку) изображают на схемах в виде прямоугольника с присоединенными к нему линиями электрической связи, символизирующими выводы. Условное графическое обозначение контактов располагают напротив одной из узких сторон символа обмотки и соединяют с ним линией механической связи (пунктирной линией). Буквенный код реле — буква K (K1 на рис.6.1)

 

 Выводы обмотки для удобства допускается изображать с одной стороны (см. рис. 6.1, К2), а символы контактов — в разных частях схемы (рядом с УГО коммутируемых элементов). В этом случае принадлежность контактов тому или иному реле указывают обычным образом в позиционном обозначении условным номером контактной группы (К2.1, К2.2, K2.3).

 
 Внутри условного графического обозначения обмотки стандарт допускает указывать ее параметры (см. рис. 6.1, КЗ) или конструктивные особенности. Например, две наклонные линии в символе обмотки реле К4 означают, что она состоит из двух обмоток.

 

 Поляризованные реле (они обычно управляются изменением направления тока в одной или двух обмотках) выделяют на схемах латинской буквой Р, вписываемой в дополнительное графическое поле УГО и двумя жирными точками (см. рис. 6.1, К5). Эти точки возле одного из выводов обмотки и одного из контактов такого реле означают следующее: контакт, отмеченный точкой, замыкается при подаче напряжения, положительный полюс которого приложен к выделенному таким же образом выводу обмотки. Если необходимо показать, что контакты поляризованного реле остаются замкнутыми и после снятия управляющего напряжения, поступают так же, как и в случае с кнопочными переключателями (см. разд. 5): на символе замыкающего (или размыкающего) контакта изображают небольшой кружок. Существуют так же реле, в которых магнитное поле, создаваемое управляющим током обмотки, воздействует непосредственно на чувствительные к нему (магнитоуправляемые) контакты, заключенные в герметичный корпус (отсюда и название геркон — ГЕРметизированный КОНтакт). Чтобы отличить контакты геркона от других коммутационных изделий в его УГО иногда вводят символ герметичного корпуса — окружность. Принадлежность к конкретному реле указывают в позиционном обозначении (см. рис. 6.1, К6.1). Если же геркон не является частью реле, а управляется постоянным магнитом, его обозначают кодом автоматического выключателя — буквами SF (рис. 6.1, SF1).

 
 Большую группу коммутационных изделий образуют всевозможные соединители. Наиболее широко используют разъемные соединители (штепсельные разъемы, см. рис. 6.2). Код разъемного соединителя — латинская буква X. При изображении штырей и гнезд в разных частях схемы в позиционное обозначение первых вводят букву Р (см. рис. 6.2, ХР1), вторых — S (XS1).

 

 Высокочастотные (коаксиальные) соединители и их части обозначают буквами XW (см. рис. 6.2, соединитель XW1, гнезда XW2, ХW3). Отличительный признак высокочастотного соединителя — окружность с отрезком касательной линии, параллельной линии электрической связи и направленной в сторону соединения (XW1). Если же с другими элементами устройства штырь или гнездо’ соединены коаксиальным кабелем, касательную продляют и в другую сторону (XW2, XW3). Соединение корпуса соединителя и оплетки коаксиального кабеля с общим проводом (корпусом) устройства показывают присоединением к касательной (без точки!) линии электрической связи со знаком корпуса на конце (XW3).

 
 Разборные соединения (с помощью винта или шпильки с гайкой и т. п.) обозначают на схемах буквами XT, а изображают — небольшим кружком (см. рис. 6.2; ХТ1, ХТ2, диаметр окружности — 2 мм). Это же условное графическое обозначение используют и в том случае, если необходимо показать контрольную точку.

 
 Передача сигналов на подвижные узлы механизмов часто осуществляется с помощью соединения, состоящего из подвижного контакта (его изображают в виде стрелки) и токопроводящей поверхности, по которой он скользит. Если эта поверхность линейная, ее показывают отрезком прямой линии с выводом в виде ответвления у одного из концов (см. рис. 6.2, X1), а если кольцевая или цилиндрическая — окружностью {X2).

 

 Принадлежность штырей или гнезд к одному многоконтактному соединителю показывают на схемах линией механической связи и нумерацией в соответствии с нумерацией на самих соединителях (рис. 6.3, XS1, ХР1). При изображении разнесенным способом условное буквенно-цифровое позиционное обозначение контакта составляют из обозначения, присвоенного соответствующей части соединителя и его номера (XS1. 1 — первое гнездо розетки XS1; ХР5,4 — четвертый штырь вилки ХР6 и т. д.).

 
 Для упрощения графических работ стандарт допускает заменять условное графическое обозначение контактов розеток и вилок многоконтактных соединителей небольшими пронумерованными прямоугольниками с соответствующими символами (гнезда или штыря) над ними (см. рис. 6.3, XS2, ХР2). Расположение контактов в символах разъемных соединителей может быть любым — здесь все определяется начертанием схемы; неиспользуемые контакты на схемах обычно не показывают.
Аналогично строятся условные графические обозначения многоконтактных разъемных соединителей, изображаемых в состыкованном виде (рис. 6.4). На схемах разъемные соединители в таком виде независимо от числа контактов обозначают одной буквой X (исключение — высокочастотные соединители). В целях еще большего упрощения  графики стандарт допускает обозначать многоконтактный соединитель одним прямоугольником с соответствующими числом линий электрической связи и нумерацией (см. рис. 6.4, X4).

 
 Для коммутации редко переключаемых цепей (делителей напряжения с подборными элементами, первичных обмоток трансформаторов сетевого питания и т. п.) в электронных устройствах применяют перемычки и вставки. Перемычку, предназначенную для замыкания или размыкания цепи, обозначают отрезком линии электрической связи с символами разъемного соединения на концах (рис. 6.5, X1), для переключения — П-образной скобой (X3). Наличие на перемычке контрольного гнезда (или штыря) показывают соответствующим символом {X2).

 
 При обозначении вставок-переключателей, обеспечивающих более сложную коммутацию, используют способ для изображения переключателей. Например, вставка на рис. 6.5, состоящая из розетки XS1 и вилки XP1, работает следующим образом: в положении 1 замыкатели вилки соединяют гнезда 1 и 2, 3 и 4, в положении 2 — гнезда 2 и 3, 1 и 4, в положении 3 — гнезда 2 и 4. 1 и 3.

 

 

 

Реле указательные РУ 21, РУ 21-1

Тип реле

Род тока

Номинальный ток, А

Номинальное напряжение, V

Ток срабатываия, А

Напряжение срабатывания, V

Потребляемая мощность,

не более

Длительный ток, А

Длительное напряжение, V

Количество контактов без самовозврата

2 замык.

2 размык.

1замык.,

1размык.

Номенклатурный номер

1

2

3

4

5

6

7

8

9

10

РУ21/0,006

РУ21/0,01

РУ21/0,016

РУ21/0,025

РУ21/0,05

РУ21/0,06

РУ21/0,08

РУ21/0,1

РУ21/0,16

РУ21/0,25

РУ21/0,4

РУ21/0,5

РУ21/1

РУ21/2

РУ21/2,5

РУ21/4

постоянный

0,006

0,01

0,016

0,025

0,05

0,06

0,08

0,1

0,16

0,25

0,4

0,5

1

2

2,5

4

0,006

0,01

0,016

0,025

0,05

0,06

0,08

0,1

0,16

0,25

0,4

0,5

1

2

2,5

4

0,25W

0,018

0,03

0,048

0,075

0,15

0,18

0,24

0,3

0,48

0,75

1,2

1,5

3

6

7,5

12

28021025N

28021001N

28021002N

28021003N

28021004N

28021026N

28021005N

28021006N

28021007N

28021008N

28021027N

28021009N

28021010N

28021011N

28021028N

28021012N

28021425N

28021401N

28021402N

28021403N

28021404N

28021426N

28021405N

28021406N

28021407N

28021408N

28021427N

28021409N

28021410N

28021411N

28021428N

28021412N

28021525N

28021501N

28021502N

28021503N

28021504N

28021526N

28021505N

28021506N

28021507N

28021508N

28021527N

28021509N

28021510N

28021511N

28021528N

28021512N

РУ21/220

РУ21/110

РУ21/48

РУ21/24

220

110

48

24

160

80

35

17,5

2,75 W

1,75 W

1,75W

1,75W

 

242

121

53

26,5

28021024N

28021023N

28021022N

28021021N

28021424N

28021423N

28021422N

28021421N

28021524N

28021523N

28021522N

28021521N

РУ21/0,025

РУ21/0,05

РУ21/0,08

РУ21/0,1

РУ21/0,16

РУ21/0,25

РУ21/0,4

РУ21/0,5

РУ21/1

РУ21/2,5

переменный 50 Hz

0,025

0,05

0,08

0,1

0,16

0,25

0,4

0,5

1

2,5

0,025

0,05

0,08

0,1

0,16

0,25

0,4

0,5

1

2,5

2VА

0,0375

0,075

0,12

0,15

0,24

0,375

0,6

0,75

1,5

3,75

28221003N

28221004N

28221005N

28221006N

28221007N

28221008N

28221027N

28221009N

28221010N

28221028N

28221403N

28221404N

28221405N

28221406N

28221407N

28221408N

28221427N

28221409N

28221410N

28221428N

28221503N

28221504N

28221505N

28221506N

28221507N

28221508N

28221527N

28221509N

28221510N

28221528N

РУ21/220

РУ21/110

220

110

176

88

5VА

242

121

28221024N

28221023N

28221424N

28221423N

28221524N

28221523N

РУ21-1/0,006

РУ21-1/0,01

РУ21-1/0,016

РУ21-1/0,025

РУ21-1/0,05

РУ21-1/0,06

РУ21-1/0,08

РУ21-1/0,1

РУ21-1/0,16

РУ21-1/0,25

РУ21-1/0,4

РУ21-1/0,5

РУ21-1/1

РУ21-1/2

РУ21-1/2,5

РУ21-1/4

постоянный

0,006

0,01

0,016

0,025

0,05

0,06

0,08

0,1

0,16

0,25

0,4

0,5

1

2

2,5

4

0,006

0,01

0,016

0,025

0,05

0,06

0,08

0,1

0,16

0,25

0,4

0,5

1

2

2,5

4

0,25W

0,018

0,03

0,048

0,075

0,15

0,18

0,24

0,3

0,48

0,75

1,2

1,5

3

6

7,5

12

28121025N

28121001N

28121002N

28121003N

28121004N

28121026N

28121005N

28121006N

28121007N

28121008N

28121027N

28121009N

28121010N

28121011N

28121028N

28121012N

28121425N

28121401N

28121402N

28121403N

28121404N

28121426N

28121405N

28121406N

28121407N

28121408N

28121427N

28121409N

28121410N

28121411N

28121428N

28121412N

28121525N

28121501N

28121502N

28121503N

28121504N

28121526N

28121505N

28121506N

28121507N

28121508N

28121527N

28121509N

28121510N

28121511N

28121528N

28121512N

РУ21-1/220

РУ21-1/110

РУ21-1/48

РУ21-1/24

220

110

48

24

160

80

35

17,5

2,75 W

1,75 W

1,75 W

1,75 W

 

242

121

53

26,5

28121024N

28121023N

28121022N

28121021N

28121424N

28121423N

28121422N

28121421N

28121524N

28121523N

28121522N

28121521N

Электромагнитное реле.

Определение, устройство и назначение

Реле, это устройства, автоматически коммутирующие электрические цепи по сигналу извне.

Наряду с выключателями и переключателями, приводимыми в действие усилием руки, в радиоэлектронной технике широко применяют электромагнитные реле (от французского слова relais).

Электромагнитное реле, это коммутирующее устройство, работа которого основана на воздействии магнитного поля неподвижной обмотки на подвижный ферромагнитный элемент.


Рис.1 Устройство реле.

Как говорит само название, электромагнитное реле состоит из электромагнита и одной или нескольких контактных, групп.

Условное графическое обозначение реле

Символы этих обязательных элементов конструкции реле и образуют его условное графическое обозначение (см. рис. 2). Электромагнит (вернее, его обмотку) изображают на схемах в виде прямоугольника с присоединененными к нему линиями электрической связи, символизирующими выводы; условное графическое обозначение контактов располагают напротив одной из узких сторон символа обмотки и соединяют с ним линией механической связи.

Буквенный код реле — буква К.

Выводы обмотки допускается изображать с одной стороны (рис. 2, К2), а символы контактов — в разных частях схемы (рядом с условным графическим обозначением коммутируемых элементов). В этом случае принадлежность контактов тому или иному реле указывают в позиционном обозначении, присоединяя (через точку) к номеру реле (по схеме) условный номер контактной группы (К 2.1, К2.2, К2.3).

Внутри условного графического обозначения обмотки стандарт допускает указывать ее параметры (рис. 2, КЗ) или конструктивные особенности (две наклонные линии в символе обмотки реле К4 означают, что она состоит из двух обмоток).

Поляризованные реле (они «чувствительны» к направлению тока в обмотке) выделяют на схемах латинской буквой Р, вписываемой в дополнительное графическое поле условного графического обозначения (рис. 2, КБ). Точки возле одного из выводов обмотки и одного из контактов такого реле расшифровывают следующим образом: контакт, отмеченный точкой, замыкается при подаче напряжения, положительный полюс которого приложен к выделенному таким же образом выводу обмотки. Если необходимо показать, что контакты поляризованного реле остаются замкнутыми и после снятия управляющего напряжения, поступают так же, как и в случае с кнопочными переключателями на символе замыкающего (или размыкающего) контакта изображают небольшой кружок.

Кроме рассмотренных выше, существуют реле, в которых магнитное поле, создаваемое управляющим током обмотки, воздействует непосредственно на чувствительные к нему (магнитоуправляемые) контакты, заключенные в герметичный корпус (отсюда и название геркон — ГЕРметизированный КОНтакт). Чтобы отличить геркон от контактов других коммутационных изделий, в его условном графическом обозначения иногда вводят символ герметичного корпуса — окружность. Принадлежность к конкретному реле указывают в позиционном обозначении (рис. 2, К6.1), Еслй же геркон не является частью реле, а управляется постоянным магнитом, его обозначают кодом автоматического выключателя — буквами SF (рис. 2, SF1).

Реле используют не только для коммутации электрических цепей, но и для усиления электрических сигналов.

Первым примером усиления электрических сигналов является использование Сэмюэлом Морзе электромагнитного реле, изобретенного Джозефом Генри в 1835 году, для усиления слабых телеграфных сигналов. Именно реле сделало возможным открытие первой междугородной телеграфной линии от Балтимора до Вашингтона в 1844 году. Как видно из рис. 1, слабый входной сигнал используется для управления электромагнитом, который притягивает якорь и замыкает электрические контакты; эти контакты включают мощный выходной сигнал, который передается на следующий участок линии. Точки и тире мощного выходного сигнала, таким образом, точно повторяют слабый входной сигнал. Реле до сих пор широко используются в силовых (мощных) переключающих системах, но, как правило, вытесняются электронными устройствами.



Монтаж выключателей и реле

Обычно монтаж и межсоединения для выключателей не представляют сложностей, за исключением случаев многополюсных выключателей на несколько направлений.

Контакты выключателей всегда изображаются в положении «ВЫКЛЮЧЕНО». В случае поворотных выключателей ползунок подвижного контакта всегда соединён с первым контактом, который соответствует положению «ВЫКЛЮЧЕНО».

На диаграмме ниже изображён двухполюсный выключатель на четыре направления.

Первая контактная группа обозначена как S1a. Контакты пронумерованы от 1 до 4, и поскольку выключатели всегда изображаются в отключённом положении, то контакт, соединённый с ползунком подвижного контакта будет соответствовать положению «ВЫКЛ.». Для ясности, контакты на диаграмме обозначены цифрами от 1 до 4, хотя при отсутствии маркировки можно также без труда определить первый контакт. Контактная группа b показана ниже. Общепринятой практикой является соединение контактных групп на схемах пунктирной линией, как, например, на вышеприведённой диаграмме. Контакт обозначенный как 1 является исходным положением выключателя, а контакт 3 не используется. Для всех многополюсных выключателей верно, что при движении ползунка, если например выключатель переведён через два положения, то оба ползунка, как на S, так и на S1b будут находится на контакте 3.

Контакты реле

Как и в случае с выключателями, реле всегда изображаются в отключенном положении. Как показано ниже, контакты могут изображаться различным способом, однако средний контакт (на рисунке ниже обозначен цифрой «2») является подвижным контактом и будет передвигаться при подаче тока на реле. Этот контакт называется переключающим контактом (CO). Самый верхний контакт NC (обозначенный цифрой «1») является нормально замкнутым контактом (реле обесточено), а контакт 3 (NO) является нормально разомкнутым контактом. Когда ток поступает на катушку реле, нормально разомкнутый контакт механически и электрически замыкается с переключающим контактом.

Маркировка контактов реле

Как показано выше, у нижнего правого реле есть два переключающих контакта. Обозначение катушки реле может быть RL или R. Если в схеме присутствует более одного реле, то реле обычно обозначаются как RLA, RLB, или RA, RB и т. д. Самый простой способ отслеживать то, сколько контактных групп относится к тому или иному реле — использовать знаменатель с количеством контактных групп.

В этом случае у реле RLA/2 две контактные группы, которые обозначаются как RLA1 и RLA2. Ничего сложного. Теперь перейдём к схеме изменения направления вращения двигателя с кнопочными выключателями без фиксации.

Схема изменения направления вращения двигателя


В этой схеме используются четыре реле и три кнопки для остановки, вращения двигателя постоянного тока в прямом направлении и движения двигателя в противоположном направлении. На реле RLD всего один переключающий контакт, в то время как на реле RLA, RLB и RLC по два переключающих контакта. В принципе, реле RLD ответственно за остановку двигателя, реле RLA фиксирует вращения двигателя в прямом направлении, а реле RLB фиксирует вращения двигателя в противоположном направлении, в то время как реле RLC и его контакты обеспечивают изменение направления вращения.

Тактические и профессиональные фонари. В первую очередь, это светотехнические средства, пригодные для применения в экстремальных и сложных условиях, а так же техника, оптимизированная для узкого спектра задач, например подствольные фонари или фонари для дайвинга.

14419 0

Активная распределенная антенная система представляет собой двунаправленный репитер, который усиливает и дублирует выходной сотовый сигнал внутри одного помещения. Усиленный сигнал дублируется с помощью внутренней антенны. Подобным образом дублируется сотовый сигнал и за пределами здания.

6597 0

Для схемы данного интегратора подойдёт практически любая модель операционного усилителя, но в списке необходимых компонентов указана модель 1458, так как входные токи смещения этого ОУ гораздо выше. Как правило, высокий входной ток смещения считается плохой стороной того или иного операционного усилителя, если он используется в схеме усилителя постоянного тока (и особенно в схеме интегратора!).

8108 0

2.2 Маркировка реле. Реле систем железнодорожной автоматики

Похожие главы из других работ:

Анализ упаковки, маркировки и идентификации грузов

1.
3 Маркировка грузов

На современном этапе неотъемлемой частью упаковки является маркировка, а в отдельных случаях и наличие специальной печатной информации о товаре, помещенная на упаковке или содержащаяся в отдельном вкладыше. Упаковку…

Классификация и назначение автомобильного подвижного состава

Маркировка и техническая характеристика

Все автомобили в зависимости от типа и назначения разделяются на классы, в соответствии с которыми и маркируются. Каждая модель автомобиля имеет свое обозначение в зависимости от того, является она базовой или модификацией…

Конструкция, техническое обслуживание и текущие ремонты тепловозного компрессора типа КТ-6

1.6 Маркировка и пломбирование

Предохранительные клапаны должны быть отрегулированы на давление 9, 5±0, 1 кгс/см2 и опломбированы. Подрегулировка предохранительных клапанов на более высокие давления не допускается…

Организация сервиса на железнодорожном транспорте

1.
1. Транспортная маркировка грузов

На тарные и штучные грузы грузоотправитель согласно Правилам приема грузов и перевозке обязан нанести транспортную маркировку независимо от соответствия маркировки требованиям, действующим на других видах транспорта…

Организация сервиса при перевозке песка

1.7 Тара, упаковка и маркировка

Чтобы перевозить песок быстро, легко и без потерь, его фасуют в большие прочные мешки, чаще всего весом до пятидесяти килограммов. Даже несколько небольших мешков меньшей вместимости могут иметь большой вес — песок считается тяжелым материалом…

Особенности транспортировки кирпича

1.7 Тара, упаковка и маркировка

Основным способом повышения эффективности перевозки тарно-штучных грузов является максимально возможное укрупнение грузовых единиц. Для этого используются контейнеры, поддоны и пакеты…

Особенности эксплуатации автомобильных шин

1.1 Маркировка автомобильных шин

Автомобильные шины маркируются алфавитно-цифровым кодом, который обозначается на борту шины. Этот код определяет размеры шины и некоторые из ее ключевых характеристик, типа индикаторов нагрузки и скорости…

Проектирование перегонных и станционных устройств железнодорожной автоматики и телемеханики

4.1 Схема кнопочных реле и реле направлений

Запоминание нажатия кнопок осуществляется с помощью двухобмоточных кнопочных реле К, род маршрута и его направление — по средствам поездных Н, Ч и маневровых НМ, ЧМ реле направлений…

Разработка схемы доставки груза в данных условиях и выбор оптимального подвижного состава

1.2 Маркировка

Упаковка водок и водок особых производится в соответствии с ниже перечисленными стандартами: а) ГОСТ Р 52194-2003: ВОДКИ И ВОДКИ ОСОБЫЕ ИЗДЕЛИЯ ЛИКЕРОВОДОЧНЫЕ. Упаковка, маркировка…

Расчет основных показателей работы порта

1.2 Вид, параметры упаковки и маркировка

Маркировка Маркировка — это нанесение условных знаков, букв, цифр, графических знаков или надписей на объект, с целью его дальнейшей идентификации (узнавания), указания его свойств и характеристик. ..

Реле систем железнодорожной автоматики

2. Маркировка и классификация реле

Техника и оборудование для аэродромов

1.2 Маркировка инструмента

С целью предотвращения оставления инструмента на ВС по окончании технического осмотра (ТО) и повышения ответственности авиаспециалистов применяется маркировка инструмента. Инструмент, находящийся в личном пользовании маркируют клеймом…

Технология ремонта испарителя Д-5У

1. Маркировка и освидетельствование

Маркировка — нанесение условных знаков, букв, цифр, графических знаков или надписей на объект, с целью его дальнейшей идентификации (узнавания), указания его свойств и характеристик…

Транспортные характеристики грузов

3.УПАКОВКА И МАРКИРОВКА ГРУЗОВ

Большинство товаров, выпускаемых промышленностью, транспортируют, хранят и отпускают потребителю в упаковке или таре. Дадим определения этим понятиям. Тара является элементом упаковки, представляющим собой изделие для размещения продукции…

Тюнинг автомобилей

1.2.5 Маркировка

Маркировка выбивается на любой поверхности диска, кроме той части обода, которая обращена к шине. Российская, европейская и американская маркировки немного отличаются друг от друга манерой исполнения…

Параметры реле


Параметры реле делятся на основные и не основные. Ориентироваться надо на основные параметры реле, т.к. именно они характеризуют их эксплуатационные возможности и область применения и в конечном итоге влияют на нормальную работоспособность реле.

В свою очередь, основные параметры делятся на:

  1. Электрические: чувствительность, рабочее напряжение (ток), напряжение (ток) срабатывания, напряжение (ток) отпускания, сопротивление контактов, сопротивление обмотки, коммутационная способность, электрическая изоляция.
  2. Временны´е: время срабатывания, время отпускания, время дребезга контактов.

Электрические параметры реле

• Чувствительность реле — способность срабатывать при определённом значении мощности, подаваемой на обмотку реле. Определяется магнитодвижущей силой (МДС) срабатывания. Если сравнивать между собой разные реле, то наиболее чувствительное будет то, у которое срабатывает при меньшей МДС.  При этом якорь реле должен чётко притягиваться и контакты всех групп должны замкнуться/разомкнуться.

В справочниках обычно такой параметр как чувствительность не приводится. Он вычисляется из сопротивления обмотки и тока срабатывания.

Pср = Iср2 * Rобм = Uср2 / Rобм

• Рабочее напряжение (ток).
Техническими условиями для конкретных типов реле устанавливается рабочее напряжение (ток), при питании которым обеспечивается нормальное функционирование реле. В технической документации на конкретное исполнение реле указывается его значение с допусками. При подаче на обмотку реле напряжения (тока) в указанных пределах, оно должно нормально функционировать.

• Напряжение (ток) срабатывания.
Это один из параметров реле, определяющий его чувствительность. Это минимальное напряжение (ток) при котором реле должно нормально сработать, т.е. переключить все свои контакты. А уже для дальнейшего удерживания якоря на обмотку реле надо подавать рабочее напряжение (ток), описанное в предыдущем пункте.

В технической документации данный параметр обязательно приводится для каждого исполнения реле.

Данный параметр является контрольным. Он характеризует устойчивость всех элементов конструкции и стабильность регулировки реле.

• Напряжение (ток) отпускания.
Обязательно приводится в технической документации на каждое исполнение реле как для нормальных условий эксплуатации, так и для условий, когда воздействуют различные факторы.

Отпускание реле — это не что иное, как возвращение контактов в исходное состояние. Происходит оно при снижении напряжения (тока) в обмотке реле до уровня, при котором якорь больше не может удерживаться в сработанном положении и возвращается в исходное состояние выключенного реле. Все контакты также переключаются в исходное состояние. Нормально замкнутые становятся замкнутыми, нормально разомкнутые — разомкнутыми.

Существует такой показатель, как коэффициент возврата. Это отношение тока отпускания к току срабатывания. Значение этого коэффициента у разных реле колеблется в очень больших пределах — от 0.1 до 0.98. Улучшение коэффициента возврата достигается путём сближения характеристик изменения электромагнитной силы, создающей магнитный поток, и силы пружины, противодействующей этому потоку. Также улучшения коэффициента возврата можно достичь путём уменьшения хода подвижной системы и снижения трения в её осях.

• Сопротивление обмотки.
Сопротивление обмотки — это активное сопротивление обмотки реле с допусками, измеренное на постоянном токе. Обязательно приводится в технической документации и справедливо для нормальной температуры окружающей среды.

• Сопротивление контактов электрической цепи.
Оно складывается из сопротивления элементов цепи контактов и сопротивления контактирующих поверхностей. Измерить сопротивление контактирующих поверхностей в реле очень сложно. Поэтому оно оценивается по сопротивлению всей цепи контактов.

Данный параметр может сильно изменяться как в процессе эксплуатации реле, так и в период доставки/транспортировки, т.к. зависит от многих факторов.

Попадание грязи на контакты реле влечёт за собой увеличение падения напряжения на контактах. Как следствие этого — повышенный нагрев контактов, который способен вообще вывести контактную пару из строя. Поэтому в технической документации как правило указывают сопротивление контактов на период поставки.

• Коммутационная способность контактов реле.
Определяется значением мощности, коммутируемой контактами реле, выполняющими определённое количество коммутаций.

Важно понимать, что существует такая вещь, как коррозия контактов. И она сильно зависит от коммутируемой мощности. Но проявляется она при токах в 100 мА и более. При меньших токах основное влияние на работоспособность реле оказывает механический износ подвижной системы и контактов.

В тех. документации как правило указан диапазон коммутируемых напряжений и токов, при которых гарантируется конкретное число коммутаций.

Максимальная мощность, которую способно коммутировать реле, ограничивается температурой нагрева контактов, при которой снижается механическая прочность материала контактов.

• Электрическая изоляция.
Характеризует электроизоляционные свойства реле. Это способность изоляции реле выдерживать перенапряжения (кратковременно и длительно), неизбежно возникающие в процессе эксплуатации аппаратуры. Изоляция реле определяется электрической прочностью промежутков — воздушных (межконтактных) зазоров и по поверхности диэлектрика платы реле. По этим промежуткам судят о токах утечки реле.

Временны´е параметры реле

• Время срабатывания — время, прошедшее с момента подачи напряжения на обмотку реле до первого замыкания нормально разомкнутых контактов.

• Время дребезга.
Иногда оговаривается в технической документации. Дребезг возникает после удара подвижных контактов о неподвижные.

• Время отпускания.
Определяется временем от момента снятия напряжения с катушки реле до момента замыкания нормально замкнутого контакта.

Терминология реле

| Средства автоматизации | Промышленные устройства

1. Обозначение катушки

Черная катушка представляет состояние под напряжением. Для реле с фиксацией на схемах обычно показана катушка в состоянии сброса. Следовательно, символ катушки также показан для катушки сброса в ее состоянии сброса.

2. Номинальное напряжение катушки (номинальное напряжение катушки)

Одно значение (или узкий диапазон) напряжения источника, предназначенное по конструкции для подачи на катушку или вход.

3.Номинальный рабочий ток

Значение тока, протекающего в катушке, когда на катушку прикладывается номинальное напряжение

4.Номинальная рабочая мощность

Значение мощности, потребляемой катушкой при номинальном напряжении. Для катушек постоянного тока выражается в ваттах; Переменный ток выражается в вольт-амперах. Номинальная мощность (Вт или ВА) = номинальное напряжение × номинальный ток.

5. сопротивление катушки

Это сопротивление постоянному току катушки в реле постоянного тока для температурных условий, указанных в каталоге.(Обратите внимание, что для определенных типов реле сопротивление постоянному току может быть для температур, отличных от стандартных 20 ° C 68 ° F.)

6. повышающее напряжение (втягивающее напряжение или рабочее напряжение)

По мере увеличения напряжения на неработающем реле значение, при котором или ниже которого все контакты должны функционировать (переходить).

7. падение напряжения (отпускающее или обязательное напряжение отпускания)

По мере уменьшения напряжения на сработавшем реле значение, при превышении которого все контакты должны вернуться в свое неработающее положение.

8.Максимальное приложенное напряжение

Максимальное напряжение, которое может непрерывно подаваться на катушку без повреждения. Кратковременные выбросы более высокого напряжения могут быть допустимыми, но этого не следует предполагать без предварительной консультации с производителем.

1. Контактные формы

Обозначает контактный механизм и количество контактов в контактной цепи.

2.Контактные символы

Контакты формы A
(нормально разомкнутые контакты)
Контакты формы B
(нормально замкнутые контакты)
Контакты формы C
(переключающие контакты)

Контакты формы A также называются N.О. связывается или заводить контакты.
Контакты формы B также называются Н.З. контактами или размыкающими контактами.
Контакты формы C также называются переключающими контактами или переключающими контактами.

3.MBB Контакты

Сокращение для замыкающих контактов. Контактный механизм, при котором контакты формы A (нормально открытые контакты) замыкаются до размыкания контактов формы B (нормально закрытые контакты).

4. Номинальная коммутируемая мощность

Расчетное значение в ваттах (постоянного тока) или вольт-амперах (переменного тока), которое можно безопасно переключать с помощью контактов.Это значение является произведением коммутируемого напряжения на коммутируемый ток и будет меньше, чем максимальное напряжение и максимальный ток.

5.Максимальное коммутируемое напряжение

Максимальное напряжение холостого хода, которое может безопасно переключаться контактами. Максимальные значения постоянного и переменного напряжения в большинстве случаев различаются.

6. Максимальный ток переключения

Максимальный ток, который можно безопасно переключать контактами. Максимальные значения переменного и постоянного тока могут отличаться.

7.Максимальная коммутируемая мощность

Верхний предел мощности, которую можно переключать контактами. Следует проявлять осторожность, чтобы не превысить это значение.

8.Максимальная коммутационная способность

Это указано в столбце данных для каждого типа реле как максимальное значение контактной емкости и представляет собой взаимосвязь максимальной мощности переключения, максимального напряжения переключения и максимального тока переключения. Ток переключения и напряжение переключения можно получить из этого графика.Например, если напряжение переключения фиксировано в определенном приложении, максимальный ток переключения может быть получен из пересечения между напряжением на оси и максимальной мощностью переключения.

Максимальная коммутационная способность
Пример: при использовании реле TX при напряжении переключения 60 В постоянного тока максимальный ток переключения составляет 1 А.
(* Максимальная коммутационная способность дана для резистивной нагрузки.Обязательно внимательно проверьте фактическую загрузку перед использованием.)

9.Минимальная коммутационная способность

Это значение является ориентиром для минимально возможного уровня, при котором нагрузка низкого уровня может позволить переключение. Уровень надежности этого значения зависит от частоты коммутации, условий окружающей среды, изменения желаемого контактного сопротивления и абсолютного значения. Пожалуйста, используйте реле с контактами AgPd, если вам нужны аналоговые нагрузки низкого уровня, управление или контактное сопротивление 100 мОм или меньше.Мы рекомендуем вам связаться с одним из наших офисов продаж относительно использования.

10.Сопротивление контакта

Это значение представляет собой совокупное сопротивление сопротивления, когда контакты соприкасаются друг с другом, сопротивления клемм и контактной пружины. Контактное сопротивление измеряется методом падения напряжения, как показано ниже. Обозначены измерительные токи.

Испытательные токи

Номинальный контактный ток или ток переключения (A) Испытательный ток (мА)
Менее 0.01 1
0,01 или более и менее 0,1 10
0,1 или более и менее 1 100
1 или более 1 000

Сопротивление можно измерить с приемлемой точностью миллиомметром YHP 4328A.
Обычно для реле с номинальным током контакта 1 А или более измеряйте падение напряжения при 1 А 6 В постоянного тока.

11. Максимальный ток передачи

Максимальный ток, который после замыкания или до размыкания контакты могут безопасно проходить, не подвергаясь повышению температуры сверх их расчетного предела или расчетного предела других термочувствительных компонентов в реле (катушка, пружины, изоляция и т. Д. .). Это значение обычно превышает максимальный ток переключения.

12. емкость

Это значение измеряется между клеммами при 1 кГц и 20 ° C 68 ° F.

1. Сопротивление изоляции

Значение сопротивления между всеми взаимно изолированными проводящими секциями реле, то есть между катушкой и контактами, между разомкнутыми контактами и между катушкой или контактами с любым сердечником или корпусом при потенциале земли. Это значение обычно выражается как «начальное сопротивление изоляции» и может со временем уменьшаться из-за разрушения материала и накопления загрязнений.
— Между катушкой и контактами
— Между разомкнутыми контактами
— Между группами контактов
— Между установленной катушкой и катушкой сброса

2. Напряжение пробоя (Hi-Pot или диэлектрическая прочность)

Максимальное напряжение, которое может выдерживать реле без повреждений в течение определенного периода времени, обычно измеряется в тех же точках, что и сопротивление изоляции. Обычно указанное значение выражается в VAC (RMS) в течение одной минуты.

3. импульсное напряжение пробоя

Способность устройства противостоять аномальному скачку напряжения, производимому извне, например, при ударе молнии или другом явлении.Обычно указывается импульсный тестовый сигнал с указанием времени нарастания, пикового значения и времени спада.

4. время срабатывания (заданное время)

Время, прошедшее с момента подачи питания на катушку до замыкания контактов формы A (нормально разомкнутые). (Для многополюсных устройств время до замыкания последнего контакта.) Это время не включает время дребезга.

5.Время отпускания (время сброса)

Время, прошедшее с момента первоначального отключения питания катушки до повторного включения контактов формы B (нормально замкнутые) (последний контакт с многополюсным). Это время не включает время отказов.

6. Отскок контакта (время)

Обычно выражается во времени (мс), это относится к явлению прерывистого переключения контактов, которое происходит из-за столкновения между подвижными металлическими частями или контактами, когда реле приводится в действие или отпускается.

1.Устойчивость к ударам

1) Функциональный

Удар, который может выдержать реле во время обслуживания, не вызывая размыкания замкнутых контактов дольше указанного времени или без замыкания открытых контактов на время, превышающее указанное. (обычно 10 мкс)

2) Разрушительный

Удар, который может выдержать реле при транспортировке или установке без его повреждения и без изменения его рабочих характеристик.Обычно выражается в буквах «G». Однако испытание проводилось в общей сложности 18 раз, по шесть раз в каждом по трем осям.

2. Устойчивость к вибрации

1) Функциональный

Вибрация, которую реле может выдерживать во время обслуживания, не вызывая размыкания замкнутых контактов дольше указанного времени или не вызывая замыкания открытых контактов более указанного времени.(обычно 10 мкс)

2) Разрушительный

Вибрация, которую может выдержать реле при транспортировке, установке или использовании, без повреждения и без изменения его рабочих характеристик. Выражается как ускорение в G или смещении и частотный диапазон. Тем не менее, тест длился в общей сложности шесть часов, по два часа в каждом направлении по трем осям.

3.Механическая жизнь

Минимальное количество срабатываний реле в номинальных условиях (напряжение катушки, температура, влажность и т. Д.) Без нагрузки на контакты.

4. Электрическая жизнь

Минимальное количество срабатываний реле в номинальных условиях с определенной нагрузкой, переключаемой контактами.

5. Максимальная частота переключения

Это относится к максимальной частоте переключения, которая удовлетворяет механическому или электрическому сроку службы при повторяющихся операциях за счет подачи последовательности импульсов при номинальном напряжении на рабочую катушку.

6. Жизненный цикл

Он указан в столбце данных для каждого типа реле. Срок службы (количество операций) можно оценить по коммутируемому напряжению и коммутируемому току. Например, для реле DS, работающего при:
Напряжение переключения = 125 В переменного тока
Ток переключения = 0,6 А
Ожидаемый срок службы составляет 300 000
операций. Однако это значение относится к резистивной нагрузке. Обязательно внимательно проверьте фактическую загрузку перед использованием.

Кривая срока службы

1.Изоляция

Высокочастотные сигналы проходят через паразитную емкость контактов, даже если контакты разъединены. Эта утечка называется изоляцией. Символ дБ (децибел) используется для выражения величины сигнала утечки. Это выражается как логарифм отношения величин сигнала, генерируемого утечкой, к входному сигналу. Чем больше величина, тем лучше изоляция.

2. Вносимая потеря

В высокочастотной области искажения сигнала возникают из-за самоиндукции, сопротивления и диэлектрических потерь, а также из-за отражения из-за несоответствия импеданса в цепях.Потери из-за любого из этих типов помех называются вносимыми потерями. Следовательно, это относится к величине потери входного сигнала. Чем меньше величина, тем лучше реле.

3.V.S.W.R. (Коэффициент стоячей волны напряжения)

Высокочастотный резонанс возникает из-за интерференции входного сигнала и отраженного (волнового) сигнала.
V.S.W.R. относится к отношению максимального значения к минимальному значению сигнала. V.S.W.R. равен 1, когда нет отраженной волны.Обычно становится больше 1.

Примечания:
1. Если не указано иное, вышеуказанные испытания проводятся при стандартной температуре и влажности (от 15 до 35 ° C, от 59 до 95 ° F, от 25 до 75%).
2. Напряжение, подаваемое на катушку при испытаниях переключения, представляет собой прямоугольную волну при номинальном напряжении.
3. Фаза работы нагрузки переменного тока случайна.

Схема автомобильных реле

Реле — это переключатели, управляемые электроэнергией, как другой переключатель, компьютер или модуль управления.Назначение реле — автоматизировать эту мощность. для включения и выключения электрических цепей в определенное время. Реальный Преимущество реле больше, чем просто автоматизация. Они также предоставляют возможность переключения нескольких цепей, в том числе разных типов напряжения, в одном реле в одно и то же время.

Релейные переключатели

12 В постоянного тока — лучшее решение для приложений с полным напряжением, поскольку они позволяют схеме с низким током потока управлять цепью с высоким током, как автомобильный гудок, фары, дополнительные лампы, двигатели вентилятора, двигатели вентилятора и бесчисленное количество единиц оборудования, установленного сегодня на транспортных средствах.

Заглянем внутрь реле

Если бы мы открыли реле, вы бы увидели катушку электромагнита, контакты и пружина. Пружина удерживает контакт в положении пока через катушку не пройдет ток. Затем катушка генерирует магнитное поле, которое включает и выключает контакт.

Номера реле

Глядя на схему, мы видим распиновку типового реле на 12 В.Обратите внимание, что каждый вывод пронумерован. 85 и 86 — контакты катушки, а 30, 87 и 87a — контактные штыри.

87 и 87a — это два контакта, к которым будет подключаться 30. Если катушка не активирован, 30 всегда будет подключен к 87a. Вы можете думать о это как переключатель в положении ВЫКЛ. Когда на катушку подается ток, 30 Ом. затем подключается к контакту 87. Вы можете подключить реле к разомкнутому или замкнутому состоянию, в зависимости от того, как вам нужен ваш аксессуар для работы.Если вы хотите нормально замкнутое реле, вам нужно подключить к 87а. Если вы хотите нормально открытый реле, вы подключитесь к 87.

Хотя большинство реле имеют маркировку внизу, вы всегда можете найти 30 штифтов установлены перпендикулярно контактам 87 и 87a для облегчения идентификации к источнику питания.

Выход для реле

Понимая, что 85 и 86 являются выводами катушки, эти выводы будут будет передавать ток через катушку.85 будет использовано заземлить ваше реле, а 86 будет подключено к переключаемая мощность.

87 и 87a будут подключены к вашим управляемым аксессуарам который вы хотите включать и выключать с помощью реле.

30 будет контактом, подключенным к вашей батарее.

% PDF-1.3 % 205 0 объект > эндобдж xref 205 142 0000000016 00000 н. 0000003192 00000 н. 0000004392 00000 п. 0000004846 00000 н. 0000004930 00000 н. 0000005044 00000 н. 0000005138 00000 н. 0000005240 00000 н. 0000005310 00000 п. 0000005426 00000 п. 0000005487 00000 н. 0000005622 00000 н. 0000005683 00000 н. 0000005847 00000 н. 0000005908 00000 н. 0000006101 00000 п. 0000006162 00000 п. 0000006254 00000 н. 0000006346 00000 п. 0000006407 00000 н. 0000006593 00000 н. 0000006740 00000 н. 0000006801 00000 н. 0000006862 00000 н. 0000006962 00000 н. 0000007023 00000 н. 0000007084 00000 н. 0000007201 00000 н. 0000007261 00000 н. 0000007373 00000 п. 0000007433 00000 н. 0000007607 00000 н. 0000007667 00000 н. 0000007784 00000 н. 0000007844 00000 н. 0000007954 00000 н. 0000008014 00000 н. 0000008166 00000 н. 0000008226 00000 п. 0000008374 00000 н. 0000008434 00000 н. 0000008518 00000 н. 0000008578 00000 н. 0000008737 00000 н. 0000008797 00000 н. 0000008881 00000 н. 0000008941 00000 н. 0000009060 00000 н. 0000009120 00000 н. 0000009204 00000 н. 0000009264 00000 н. 0000009379 00000 н. 0000009439 00000 н. 0000009565 00000 н. 0000009625 00000 н. 0000009795 00000 н. 0000009855 00000 н. 0000009971 00000 н. 0000010031 00000 п. 0000010126 00000 п. 0000010219 00000 п. 0000010279 00000 п. 0000010339 00000 п. 0000010456 00000 п. 0000010515 00000 п. 0000010663 00000 п. 0000010722 00000 п. 0000010824 00000 п. 0000010883 00000 п. 0000010994 00000 п. 0000011053 00000 п. 0000011159 00000 п. 0000011220 00000 н. 0000011281 00000 п. 0000011342 00000 п. 0000011511 00000 п. 0000011652 00000 п. 0000011795 00000 п. 0000011937 00000 п. 0000012080 00000 п. 0000012223 00000 п. 0000012367 00000 п. 0000012510 00000 п. 0000012654 00000 п. 0000012798 00000 п. 0000012941 00000 п. 0000013085 00000 п. 0000013229 00000 н. 0000013372 00000 п. 0000013516 00000 п. 0000013660 00000 п. 0000013804 00000 п. 0000013948 00000 п. 0000014092 00000 п. 0000014308 00000 п. 0000015402 00000 п. 0000015583 00000 п. 0000015605 00000 п. 0000016328 00000 п. 0000016350 00000 п. 0000016959 00000 п. 0000016981 00000 п. 0000017553 00000 п. 0000017575 00000 п. 0000018676 00000 п. 0000018901 00000 п. 0000019464 00000 п. 0000019486 00000 п. 0000019692 00000 п. 0000020781 00000 п. 0000020888 00000 п. 0000021577 00000 п. 0000021599 00000 н. 0000022118 00000 п. 0000022140 00000 п. 0000022670 00000 п. 0000022692 00000 п. 0000023191 00000 п. 0000024314 00000 п. 0000028961 00000 п. 0000033677 00000 п. 0000037586 00000 п. 0000037665 00000 п. 0000037724 00000 п. 0000037783 00000 п. 0000037842 00000 п. 0000037902 00000 п. 0000037962 00000 п. 0000038022 00000 п. 0000038082 00000 п. 0000038142 00000 п. 0000038202 00000 п. 0000038262 00000 п. 0000038322 00000 п. 0000038382 00000 п. 0000038442 00000 п. 0000038502 00000 п. 0000038562 00000 п. 0000038623 00000 п. 0000038684 00000 п. 0000003292 00000 н. 0000004370 00000 н. трейлер ] >> startxref 0 %% EOF 206 0 объект > эндобдж 345 0 объект > транслировать HT] LU> swfdYb! BQH6 (E6 Yj # okѶj2> ؤ 11> yfic4> z {= ~

символов реле.Символы катушки, соленоида, электромагнита и контактов

Символы реле — символы катушки, соленоида, электромагнита и контактов

Реле с соленоидом

Реле поля с электромагнитным управлением имеет катушку, намотанную вокруг сердечника, который образует катушку. катушка возбуждается током, протекающим через нее. Магнитное поле тянет рычаг (подвижный контакт), чтобы замкнуть или разорвать контакт.

Электромагнитное реле с кнопкой

Это реле имеет кнопку вместо рычага.Катушка под напряжением втягивает кнопку, замыкая или размыкая контакт.

Общее реле

Реле — это электрический переключатель, который имеет набор клемм управления и контактных клемм. Клеммы управления управляются одним или несколькими управляющими сигналами для переключения контактных клемм. Они используются для переключения цепей с относительно высокой мощностью с использованием сигналов малой мощности.

Реле с двойной катушкой

Реле этого типа имеют две катушки.Каждая катушка имеет отдельные клеммы управления. Любая из двух катушек используется для замыкания или размыкания контакта. Когда катушка 1 находится под напряжением, она вступает в контакт, в то время как подача питания на катушку 2 размыкает контакт. Реле с двойной обмоткой — это в основном устройства фиксации, контакты которых остаются в своем положении даже после обесточивания катушки.

Реле с двойной обмоткой и противоположным направлением обмоток

Реле с двойной обмоткой такого типа имеет обмотки, противоположные друг другу.Магнитное поле, создаваемое одной катушкой, противоположно другой. Каждая катушка меняет положение контактов при подаче напряжения.

Реле максимального тока

Реле максимального тока — это защитное реле, которое срабатывает, когда ток превышает предел, для защиты системы. Он в основном изолирует систему от тока короткого замыкания, размыкая контакт между ними.

Реле минимального тока

Это также реле защиты по току, используемое для защиты системы или цепи от низкого тока.Он активируется, когда ток уменьшается от указанного предела.

Реле дифференциального тока

Дифференциальное реле работает на разности фаз между входным и выходным током системы. Если есть какая-либо разница, это означает наличие тока повреждения, поэтому он начинает переключаться. Они используются для защиты трансформаторов, фидеров, двигателей и т. Д.

Реле быстрого отключения

Как следует из названия, такой тип реле имеет очень быструю скорость отключения.Как только с катушки отключается питание, катушка немедленно обесточивается и, таким образом, переключает контакт.

Реле медленного возбуждения

Реле такого типа имеют медленно работающую катушку. Во время возбуждения катушки есть задержка по времени для переключения контактных выводов.

Реле медленной дезактивации

Реле такого типа имеет задержку по времени при отключении питания от его клемм управления.Параллельно подключен конденсатор, который удерживает катушку под напряжением в течение определенного времени в зависимости от ее характеристик. После разряда конденсатора катушка обесточивается и переключает контакты.

Реле быстрого переключения

Это реле быстрого переключения, которое может мгновенно переключаться из активированного состояния в деактивированное, очень быстро и наоборот. Катушка такого реле включается или отключается, как только питание подается или снимается соответственно.Они используются для приложений мгновенного переключения.

Неисправное реле напряжения

Реле защиты такого типа срабатывает при неисправном напряжении в линии. Когда в линии возникает сбой напряжения, который может вызвать повреждение оборудования, реле срабатывает, чтобы предотвратить такое повреждение.

Реле доступа к карте

Это электронное реле, работающее на специальных картах. Большинство реле доступа к карте представляют собой беспроводные реле, которые идентифицируют карту и по беспроводной сети передают сигнал на реле для активации или деактивации.Они используются в целях безопасности.

Реле не зависит от переменного тока

Катушка такого типа не подвержена влиянию переменного тока.

Дифференциальное реле

Дифференциальные реле работают на разнице между двумя электрическими величинами. Они активируются, когда указанная разница превышает или уменьшает фиксированный предел. Большинство дифференциальных реле представляют собой защитные реле, используемые для защиты систем.

Поляризованное реле

Поляризованное реле — это тип реле, переключение которого зависит от направления тока, протекающего через катушку.Некоторые реле имеют магнитную поляризацию, другие используют диод, включенный последовательно с катушкой, что предотвращает протекание тока в обратном направлении.

Магнитно поляризованное реле

Поляризованное реле состоит из электромагнитной катушки и постоянного магнита. Магнитный поток катушки искажает магнитный поток постоянного магнита, чтобы переключать контакты в любом положении. В этих реле обычно три позиции. Обычно он находится в нейтральном положении, и направление тока переключает его в любое из двух других положений.

Электромагнитное реле

Реле такого типа имеет электромагнитную катушку, на которую подается напряжение переменного или постоянного тока. Катушка создает магнитное поле, которое притягивает рычаг (контакт) для замыкания или размыкания контакта.

Тепловое реле

Реле такого типа работает от температуры. Есть биметаллическая полоса, которая изгибается при нагревании. Теплоизлучающий элемент внутри реле из-за сильного тока сгибает металлическую полосу, чтобы разорвать или замкнуть контакт.Они используются для защиты машин от перегрузки.

Твердотельное реле

Твердотельное реле (SSD) — это тип реле, которое сделано из полупроводников и использует оптопару для переключения главной цепи. В нем нет движущихся или механических частей, поэтому они имеют больший срок службы, так как механические контакты изнашиваются при переключении. Отсутствуют переключающие шумы или влияние вибрации или движения на его переключение.

Шаговое реле

Шаговое реле — это тип реле, которое направляет входной ток через одну из многих выходных клемм с помощью серии управляющих импульсов.Импульсы перемещают контактный рычаг, пошагово вращаясь, чтобы подключить его к одной из нескольких выходных клемм.

Реле дистанционного управления

Реле такого типа управляются с помощью беспроводного пульта дистанционного управления. Эти реле позволяют пользователю или любой системе управлять им без какого-либо физического или электрического подключения. Они реле могут включаться / выключаться или переключаться на один из нескольких выходов в зависимости от его типа.

Импульсное реле

Импульсное реле — это тип реле с фиксацией, которое активируется импульсом напряжения.Он сохраняет свое положение, т.е. либо ВЫКЛ, либо ВКЛ, до тех пор, пока не появится импульс напряжения.

Remanance Relay

Remanant или Remanance Relay — это тип реле с фиксацией, которое сохраняет свое положение благодаря остаточному магнитному полю в сердечнике. Сердечник обесточивается током в обратном направлении.

Реле прерывистого действия

Реле такого типа имеет функцию выдержки времени. После активации его контакты замыкаются через фиксированный промежуток времени, а затем снова открываются.Цикл повторяется до тех пор, пока не будет отключен источник питания.

Электромагнитный клапан

Электромеханический клапан — это электромеханический клапан, который используется для регулирования потока любой жидкости или переключения потока жидкости в другие порты. Электромагнитные клапаны бывают разных типов в зависимости от тока и его механизма.

Реле переменного тока

Как следует из названия, катушка такого реле запитывается только при подаче переменного тока.Переменный ток создает переменное магнитное поле в катушке, что приводит к притяжению контактного вывода.

Реле задержки включения / выключения

Это символ, обозначающий реле, которое имеет функцию задержки времени как для активации, так и для деактивации. Контакты таких реле включаются и выключаются с регулируемой задержкой по времени для подачи импульсов питания. Мигающий свет является ярким примером применения реле с выдержкой времени.

Реле механического резонанса

Реле такого типа обнаруживает механический резонанс в системе и активируется при возникновении резонанса.Механический резонанс — это явление, когда механическая частота становится равной собственной частоте системы. В этом случае резонансная частота составляет 25 Гц.

Реле блокировки

Реле блокировки состоит из двух или более чем двух катушек с отдельными контактами, и включение одной катушки зависит от положения контактов других катушек.

Геркон-реле

Геркон состоит из магнитного контакта, заключенного в трубку, заполненную инертным газом.Контакты заключены внутри электромагнитной катушки. Контакт подключается, когда катушка находится под напряжением или если есть внешнее магнитное поле. Он очень быстр и чувствителен к низким токам, но имеет очень низкие значения тока и напряжения.

Реле максимального напряжения

Реле защиты такого типа используется для защиты от высокого напряжения. . Он активируется, когда напряжение превышает указанный предел напряжения реле.

Реле минимального напряжения

Это также реле защиты, но оно срабатывает, когда уровень напряжения снижается с заданного предела.Он защищает схему от низкого напряжения.

Реле отсутствия напряжения

Реле защиты по напряжению такого типа обнаруживает наличие напряжения. Когда подача напряжения отключена, он активируется. Он используется в пускателях двигателей для увеличения сопротивления при снятии напряжения, чтобы двигатель не запускался автоматически с низким сопротивлением якоря (которое может привести к его повреждению).

Дистанционное реле

Дистанционное реле или реле импеданса работает на импедансе между повреждением в линии и точкой его установки.Импеданс измеряется номинальными значениями тока и напряжения от CT & PT. Как только импеданс уменьшается от предела импеданса реле, реле активируется.

Реле защиты обрыва проводника

Реле защиты такого типа используются для обнаружения обрыва проводника в 3-фазной энергосистеме. Он работает на соотношении тока прямой последовательности (I1) к току обратной последовательности. Соотношение значительно увеличивается при обрыве фазы, и реле активирует сигнализацию.

Реле минимальной мощности

Защитное реле такого типа контролирует подачу мощности. Как только мощность упадет от своего порога, он активируется, чтобы разорвать или установить контакт.

Реле защиты от короткого замыкания в катушках

Это реле обнаруживает короткое замыкание между витками катушек и активирует защитные меры для предотвращения дальнейшего повреждения систем.

Реле обратного тока

Реле такого типа размыкают контакты при протекании тока в обратном направлении.Он используется в генераторах постоянного тока, когда напряжение батареи выше, чем напряжение генератора, реле отключается, чтобы остановить разрядку батареи.

Трехфазное реле обнаружения сбоя

Это реле защиты, используемое для трехфазной нагрузки, такой как двигатель или другое оборудование, для предотвращения его запуска из-за повреждения или перегорания во время разомкнутой фазы или отказа любой фазы.

Реле максимального / минимального тока

Такое реле защиты используется для защиты от низкого или высокого тока.Пока ток остается в пределах своего предела, реле не срабатывает, но как только ток пересекает какой-либо (неправильный ток), ограничьте разрыв контактов для защиты цепи.

Реле остановки двигателя

Остановка двигателя — это состояние, при котором обмотка находится под напряжением, но ротор не вращается. Во время остановки двигатель потребляет большой ток, который может вызвать перегрев. Это из-за большой нагрузки при запуске или потери фазы. Реле блокировки защищает двигатель от такого состояния.

Реле частоты

Реле этого типа работает на частоте энергосистемы. Они используются для обнаружения и защиты от аномальных частот (пониженная частота и повышенная частота) в генераторах и т. Д. Если частота превышает или уменьшается от указанного предела, он активируется для переключения контактов.

Реле автоматического повторного включения

Реле такого типа может автоматически повторно включаться после размыкания из-за сбоя питания.Они используются в энергосистемах, где неисправность может исчезнуть сама собой после отказа. Если неисправность все еще существует, реле блокирует контакты в разомкнутом состоянии после нескольких попыток.

Реле максимального тока с выдержкой времени

Реле защиты от тока такого типа добавляет функцию выдержки времени. Они используются в энергосистеме, которая может выдерживать высокий ток в течение короткого времени. Если ток остается высоким в течение определенного времени, реле размыкает контакт.

Контрольное реле

Реле такой защиты или аварийной сигнализации контролирует или измеряет электрические величины и защищает цепи от них, когда они превышают установленный предел. Звездочка заменяется символом этого количества. Типы реле контроля: реле максимального напряжения / тока, реле минимального напряжения / тока и т. Д.

Электромагнит

Электромагнит — это провод, намотанный на катушку вокруг магнитопровода.Ток, протекающий через катушку, создает магнитное поле, которое усиливается магнитопроводом. Он используется в реле для срабатывания контактных выводов.

Открытые контакты

Эти символы используются для обозначения открытых контактов реле. Это означает, что контакт разомкнут и ток отсутствует.

Замкнутые контакты

Эти символы представляют замкнутые контакты или замыкающий контакт. Контакты короткие, и через них может протекать ток.

Нормально разомкнутый контакт

Этот символ представляет контакты реле, которые разомкнуты при отсутствии питания. Цепь разомкнута, ток отсутствует. Когда реле активируется, замыкаются контакты, и оно начинает проводить.

Нормально замкнутый контакт

Это контакт реле, который находится в замкнутом положении при отсутствии питания. контакты размыкаются, когда реле срабатывает для разрыва цепи.

Переключающий контакт

Это переключающий контакт реле, которое замкнуто или подключено к одной клемме (известной как нормально закрытая клемма), когда реле деактивировано, а другая клемма разомкнута (известная как нормально разомкнутая клемма). ). Он изменяет положение контакта при срабатывании реле.

Переключатель

Эти два символа представляют переключающую часть реле, которая используется для включения / выключения или переключения тока с одной клеммы на другую.

Другие символы в области электротехники и электроники:

Номера обозначений реле | Поиск контактной информации

Результаты листинга Номера обозначений реле

Обозначения реле и номера устройств; выбор из…

6 часов назад Реле символов и прибор номеров ; выбор из IEC 617-, IEEE C37.2-1991 и IEEE C37.2-1979 1MRK 590 006-BEN Страница 4 Символы и обозначения (продолжение) Обозначения Ir, Ur Номинальный ток, напряжение Ib, Ub Base ток, напряжение Is, Us Установить ток, напряжение L1, L2, L3, N Обозначения фазы Переменный ток, переменный ток Постоянный ток, постоянный ток, постоянный и переменный ток

Показать еще