Регулируемый стабилизатор тока – LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet

Регулируемый стабилизатор тока | Все своими руками

Опубликовал admin | Дата 16 сентября, 2013

     На рисунке один изображена схема стабилизатора тока на 10А. Схема регулируемого стабилизатора тока приведена на рисунке 2.

     Величина тока стабилизации в схеме, изображенной на рис.1, полностью зависит от номинала резистора R3, найти переменный резистор с таким маленьким номиналом практически невозможно.

Стабилизатор тока на 10А. Стабилизатор тока на 5А.

     Да и мощность, выделяемая на этом резисторе относительно большая, например, при токе пять ампер и величине сопротивления 0,24 Ом, на данном резисторе выделится мощность Р = I 2 • R = 5 • 5 • 0,24 = 6Вт. Поэтому самый простой выход, это применить магазин сопротивлений, подключаемых тумблерами, как показано на рисунке 2. Все резисторы в магазине имеют одинаковый номинал. Резистор R6 включен в схему постоянно и ток стабилизации при этом будет равен 1А, мощность, выделяемая на этом резисторе, будет равна 1,2Вт. При подключении параллельно ему еще одного резистора, ток стабилизации увеличится до двух ампер, если в параллель будет включено три резистора, то ток будет равен – 3А, … четыре резистора – 4А и так далее. Дискретность изменения тока стабилизации в данном случае равна одному амперу. Меняя номиналы резисторов и количество тумблеров, можно получить необходимую вам величину регулировки тока стабилизации. Недостатком данной схемы является большое количество тумблеров и резисторов. Достоинство – все просто, можно обойтись без печатной платы. При больших рабочих токах, протекающих через транзистор, необходим радиатор соответствующей величины. Прикинуть площадь радиатора можно здесь.

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:81 244


Регулируемый стабилизатор тока

Содержание:
  1. Общее устройство и технические характеристики
  2. Диодные стабилизаторы тока
  3. Видео

В электронной аппаратуре очень часто необходимо выполнять различные регулировки, в первую очередь связанные с источниками тока и блоками питания. Необходимые выходные характеристики и другие параметры позволяет получить регулируемый стабилизатор тока. В основном используется модель LM317 лучше всего подходящая для проектирования.

Устройство и технические характеристики

Регулируемые стабилизаторы тока успешно применяются в схемах источников питания и различных зарядных устройств. Данные приборы предназначены для стабилизации тока на заданном уровне. Благодаря их низкой стоимости, существенно упрощается разработка схем большинства электронных приборов. Работу этих устройств наглядно демонстрирует простой регулируемый стабилизатор напряжения и тока.

Для этого следует воспользоваться идеальным источником тока, обладающим бесконечно большой электродвижущей силой и значительным внутренним сопротивлением. Такие параметры позволяют получить в цепи ток с требуемыми характеристиками, независимо от сопротивления нагрузки. Таким образом, идеальный источник создает ток, имеющий постоянную величину при изменяющемся сопротивлении нагрузки в пределах от короткого замыкания до бесконечности.

Чтобы поддержать величину тока на неизменном уровне, значение ЭДС должно изменяться от величины больше нуля до бесконечности. В результате, стабильное токовое значение получается, благодаря важному свойству источника тока: с изменением сопротивления нагрузки происходит изменение ЭДС источника тока так, чтобы токовое значение оставалось постоянным.

В отличие от постоянного тока, реальные источники тока способны поддерживать ток на нужном уровне лишь в ограниченном диапазоне напряжения на нагрузке и ограниченном сопротивлении нагрузки. Реальный источник может работать даже с нулевым сопротивлением нагрузки, а также в режиме замыкания на выходе без каких-либо сложностей. То есть, при случайном замыкании выхода, прибор просто перейдет на другой режим работы, где сопротивление нагрузки выше нуля.

Как правило, практикуется использование реального источника тока с реальным источником напряжения. В качестве таких источников выступают: электрическая сеть, напряжением 220 В, частотой 50 Гц, аккумуляторы, лабораторные блоки питания, солнечные батареи, бензиновые генераторы и другие поставщики электроэнергии. С любым из них осуществляется последовательное включение регулируемого стабилизатора тока. Выход этого прибора соответственно используется в качестве источника тока.

Диодные стабилизаторы тока

Простейшие регулируемые стабилизаторы тока хорошо подходят для зарядного устройства. Они изготавливаются в виде двухвыводного компонента, ограничивающего ток, протекающий через него. Величина и точность параметров тока заранее устанавливается изготовителем. Корпус регулируемого стабилизатора в большинстве случаев очень похож на диод малой мощности. Поэтому данные устройства из-за внешнего сходства нередко называются диодными стабилизаторами тока.

Использование диодных стабилизаторов делает электрические схемы значительно проще и снижает общую себестоимость приборов. Они не только отличаются простотой исполнения, но и существенно повышают устойчивость работы различных электронных устройств. Уровень стабилизации тока обеспечивается в пределах 0,22-30 мА.

Диодные стабилизаторы очень хорошо зарекомендовали себя при работе со светодиодами, поскольку они обеспечивают надежность и требуемый режим работы. Эти устройства могут работать в диапазоне напряжений 1,8-100 В, защищая таким образом светодиоды от выхода из строя под действием импульсных и продолжительных изменений напряжения. Яркость свечения светодиода, его оттенки и цветовая гамма полностью зависят от тока, протекающего по нему. Одного диодного стабилизатора вполне достаточно для нормальной работы сразу нескольких светодиодов включенных в последовательную цепь.

Данная схема легко преобразуется в другие формы в зависимости от питающего напряжения и марки применяемых светодиодов. Их ток может задаваться с помощью одного или нескольких стабилизаторов, параллельно включенных в цепь. Количество светодиодов в схеме определяется диапазоном изменения напряжения. Диодные источники тока применяются в создании осветительных или индикаторных приборов, питающихся от постоянного напряжения. Питание стабильным током обеспечивает постоянную яркость источника света даже в случае перепадов напряжения. Необходимый режим питания нагрузки регулируется путем параллельного включения определенного количества стабилизаторов. Такая конструкция может быть легко изготовлена своими руками.

Работа стабилизирующих устройств хорошо видна на примере оптопары или оптрона. В состав этого электронного прибора входит светодиодный излучатель и фотоприемник. В процессе работы электрический сигнал преобразуется в световой, затем он передается по оптическому каналу и далее вновь преобразуется в электрический сигнал. Если питание светодиода осуществляется с помощью резистора пульсации напряжения, это может вызвать колебания яркости. Данная проблема успешно устраняется регулирующим диодным стабилизатором. Это позволяет избежать существенных искажений цифровых сигналов, передаваемых через оптопару и повысить надежность информационного канала.

Стабилизаторы тока не следует путать со стабилизаторами напряжения. Стабилизация выходного тока характеризуется изменяющимся выходным напряжением, тогда как нагрузочный ток всегда остается одинаковым.

Среди многих регулируемых стабилизаторов широкой популярностью пользуется стабилизатор на полевом транзисторе, подключаемого последовательно с сопротивлением нагрузки. При такой схеме ток нагрузки лишь незначительно изменяется, в отличие от входного напряжения. Сами полевые транзисторы работают под управлением электрического поля, поэтому они и стали так именоваться. Конструкция этих элементов включает внутреннюю переходную емкость, через которую во время переключения протекает небольшое количество тока. Таким образом, затраты на управление требуют лишь незначительной мощности.

Самодельный регулируемый стабилизатор тока от 0,05 до 5 А

Простой в изготовлении самодельный стабилизатор тока с возможностью регулировки найдет применение в любом гараже.

Стабилизатор тока — одно из простейших электронных устройств. Чтобы задать требуемый ток, нужно изменить сопротивление резистора R в соотношении J = 1,2/R    
Обычно стабилизаторы встроены в зарядные устройства, но часто требуется зарядить батареи различной емкости, поэтому зарядный ток должен быть разным. Например, в моем хозяйстве, кроме автомобильного аккумулятора с емкостью 50 Ач, есть еще аккумулятор охранной сигнализации 7 Ач, дрель 2 Ач, фонарь 1 Ач, батарея фотоаппарата 2600 мАч и телефона 650 мАч. Соответственно, ток нужно изменять от 5 ампер до 65 миллиампер.

Возникла мысль сделать стабилизатор — приставку, обеспечивающую возможность зарядки различных аккумуляторов.

Старый стабилизатор, на ток 5,5 ампер был разобран и вместо резисторов

по 0,47 Ом  было установлено устройство на базе галетного переключателя 6П6Н, имеющего шесть секций контактов. На фото показана одна секция.

Контакты и резисторы соединены по схеме. При повороте переключателя резисторы подключаются параллельно.

В первом, по схеме, положении переключателя включена цепочка из резистора 1,2 Ом. и переменного резистора 25 Ом. Ток регулируется от 1 ампера (резистор выведен в ноль) до пятидесяти миллиампер (резистор полностью введен).

Во втором положении переключателя (R= 1,2 Ом.) ток будет 1 ампер.

В третьем положении (R = 0,6 Ом.) ток будет 2 ампера.

В четвертом, пятом и шестом положениях, соответственно – 3,4 и 5 ампер.

Мощность, выделяемая на каждом резисторе, при токе 1 ампер будет 1,2 Вт., поэтому в схеме использованы двухваттные резисторы.

Коммутируемый ток переключателя, допускаемый по ТУ, 2 ампера при напряжении 30 вольт. (Двукратный запас).

Печатная плата устанавливается на переключатель. Чтобы укрепить ее, нужно снять с переключателя донышко (оно крепится двумя гайками), установить плату и закрепить ее снятым ранее донышком.

Первоначально переключатель был сделан в компактном варианте. Резисторы были установлены прямо на контактах переключателя. Это была ошибка. Желающие повторить конструкцию не повторяйте мою ошибку.

Резисторы, хоть и не сильно, но нагреваются, а термоусаживаемая трубка, надетая на них, еще больше ухудшает теплоотвод.

Конструкция была изменена. Теперь резисторы установлены на небольшой печатной плате, выполненной из стеклотекстолита.

Печатная плата настолько проста, что ее даже трудно назвать печатной. Дорожки нанесены от руки перманентным маркером, затем плата протравливалась в растворе хлорного железа и потом готовые дорожки облуживались.

Вот здесь небольшое отступление. Обычно дорожки облуживают припоем, получается грубо, и исправить это практически невозможно.

Я покрыл дорожки с помощью паяльника, как обычно, но сплавом Розе, температура плавления которого 94 – 98 градусов.

Получилось тоже грубо, но потом положил плату на подошву утюга, прогрел ее и тряпочкой удалил лишний припой. Поверхность получилась зеркальной. Этот изыск для переключателя конечно не нужен, но может пригодиться при изготовлении более сложных печатных плат.

В результате получился вот такой компактный и удобный переключатель.

Р.S   Свободную шестую секцию на схеме можно использовать для индикации положения переключателя, применив, например, светодиоды и др.

На схеме, в качестве примера, нарисованы зеленые лампочки.

Автор статьи “Самодельный регулируемый стабилизатор тока от 0,05 до 5 А” Георгий Меньшиков

Смотрите так же:

Регулируемый стабилизатор напряжения и тока

Многие электронные приборы для нормальной работы требуют наличия стабильного питающего электричества. Электрическая сеть, генераторы и химические элементы питания сами по себе не могут обеспечить это условие. Поэтому современная электроника снабжена блоками питания, в которых присутствуют стабилизаторы напряжения и тока.

Стабилизатор напряжения

Под ст. напряжения (U) понимают прибор, схемотехника которого собрана таким образом, что в автоматическом режиме позволяет удерживать уровень (U) на входе потребителя неизменным в заданных пределах. Применяют устройства в тех случаях, когда на источнике питания нет стабильного электричества.

В зависимости от рода электричества приборы бывают:

  • переменного напряжения;
  • постоянного напряжения.

По принципу действия:

  • компенсационного типа;
  • параметрические.

При помощи этих устройств невозможно достичь идеального выравнивания, но лишь частично сгладить дестабилизацию.

Стабилизатор тока

Стабилизаторы тока (I) иначе называют генераторами тока. Их основная задача – вне зависимости от того, какая нагрузка подключается на выходе устройства (имеется в виду сопротивление нагрузки), выдавать постоянно стабильный ток (I). Для обеспечения этого условия все без исключения приборы имеют входное сопротивление больших значений.

Сфера применения устройств обширна. Их используют в цепях питания светодиодных светильников, газоразрядных ламп и всегда в зарядных устройствах, где используется опция изменения величины зарядного тока.

В качестве простейшей схемы ст. выступает комбинация – источник напряжения плюс резистор. Это традиционная схема питания светодиодного индикатора. Недостатком такого технического решения является потребность в использовании источника питания высокого (U). Только это условие позволяет применить высокоомный резистор для достижения эффекта стабилизации.

Виды стабилизаторов

Рассматривая стабилизаторы напряжения и тока, нужно понимать, что они бывают разного типа для разного рода электричества. Так, классификация делит их на приборы для работы в цепях постоянного либо переменного электричества. По принципу получения стабилизации бывают компенсационные и параметрические схемы.

Внутренность стабилизатора

В устройствах параметрического типа применяют радиоэлементы, у которых вольт-амперная характеристика (ВАХ) имеет нелинейный вид. Так, этими элементами для работы с переменным напряжением выступают дроссели с насыщенным сердечником ферромагнитным. Вопрос стабилизации постоянного напряжения решается за счет стабисторов и стабилитронов. Ток стабилизируют при помощи транзисторов – полевиков и биполярников.

Стабилизаторы напряжения и тока компенсационного типа работают по принципу компенсации при сравнивании фактического параметра электричества с опорным, выдаваемым определенным узлом устройства. В таких системах имеется обратная связь, через которую приходит управляющий сигнал на регулирующий элемент. Под воздействием сигнала параметры прибора управляемого изменяются пропорционально изменению входного электричества, а на выходе оно остается стабильным. Компенсационные устройства бывают непрерывного регулирования, импульсные и непрерывно-импульсные.

И параметрические, и компенсационные стабилизаторы напряжения и тока можно охарактеризовать по массогабаритным, качественным и энергетическим показателям. К качественным для стабилизаторов (U) относятся:

  • коэффициент стабилизации по напряжению на входе;
  • внутреннее сопротивление схемы;
  • коэффициент выравнивания пульсации.

Для стабилизаторов (I):

  • коэффициент по входному (U) стабилизации тока;
  • коэффициент стабилизации в процессе, когда нагрузка изменяется;
  • коэффициент ст. температурный.

К параметрам энергетического характера причисляют:

  • КПД;
  • мощность, которую регулирующий элемент способен рассеивать.

Регулируемый стабилизатор напряжения и тока

Чтобы получить стабилизацию с возможностью регулирования электрических параметров и более высоким коэффициентом, применяют сложные транзисторные схемы.

Схема компенсационного стабилизатора

Схема состоит из:

  • Ст. тока на транзисторе VT1. Его задача – выдавать постоянный ток на коллекторе, который далее идет через усилитель и на базу регулирующего элемента.
  • Усилителя (I) на биполярнике VTy. Этот транзистор реагирует на падение напряжения на резистивном делителе.
  • Регулирующий элемент на транзисторе VT2. Благодаря ему выходное (U) либо уменьшается, либо увеличивается.

Для питания бытовых приборов применяют стабилизаторы напряжения переменного тока. Стандартные параметры таких приборов:

  • Возможность регулировки (U) на выходе, не искажая сигнал.
  • Стабилизация большого разброса напряжения на входе от 140 до 260 вольт.
  • Высокий показатель точности поддержания (U) с расхождением не более 2%.
  • Высокий КПД.
  • Наличие схем защиты от перегрузок.

Схемы стабилизаторов тока и напряжения

Параметрический прибор (U), собранный по однокаскадной схеме.

Схема однокаскадного параметрического стабилизатора

Схема состоит из:

  • Стабилитрона, на котором падает одно значение напряжения вне зависимости от (I), проходящего через него.
  • Резистора гасящего, где выделяется излишек (U) при увеличении тока.
  • Диода, выполняющего роль температурного компенсатора.

По двухкаскадной схеме.

Такие схемы имеют лучшие показатели стабилизации, так как состоят из:

  • Предварительного каскада стабилизации, выполненного на двух последовательно соединенных стабилитронах, где присутствует также термокомпенсация за счет положительного и отрицательного температурного коэффициентов радиоэлементов.
  • Оконечного каскада стабилизации на стабилитроне и гасящем резисторе, который питается от первого каскада.

Параметрический прибор тока на полевике по схеме – исток-затвор закорочены.

Схема параметрического стабилизатора тока

Так как между истоком и затвором транзистора полевого отсутствует (U), то он пропускает только определенное значение (I) в независимости от изменений напряжения на входе. Недостаток схемы связан с разбросом характеристик полевиков, отчего сложно установить точное значение стабилизируемого тока.

Стабилизатор параметрический напряжения со встроенным токовым стабилизатором.

Параметрический стабилизатор тока и напряжения

Схема является комбинацией однокаскадного стабилизатора напряжения, где вместо гасящего сопротивления включен элемент стабилизации (I) на полевике. Такое исполнение имеет больший коэффициент стабилизации.

Стабилизатор компенсационный с (U) постоянного значения и регулированием в непрерывном режиме.

Схема транзисторного стабилизатора

Устройство стабилизации электричества своими руками

Современные стабилизирующие устройства реализованы в микросхемах. Собрать стабилизатор напряжения и тока своими руками можно, используя LM317. Это самая простая схема, не требующая наладки.

Схема стабилизатора на LM317

Вместо печатной платы можно использовать пластину гетинакса или текстолита. Не обязательно вытравливать дорожки. Схема простая, поэтому контакты удобнее сделать отрезками проводов.

Регулируемый стабилизатор на LM317

Заключение

Важно знать, что все регулирующие элементы в схемах могут сильно греться, особенно это касается микросхем. Поэтому их необходимо устанавливать на радиатор.

Для надежной защиты бытового оборудования среди устройств промышленного образца можно применить стабилизатор напряжения переменного тока «Ресанта».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *