Регулируемый блок питания на оу: Блок питания для радиолюбителя – Блок питания на ОУ с регулировкой выходного напряжения и тока

Блок питания на ОУ с регулировкой выходного напряжения и тока

Вот очередной универсальный источник питания, естественно двухполярный (симметричный). Это один из самых популярных самодельных блоков питания, который в процессе изготовления и настройки немного изменен по сравнению с оригинальной схемой. БП используется уже долгое время, и отвечает всем требованиям, учитывая наличие точной настройки, токоограничения и визуализации А/В.

Предельный ток не слишком велик, но и не было необходимости использовать его с большой мощностью.

Схема блока питания на ОУ и LM317

Схема модуля питанияСхема модуля индикации

Сама конструкция БП довольно проста и, вероятно, не требует особых комментариев. Главное, чтобы после запуска и настройки получить -/+ 30 В и 2 А (долговременный ток до 1,5 А). Этого более чем достаточно, когда речь идет о стандартных радиолюбительских или ремонтных потребностях.

Лабораторный блок питания оборудован визуализацией тока нагрузки, выходного напряжения и установки ограничения тока с разрешением 10 мА, аналогично напряжению.

Кроме того, два светодиода указывают на переход блока питания в работу с ограничением тока. Питание счетчиков индикаторов было выполнено на основе зарядки от смартфона, после снятия корпуса и монтажа её на дополнительной печатной плате. Дополнительный диод снижает напряжение до 5 В, что важно для потребления тока дисплеями А/В-метров.

На схеме есть три диода, ограничивающие напряжение питания этих LED сегментов и, следовательно, их ток. Так плиты были разработаны. На практике только красные дисплеи ограничены тремя диодами. В случае зеленых дисплеев есть только один диод, а у желтых нет совсем. На месте диодов стоят либо перемычки, либо резисторы R0.

Фото изготовления коробки блока

Блок питания был создан в обработанном корпусе от старого нерабочего генератора. Что касается довольно большого размера, стационарные устройства не должны быть тесно упакованы, как это часто наблюдается в самодельных проектах. Его легче обслуживать, и проблема вентиляции гораздо лучше, если корпус просторный.

Прежде всего, необходимо сделать переднюю панель с нуля. Оригинальная передняя панель была обработана с помощью ручного гравера (без фрезерного станка с ЧПУ) и уменьшена до необходимого размера. Рамка осталась практически та же. Новая панель изготовлена ​​из алюминиевого листа толщиной 2 мм. Соединение листа и рамы было сделано с помощью заклепок 2 мм. Ламинат с наклеенными описаниями, заказан в мастерской лазерной резки и гравировки.

Задняя стенка также была изготовлена ​​из нового листа необходимого размера. Она заменила оригинальную стенку с ненужными технологическими отверстиями.

Никакого дополнительного охлаждения не требуется, потому что при максимальном токе радиатор, на котором установлены стабилизаторы, только чуть теплый. Обратите внимание, что этот радиатор находится на теплопроводящей пасте, прикрепленной к боковой стенке БП, которая сделана из алюминиевой пластины 4 мм, поэтому и не планировалось никакого принудительного охлаждения.

А вообще, проблема не в размерах радиатора, а в тепловом сопротивлении кристалла-корпуса регулятора. Вы можете дать радиатор размер с кирпич и охладить его жидким азотом, но плохое тепловое сопротивление сделает это малоэффективным.

РадиоКот :: Лабораторный с ОУ

Впервые эта замечательная схема встретилась мне в лабораторном блоке питания на 50 вольт 1 ампер (https://members.shaw.ca/novotill/index.htm). Впоследствии я нашел этот же подход в промышленном лабораторном источнике HY3020E (30 вольт 20 ампер). Вот она в упрощенном варианте:


Операционный усилитель DA1 сравнивает напряжение на делителе R2-R4 c напряжением на его инвертирующем входе. Если выходное напряжение увеличивается, то напряжение на неинвертирующем входе DA1 станет меньше напряжения на инвертирующем. DA1 своим выходным напряжением закроет транзистор VT1, что приведет к уменьшению выходного напряжения. Регулировка выходного напряжения может осуществляется изменением величины опорного напряжения Vref или резистора R4.

Выходной ток создает на резисторе R3 падение напряжения. Пока это напряжение меньше опорного Iref, на выходе DA2 положительное напряжение, близкое к напряжению питания DA2. Диод изолирует выход DA2 от затвора выходного транзистора. Как только падение напряжения на R3 превысит опорное напряжение Iref, выходное напряжение DA2 уменьшится и через диод начнет закрывать выходной транзистор VT1. При этом выходной ток уменьшится до такой величины, что вызванное им падение напряжения на R3 сравняется с опорным напряжением Iref. Регулируя Iref возможно регулировать величину выходного тока.

При ограничении тока величина выходного напряжения становится меньше заданного. Пытаясь привести его в норму, DA1 увеличит свое выходное напряжение почти до положительного напряжения питания ОУ. Но у него это не получиться, поскольку DA2 не позволяет увеличиваться управляющему напряжению на затворе выходного транзистора, тем самым ограничивая ток. Все потуги DA1 падают на резисторе R1. В режиме ограничения тока этот резистор как бы подключен к положительному полюсу источника питания и служит нагрузкой DA2.

Для питания операционных усилителей должен быть применен отдельный маломощный двуполярный источник питания, общая точка которого соединяется с положительным выходом OUT+. Величина напряжения этого источника должна быть подходящей для питания ОУ и полного открытия выходного транзистора. Выходное стабилизированное напряжение формируется из нестабилизированного напряжения Vin. Благодаря применению дополнительного источника питания возможно применение обычных операционных усилителей в высоковольтных источниках питания (например 50 вольт). Схема очень гибка в применении. Величина выходного напряжения не зависит от напряжений питания ОУ. Она определяется только величиной опорного напряжения Vref и делителем R2R4. Величина выходного тока определяется опорным напряжением Iref и величиной резистора R3.

Благодаря включению полевого транзистора повторителем дополнительная частотная компенсация схемы не требуется при применении ОУ с единичным коэффициентом усиления. Отсутствие дополнительной компенсации обеспечивает работу ОУ на полной скорости и, следовательно, быстрое переключение от ограничения напряжения к ограничению тока и обратно.

На базе рассмотренной схемы был построен лабораторный источник питания с диапазоном регулирования напряжения 0-30 V и тока 0-0.5A .


Схема в точности повторяет рассмотренную ранее упрощенную схему. Опорное напряжение генерируется с помощью TL431 и равно 3,3 вольта. Опорное напряжение токового ограничения регулируется переменным резистором R5. R7 используется для регулирования напряжения. VD1 – VD4, C2, C3 используются для получения питающего ОУ двуполярного напряжения.

Транзистор VT1 служит для индикации ограничения тока включением светодиода оранжевого цвета, а также он используется в триггерной защите. Триггерная защита работает следующим образом. При ограничении тока напряжение на выходе DA2:A падает, что приводит к открыванию транзистора VT1 и свечению светодиода VD6. Положительное напряжение, возникающее при этом на коллекторе VT1, через R20, S1, VD8 поступает на инвертирующий вход DA2:A. Это напряжение имитирует большое падение напряжения на токоизмерительном резисторе, что приводит к полному закрытию выходного транзистора и снижению выходного напряжения до 0. После срабатывания триггерной защиты выходное напряжение отсутствует до ее отключения. Триггерная система защиты включается и отключается кнопкой с фиксацией S1. При отключенной триггерной защите обычное ограничение тока продолжает работать. После того как величина напряжения восстановится, триггерную защиту можно снова включить. Конденсатор C8 служит для задержки включения триггерной защиты на несколько миллисекунд.

Транзистор VT4 служит для быстрого разряда выходного конденсатора в случае отсутствия нагрузки при уменьшении выходного напряжения. Вместо него может быть использована обычная резистивная нагрузка сопротивлением 1-2 килоома соответствующей мощности. Применение транзистора исключает выделение дополнительной мощности на нагрузочном резисторе во время работы. При нормальном напряжении он закрыт. Открывается он только тогда, когда происходит уменьшение выходного напряжения за счет регулировки. При применении обычного полевого транзистора на базу транзистора может подаваться обратное напряжение значительной величины (>5 вольт). В этом случае транзистор должен быть защищен дополнительным диодом.

Схема легко масштабируется. Для выбора другого максимального напряжения необходимо изменить сопротивление R10 в делителе.

Для изменения максимального тока следует пропорционально изменить R17, учитывая, что при максимальном токе падение напряжение на нем должно быть 0,5 вольт.

Меняя ток или напряжение необходимо выбирать соответствующий нестабилизированный источник.

Применение logic level мощного транзистора обусловлено напряжением питания операционного усилителя +-6 вольт. Обычный полевой транзистор может быть применен при увеличении напряжения питания ОУ до +-10-12 вольт. Также в качестве управляющего транзистора можно использовать биполярный транзистор, включенный по схеме Дарлингтона. Его частота единичного усиления должна в 3-5 раз превосходить частоту единичного усиления ОУ для обеспечения стабильности. Поэтому в случае использования биполярного транзистора типа TIP147 с его типичной частотой единичного усиления 3MHz лучше использовать ОУ LM358 или даже OP07. В качестве управляющего транзистора может быть применено несколько параллельно включенных транзисторов с применением выравнивающих сопротивлений в эмиттерах. Управляющий транзистор должен охлаждаться радиатором. В своем блоке питания я применил полевые транзисторы и отностительно быстрые ОУ TL082. Маломощные транзисторы могут быть использованы практически любые высокочастотные. Постоянные резисторы – мощностью 0,125 вата, за исключением R17 (керамический 3 или 5 ватт) и R23 (1 или 2 ватта). Переменные резисторы применены с линейной характеристикой регулирования.

Нестабилизированный источник собран по следующей схеме.


Перед первым включением рекомендуется проверить отсутствие замыканий на плате и вообще в схеме. Сначала проверяется работа нестабилизированного источника без подключения стабилизатора. Первое включение блока питания проводят без нагрузки с переменными резисторами в среднем положении и выключенным S1. Необходимо проверить напряжения питания ОУ, опорное напряжение 3,3 вольта. Напряжение на выходе DA2A должно быть близко к положительному источнику, на выходе DA2B, на затворе – на грани открывания регулирующего транзистора (0,5 – 3 вольта). Выходное напряжение должно регулироваться резистором R7.

После этого нужно установить напряжение 3-5 вольт и подключить нагрузку. Я использовал лампочку на 24 вольта, но можно использовать и другую нагрузку с током миллиампер 100 при 24 вольтах. При подключении лампочки выходное напряжение не должно измениться. Установив напряжение 7-12 вольт, резистором R5 необходимо плавно уменьшать выходной ток. При каком то значении источник должен перейти в режим ограничения тока. В этом режиме светодиод VD6 должен включиться и напряжение на выходе DA2A должно упасть до 0 – 2 вольт. На выходе DA2B напряжение должно быть близко к напряжению положительного источника питания ОУ. Вращая R7, убедиться в изменении тока (яркости свечения лампы).

В режиме ограничения тока регулировка напряжения в сторону увеличения не должна оказывать влияния на ток в нагрузке. При уменьшении напряжения, как только ток уменьшится до величины, заданной резистором R5, источник должен перейти в режим регулировки напряжения – светодиод VD6 должен погаснуть

После этого можно проверить работу системы защиты в режиме короткого замыкания. При соединении выходных клемм источник должен перейти в режим ограничения тока — загореться VD6.

После этих проверок можно считать, что источник работает правильно. Необходимо только проверить максимальные значения токов и напряжений. Максимальное напряжение лучше проверять на нагрузке, близкой к максимальной. На регулирующем транзисторе должен быть запас как минимум в несколько вольт при минимальном сетевом напряжении. Если этого нет, то можно либо уменьшить максимальное выходное напряжение, либо просто иметь в виду, что при максимальной нагрузке напряжение может быть нестабилизированным. Для уменьшения максимального выходного напряжения параллельно R10 припаивается еще один резистор. Поскольку я применял smd резисторы 0805, я просто напаял его сверху дополнительно. Если максимальное напряжение нужно увеличить – то ту же операцию можно провести с R9. Конечно же можно и перепаять эти сопротивления заново с другими номиналами. Если разрабатывается блок питания с другим диапазоном напряжений, то нужно изменять, прежде всего, R10.

Перед проверкой максимального тока выходное напряжение уменьшается до минимума, а регулятор тока выкручивается на максимум. Максимальный ток проверяется в режиме короткого замыкания – амперметр подключается на выход. Должна сработать защита. Если этого не произошло, регулятор напряжения нужно выставить в среднее положение. Максимальный ток подбирается резистором R4. При подборе нужно следить, что бы напряжение на R5 было в диапазоне 0,4 – 0,6 вольта. То есть этим резистором осуществляется точная подгонка. Для грубого изменения максимального тока необходимо менять сопротивление шунта R17.

Потом проверяется триггерная защита. Если замкнуть кнопку s1, а потом выходные клеммы, должен загораться светодиод VD6. При устранении короткого замыкания светодиод должен продолжать гореть. Напряжение на выходе должно оставаться около 0. После срабатывания триггерной защиты источник вновь может быть возвращен в рабочее состояние кратковременным размыканием S1.

Блок питания собран в корпусе из под АТХ источника. На фото видны регулирующие резисторы, оба мощных транзистора на радиаторе (один из них через прокладку), кнопка S1, сдвоенный светодиод (над клеммами), шунт, выходные клеммы, печатная плата.


Опорное напряжение не случайно выбрано 3.3 вольт. Это стандартное напряжение питания многих микроконтроллеров. Микроконтроллер может использоваться для генерации опорных регулируемых напряжений. В этом случае регулировку выходного напряжения можно осуществлять цифровыми методами. Об этом я надеюсь рассказать в следующей статье.

 

Файлы:
Дополнительные материалы

Все вопросы в Форум.

Регулируемый блок питания с защитой от перегрузки

При настройке всевозможных радиоэлектронных устройств зачастую бывает, необходим блок питания, в котором реализована функция плавной регулировки, как выходного напряжения, так и значения тока по перегрузке.

Защита блока питания от перегрузки

В большинстве простых блоков, реализована защита блока питания от перегрузки только по превышению максимального тока нагрузки. Подобная электронная защита, главным образом, предназначается для самого блока питания, а не для подключенной к нему нагрузки.

Для надежного функционирования, как блока питания, так и подсоединенного к нему электронного устройства, желательно иметь возможность изменения порога срабатывания защиты по току в больших пределах, причем при срабатывании защиты подключенная нагрузка должна быть обесточена.

Приведенная в данной статье схема является еще одним вариантом лабораторного блока питания, позволяющая производить плавную регулировку всех перечисленных выше параметров.

Описание работы регулируемого блока питания

На операционном усилителе LM358 (DA1.1) построен регулируемый стабилизатор напряжения. С вывода потенциометра R2 на его прямой вход (вывод 3) идет опорное напряжение, величина которого устанавливается стабилитроном VD1, а на инверсный вход (вывод 2) поступает потенциал ООС с эмиттера транзистора VT1 через резисторный делитель напряжения R10 и R7.

Регулируемый блок питания KORAD KA3005D

Простая и интуитивная работа, быстрый и точный выбор напряжения и тока…


Регулируемый блок питания на LM317

Диапазон выходного напряжения 1,25…37В. Высокая стабильность…


Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…


Стенд для пайки со светодиодной подсветкой

Материал: АБС + металл + акриловые линзы. Светодиодная подсветка…


 

Отрицательно обратная связь создает баланс напряжений на обоих входах ОУ LM358, возмещая воздействие дестабилизирующих причин. Путем вращения ручки потенциометра R2 осуществляется изменение выходного напряжения блока питания.

Блок защиты от перегрузки по току построен на втором операционном усилителе DA1.2, входящем в состав микросхемы LM358 , который используется в данной схеме в качестве компаратора. На его прямой вход через сопротивление R14 идет напряжение с датчика тока нагрузки (сопротивление R13), а на инверсный вход поступает опорное напряжение, постоянство которого обеспечивает диод VD2.

До тех пор пока падение напряжения, формируемое током нагрузки на сопротивлении R13, ниже опорного, потенциал на выходе 7 операционного усилителя DA1.2 практически равен нулю. В том случае, если ток нагрузки превзойдет допустимый, потенциал на выходе DA1.2 возрастет до напряжения питания. В результате этого через сопротивление R9 пойдет ток, который откроет транзистор VT2 и зажжет светодиод HL1. Диод VD3 начинает пропускать ток и сквозь сопротивление R11 шунтирует электрическую цепь ПОС. Транзистор VT2 подсоединяет сопротивление R12 параллельно стабилитрону VD1, и как следствие этого напряжение на выходе блока питания снижается фактически до нуля из-за закрытия транзистора VT1.

Заново подключить нагрузку возможно непродолжительным выключением сетевого питания или путем нажатия на кнопку SA1. Для защиты транзистора VT1 от обратного напряжения, идущего с емкости С5, которое возникает при отсоединении нагрузки от блока питания, в схему добавлен диод VD4.

Детали блока питания

Транзистор VT2 возможно поменять на КТ315Б — КТ315Е. Транзистор VT1 можно заменить на произвольный из серий КТ827, КТ829. Диоды VD2 — VD4 возможно применить КД522Б. Сопротивление R13 возможно собрать из трех впараллель соединенных резисторов МЛТ-1 сопротивлением по 1 Ом каждый. Стабилитрон VD1 любой с напряжением стабилизации 7…8 вольт и током от 3 до 8 мА. Емкости СЗ, С4 произвольные пленочные или керамические. Электролитические конденсаторы: С1 — К50-18 или аналогичный зарубежный, другие — марки К50-35. Кнопка SA1 без фиксации.

Источник: Радио, 9/2006

Регулируемый блок питания на ОУ LM324 (0-30В, 2А)

Регулируемый блок питания является одним из основных устройств в ремонтной мастерской или каждого радиолюбителя. Представленный блок питания, несмотря на простоту конструкции, имеет хорошие характеристики. Он дает возможность плавной регулировкивыходного напряжения от 0 до 30 В, а также плавной регулировки тока в диапазоне до 2 А (2,5 А).

Все устройство построено на четырехкаскадном операционном усилителе LM324. Элемент D работает как источник напряжения смещения. Усилитель погрешности блока питания построен на элементе С. Элемент В служит для измерения выходного тока, а элемент А работает как компаратор, управляющий блоком светодиодов, сигнализирующим о переходе блока питания в режим стабилизации тока.

Потенциометр Р1 служит для регулировки выходного напряжения. Потенциометром PR1 регулируется порог ограничения тока блока питания. Монтажным потенциометром PR1 следует установить верхний предел регулировки тока следующим образом.

Регулируемый блок питания на ОУ LM324 (0-30В, 2А), схема

Потенциометр Р2 установить в максимальное положение. Выход блока питания нагрузить, например, проволочным резистором с сопротивлением несколько ом. Последовательно с резистором включить амперметр.

Регулируя выходное напряжение, следует установить ток, идущий через резистор, на 2 Ф. Вращая движком монтажного потенциометра PR1, добиваемся загорания светодиода. В случае, когда невозможно установить максимальный выходной ток на уровне 2- 2,5 А, последовательно с диодом D7 следует установить еще один кремниевый диод любого типа, например 1N4148, BVP17 и т. п.

Провода, соединяющие потенциометры с платой, должны быть как можно короче. Питающий трансформатор должен давать напряжение 24-25 В (не более, так как это грозит повреждением микросхемы LM324) и ток, по крайней мере равный выходному току, который хотим получить с блока питания.

Удобно использовать трансформатор с разделенной вторичной обмоткой, например 2 х 12 В. В диапазоне низких выходных напряжений необходимо использовать половину напряжения трансформатора из-за теряемой мощности на транзисторе Т2.

Двух-канальный мощный лабораторный блок питания. — Блоки питания — Источники питания

Владимир Глуша

Необходимость в лабораторном источнике питания с возможностью регулировки выходного напряжения и порога срабатывания защиты по току потребления нагрузкой возникла давно.
Проработав кучу материала на просторах интернета и набив шишки на собственном опыте, я остановился на этой разработке.
Этот блок питания хорош для повторения, но его выходное напряжение зависило от напряжения питания операционного усилителя TL081, и если оно было +31В, то на выходе этого БП максимальное напряжение не было больше.
Расчётное выходное напряжение вторичной обмотки силового трансформатора этого БП было 24В, постоянка на входе стабилизатора (после моста) +31В. При повышении нагрузки на выходе до расчетной (для меня — 5А), выходное напряжение БП падало, и в следствии того, питание ОУ соответственно гуляло, т.е. прослеживалось как вариант — не стабильность выходного напряжения при граничных токах (не очень приятно случилось, когда гонял усилок на TDA7293, и при max мощности чуть в разнос не пошел…).
Для устранения этого недостатка, в ниже описываемой конструкции своего БП, я повысил напряжение на входе стабилизатора до +45В и соответственно, чтобы не вышли из строя ОУ, (граничное питание у TL081 — 36 вольт), поставил параметрический стабилизатор на цепи питания ОУ.

Диапазон регулирования напряжения в своём блоке питания оставил 0-30 Вольт, ток отдаваемый в нагрузку определяется в основном примененным трансформатором, в моём варианте я спокойно снимаю с него более 5-ти Ампер. Для каждого канала блока питания на трансформаторе имеется своя обмотка.

Есть регулировка порога срабатывания защиты по току потребляемого нагрузкой, а также защита от короткого замыкания в нагрузке. Индикация выполнена на ЖК дисплее LSD8x2, LSD16x1 или на LSD16х2.
Кстати об индикации;
В вышеупомянутом блоке питания, индикация тока и напряжения, так же была выполнена на ЖК-дисплее, но на одном индикаторе, и автору пришлось мудрить с подключением такого индикатора к двух-полярному БП.
Я пошёл другим путём и поставил на каждый канал свой собственный индикатор тока и напряжения. В итоге получил два полностью независимых блока питания (канала), которые можно включать и параллельно и последовательно (двух-полярное или удвоенное), где ток нагрузки каждого канала до 5А.

Для упрощения намотки силового трансформатора, я в схему БП добавил стабилизатор для питания вольтамперметра, и теперь каждый канал стабилизатора БП и вольтамперметра питается от одной обмотки.
Схему и описание вольтамперметра приводить здесь (дублировать) не вижу смысла, я их взял отсюда, а ещё можно посмотреть и здесь.

И так привожу схему блока питания одного канала, второй абсолютно идентичен.

Вся схема одного канала блока питания собрана на печатной плате. размером 125х65 мм.

Выходные транзисторы и диодный мост установлены отдельно, для каждого канала на своём радиаторе.

Изначально в качестве выходных транзисторов использовал три штуки КТ819Г в пластмассовом корпусе(ТО220) и 10-ти амперный диодный мост на канал.
Диодный мост устанавливался на плату блока питания и имел свой отдельный радиатор.

Потом в процессе эксплуатации блока питания в тяжёлых условиях, выходные транзисторы не выдержали издевательств и «полетели» от перегрева. Так же и диодный мост на 10 ампер не очень хорошо себя вёл.
Поэтому в качестве выходных транзисторов поставил силовые TIP35C (две штуки в параллель, корпус ТО-247), ставил так же и TIP142 (аналог — кт827), тоже нормально себя ведут.

Ну соответственно поменял и диодный мост (на 24 А) и поставил его так же на общий радиатор.
При испытаниях у меня максимальный ток нагрузки был 8 ампер, ну и выходные транзисторы грелись как утюги. В связи с этим пришлось ограничить максимальный ток нагрузки до 5-ти ампер, поставить вентиляторы на каждый радиатор, так же ещё поставил термозащиту от перегрева.

После года эксплуатации, усовершенствованного таким образом блока питания, и в качестве лабораторного БП, и в качестве зарядного, и при параллельной и последовательной работе его каналов, никаких нареканий к нему нет.

Вся схема блока питания, как я уже говорил выше, собрана на печатной плате, размером 125х65 мм.
Схема соединений платы с регуляторами, силовым трансформатором, выходными транзисторами и др. соединениями, показана на рисунке ниже.

Общая компоновка всех блоков внутри корпуса.

Силовой трансформатор применённый в блоке питания с расчётной мощностью около 350 Вт. Первичная обмотка намотана проводом, диаметром 0,7-0,8 мм, и две вторичных обмотки — проводом 1,2-1,5 мм. с выходным напряжением 32-33 вольта.
Моточные данные трансформатора не привожу, так как мотал давно, да и они мало, что дадут. На практике каждый радиолюбитель ставит себе такой транс, который найдёт, или сумеет достать, лишь бы мощность транса была не меньше необходимой.

Теперь краткое пояснение по куску схемы внесённых изменений и дополнений оригинала.

На транзисторах VT1, VT2, и операционном усилителе DA1, собрана схема защиты от перегрева.
Терморезистор R2 — датчик перегрева. Он устанавливается на радиатор выходных транзисторов. Светодиод — индикатор перегрева.
Выход операционника, через буферный транзистор VT3 управляет реле К1, которое контактом К1.1 при перегреве, замыкает средний вывод резистора регулировки напряжения на общий провод, уменьшая тем самым выходное напряжение блока питания до нуля.
На транзисторе VT4 собран стабилизатор на 12 вольт, для питания вольтамперметра своего канала.

Следующая схема термозащиты рассчитана на питание от пятивольтового источника. В ней использован вентилятор на рабочее напряжение 5вольт.
Её добавил наш пользователь сайта Юрий (Yura_rus). Может кому и пригодится, если имеются 5-ти вольтовые вентиляторы.

Ниже в прикреплении (в архиве) собраны все необходимые файлы и материалы для сборки данного блока питания.
Если по сборке и наладке этого БП у кого-то возникнут какие либо вопросы и непонятки, то задавайте их здесь в аналогичной теме. По возможности постараюсь ответить и помочь разобраться со всеми трудностями, возникшими в процессе сборки этого БП.

Удачи всем и всего наилучшего!

Архив «Двух-канальный мощный лабораторный блок питания».»

 

Лабораторный блок питания

Двухполярный лабораторный блок питания (см. рисунок ниже) отличается простотой и высокой надежностью. Он обеспечивает независимую регулировку выходного напряжения каждого источника от нуля до 20 В при токе нагрузки до 1 А. Каждое плечо источников питания имеет защиту от перегрузок.

Маломощный двухполярный источник питания ±15 В для операционных усилителей DA1 и DA2 собран на интегральных стабилизаторах напряжения DA3, DA4 (см. рисунок ниже).

Кроме того, двухполярный маломощный источник питания используется как источник образцового опорного напряжения регулируемых стабилизаторов. Опорное напряжение отрицательной полярности (-15 В) применяется в регулируемом источнике положительной полярности, а положительное (+15 В) — в регулируемом плече положительной полярности.

По схемотехнике оба плеча блока питания симметричны, поэтому подробно рассмотрим работу лишь одного из них — положительного. Операционный усилитель DA1 включен по схеме инвертирующего усилителя. Последовательно с ОУ включены усилительные каскады на транзисторах VT1, VT3 и VT4, необходимые для нормальной работы операционного усилителя по постоянному току. Каскад на транзисторе VT4 — инвертирующий усилитель, включенный по схеме с общим эмиттером, а транзисторы VT1, VT3 образуют силовой регулирующий элемент. Применение инвертирующего усилительного каскада привело к тому, что входы ОУ «поменялись» местами. Вывод 2 ОУ стал неинвертирующим, а вывод 3 — инвертирующим. Транзистор VT7 следит за фактическим выходным током регулирующего элемента по падению напряжения на резисторе R11. Если падение напряжения на резисторе R11 превысит величину 0,6…0,7 В, транзистор VT7 откроется и предотвратит дальнейшее увеличение тока базы регулирующего транзистора VT3. Операционный усилитель DA1 питается стабилизированными напряжениями, поступающими с выходов двухполярного источника питания на микросхемах DA3, DA4. Конденсаторы С4, С6 и С8…С11 служат для обеспечения устойчивой работы схемы.

Для измерения выходных напряжений лабораторного блока питания и потребляемых токов использован микроамперметр РА1 (см. рисунок ниже). Коммутация режима работы (напряжение или ток) осуществляется с помощью переключателя SA2, а подключение измерительной схемы к источнику положительной или отрицательной полярности — с помощью переключателя SA3. Контроль потребляемых токов ведется по падению напряжения на резисторах R11 и R12; для согласования шкал прибора желательно подобрать их в пару с точностью 1…2%.

При необходимости источники питания можно сделать зависимыми (симметричным), для чего вместо переменных резисторов R19 и R20 включают постоянный, сопротивлением 7,5 кОм, а в качестве источника образцового напряжения используют выход положительного регулируемого источника питания (см. рисунок ниже).

В лабораторном блоке питания применены распространенные детали. Операционные усилители могут быть КР140УД608, КР140УД708, а также их аналоги в металлокерамических корпусах.

Транзисторы с напряжением коллектор-эмиттер не менее 40 В Мощные транзисторы VT1 и VT2 снабжены радиаторами с эффективной площадью рассеяния около 200 см2. Радиаторы тщательно изолируют от корпуса прибора. Вполне возможно разместить транзисторы на общем радиаторе вдвое большей площади, установив их через слюдяные прокладки.

Переменные резисторы R15, R16, R19 и R20 типа ППБ, подстроенные R22 и R23 — многооборотные СП5-2, СП5-39; R11 и R12 — С5-16, остальные MЛT, С1-4, С2-10, С2-14, мощностью, указанной на схемах.

Оксидные конденсаторы К50-35, остальные К78-2-1000В (С1), К10, КМ, КТ (С4, С5) и К73 (С8…С11).

Трансформатор блока питания ТПП269, можно применить любой другой мощностью не менее 60 Вт с напряжением на вторичных обмотках 2 х 20 В.

Переключатель SA1 типа ПКн-41; SA2 и SA3 типа П2К соответственно на четыре и две группы контактов.

Налаживание источника питания начинают с проверки правильности монтажа. Далее включают устройство в сеть и измеряют относительно общего провода напряжение на конденсаторах С2 и СЗ. Оно должно составлять +26 и -26 В соответственно. Подбором резисторов R17 и R18 устанавливают верхний предел выходных напряжений регулируемого источника, при этом резисторы R15 и R20 должны находиться в положении максимального значения сопротивления, a R16 и R19 — в среднем положении. К выходу одного из плеч стабилизатора (для определенности, положительного плеча) подключают нагрузку — мощный (10…20 Вт) резистор сопротивлением 10…20 Ом. Последовательно с нагрузкой включают амперметр и с помощью резисторов R15 и R16 устанавливают ток через нагрузку 1 А. Переключатель SA2 устанавливают в положение измерения тока («I вых»), S3 в верхнее по схеме положение («Полож»). Подбором резистора R25 (рис. 3.12) добиваются отклонения стрелки прибора РА1 на полную шкалу. Затем подключают нагрузку к отрицательному каналу источника питания, резисторами R19 и R20 устанавливают ток 1 А и убеждаются в правильности градуировки РА1. Обычно эта операция не вызывает трудностей при условии предварительного подбора в пару резисторов R11 и R12.

Далее к выходу положительного плеча подключают цифровой вольтметр (мультиметр) и подстройкой резистором R22 добиваются совпадения показаний РА1 с образцовым вольтметром. Такую же градуировку выполняют и для отрицательного плеча резистором R23.

Основная часть деталей лабораторного блока питания размещена на печатной плате из одностороннего фольгированного стеклотекстолита размером 80 х 120 мм. Силовой трансформатор, печатная плата и радиаторы мощных транзисторов блока питания размещены в корпусе подходящих размеров с отверстиями для вентиляции. Все элементы и органы управления блоком, а также микроамперметр РА1 и гнезда для подключения нагрузок вынесены на лицевую панель корпуса. Для индикации включения блока питания в сеть на переднюю панель выведен светодиод АЛ307Б, подключенный через резистор сопротивлением 1,5 кОм к выходу маломощного источника питания на микросхеме DA4 (на схеме не показан).

Авторский материал:

И.И.Мосягин. Секреты радиолюбительского мастерства

М. — СОЛОН-Пресс, 2005 г

Регулируемый блок питания, типа ЛБП

Решил переделать свой лабораторный блок питания. Ну как лабораторный, скорей, регулируемый блок питания. Я уже собирал подобный, но по некоторым обстоятельствам я его разобрал.

Решил собрать необычный и не занимающий много места блок питания. Необычный он тем, что будет подвешен под навесной полкой. Корпусом выбрал коробку от старого модема Huawei.

Комплектующие:

— корпус от модема;
— понижающий модуль;
— регулировочный модуль;
— тумблер;
— резисторы регулировочные;
— ручки на резисторы;
— вольтамперметр;
— клеммы;
— инструменты.


О комплектующих.

Коробка корпуса у меня от устаревшего и раскуроченного модема. Она довольно компактная. Имеются вентиляционные отверстия. Есть очень удобная ниша под тумблер.


Понижающая плата из Китая. Она компактная, как раз под мой корпус. Выжал с нее более 5А. Видимо это ее предельное значение, номинал вроде как 4А. Выходное напряжение 24В, мой вариант выдает 23.8В.

Регулируемый модуль китайского производства. Мой вариант регулирует от 1.26 вольта. В интернете есть варианты доработки, позволяющие регулировать от нуля. Мне не особо такое нужно, устроит и такое минимальное напряжение. Максимальное выходное напряжение, почти повторяет входное напряжение.

Коммутировать сетевое напряжение буду тумблером Т3. Тумблеров у меня завались.

Подстроечные резисторы модуля регулировки, заменю, регулировочными.
Оба на 10 кОм. Так же нужны ручки на резисторы. Первоначально взял большие, но они не помещаются на корпусе, заменю меньшего размера.

Вольтамперметр из Поднебесной. Точность довольно хорошая, на крайний случай имеются подстроечные резисторы с тыльной стороны.

Клеммы от старого измерительного прибора, точной модели не помню. Они довольно крепкие и как раз нашлись разного цвета.

Сборка.

На передней панели делаем разметку под: вольтамперметр, клеммы и резисторы. Все очень просто вырезается и сверлится. Я начал было вырезать бормашиной, но пластик плавился, даже на малой скорости. Дорезал канцелярским ножом.


Прикидываю, где будут стоять модули. Размечаю отверстия, сверлю и прикручиваю платы. Регулировочные резисторы выпаял и впаял провода. На напряжение пара проводов, на ток три провода.

Устанавливаю регулировочные резисторы. Ставлю ручки, нашел размером поменьше. Припаиваю к резисторам провода. Провода связал нитью, чтоб не путались. Соединил проводами силовую плату и регулировочную плату.

Питать вольтамперметр можно с выхода силовой платы, но я запитаю через отдельный стабилизатор. Собирать его буду на TL431. Рассчитать выходное напряжение можно на калькуляторе.

Прикручиваю выходные провода к регулировочной плате. Выходные провода взял со старого БП, на них уже были наконечники. Прикручиваю к клеммам. Провода с разъемами вывожу к вольтамперметру. Стабилизатор клею клеевым пистолетом. Параллельно резистору регулировки напряжения припаял резистор 27кОм. Мне показалось, так регулировка стала плавней.

Чуть не забыл про распайку тумблера. Оба входные провода коммутирую через тумблер. Сетевой разъем ставить не буду. Постоянно теряю отстегивающийся провод, установил провод на постоянную.

Устанавливаю вольтамперметр, скручиваю корпус. Из блока удалось выжать более 5А, но это предел и не долго. Около 4А выдает стабильно.

Существенный минус, судя по описанию подобных блоков, это большие пульсации на выходе. У меня в данный момент отсутствует осциллограф, позже изучу данный вопрос. Вариантов по уменьшению пульсации в интернете предостаточно.

Такой вот блок питания получился у меня. Видимо заметно, что блок собран вверх тормашками. Крышка корпуса, является его дном. Следующее фото отвечает на данный вопрос.

Видео по сборке имеется:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *