Регулятор температуры паяльника на lm358: Схема простого терморегулятора на LM358 – https://www.youtube.com/watch?v=tqzybtnyij0

Доработка паяльника — skubr.ru

Ранее купленный паяльник решил сделать своим основным. А раз так, то нужно привести паяльник к более адекватному состоянию. Можно пользоваться и без доработки, но здесь уже есть готовая схема, которую можно улучшить совсем небольшими усилиями.

Первое, что я сделал, это убрал заземляющий провод. При всей его полезности без наличия дома земли смысла в нём нет вообще никакого. Обнаружилось, что крокодильчик не припаян, провод к нему просто примотан.

Ещё обнаружил, что выводы нагревателя фактически не припаяны к плате. Сборщик не залудил провода, вероятно его рабочий флюс не берёт нихром. С кислотой мне с трудом, но удалось залудить концы, после чего я припаял выводы обратно.

Моё первое впечатление после покупки о том, что паяльник собран неплохо, оказалось несколько преувеличенным. Элементы корпуса тоже сделаны неровно, дырки под винты нигде точно не совпадают, но это заметно только при разборе. Все надписи с наклейки стёрлись за пару дней.

Схема

Такая схема используется, наверное, во всех подобных паяльниках. Если вы видите на плате LM358 (или аналог) и симистор, но не видите микроконтроллера, то, скорее всего, там будет почти всё то же самое. Пересмотрел в магазинах все прозрачные варианты, везде сборка более старая. В моём варианте всё, что можно, выполнено поверхностным монтажом.

На схеме выделил условно отдельные блоки. Названия элементов оставил оригинальными. Модель платы обозначена как «LM5428M, Design: Liym». На первом фото платы уже есть одна из доработок — индикация включения.
 Доработка паяльника
 Доработка паяльника
 Доработка паяльника
R1 — самая горячая деталь на плате, тепло чувствуется даже через ручку. Номинал стабилитрона WD точно не знаю, напряжение на нём 21-22 В. HEATER — нагреватель, TC — термопара. Вход сети 220 В обозначен как пара AC и GND. Синим цветом отмечены мои доработки.

Вся схема находится под высоким напряжением относительно земли, это нужно учитывать при работе с ней. Через всю плату проходит дорожка для контакта заземления. но она не используется, вместо неё сборщик протянул единый провод от основания нагревателя до крокодила через всю ручку.

Блок выпрямителя и стабилизатора формирует постоянное напряжение около 20 В, необходимое для питания операционных усилителей (LM358) и блока регулировки.

Блок регулировки температуры состоит из кучки резисторов, реализующих регулируемый делитель напряжения, на выходе которого образуется опорное напряжение, примерно 5-20 мВ, с которым сравниваются показания с датчика температуры.

Датчик температуры включен в схему триггера Шмитта (компаратор с гистерезисом) на основе первой половинки LM358 со смещением, задаваемым блоком регулировки. При падении температуры напряжение (термо-ЭДС) на термопаре TC падает, на выходе усилителя ноль. При повышении температуры на выходе получается примерно +20 В. Триггер обеспечивает ровное (без дребезга) переключение состояний за счёт того, что уровень включения выше уровня выключения.

Нагреватель подключен через симистор. Вторая половинка LM358, включенная по схеме компаратора, формирует для него управляющий сигнал на основе синусоиды 50 Гц из сети, см. делитель на R6-R7, и сигнала с триггера. Если температура слишком маленькая, на выходе компаратора ноль, после конденсатора CD2 поэтому тоже ноль, индикатор не горит, симистор заперт. Как только температура падает, на выходе компаратора образуется меандр с той же фазой, что и переменка на условном аноде симистора, что является достаточным условием для его полного открытия.

Диод D2 нужен не только для защиты светодиода LED от большого обратного напряжения, но и для пропускания отрицательной части управляющего сигнала. Ток ограничивается входным сопротивлением управляющего электрода симистора, по документации ток на нём не более 3 мА.

Модификация нагревателя

Отвлечёмся немного от схемы и взглянем на нагреватель, а также на то, как глубоко в него входит жало.
 Доработка паяльника
 Доработка паяльника
Очевидно, что спираль находится довольно далеко, её можно было разместить поближе к жалу. Жало тоже установлено не оптимально, но его здесь глубже не затолкать, мешает термопара, да и коротким концом работать неудобно.

Не могу сказать, что нагреватель и датчик работают плохо, нет явной причины браться за переделку этой части паяльника. Но есть ощущение, что кончик жала разогревается значительно дольше, чем хвост, где находится термодатчик, нужно ждать пару циклов подогрева, чтобы прогреть его.

После некоторого опыта работы с таким жалом-иглой решил менять его хотя бы даже на острое, но не такое вытянутое. Я бы поменял на плоское (отвёрткой), но не могу найти по адекватной цене. На небольших температурах, достаточных однако для расплавления припоя, работать сложно, а на высоких припой на жале быстро окисляется.

Индикатор включения

Добавил индикатор включения, питающийся от выпрямителя (VCC), горит всегда, пока паяльник подключен к сети. Светодиод оказался сверхъярким даже среди диодов из той же партии, пришлось ставить к нему резистор огромного номинала (750 кОм, ток получился около 25 мкА).

Индикатор нагрева работает в цепи переменного тока, поэтому он заметно мерцает. Индикатор питания работает от постоянного тока, горит ровно, цвет приятный, не мешает. Пару R100-LED100 припаял к ногам конденсатора CD1. На фото выше номинал резистора 220 кОм, и фото со светящимся индикатором также сделано при этом номинале, но позже мне показалось свечение диода слишком ярким, и я заменил резистор на 750 кОм.

Сокращение периода нагрева и остывания

Паяльник поддерживает заданную температуру с большим разбросом, захотелось его уменьшить. Для этого нужно сократить период нагрева и остывания, чтобы паяльник не успевал слишком сильно остывать после нагрева.

На схеме первая половинка LM358 вместе с термодатчиком образует схему триггера Шмитта, которая и обеспечивает необходимый цикл включения и выключения нагревателя с гистерезисом. Без гистерезиса происходили бы постоянные переключения нагревателя. В идеальном случае такое поведение обеспечивало бы максимально стабильную температуру нагревателя, но в действительности из-за неидеальности компонентов и схемы приходится уменьшать частоту переключений, хотя я не думаю, что здесь реализовали адекватное время переключения. На типовой температуре (у меня это отметка 275) нагреватель работает пол минуты, потом остывает минуту. Теоретически, ничто не мешает уменьшить это время на порядок в пределах той же схемы.

Настройка гистерезиса в триггере Шмитта на операционном усилителе производится выбором номиналов резисторов в положительной обратной связи, в данном случае это R5 и R4 с термопарой TC. Увеличивая R5 и/или уменьшая R4 мы можем уменьшить разницу напряжений на входах, при которой происходит переключение выхода с высокого уровня на низкий и обратно. В цепи обратной связи присутствует термопара, поэтому простое изменение номиналов R4 и R5 может также повлиять на калибровку температуры.

Попробовал заменить R4 на 50 Ом, и R5 вплоть до 3,5 МОм, сначала менял один, потом другой, удавалось снизить время нагрева до 15 секунд (до переделки было 25 секунд) и времени остывания до 40 секунд (до переделки — 65 с), паяльник при этом работал почти нормально. При дальнейшем уменьшении периода подогрева моменты включения и выключения становились нестабильными, но снижение периода на 40% — уже хорошо.

Подходящего термометра у меня нет, но, судя по изменению напряжения на термопаре, при таком изменении средняя температура сдвигается вверх, но верхний предел опускается вниз. То есть такая модификация вполне безопасна, дополнительная калибровка необязательна. Калибровку можно попробовать выполнить уже предусмотренным для этого подстроечным резистором W2 и, если понадобится, изменением номинала R2. Судя по сужению диапазона изменений ЭДС термопары, предположив также, что здесь стоит термопара типа K, раньше на отметке 250 был разброс около 45°C, а после переделки — около 25°C.

Даже при минимальном изменении параметров, например при изменении только R4 на 50 Ом, схема начинает работать нестабильно, моменты переключения становятся дёрганными, триггер работает плохо. Это происходит из-за относительно низкого напряжения, выдаваемого термопарой, порядка 10 мВ на отметке 250), при котором на схему начинают влиять шумы и наводки.

Бороться с шумами в схеме, где высокие частоты не нужны совсем, можно фильтром нижних частот. Сначала нужно определиться с источником шума. Конденсатор, установленный в параллель термопаре не помог вообще, пробовал номиналы 100 нФ и 22 мкФ. Оказалось, что намного больше шумит блок регулятора. Конденсатор на 22 мкФ, подключенный между выходом регулятора и землёй, почти полностью убирает нежелательные переключения, но конденсатор оказался слишком больших размеров, в ручку паяльника не влезает, а мелких низковольтных под рукой не оказалось.

Предположив, что часть шумов и наводок появляется ещё до регулятора, вместо выхода конденсатор можно поставить на входе, а это выход выпрямителя. Меняем конденсатор CD1 на 22 мкФ, конденсатор большей ёмкости не влезает в ручку. Как принято, зашунтируем его еще и керамикой, например SMD-конденсатором на 100 нФ (C101 на схеме). Не знаю, насколько это изменение повлияло на результат, но оно точно не мешает.

Далее добавляем фильтр НЧ в триггер в виде ёмкостной отрицательной обратной связи. Мне понадобился конденсатор всего на 0,1 мкФ, чтобы получить примерно тот же эффект, что давали 22 мкФ на выходе регулятора. В окончательном варианте поставил конденсатор на 1 мкФ (большей ёмкости мелкого размера у меня просто не нашлось), что полностью убрало дребезг даже при ещё большем уменьшении номинала R4 до 22 Ом.

Посмотрим на результат. До переделок на отметке 275 градусов период подогрева был 111 с (нагрев 30 с, остывание 81 с), после переделки — 71 с (нагрев 20 с, остывание 51 с). На отметке 350 было 85 с (нагрев 48 с, остывание 37 с), стало 57 с (нагрев 34 с, остывание 23 с). Значения до переделки отличаются от тех, что приводил ранее, так как регулятор настройки слишком грубый, чтобы точно установить его ровно на то же значение, что раньше.

Получилось сокращение периода на 30-40 % на моих типовых рабочих температурах. Ранее уже показал, что такое снижение ещё более сильно (в процентах) снижает разброс температур в начале подогрева и после. Не идеал, конечно, но почти в два раза уменьшить разброс малым вмешательством в схему — неплохой результат.

Ниже показаны доработки на плате. Конденсатор C100 припаян к ножкам LM358, светодиод и резистор для него держатся за счёт пайки. Под конденсаторы залил герметик, чтобы не висели в воздухе. C101 удобно припаялся с нижней стороны к контактным площадкам для CD1.
 Доработка паяльника

Что дальше

Обязательно сменю жало. Если для монтажа сойдёт и такое, то для демонтажа оно очень неудобно. Кончик этого жала долго прогревается, причём датчик температуры этого не видит и вырубает паяльник при первом прогреве слишком рано. При пайке даже толстых дорожек, не только полигонов, приходится поднимать температуру, иначе жало липнет.

Можно попробовать ещё уменьшить период подогрева, увеличив R5 и ещё больше уменьшив R4, но меня пока устроил и такой результат, проблема с жалом более актуальна. Значительное уменьшение периода подогрева в данной схеме требует дополнительных мер по снижению шума. Первый кандидат на переделку — блок регулировки, нужно заставить его намного меньше шуметь. Также можно поставить менее шумный ОУ. Схему выпрямителя неплохо было бы переделать, чтобы убрать из неё горячий R1, греющаяся ручка у паяльника в нетипичном месте отвлекает.

Управление нагревателем можно было бы доверить простейшему микроконтроллеру с программой, эффективнее подавляющей шумы, да и логику триггера можно было бы сделать более продвинутой. Скорее всего, в более дорогих паяльниках и паяльных станциях именно так и сделано, я это вижу единственным правильным развитием идеи подобного устройства.

Паяльная станция.

Обзор устройства паяльной станции Lukey 936D

Мой рассказ о паяльной станции в первую очередь адресован тем, кто ещё не имеет таковой и, возможно, желает в ближайшее время её купить.

Действительно, не каждый начинающий радиолюбитель начал практическое знакомство с электроникой, имея под рукой паяльную станцию. Многие учились паять и обычным электрическим паяльником.

Свой рассказ о паяльных станциях я начну с обзора паяльной станции Lukey 936D. Да, в продаже полно комбинированных паяльных станций (паяльник + фен), но термовоздушную паяльную станцию я купил ранее. Поэтому мой взор пал на паяльные станции без фена, только паяльник и ничего более.

Вот так выглядит паяльная станция Lukey 936D. В комплекте идёт также подставка для паяльника и целлюлозная губка.

Аналоговая паяльная станция Lukey 936D с цифровой индикацией

Данная станция относится к аналоговым с цифровой индикацией. Микроконтроллеров в ней нет! Честно говоря, когда покупал, то смутно представлял себе устройство современных паяльных станций — для меня это был «чёрный ящик».

Глядя с верхушки нынешних знаний, отмечу, что цифровые паяльные станции лучше, хотя бы тем, что более точно поддерживают температуру жала. Уже гораздо позже я приобрёл цифровой паяльник с термостабилизацией.

В реальности устройство паяльной станции весьма простое. Чтобы связать невидимой нитью понимания теорию и практику, приведу вначале схему паяльной станции Lukey936D, а затем покажу фотки реальных деталей и элементы схемы.

Схема паяльной станции Lukey 936D.

Вот и схема Аналоговая паяльная станция Lukey 936D с цифровой индикацией.

Схема паяльной станции Lukey 936D

Кликните для увеличения по картинке (откроется в новом окне).

Пояснения к схеме:

  • Перемычка J1 — это встроенная в разъём подключения паяльника перемычка. Механический элемент защиты на случай, если паяльник не подключен.

  • Керамический нагреватель паяльника показан в виде конструктивно объединённого элемента из спирали нагревателя

    TH и тонкоплёночного термистора R.

  • Силовая часть показана отдельно: трансформатор T1, плавкий предохранитель F1 (F1AL250V) и выключатель питания SA1.

  • На схеме не показаны элементы защиты (ESD SAFE).

Теперь заглянем под «капот».

Схема индикации реализована на микросхеме DH7107GP (полный аналог ICL7107). Да, эта микросхема довольно часто применяется в измерительных приборах, но в данном случае она используется для отображения температуры с терморезистора (термистора). То есть в роли термометра.

Плата индикации температуры с россыпью семисегментных индикаторов.

Плата индикатора температуры паяльной станции Lukey 936d

Микросхема DH7107GP в панельке, + к параметру ремонтопригодность.

Микросхема ICL7107 на плате индикации паяльной станции Lukey 936D

В случае чего микросхему DH7107GP можно заменить даже отечественным аналогом — КР572ПВ2.

Микросхема ICL7107 и панель

На схеме я не стал приводить полную схему индикатора температуры, ограничился лишь обозначением модуля на схеме.

Силовая часть.

Силовая часть состоит из силового трансформатора мощностью где-то 60 — 70 Вт. Он имеет две вторичных обмотки. Одна вторичная обмотка выдаёт 26V — это для питания нагревателя паяльника и схемы управления. С другой снимается двухполярное напряжение 9V — оно необходимо для работы индикатора паяльной станции.

Силовой трансформатор паяльной станции

Плата управления.

А как же паяльная станция стабилизирует температуру жала? Ответ прост, вся изюминка в микросхеме HA17358 (она же LM358). Это операционный усилитель, который используется в качестве компаратора — то есть схемы сравнения. Гляньте на печатку, найдёте много знакомых радиодеталей. При желании и небольшом опыте такую станцию может собрать даже начинающий радиолюбитель.

Печатная плата паяльной станции Lukey 936D

В качестве задатчика температуры используется обычный переменный резистор на 100 кОм. Он устанавливается на передней панели. Из-за него бывают проблемы. Если цифры на дисплее постоянно скачут, то проверьте именно этот резистор. Возможно, отошёл или плохо «контачит» ползунок этого резистора.

Переменный резистор

На плате управления есть несколько подстроечных резисторов. На схеме они обозначены как PR1 и PR2. Без надобности крутить их не советую. Они задают режим работы станции.

Кроме прочего на основной печатной плате можно обнаружить диодный мост на диодах 1N4007 (или сборка DB107) и два интегральных стабилизатора положительной (L7805ABP) и отрицательной (

79M05D) полярности на 5V. Двухполярное напряжение ±5V нужно для питания индикатора.

Интегральные стабилизаторы отрицательной и положительной полярности

По принципиальной схеме можно понять, как работает паяльная станция. Микросхема LM358 сравнивает эталонное, заданное оператором значение с тем, что оно получает от терморезистора в керамическом нагревателе. Далее если температура нагревателя ниже заданного, микросхема подаёт сигнал на открытие симистора VS1 (BT131-600 или 97А8). При этом индикаторный светодиод HL1 горит постоянно. Симистор VS1 открывает более мощный VS2 (BT-136-600E) и тот подаёт ток на нагревательный элемент Th2 керамического нагревателя.

После того, как нагреватель наберёт температуру, светодиод начинает мигать — на нагреватель подаются небольшие порции тока — лишь для поддержания нагрева. Если же паяльником не пользуются, то нагреватель полностью отключается от схемы питания. Это видно по потухшему светодиоду HL1.

Электростатическая защита.

Пару слов хотелось бы сказать о защите. Металлические элементы паяльника заземлены. Если разобрать паяльник, то можно обнаружить, что металлическая часть штуцера контактирует с пружиной.

Заземляющая пружина

Она в свою очередь подключена к заземляющему проводу сетевой вилки. Этот же провод подключен к магнитопроводу силового трансформатора.

Экранировка трансформатора и элементы защиты

Таким образом реализована функция ESD SAFE — защита от электростатического разряда и электромагнитных импульсов. Правда, толк от такой защиты никакой, если в вашей квартире, доме или мастерской электросеть не имеет заземления (третьего провода электропроводки).

Как оказалось, нагреватель в паяльнике качественный, керамический типа

HAKKO 1321 (A1321).

Нагреватель HAKKO 1321

Именно тип нагревателя меня интересовал более всего. Перед покупкой я проверил, есть ли заветная «ступенька» у нагревателя. Стоявшая рядом Lukey 936A оказалась с нихромовым нагревателем.

Сам паяльник от станции в устройстве не представляет ничего особенного. Вся электрическая часть состоит из запаянного на плату керамического нагревателя и соединительного шнура с разъёмом типа «папа».

Вот так подключены элементы паяльника к разъёму. Как уже говорилось, перемычка встроена в разъём.

Цоколёвка разъёма паяльника

После первого включения я был приятно удивлён скоростью нагрева жала. До этого пользовался обычным паяльником ЭПСН на 40 Вт, и меня жутко раздражало то, что приходится ждать несколько минут пока жало наберёт температуру. Когда паяешь что-то серьёзное — нет проблем, можно и подождать. А вот когда надо проводок быстро запаять или ещё чего…

Но кроме приятных моментов меня поджидали и разочарования Цоколёвка разъёма паяльника. Первое — это сменные жала. Те, что я купил, оказались не самыми удобными для пайки, да и качества были сомнительного. Пришлось брать другие. Второе — плохая теплопроводность жала. Как я с этим справился читаем далее.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Паяльная станция своими руками

Автор: novgen

Паяльная станция: несложная схема, доступные радиодетали, доступно начинающим радиолюбителям

Здравствуйте, уважаемые читатели сайта.

Сегодня, я расскажу Вам, как самостоятельно сделать паяльную станцию из доступных радиодеталей. Эта конструкция доступна для повторения как опытным, так и начинающим радиолюбителям.


Для качественной пайки, своих конструкций, в домашних условиях, требуется установка точной температуры жала паяльника. Это один из самых важных параметров для паяльника. Температура жала должна быть ниже, чем температура горения канифоли и выше температуры ее кипения, и плавления олова.
Радиолюбителям, имеющим низковольтный электропаяльник со встроенной термопарой и четырехпроводным кабелем для подключения к устройству регулирования температуры, рекомендую изготовить простой стабилизатор температуры жала. Мной был выбран для этой цели паяльник, от паяльной станции – HAKKO – 907.


О температуре жала паяльника:
Температура жала – определяет качество пайки. Температуру, как правило, регулируют по таянью канифоли…. Она должна кипеть, но не гореть. На жале хорошо отрегулированного паяльника канифоль кипит, но не горит. Кипящая канифоль – приятно пахнет, быстро испаряется, но не оставляет на жале сгоревших остатков черного цвета.

Некоторые данные Паяльной станции:
1. Выход на раб.темп. – 225град.- 50сек.
2. Поддержка темп.(интервал между включ. и выключ.) – 4 град.
3. Выставленная шкала регулировки 26-320 град (если регулятор выставить на минимум, паяльник остывает до комнатной темп. и выключается)
4. Калибровка термопары паяльника в сравнении с показаниями мультиметра 3-4 град.
5. Паяльник 24в/50w – HAKKO 907, со сменными жалами (практически можно вставить любое – медь, керамику или вечное)


В устройстве применены широко распространённые комплектующие.
Никаких ограничений по замене малосигнальной части схемы – нет.

В качестве измерителя (индикатора) температуры, я применил микросхему ICL7107 (КР572ПВ2А) и семисегментные индикаторы – SA04-11 (Красные с общ. анодом)



Силовые элементы лучше применять с допусками по напряжению и по току, соответствующими питающему напряжению и мощности потребителя – нагревателя паяльника (50 W).


Скачать файлы печатных плат (в формате SPL.6):

  Паяльная станция (69.0 KiB, 6,355 hits)

  Измеритель (72.0 KiB, 5,031 hits)

Скачать Даташиты (использованные в конструкции):

  TS106 (78.4 KiB, 4,058 hits)

  MOC3063 (296.5 KiB, 14,221 hits)

  LM358 (459.6 KiB, 3,415 hits)

  L7805, L7905 (1.8 MiB, 2,655 hits)

  ICL7107 (179.8 KiB, 4,149 hits)

На этом пожалуй и всё. Жду Ваши отзывы и комментарии на сайте или форуме.

С уважением, novgen (Автор)



Доработка стабилизатора температуры жала паяльника

Р/л технология

Главная  Радиолюбителю  Р/л технология



Автор доработал своё устройство. В результате увеличена его допустимая выходная мощность, повышена надёжность, упрощено и улучшено схемное решение.

Эксплуатация разработанного мною ранее стабилизатора температуры жала паяльника с разными типами и конструкциями паяльников потребовала доработки схемотехнического решения для повышения его надёжности и чёткости срабатывания узла терморегулятора. Кроме того, мощность подключаемых паяльников была ограничена предельным током выпрямительного моста КЦ407А (0,5 А) и оптрона МОС3063 (1 А). В доработанном устройстве применён более мощный выпрямительный мост, а вместо элемента управления нагревателем — оптосимистора — мощный симистор. Кроме того, исключены резистивный делитель R1R2, задающий образцовое напряжение, и резистор R6, не оказывающий влияние на качество работы стабилизатора. Ток разрядки конденсатора С3 ограничен до безопасного для выхода ОУ D1.2 уровня.

Схема доработанного варианта стабилизатора приведена на рис. 1. Подробное описание исходного варианта уже было дано ранее, отметим лишь основные отличия.

Рис. 1. Схема доработанного варианта стабилизатора

Образцовое напряжение подано не с резистивного делителя, как раньше, а с общей точки соединения стабилитронов VD3, VD4. Катод излучающего диода оптрона U1 MOC3063 подключён непосредственно к выходу таймера терморегулирующего узла, задающего интервал времени нагрева жала. Это позволило гарантировать более чёткое управление состоянием нагревателя паяльника даже с самым малым изменением его сопротивления. Таймер, аналогично предыдущей конструкции, собран на ОУ DA1. 1, включённом как компаратор.

Рассмотрим кратко работу терморегулирующего узла и его элементов.

При снижении температуры нагревателя ниже установленного подстроечным резистором R3 порога напряжение на инвертирующем входе ОУ DA1.2 становится меньше образцового, заданного стабилитроном VD4 (+5,6 В). На выходе ОУ появляется положительный перепад напряжения. Этот перепад через разряженный к этому времени конденсатор С2 (его ток разрядки через выход ОУ DA1.2 ограничивает резистор R5) поступает на инвертирующий вход ОУ Da 1.1. Напряжение на его инвертирующем входе становится больше образцового на время, заданное параметрами дифференцирующей цепи R4C2. На выходе Оу появляется и устанавливается напряжение близкое к нулю. Загораются светодиод HL1 и излучающий диод оптосимистора U1. Оптосимистор открывается, что приводит и к открыванию мощного симистора VS1 от выпрямленного диодным мостом VD7 сетевого напряжения, снимаемого с резистивного делителя R8R9. Нагревательный элемент паяльника подключается к сети. По истечении времени, заданного цепью R4C2 (4…6 с), напряжение на инвертирующем входе Оу DA1. 1 опять становится меньше образцового и на выходе ОУ появляется положительный перепад напряжения. Светодиод гаснет, закрывается оптоси-мистор, что приводит и к закрыванию симистора VS1 — нагревательный элемент паяльника отключается от сети. Его следующее подключение произойдёт после остывания до соответствующей температуры, заданной резисторами R1 -R3.

При замене или выборе симистора VS1 и диодного моста VD7 других типов необходимо учитывать, что их предельно-допустимый ток должен превышать максимальный ток нагрузки. Замена микросхемы ОУ LM358P на компаратор LM393P потребует установки между её выводом 1 (выходом) и плюсовой линией питания узла управления резистора сопротивлением 5…10 кОм. О замене остальных элементов, налаживании и конструктивном варианте исполнения стабилизатора было подробно рассказано в предыдущей статье.

Устройство собрано на печатной плате из фольгированного с одной стороны стеклотекстолита. Чертёж платы и расположенные на ней элементы показаны на рис. 2.

Рис. 2. Чертёж платы и расположенные на ней элементы

Автор: Л. Елизаров, г. Макеевка Донецкой обл., Украина

Дата публикации: 22.10.2015

Рекомендуем к данному материалу …


Мнения читателей
  • Сергей / 26.02.2016 — 13:36
    Возможна ли замена LM358P на LM358N

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *