Выращивание растений под светодиодами — лекции на ПостНауке
Достаточно яркие, чтобы вырастить под ними растения, светодиоды появились в конце 1980-х годов, и это были красные светодиоды. Первыми, кто придумал вырастить растения под ними, были инженеры из NASA, которые конструировали светильники для космических оранжерей. Все преимущества светодиодов перед обычными светильниками в космосе начинают играть особенную роль, потому что там суперограниченные ресурсы и важна экономия электричества. Утилизировать традиционную лампу в космосе, если она разбилась или перегорела, тоже целая проблема: вылавливать в невесомости осколки по всему кораблю проблематично. Со светодиодами таких проблем не возникает.
Ученые посеяли пшеницу, стали освещать красными светодиодами достаточной интенсивности. Пшеница выросла послабее, чем контрольная под традиционными лампами, тем не менее она смогла вырасти, заколоситься, дать семена. Это был потрясающий результат: растения под таким ущербным, урезанным светом могут пройти полный цикл развития от семени до семени. Ученые добавили к красному свету немного синего, потому что тогда еще не было достаточно ярких синих светодиодов, использовав для этого люминесцентную лампу синего цвета. Пшеница стала практически неотличимой от контрольной.
Когда красно-синий спектр, ставший уже классическим, стали применять к другим объектам, выяснилось, что не все растения согласны на такое издевательство. Салат под красным и синим светом рос нормально. Когда стали пытаться выращивать редиску, выяснилось, что она растет бедная, несчастная, хилая и корнеплоды практически не формирует. Добавили к красно-синему спектру немного зеленого — салат как нормально рос, так и рос, редис тоже стал себя чувствовать хорошо. По мере расширения спектра разных растений, которые пытались выращивать под светодиодным светом, стало понятно, что реакция растений на узкополосный свет сильно видоспецифична: каким-то растениям годится одно, другим — другое. Построить универсальный светильник на основе светодиодов не получается, поэтому при конструировании светильников нужно учитывать, какие растения мы хотим выращивать, где мы их хотим выращивать и для чего.
Если мы хотим нарастить биомассу растения, то нам сгодится классический светильник из красных светодиодов с небольшим добавлением синих. Если мы хотим усилить вкус пряностей или увеличить продукцию эфирных масел у мяты и других эфиромасличных растений, то мы должны будем больше добавлять в наш светильник синий и ультрафиолет, потому что эти спектральные полосы усиливают продукцию ароматических веществ и эфирных масел. Если мы выращиваем растения в теплице и нам нужно сделать досветку, то хватит красного и синего, потому что это еда, а все, что нужно для регуляции роста, растение может взять из солнца.
Светодиоды хороши тем, что ими можно освещать растения не только сверху, как обычными лампами, но еще и сбоку: между рядами в теплице поставить светильники — это даст дополнительный свет нижним листьям и включит их в фотосинтез. Если светодиодный светильник — единственный источник света для растений, то нужно либо добавлять к красному и синему другие спектральные полосы, в зависимости от растений, либо пытаться достичь универсального спектра. Приближенным к универсальному может быть светильник на основе теплых белых светодиодов с добавлением небольшого количества красных — это максимальное приближение к солнцу, которое мы можем достичь современными светодиодами. Для большинства растений такой спектр сгодится.
какие выбрать, виды и характеристики
Вырастить декоративные, плодоносящие культуры в закрытом помещении довольно сложно. Для хорошего роста любому растению необходим свет и тепло. В противном случае зелень будет медленно развиваться, желтеть, а цвет может не появиться вовсе. Особенно остро нуждаются комнатные насаждения в солнечных лучах в зимнее время. Опытные садоводы для разведения рассады и редких культур в этот период используют светодиодные лампы для растений.
Растения и свет: необходимость в подсветке
Для роста и развития любых живых организмов необходима энергия. Запустить такой процесс у растений помогает фотосинтез. Только под действием солнечных лучей зеленые части культур могут правильно развиваться. Даже если цветок получает достаточно влаги и полезных веществ в виде удобрений, но мало света – он будет выглядеть угнетенным.
Процедуру подсвечивания проводят утром или вечером, не лишая растения естественного солнца в момент рассвета и заката. Культуры не должны находиться под искусственными лампами дольше 12 часов. Определить необходимость дополнительного освещения для разных видов можно с помощью люксметра. Тенелюбивым будет достаточно 2000 люкс, светолюбивых устроит 2500 люкс, с условием повышения показателя до 5000 в момент завязывания бутонов и цветения. Лимоны и апельсины смогут сформировать завязь на подоконнике только при высокой освещенности – 9000 люкс.
Для обеспечения подсветки могут быть использованы лампы различного типа. В числе рекомендованных – газоразрядные, люминесцентные, светодиодные. Бытовые лампы накаливания с вольфрамовой нитью лучше не использовать. Они обеспечивают низкую интенсивность света, их яркие инфракрасные лучи чрезмерно ускоряют рост культуры, что делает стебли вытянутыми, а листья мелкими.
Преимущества и недостатки использования ламп
Основное назначение дополнительной подсветки – компенсация недостатка солнца, хорошая стимуляция роста. Установка таких приборов особенно необходима ранней весной, когда световой день еще короткий. Преимущества установки ламп искусственного светового излучения над домашними грядками заключаются в следующем:
- Простота использования. Конструкцию из любого типа ламп можно установить своими руками. Для монтажа не потребуется иметь специальное оборудование и определенные навыки;
- Долговечность приборов. Средний срок эксплуатации качественных приборов – 50 тыс. часов. При ежедневном использовании до 12 часов они прослужат более 10 лет;
- Возможность регулировать интенсивность. Важная функция, позволяющая устанавливать необходимую яркость освещения в различный период роста растений;
- Направление света под нужным углом. Освещение задевает только определенный участок, что позволяет температуре в помещении оставаться неизменной, а рассаде получать необходимое тепло;
- Эстетичность. Умеренное досвечивание наполнит комнату уютом в осенний период, создаст романтическую обстановку;
- Безопасность. Фитолампы абсолютно безвредны для человека, не нагреваются больше 55° С.
Все виды фитоламп обладают некоторыми недостатками. Минимизировать негативное влияние можно, если правильно установить приборы, рассчитав угол падения света и его яркость. Основные минусы – чрезмерная пульсация некоторых типов источников, излучение синего спектра.
Характеристика света
При выращивании растений квартирным способом мощность ламп для ускорения фотосинтеза не имеет большого значения. Особое внимание следует уделить спектру приборов и их схожести с натуральным солнечным светом. Световой луч может иметь один поток или включать сразу несколько волн определенной длины. На растения оказывают характерное влияние следующие цвета из спектра:
- Синий, фиолетовый. Влияют на развитие культуры, ускоряют рост зелени, корней, формируют пышность кроны, новые побеги. Стимуляция такими лучами приводит к продуцированию протеинов. Подсветка подходит для зимнего периода. Длина волн – 380-490 НМ.
- Желтый. Не оказывает особого влияния на рассаду. Высокорослые культуры быстро вытягиваются, как при недостатке освещения, имеют плохо развитый листовой аппарат. Длина волн – 565-595 НМ.
- Красный, оранжевый. Процесс фотосинтеза запускается благодаря этим цветам. Можно регулировать скорость роста культур, если менять интенсивность подсветки. Красные лучи ускоряют проращивание, оранжевые – повышают плодоношение. Длина волн – 600-750 НМ.
- Зеленый. Вытягивает стебли очень быстро. Они не успевают окрепнуть, истончаются и заваливаются набок. Листики образуются только в верхней части культуры. Длина волн – 490-565 НМ.
- Ультрафиолет. Контролирует рост, позволяет своевременно продуцировать необходимые витамины. Излучение вырабатывает иммунитет к внешним воздействиям (смена температуры). Длина волн – 280-380 НМ.
Виды ламп для подсветки растений
Большой ассортимент ламп для растений разного типа делает их выбор затруднительным. Перед приобретением прибора необходимо ознакомиться с его характеристиками. Следует заранее определить цель установки – взращивание семян с нуля или корректировка развития уже зеленых стеблей. Каждая модель имеет свои преимущества и недостатки.
Лампы накаливания
В качестве подсветки используются редко из-за малой светоотдачи и большого нагрева. Такие приборы вообще не рекомендуется размещать рядом с растениями. С большого расстояния подсветка не окажет эффективности. Цветоводы применяют лампы накаливания для создания благоприятных температурных условий в оранжереях, аквариумных емкостях.
Растения нуждаются в подсветке всего несколько часов в сутки, при условии нахождения горшков на подоконнике. Но и такая малая по времени работа приборов будет очень энергетически затратной.
Если использовать лампу накаливания вместе с люминесцентными приборами, можно удачно дополнить спектр красным цветом.
Люминесцентные лампы
Применять целесообразно на небольших площадях. Стандартные модели не ускорят рост растений. Обеспечить фотосинтез поможет прибор с двухкомпонентным люминофорным покрытием и максимальным излучением красного, синего цветового спектра.
Существуют бытовые и профессиональные устройства. При выборе модели надо обратить внимание на диапазон свечения. Он должен соответствовать конкретному случаю: для полноценного освещения небольших аквариумов, для досветки отдельных зон, для теплиц в комбинации с дополнительными источниками. Люминесцентные светильники обладают следующими преимуществами:
- Обеспечивают отличную светоотдачу при малом потреблении электроэнергии;
- Имеют широкий спектр оттенков;
- Излучают мягкий, рассеянный свет;
- Могут работать до 15 тыс. часов.
Газоразрядные лампы
Большая группа светильников для рассады, в которую входят приборы высокого, низкого давления. Все модели абсолютно безвредны, что позволяет их использовать в большом количестве в теплицах и жилых помещениях. Для растений используют следующие типы газоразрядных приборов:
- Металлогалогенные. Очень яркое излучение со стабильным световым потоком подходит для промышленного выращивания, просторных теплиц. Максимальная схожесть искусственного излучения с дневным светом (до 95%). Преобладает синий спектр, что способствует формированию молодых саженцев. Минусы – высокая цена. Вероятность взрыва при увеличении напряжения.
- Натриевые. Светят в красно-оранжевом спектре благодаря газообразной среде, созданной парами натрия. Подходят для использования в период цветения, завязи плодов. Долговечные, экономичные приборы часто имеют небольшие размеры, что позволяет направлять излучатель в нужную сторону. Минусы – большой нагрев, привлечение насекомых, вредителей, создание шума, плохое освещение в холоде. Мгновенный выход из строя при попадании любой жидкости на осветительный прибор.
- Ртутные. Излучение идет в красном спектре, что положительно сказывается на развитии уже сформированных растений. Но этот вариант для досветки используется редко, из-за большого количества негативных факторов. К ним относится сильная пульсация света, низкий индекс цветопередачи, высокое ультрафиолетовое излучение.
Светодиодные лампы
Идеальный вариант досветки. Разнообразие моделей позволяет устанавливать приборы, как в больших теплицах, так и на небольшом подоконнике. Для стеллажей используют беспроводные светильники, например, из алиэкспресс. Спектральный диапазон включает все необходимые оттенки для роста саженцев. Установив светодиоды разной мощности, можно получить идеальную досветку для определенного типа рассады.
Светодиодные светильники можно размещать очень близко к рассаде без риска ожогов листовых пластин. Они мгновенно включаются, обеспечивают ровное свечение. В зависимости от количества рассады и типа стеллажей используют модели следующих форм:
- Фитопанель или таблетка. Профессиональный светильник в виде большого квадрата устанавливают над широкими полками;
- Труба. Используют для подсветки растений, расположенных на подоконниках, на длинных, узких стеллажах вдоль стены;
- Диодные прожекторы. Освещают внушительную площадь с большого расстояния;
- Одиночные светильники. Применяют для цветков одного типа, собранных вместе;
- Светодиодные ленты. Светильники делают своими руками, комбинируя цвета спектра в произвольном порядке.
Как выбрать светодиодную фитолампу
Установить правильную конструкцию с подсветкой для растений можно только после полного анализа самой рассады. Немаловажные факторы – регион высадки, характеристики помещения, расстояние от лампы до растения, расположение светолюбивых, тенелюбивых экземпляров. Также следует подбирать подходящую форму лампы, обеспечить возможность регулирования продолжительности свечения.
Форма и размер фитолампы
Светодиодные лампы могут иметь любую форму и размер. Выбирать конструкцию необходимо, ориентируясь только на собственные потребности. Фитолампы выпускают в следующих вариациях:
- Цокольные. Используют для создания рассеянного освещения. В больших помещениях устанавливают одновременно несколько приборов. Чаще монтируются в потолок, иногда на боковой поверхности, в зависимости от мощности и типа растений. Лампы могут содержать один или сразу несколько спектров с волнами различной длины. Некоторые точечные светильники можно устанавливать над определенной зоной, площадью до 0,5 м.
- Квадратные. Часто используют как единственный источник света, устанавливают в специальном боксе на определенной высоте от растений. Мощные фитопанели имеют несколько светодиодных модулей или одну большую плату. Некоторые современные модели оснащены переключателем мощности, системой охлаждения.
- Линейные. Используют для подсветки стоек, стеллажей, столов. Лампы имеют вытянутую форму, напоминают приборы дневного света. Они излучают идентичное свечение, как и цокольные модели. Применяются в качестве основного, дополнительного освещения. Особая конструкция позволяет подвешивать устройство на любую высоту. По спектральным характеристикам делятся на несколько типов (Биколор, Мультиспектр, Полный спектр).
Спектр и мощность диодов
Солнечный свет, так необходимый для роста растений, состоит из разноцветных волн разной длины. Такие же волны излучают искусственные светильники. Особенно хорошо реагируют культуры на красный и синий цвет спектра. Выпускают биколорные лампы или только с одним источником — моноколорные. Оптимальное сочетание цветов достигается путем комбинации светодиодов.
При выборе лампы для выращивания рассады особое внимание следует обратить на спектрограмму. Эту информацию можно найти на упаковке прибора. На специальной шкале указаны значения каждого цвета.
Важный показатель при выборе фитолампы – мощность диодов. Это может быть 1 Вт, 3 Вт, 5 Вт. Чем выше будет установлена панель, тем мощнее должны быть светодиоды. Для небольшой высоты подвеса подойдут плоские модули, мощностью 1 Вт. Для продолжительной работы при средней загрузке устройства должны иметь модуль охлаждения.
Многие производители светодиодных ламп указывают на приборах только номинальную мощность. Для определения реальной производительности, показатель необходимо разделить пополам.
Количество светильников и правила установки
Благоприятное развитие растений происходит при достаточном освещении. Улучшить этот показатель можно не только за счет качества излучения, но и с помощью количества самих приборов. Необходимое количество ламп рассчитывается для конкретных условий. Чтобы верно произвести подсчеты и обеспечить растения качественной подсветкой, надо принять во внимание следующие аспекты:
- Площадь помещения;
- Количество рассады;
- Расстояние от приборов до высоких культур;
- Угол освещенности;
- Потребность в дополнительном свете для каждого экземпляра.
Фитолампы окажут максимальное действие, если их правильно расположить в квартире. Больше всего светового излучения исходит из самых близко расположенных к растениям приборов. Минимальное расстояние от лампочки до рассады – 25 см. Они должны быть направлены строго на культуры.
Как сделать фитосветильник своими руками
Готовые светодиодные панели или отдельные светильники имеют не всегда оправданную стоимость. Чтобы сделать пробный запуск и правильно подогнать параметры освещения в доме, можно использовать самодельное устройство. Для работы потребуется запастись следующими материалами:
- Светодиоды;
- Основа-каркас для их установки;
- Блок питания с регулировкой мощности;
- Медные соединительные провода.
В первую очередь выбираем по цвету и мощности диоды исходя из типа и потребностей рассады, рассчитываем необходимое количество света. В учет берется время года, наличие, расположение окна. Роль каркаса может выполнять старый люминесцентный светильник, пластиковый короб, любой подручный материал подходящей формы.
Теперь приступаем к сбору фитолампы. Начинать необходимо с крепления светодиодов на алюминиевую пластину с помощью липкого слоя на обратной стороне ленты или двухстороннего скотча. Соединяем их последовательно, параллельно устанавливая токоограничивающее соединение. Для соединения можно использовать паяльник или коннекторы.
Заключение
Светодиодные лампы оказывают огромное влияние на всхожесть семян и рост растений. Можно использовать любой профессиональный прибор или небольшое устройство, собранное своими руками. Даже маломощные фитолампы имеют колоссальную светоотдачу. Современные модели оснащены системой контроля температуры, удобным переключателем спектра для различных периодов роста.
Искусственное освещение для растений — вся правда которую нужно знать. Фитолампы, спектр и время освещения.
Большую часть года, света для растений очень мало. И те, кто выращивают их круглогодично в закрытых помещениях, а не по сезонно на улице, сталкиваются из-за этого с большими проблемами.
Единственный выход их решить — это использовать искусственные источники света. Какие из них лучше выбрать и на что ориентироваться?
КПД, безопасность и расход энергии
В первую очередь, рядовой обыватель обращает внимание на уровень потребления электроэнергии. Чем больше у вас будет растений, тем больше потребуется светильников и лампочек для них.
Неохота платить за электричество больше стоимости урожая. Поэтому при покупке светильников, большое внимание уделяют такому параметру как КПД лампочки.
Всем известные лампочки-груши с нитью накаливания, в процессе работы очень сильно нагреваются. Связано это с тем, что в них большая часть эл.энергии преобразуется не в свет, а в бесполезное тепло.
Поэтому постепенно от них начали отказываться и стали переходить на энергосберегающие лампы. Их КПД примерно в 4 раза выше, чем у обычных.
Однако по факту, мы получили те же самые люминесцентные лампы, хоть и меньшего размера, но содержащие ртуть. Если такая лампочка разобьется, вам придется срочно принять меры безопасности и провести так называемую демеркуризацию всего помещения.
Не только сама ртуть, но и ее пары ядовиты для человека. И даже в сверхмалых концентрациях могут вызвать тяжелые последствия.
Поэтому впоследствии им на замену пришли более безопасные светодиодные источники света. А специально для растений были разработаны фитолампы.
У светодиодов также высокий КПД и минимальный нагрев. А самое главное, они по-прежнему совершенствуются и улучшают свои характеристики год от года.
Какой цвет лучше для растений
Что же прячется за таким научным названием как спектр излучения? Чтобы понять это, придется вспомнить что такое свет? А свет — это не что иное, как электромагнитная волна.
Причем каждый цвет имеет определенную длину волны, отсюда и получается радуга. Однако разная длина означает не только разный цвет, но самое главное — разное количество энергии.
Волны с меньшей длиной содержат в себе больше энергии.
Если все цвета условно представить не в виде привычной прямой линии, а в виде шариков, то синий шарик будет самым большим по размеру. Зеленый поменьше, а красный окажется самым маленьким.
Все цвета всегда упрощают именно до этих трех видов R-G-B:
Почему синий шарик окажется самым объемным? Потому что длина его волны самая маленькая. Она меньше чем у зеленого цвета. А у зеленого в свою очередь, меньше чем у красного.
В итоге и получается, что красный цвет несет в себе меньше энергии, а синий больше всего.
И тут у многих может возникнуть логичный вопрос: «А есть ли разница в том, каким именно спектром освещать растения?» И если есть, можно ли эти знания как-то применить с пользой для дела?
Ведь если какой-то цвет окажется более эффективным, то нет ничего проще, как направить всю энергию на растение только от него. Если синий цвет самый «жирный», достаточно засвечивать растения только им и получать шикарный урожай круглый год.
Однако все оказывается не так просто. Здесь нужно учитывать еще одну характеристику света — его качественный или спектральный состав.
Поглощение света растениями и фотосинтез
Чтобы понять как отдельные цвета влияют на эффективность фотосинтеза, проводились научные эксперименты. Из целого листа выделялись отдельные чистые хлорофиллы. После чего, в течение длительного времени, их засвечивали светом различного спектра и проверяли результаты.
При этом в первую очередь, смотрели на эффективность поглощения СО2, то есть интенсивность фотосинтеза. Ниже представлен итоговый график такого эксперимента.
Из него видно, что хлорофилл в основном поглощается в синей и красной областях. В зеленой области эффективность минимальна.
Однако на этом не остановились и провели еще один эксперимент. В растениях также содержатся каротиноиды. Они хоть и играют незначительную роль, но и про них забывать не стоит.
Так вот, аналогичный опыт с каротиноидами показал, что ранее выделенные пигменты листа, поглощают в этом случае свет преимущественно в синей области спектра.
Посмотрев на это, все дружно решили что зеленый цвет абсолютно бесполезен и им можно пренебречь. Основной упор все специалисты предлагали делать только на синий и красный свет.
И соответственно более правильным считалось выбирать лампочки, которые излучают именно эти спектры больше всего.
Но как оказалось, изначальная ошибка экспериментаторов закралась в том, что они использовали не весь лист целиком, а выделяли из него пигменты и смотрели результаты только по ним.
На самом деле, в цельном листе свет очень сильно рассеивается. Провели еще опыты, но уже смотрели на весь лист и использовали разные растения. В итоге получили данные, которые более точно показывали насколько эффективно свет поглощается всем листком, а не его отдельными «кусочками».
С одной стороны, здесь опять доминируют синий и красный свет. Отдельные пики потребления фотонов доходят до 90 процентов.
Однако к удивлению многих, и зеленые лучи оказались не столь бесполезны как думали раньше. Дело в том, что благодаря своей проникающей способности, зеленый снабжает энергией более глубокие участки листвы, куда не долетают ни красный, ни синий.
Таким образом, если полностью отказаться от зеленого, вы можете ненароком погубить растение, и даже не будете понимать в чем причина.
Получается, что все цвета R-G-B нормально усваиваются листьями и нельзя выбрасывать какой-то один из них. Вот только необходимость энергии на разных цветах у разных растений не равноценна.
Какой свет больше всего нужен растениям
Для того чтобы объяснить это более наглядно и понятнее, проведем аналогию с чем-то съедобным. Допустим у вас на столе лежит спелый персик, ягода малины и груша.
Для вашего желудка все равно что вы съедите. Он одинаково хорошо переварит все ягоды и фрукты. Но это не означает, что для вас в последствии не будет никакой разницы. Разные продукты все равно по-разному влияют на ваш организм.
Съесть 10 ягод клубники это не то же самое, что 10 груш или персиков. Вы должны найти определенный баланс.
То же самое происходит и со светом для растений. Ваша задача грамотно подобрать, насколько каждого света должно быть в общем спектре. Только таким образом можно рассчитывать на быстрый рост.
Самый главный вопрос — какой свет будет считаться лучшим? Казалось бы, что тут гадать. Лучший вариант это солнечный свет и его близкие аналоги.
Ведь миллионы лет растения именно под ним и развивались. Однако посмотрите на картинку ниже. Вот как реально выглядит интенсивность солнечного света.
Видите, насколько здесь много зеленого. А как мы выяснили ранее, он хоть и полезен, но не в такой степени как другие лучи. Когда говорят, что солнечный свет самый эффективный и нечего отступать от матушки природы, не учитывают один простой факт.
В реальной жизни, а не в экспериментах, растения адаптируются не только к солнечному свету, но также и к условиям окружающей их среды, в которой они произрастают.
Допустим на глубине водоема, где растет какая-то зелень, доминирует синий цвет. А вот в лесу под кроной деревьев, уже победителем выходит зеленый.
Поэтому мнение, что солнечный свет самый лучший, в корне не верно. Здесь нужно больше говорить о том, что он самый универсальный и подходит абсолютно для разных условий.
А вот по поводу его эффективности в отдельных случаях возникают существенные вопросы. Вот оптимальное распределение спектров для двух самых популярных у нас овощей — огурца и помидора:
Всего на этих двух элементарных примерах между огурцом и томатом хорошо видно, насколько у них разная потребность. И если одной и той же лампочкой засвечивать оба овоща сразу, то результаты будут совершенно непредсказуемыми.
Суточные ритмы
Кроме правильно подобранного спектра, важную роль играет еще два параметра — время и ритм освещения.
Все растения изначально произрастали на улице при естественном солнце. А солнце как известно не висит в зените 24 часа в сутки. Утром всходит, а вечером заходит. То есть естественная интенсивность освещения сначала постепенно растет, а во второй половине дня, достигнув своего пика, начинает падать.
Это и есть так называемый ритм. И растения его хорошо чувствуют. Измените ритм, не меняя ничего другого, и ваши овощи могут начать болеть, почувствовав себя «не в своей тарелке».
Поэтому опытные садоводы выделили три группы растений — короткого, длинного и нейтрального дня.
Вот их некоторые разновидности:
Длинный день — это когда интенсивность света наблюдается более 13 часов. Короткий — до 12 часов. Растениям для нейтрального дня все равно когда созревать, хоть при коротком, хоть при длинном.
Не будете соблюдать заданный природой цикл и у вас упадет урожайность. Сами растения будут какими-то карликовыми.
Поэтому мало просто купить супер разрекламированные сорта, правильно их высадить, удобрять и поливать.
Как оказывается, еще нужно их правильно освещать. Причем и здесь нет универсального светильника для больших групп растений, везде требуется индивидуальный подход.
Только в этом случае результат вас порадует и вкусом и размером.
Сравнение светодиодов для растений — самопал.pro
Сколько обзоров посвящено светодиодом для растений. Сколько копий сломано в жарких диспутах о полезности их для роста растений. В этом обзоре я хочу немного разобраться, все ли светодиоды, продаваемые на просторах Алиэкспресс и прочих китайских магазинах, одинаковые.
Немного о конструкции светодиодов
Светодиодные кристаллы излучают практически монохромный свет, зависящий от материала полупроводника.
Чтобы получить желтый, белый либо тот же «полный для растений» спектр излучения — применяют люминофорное покрытие, которое преобразовывает первичное излучение во вторичное методом фотолюминесценции
Обычно такой светодиод состоит из корпуса с подложкой и выводами, на которые припаивается или приваривается кристалл светодиода, силиконовой линзы, формирующей направление излучения, прокладки с люминофором и защитного колпачка из прозрачного пластика.
В такой конструкции чаще всего используются наиболее яркие светодиодные кристаллы с синим и фиолетовым спектром.
Инженеры всего мира бьются за увеличение светоотдачи и улучшения спектра и других характеристик светодиода. Наши же китайские друзья, прикрываясь высокими технологиями, ищут пути снижения стоимости товара и завоевания рынка, от банального обмана (те же китайские ватты чего стоят))), до поиска наиболее дешевых компонентов.
Для того чтобы немного разобраться с конъюнктурой рынка светодиодов для растений, я
приобрел несколько наборов 3-х ваттных «бусин» разных производителей:
Дорогие светодиоды Bridgelux c «полным спектром»
Светодиоды на чипах Epiled с «полным спектром», самые дешевые в обзоре
Светодиоды с тайваньскими чипами Epistar c «полным спектром»
Светодиоды на 440 и 660нм с чипами Epistar
Обычные светодиоды теплого белого цвета, применяемые в осветительных лампах
На первый взгляд все они похожи как однояйцевые близнецы )))
А вот включение светодиодов выявило интересную особенность.
Если светодиоды Epiled и Bridgelux за люминофором имеют квадратный кристалл 42mil или 45mil
То кристалл Epistar имеет явно прямоугольную форму
Поиск на сайте производителя действительно показал наличие прямоугольных кристаллов 30x43mil различной мощности
Вольт-амперная характеристика показала явное отличие кристаллов
Наибольшее падение напряжения на кристалле, а значит и электрическую мощность показал желтый светодиод. Наименьшую — Epistar
Характеристики 440 и 660нм светодиодов сюда приводить не стал, их можно посмотреть в этом обзоре
Спектральный анализ при помощи ювелирного спектрометра показал, что светодиоды для растений имеют характеристики близкие к заявленным
Так как точного спектрометра у меня нет, сравнить количественные составляющие спектра не представляется возможным.
Чтобы выявить отличия, решил провести
Натуральный эксперимент
Для этого собираю небольшие фитолампы на алюминиевом профиле
В лампу с раздельным спектром ставлю три красные 660нм и один синий 445нм. Такое количество примерно уравнивает мощность лампы с остальными ,так как падение на красном кристалле составляет всего 2.5В с соответственной мощностью
Запитываю все пять ламп последовательно одним 36 ваттным драйвером кристаллах.
Из за разных напряжений на различных кристаллах разброс мощности получился около 20%
В качестве «подопытного кролика» выбираю траву для кошек, имеющую быструю всхожесть и рост. Да и кота можно порадовать
обираю в темном углу комнаты полигон
Посадил, полил, поехали!
Примерно через сутки трава взошла. Начинаем засветку в круглосуточном режиме (не совсем конечно правильно, но для быстроты эксперимента)
Пару дней — трава потянулась к свету. Более менее равномерно.
А вот на пятый день уже вполне видна разница. Кот с удовольствием следит за развитием эксперимента.
На 7-мой день эксперимент завершаю. Как говориться, результат на лицо
Выявилось два явных аутсайдера — Epiled и Bridgelux. Отличие в росте травы составило более 25%.
Прежде чем подводить итоги, хочется свести в табличку стоимость одного светодиода при партии 50-100 шт
Итог:
Какие выводы я сделал для себя.
1. Не все йогурты одинаково полезны В данном случае, дешевые светодиоды на кристаллах Epiled оказались менее эффективными для роста растений и брать их нету смысла. Видимо кроме дешевых кристаллов в них используется менее качественный люминофор, иначе не объяснить, как при большей мощности они дают худший результат.
2. И противоположный вывод, не всегда дорогой товар — гарантия качества. Я ничего не хочу сказать плохого про американскую компанию Bridgelux. Скорее все я имею дело с подделкой. Уж слишком близкие характеристики у этого «Bridgelux» с Epiled. Данные дорогие фитосветодиоды ничем не лучше своих дешевых товарок.
3. Для подсветки растений вполне подходят обычные белые светодиоды, обеспечивающие рост наравне
со специальными, причем как с монокристаллами 660 и 445 нм, так и люминофорными с «полным спектром»
4. Тщательный отбор компонентов на Алиэкспресс позволяет сделать более менее оптимальный выбор. Так светодиоды Epistar «полный спектр» по ссылке на товар данного топика, позволяют обеспечить рост растений при 20% снижении мощности лампы относительно белых светодиодов.
Все что изложено в данной статье является моими личными наблюдениями и опытом. Для более точных результатов нужно проводить гораздо больше исследований с применением приборов.
Наконец то эксперимент в тему!
со своего сайта.
Светодиоды для растений на 3Вт с «полным спектром»
С праздников весны, милые дамы! Какой же весенний праздник без цветов?Но вырастить цветы в условиях нашей зимы не просто. Расскажу о том, что помогает в выращивании растений — специальном свете, фитолампах.
С праздников весны, милые дамы! Какой же весенний праздник без цветов?
Про самодельные лампы для растений я написал уже несколько статей
С использованием обычных синих и красных светодиодов
С использованием светодиодов специального спектра 440нм и 660нм
Короткий обзор, как растут растения под фитолампами
Сейчас расскажу о специальных светодиодах для растений с «полным спектром»
Процесс фотосинтеза растений сильно зависит от спектра света.
Поэтому эффективнее использовать свет, максимально приближенный к 445нм и 660нм. Также рекомендуют добавлять еще и инфракрасный светодиод. Про все это сломано не мало копий на соответственных форумах. Не буду теоретизировать, перейду к практике. На этот раз на просторах АЛИ я приобрел 3-х ваттные светодиоды для растений с «полным спектром».
Характеристики товара
- Мощность: 3 Вт (есть 1 Вт в том же лоте)
- Рабочий ток: 700мА
- Рабочее напряжение: 3.2-3.4В
- Производитель чипа: Epistar Chip
- Размер чипа: 45mil
- Спектр: 400нм-840нм
- Сертификаты: CE, RoHS,
- Срок жизни: 100 000 ч
- Назначение: лампы для растений
Упаковка очень простая.
По виду светодиод похож на своих холодных и тепло белых братьев.
Упаковка осталась от ранее использованных светодиодов.
Тестирование светодиодов
Для начала, проверка мощности и снятие вольт-амперной характеристики
Компьютерный блок питания, используемый мной как лабораторный и старый добрый ПЭВР-25, олицетворяющий великую эпоху )))
Измерение тока/напряжения простейшим приборчиком, так как особой точности здесь не требуется. Ну и радиатор, чтобы не перегреть светодиод, пока буду над ним издеваться. Дополнительно измерил освещенность в каждом режиме на расстоянии примерно 15-20 см для оценки эффективности свечения при разных токах.
Мощность светодиода довел до 7.5Вт, думал помрет, а нет, выжил!
Посмотрим что дает график напряжения и освещенности от тока.
Напряжение меняется довольно линейно. Никаких признаков деградации кристалла на токе 1.5А. С освещенностью все интереснее. Примерно после 500мА зависимость освещенности от тока снижается. Делаю вывод, что 500-600мА — самый эффективный режим работы с этим светодиодом, хотя он вполне будет работать на своих паспортных 700мА.
Спектральный анализ
Для спектрального анализа взял попользоваться спектроскоп
В одну трубку светим исследуемым источником, в другую, подсвечиваем шкалу. В окуляр смотрим готовый спектр
К сожалению, данный экземпляр спектроскопа не имеет специальной насадки для фотографирования. Картинка визуально очень красивая никак не хотела получаться в компьютере. Пробовал и разные фотоаппараты, и телефоны и планшет. В результате остановился на эндоскопе, с помощью которого кое как удалось снять картинки спектра. Цифры шкалы дорисовывал в редакторе, так как камера никак не хотела нормально фокусироваться.
Вот что у меня в результате получилось
Солнечный спектр
Люминисцентная настольная лампа
Четко видны спектральные линии ртути
Теплый белый светодиод
Фитолампа на светодиодах 440нм и 660нм
Ну и наконец, светодиод из обзора с «полным спектром»
Для анализа воспользовался бесплатной программкой Cell Phone Spectrophotometer
Поборовшись с ошибками, как это написано в статье, связанными с разными форматами десятичной запятой в разных Windows, получил такие спектрограммы
Ртутная лампа
Теплый белый светодиод
Фитолампа со светодиодами 440нм и 660нм
Светодиод из обзора с «полным спектром»
Проверить наличие инфракрасной составляющей 840нм на данном приборе не представляется возможным, но в визуальном диапазоне спектр светодиодов вполне соответсвует назначению. Максимум свечения приходится на 440нм и 660нм. Полоса спектра в данном диапазоне более широкая и плавная, чем у раздельных монохромных светодиодов.
Изготовление фитолампы
Конструкция не отличается от любого самодельного светильника на светодиодах:
сами светодиоды, драйвер и радиатор охлаждения. Рассеиватель ставить не стал, незачем снижать световой поток.
Драйвера взял такие. Вполне подходят и эти из моего обзора
В качестве радиатора использую П-образный 30мм алюминиевый профиль. На 1м профиля 10 светодиодов (порядка 20Вт). При постоянной работе такая лампа нагревается не более 45С.
Корпуса для драйверов я делаю из электротехнического кабель канала.
Для приклеивания светодиодов к профилю использую казанский герметик, хотя подошел бы и термоклей.
Потом соединяю все проводками, контакты изолирую термоусадкой
Теперь драйвер и фитолампа готова
Пару часов прогона показывает, что тепловой расчет сделан правильно и перегрева не будет даже при длительной работе
Свет у лампы мягче, чем у раздельных светодиодов 440нм и 660нм. Она меньше слепит глаза.
Пора подвести итоги
Светодиоды с «полным спектром» вполне оправдывают свое назначение и годятся для изготовления фитоламп.
Заявленная мощность и спектр соответствуют заявленным характеристикам, хотя инфракрасную состовляющую проверить не удалось.
Нужный спектр в таких светодиодах достигается специальным люминофором, поэтому конструктив самих диодов может быть любым. Можно брать мощные матрицы на 20Вт и выше для использования в теплицах. Для подсветки рассады и комнатных растений вполне достаточно этих светодиодов.
Выходной контроль пройден!
О различных конструкциях фитоламп и прочих самодельных светильниках много написал в своем блоге.
Светодиоды для растений. Такие одинаковые и такие разные.
Сколько обзоров посвящено светодиодом для растений. Сколько копий сломано в жарких диспутах о полезности их для роста растений. В этом обзоре я хочу немного разобраться, все ли светодиоды, продаваемые на просторах Алиэкспресс и прочих китайских магазинах, одинаковые.Немного о конструкции светодиодов
Светодиодные кристаллы излучают практически монохромный свет, зависящий от материала полупроводника.Чтобы получить желтый, белый либо тот же «полный для растений» спектр излучения — применяют люминофорное покрытие, которое преобразовывает первичное излучение во вторичное методом фотолюминесценции
Обычно такой светодиод состоит из корпуса с подложкой и выводами, на которые припаивается или приваривается кристалл светодиода, силиконовой линзы, формирующей направление излучения, прокладки с люминофором и защитного колпочка из прозрачного пластика.
В такой конструкции чаще всего используются наиболее яркие светодиодные кристаллы с синим и фиолетовым спектром.
Инженеры всего мира бьются за увеличение светоотдачи и улучшения спектра и других характеристик светодиода. Наши же китайские друзья, прикрываясь высокими технологиями, ищут пути снижения стоимости товара и завоевания рынка, от банального обмана (те же китайские ватты чего стоят))), до поиска наиболее дешевых компонентов.
Для того чтобы немного разобраться с конъюнктурой рынка светодиодов для растений, я
приобрел несколько наборов 3-х ваттных «бусин» разных производителей:
Дорогие светодиоды Bridgelux c «полным спектром»
Светодиоды на чипах Epiled с «полным спектром», самые дешевые в обзоре
Светодиоды с тайваньскими чипами Epistar c «полным спектром»
Светодиоды на 440 и 660нм с чипами Epistar
Обычные светодиоды теплого белого цвета, применяемые в осветительных лампах
На первый взгляд все они похожи как однояйцевые близнецы )))
А вот включение светодиодов выявило интересную особенность.
Если светодиоды Epiled и Bridgelux за люминофором имеют квадратный кристалл 42mil или 45mil
То кристалл Epistar имеет явно прямоугольную форму
Поиск на сайте производителя действительно показал наличие прямоугольных кристаллов 30x43mil различной мощности
Вольт-амперная характеристика показала явное отличие кристаллов
Наибольшее падение напряжения на кристалле, а значит и электрическую мощность показал желтый светодиод. Наименьшую — Epistar
Характеристики 440 и 660нм светодиодов сюда приводить не стал, их можно посмотреть в этом обзоре
Спектральный анализ при помощи ювелирного спектрометра показал, что светодиоды для растений имеют характеристики близкие к заявленным
Так как точного спектрометра у меня нет, сравнить количественные составляющие спектра не представляется возможным.
Чтобы выявить отличия, решил провести
Натуральный эксперимент
Для этого собираю небольшие фитолампы на алюминиевом профилеВ лампу с раздельным спектром ставлю три красные 660нм и один синий 445нм. Такое количество примерно уравнивает мощность лампы с остальными ,так как падение на красном кристалле составляет всего 2.5В с соответственной мощностью
Запитываю все пять ламп последовательно одним 36 ваттным драйвером кристаллах.
Из за разных напряжений на различных кристаллах разброс мощности получился около 20%
В качестве «подопытного кролика» выбираю траву для кошек, имеющую быструю всхожесть и рост
Собираю в темном углу комнаты полигон
Посадил, полил, поехали!
Примерно через сутки трава взошла. Начинаем засветку в круглосуточном режиме (не совсем конечно правильно, но для быстроты эксперимента)
Пару дней рост одинаковый
А вот на пятый день уже вполне видна разница. Кот с удовольствием следит за развитием эксперимента.
На 7-мой день эксперимент завершаю. Как говориться, результат на лицо
Выявилось два явных аутсайдера — Epiled и Bridgelux. Отличие в росте травы составило более 25%.
Прежде чем подводить итоги, хочется свести в табличку стоимость одного светодиода при партии 50-100 шт
Итог:
Какие выводы я сделал для себя.1. Не все йогурты одинаково полезны В данном случае, дешевые светодиоды на кристаллах Epiled оказались менее эффективными для роста растений и брать их нету смысла. Видимо кроме дешевых кристаллов в них используется менее качественный люминофор, иначе не объяснить, как при большей мощности они дают худший результат.
2. И противоположный вывод, не всегда дорогой товар — гарантия качества. Я ничего не хочу сказать плохого про американскую компанию Bridgelux. Скорее все я имею дело с подделкой. Уж слишком близкие характеристики у этого «Bridgelux» с Epiled. Данные дорогие фитосветодиоды ничем не лучше своих дешевых товарок.
3. Для подсветки растений вполне подходят обычные белые светодиоды, обеспечивающие рост наравне
со специальными, причем как с монокристаллами 660 и 445 нм, так и люминофорными с «полным спектром»
4. Тщательный отбор компонентов на Алиэкспресс позволяет сделать более менее оптимальный выбор. Так светодиоды Epistar «полный спектр» по ссылке на товар данного топика, позволяют обеспечить рост растений при 20% снижении мощности лампы относительно белых светодиодов.
Все что изложено в данной статье является моими личными наблюдениями и опытом. Для более точных результатов нужно проводить гораздо больше исследований с применением приборов.
По каким критериям оценивает траву кот — для меня так и осталось загадкой