Расшифровка опс в электрике – должностная инструкция, расшифровка ОПС, обучение на инженера по обслуживанию охранно-пожарной сигнализации

Содержание

ОПС-1: схема подключения, расшифровка электрика

Ограничитель импульсных перенапряжений — устройство, призванное защитить внутренние распределительные электроцепи зданий от грозовых всплесков и импульсных перенапряжений. К примеру, ограничитель способен защитить сети от молниевых ударов, сетевых бросков напряжения и прочего. Какие имеет ОПС-1 технические характеристики? Как выглядит схема подключения у ограничителя импульсных перенапряжений ОПС1? Об этом и другом далее.

Технические характеристики ОПС-1

ОПС-1 — серия коммутационных ограничителей импульсных перенапряжений, которые защищают сети от вредоносных импульсов. В конструктивном плане имеют стандартные модули с 18 миллиметровой шириной под установку на монтажный тип рейки. Содержат твердотельные композитные варисторы из карбидового цинка и механизмы, отвечающие за визуальный контроль изнашиваемости варистора и аварийного предохранителя. Благодаря карбиду цинка снижают сопротивление в 1000 раз во время появления на сменном модуле напряжения, значение которого превышает предельно допустимое.

ОПС 1

Каждый ОПС-1 имеет количество модулей от 1 до 4 штук в однофазной и трехфазной сети. Есть класс, номинальное напряжение, рабочее протекторное напряжение (500-1000 вольт), номинальное количество тока ограничителя (5-10 ампер), ток, который разрядник принимает при атмосферном разряде (40-65 килоампер) и напряжение, до которого уменьшается значение при разрыве (от 0,25 до 1,2 киловатт).

Обратите внимание! Бывает четыре класса защиты. Первый класс устройств не применяется в бытовых установках, а нужен только для того, чтобы защитить линию электрической передачи. Второй класс используется, чтобы защитить высоковольтные скачки напряжения, которые вызваны ударом молнии к линии электрической передачи.

Третий класс нужен, чтобы защищать от перенапряжений с низкими сетевыми значениями. Защитные устройства ставятся в бытовом распределительном устройстве. Четвертый класс используется, чтобы защищать электрические устройства, которые чувствительны к импульсным помехам и всплескам в однофазной сети. Они монтируются в распределительном типе щитка, за розеткой в электрокоробке или около защищаемого устройства.

Технические характеристики

Расшифровка аббревиатуры и базовый принцип работы

Расшифровывается ОПС-1 в электрике как ограничитель перенапряжений системы. Работает устройство просто. Выступает часто как пожарная сигнализация.

Аббревиатурная расшифровка

Главный элемент агрегата — это варистор, являющийся специальным проводником в электрике. Пропускает электрический ток через себя, который многократно возрос, по сравнению с номинальным напряжением. В итоге нагрузка шунтируется, преобразовывается и рассеивается. Создается тепловая энергия или нагревание корпуса. В большинстве случаев есть окно, благодаря которому можно осуществить визуальное определение работоспособности варистора. Также это устройство имеет предохранитель, нацеленный на защиту оборудования от действия сверхтоков.

Базовый принцип работы

Обозначение на принципиальных схемах

Основные символы, которые используются в случае обозначения разрядных устройств от сверхтоков, представлены в следующем изображении. Первое условное обозначение — общий разрядник, второе — трубчатый разрядник, третье — вентильный и магнитовентильный разрядник, а последнее — ограничитель перенапряжения.

Обозначение на принципиальной схеме

Безопасность и эффективность ограничителя

Каждым производителем рекомендуется использование дополнительного предохранителя для защиты сети при повреждении разрядного устройства и при коротком замыкании фазового провода. В бытовых установках дополнительный предохранитель не нужен, поскольку защита от сверхтока происходит благодаря одному прерывателю или предохранителю. Один аппарат способен защитить сеть от перебоев.

 

Эффективность ограничителя

Схемы подключения

На примере ниже показано осуществление правильного зонального подключения ограничителя перенапряжения. Подобная схема весьма эффективна. Именно концепция трехступенчательной защиты, где размещается устройство внутри помещения, чрезвычайно популярна на практике. При этом для каждой зоны ставится соответствующий ограничительный класс.

Следует обратить внимание! При установке оборудования необходимо соблюдать приличное расстояние между устройствами. Они должны быть приближены друг к другу примерно на 10 метров. Этот момент указывает каждая опс 1 схема подключения.

Схема подключения

В целом, ОПС-1 — устройство защиты от импульсных перенапряжений, созданное для защиты электрической цепи от возникающих кратковременно напряжений между фазой и землей. Появляются импульсные перенапряжения как внутри сети, так и вне ее. ОПС-1 расшифровывается как ограничитель импульсов и имеет свой базовый принцип работы. Условно обозначается на принципиальной схеме прямоугольником. Представлен по разному в схемах подключения.

особенности проверки и применения (2012)

«Варисторные ограничители импульсных перенапряжений ОПС1 давно и с успехом используются для построения защит и предотвращения повреждений сетей электропитания и электроустановок от опасных перенапряжений. Прошу рассказать подробнее, каким образом работает эта защита и что представляет собой варистор?»

Олег КАЛИКА, г. Мариуполь, Украина

ОПС1 относится к устройствам защиты от импульсных перенапряжений (УЗИП) и применяется для защиты электросети от кратковременных, чрезвычайно высоких для данной электросети напряжений, возникающих между фазами либо между фазой и землей. Причины возникновения импульсных перенапряжений могут находиться как внутри электросети, так и вне нее. Внутренними источниками импульсных перенапряжения являются, как правило, коммутации реактивных нагрузок, электростатический разряд, пробой изоляции и т.п. Особенную опасность при этом представляют импульсы, возникающие при отключении индуктивной нагрузки, так как при коммутации вся запасенная энергия «выбрасывается» в сеть в виде высоковольтного импульса. Электростатический же разряд опасен главным образом тем, что при работе технологического оборудования он накапливается, и при достижении критической энергии может разрядиться в непредсказуемом месте, чем вызовет импульс перенапряжения.

Существует несколько типов устройств защиты от импульсных перенапряжений: разделительные трансформаторы, разрядники, защитные диоды. Если говорить о самом распространенном УЗИП для бытового применения в распределительных щитах, вводных распределительных устройствах жилых и промышленных помещений, то это, несомненно, устройства на базе варисторов. Основным преимуществом такого типа УЗИП являются небольшие габаритные размеры, отсутствие выброса горячего газа при срабатывании защиты, а так же простота применения.

Что такое варистор?

Варистор — это полупроводниковый резистор, сопротивление которого зависит от приложенного напряжения. Одна из особенностей варистора — это нелинейная симметричная вольт-амперная характеристика (ВАХ) (см. рис. 1).

То есть при приложении к варистору небольшого напряжения, ток через варистор не протекает, но если постепенно повышать напряжение, то наступит момент, при котором ток через варистор начинает проходить. Именно эту особенность варистора и используют для защиты от импульсных перенапряжений.

Для изготовления варисторов используются полупроводниковые материалы с высокой стабильностью при повышенных температурах, так как при работе варистора вся мощность выделяется в малом объеме. Существуют несколько типов варисторов, однако самыми распространенными являются два типа: варисторы, изготавливаемые с применением карбида кремния SiC и варисторы, изготавливаемые с применением оксида цинка ZnO. Варисторы, изготовленные на основе оксида цинка, обладают вольт-амперной характеристикой с высокой нелинейностью, однако значительно более сложны в изготовлении по сравнению с варисторами на основе карбида кремния.

Принцип работы варистора

Чтобы лучше понять, как работает варистор, рассмотрим технологию его изготовления на примере карбид-кремниевых варисторов (так как, напомню, технология изготовления варисторов с оксидом цинка существенно сложнее). Для изготовления карбид-кремниевых варисторов используют полупроводниковый карбид кремния SiC с нелинейной вольт-амперной характеристикой. Карбид кремния размалывают в порошок до размеров кристаллов в несколько десятков микрометров, и этот порошок используют в качестве основы варистора. Сам по себе порошок уже обладает нелинейной ВАХ, однако эта нелинейность крайне нестабильна, и сильно зависит от степени сжатия порошка, размера частиц порошка, меняется при тряске и т. п. Для стабилизации параметров порошок скрепляют связующим веществом — глиной, стеклом, смолой. Порошкообразный карбид кремния и связующее вещество запрессовывают в форму и спекают при высоких температурах. Поверхность прессованного образца металлизируют и припаивают к ней выводы. Внешне варисторы оформляются в виде стержней или дисков.

Нелинейность вольт-амперной характеристики варистора связана с процессами, происходящими при протекании тока в местах контактов поверхностей кристаллов карбида кремния. Поверхности кристаллов имеют разнообразную форму и расположены хаотично. При небольшом приложенном напряжении ток протекает только через участки кристаллов которые, соприкасаются друг с другом. При повышении напряжения пропорционально увеличивается ток, протекающий через эти соприкасающиеся участки, и начинает протекать ток между участками кристаллов с малыми зазорами между поверхностями, при этом участки пропускающие ток начинают разогреваться. Новые проводящие цепочки кристаллов включаются параллельно, их становится все больше. Чем выше напряжение, тем больший ток проходит через кристаллы, что влечет за собой еще больший разогрев в местах их соприкосновения. Повышение температуры полупроводникового карбида кремния приводит к уменьшению сопротивления, то есть при определенном приложенном напряжении сопротивление варистора уменьшится настолько, что через него начнет проходить ток.

Таким образом, при построении защиты от импульсных перенапряжений необходимо выбирать такие варисторы, которые не будут пропускать через себя ток при номинальном напряжении электроустановки. А при повышении напряжения будут «открываться», пропуская опасный импульс напряжения через себя, тем самым защищая установку.

При длительной работе варистора в составе ограничителя импульсных перенапряжений неизбежна деградация рабочих характеристик и изменения вольт-амперной характеристики. Причинами таких изменений являются длительное приложение номинального напряжения и импульсные воздействия.

При режиме длительного приложения номинального напряжения изменение характеристик обусловлено длительной работой варистора на номинальном напряжении и номинальной частоте. За изменения характеристик варистора при таком режиме работы отвечает связующее вещество, которое связывает кристаллы карбида кремния.

Импульсные воздействия на варистор. В процессе эксплуатации ограничитель и входящий в состав варистор, неоднократно подвергаются грозовым и коммутационным воздействиям, что, несомненно, приводит к ухудшению вольт-амперной характеристики. При этом импульс напряжения не обязательно должен быть выше порога срабатывания варистора, практика показывает, что основное изменение ВАХ происходит на участках малых токов.

Испытание классификационного напряжения

Измерение классификационного напряжения является надежным способом отслеживания изменения вольт-амперной характеристики варистора. Классификационное напряжение Uk -это напряжение на выводах, при котором через варистор начинает протекает заданный ток. Как правило, для варисторов указывается классификационное напряжение, при котором через него проходит ток 1 мА.

То есть то напряжение, при котором варистор «открывается» и пропускает через себя опасный импульс напряжения, к примеру, для ВАХ варистора, изображенной на рис. 1, классификационное напряжение будет составлять 60 В.

В измерении классификационного напряжения нет ничего сложного. К ограничителю прикладывают напряжение и постепенно поднимают его до значения, при котором через варистор начнет протекать ток 1 мА. Таким образом, измерение классификационного напряжения является контролем, не разрушающим работоспособности варистора. И проводить его можно как на новых варисторах, так и на варисторах в процессе эксплуатации.

Специалистами Технического департамента Группы компаний IEK были проведены статистические измерения классификационного напряжения для ограничителей ОПС1 торовой марки IEK®. Выборка составляла по 100 штук каждого типоисполнения ОПС1: ОПС1-В, ОПС1-С, 0nC1-D.

Измерение классификационного напряжения производилось двумя способами. Во-первых, на испытательном стенде для измерения классификационного напряжения ОПС1 завода-изготовителя. На этом стенде завод проводит стопроцентный контроль работоспособности всех изготавливаемых ограничителей перенапряжения. И, во-вторых, с помощью прибора Е6-24 производства НПФ «Радио-Сервис». Прибор представляет собой переносной мегаомметр с функцией измерения классификационного напряжения. Прибор производит измерение классификационного напряжения варисторов в автоматическом режиме, при подаче и плавном повышении постоянного напряжения и постоянном контроле тока, протекающего через варистор. Таким образом, при помощи Е6-24 можно проводить проверку работоспособности ОПС1 с минимальными трудозатратами.

По результатам проведенных измерений классификационного напряжения были построены графики плотности вероятности значения классификационного напряжения для каждого типа ОПС1 (рис. 2). Различие в измеренных значениях классификационного напряжения двух приборов не превышает 1 процента и обусловливается погрешностями измерительного оборудования, входящего в состав приборов. Усредняя полученные данные и упрощая проведение проверки работоспособности ОПС1 для потребителя, можно принять следующие значения классификационного напряжения: ОПС1-В — 710 В, ОПС1-С — 670 В и ОПС1 — 420 В.

Опс что это такое расшифровка в электрике — Портал о стройке

Образование 25 июля 2017

На вопрос: «Что это – ОПС?» — существует много вариантов ответа. Дело в том, что в русском языке есть немало способов расшифровать данное сокращение. Давайте рассмотрим наиболее известные из них.

Содержание статьи:

Что такое многозначные термины

Прежде чем узнать расшифровку рассматриваемой аббревиатуры, стоит уточнить, почему она относится к категории слов, для которых характерна многозначность.

Этим сокращением иллюстрируется способность названий иметь не одно, а сразу несколько лексических значений.

В случае с терминами (специализированное слово/словосочетание, означающее конкретное понятие и используемое в пределах определенной среды) для них многозначность характерна только вследствие омонимии.

Это значит, что параллельно существует несколько явлений, чьи названия выглядят идентично. Однако они никак не связаны между собою, а их схожесть – результат обычного совпадения. Существование множества вариантов расшифровки аббревиатуры ОПС – это как раз тот случай.

Обязательное пенсионное страхование

Для каждого гражданина Российской Федерации рассматриваемое сокращение в первую очередь расшифровывается как «обязательное пенсионное страхование».

В 2002 г. в стране была проведена реформа, вследствие которой теперь каждый работающий гражданин или иностранец является застрахованным лицом. В связи с этим ежемесячно такому человеку нужно выплачивать определенные страховые взносы на ОПС. Размер их составляет двадцать два процента.

Таким способом государственный бюджет ежегодно получает достаточно средств для выплат пенсий лицам, которые имеют на это право.

Охранная пожарная сигнализация

Рассматривая варианты ответа на вопрос: «ОПС – это что?» — стоит вспомнить о другой, не менее важной расшифровке данного сокращения. Речь идет об охранной пожарной сигнализации. Она, как шоколадный батончик «Твикс» из рекламы, совмещает в себе сразу две функции.

  • Обеспечивает пожарную безопасность.
  • Заботится об охране объекта от злоумышленников.

Как правило, такая система устанавливается на предприятиях разного размера, в торговых центрах и офисных помещениях. Реже в частных домах.

К сожалению, из-за того, что монтаж ОПС — довольно затратное мероприятие, в большинстве государственных учреждений его ставят редко, не говоря уже о жилых домах. А между тем пользу от охранной пожарной сигнализации сложно переоценить. Ведь она помогает ежегодно по всему миру предотвратить тысячи пожаров и преступлений.

Монтаж ОПС недешев из-за того, что для его осуществления нужно совершить несколько шагов.

  1. Выбрать фирму-исполнителя. От ее опыта и квалифицированности зависит качество установки и функционирования будущей сигнализации.
  2. Составить проект. Теоретически его можно составить самостоятельно. Однако, если нет опыта, лучше обратиться к профессионалам. Оптимальный вариант, когда проект ОПС делает та же компания, которая впоследствии и будет заниматься монтажом данной системы.
  3. Непосредственно сама установка охранной пожарной сигнализации. Это весьма трудоемкий и ответственный процесс. Стоит ли говорить, что осуществлять его должны профессионалы?
  4. Контроль за исправностью ОПС. Даже если охранную пожарную сигнализацию установили идеально, периодически все же стоит проверять, правильно ли работает она. Ведь даже самый совершенный механизм может давать сбои. Конечно, проверка ОПС тоже платная, но стоит ли экономить, когда речь идет о безопасности для жизни и здоровья?

Отделение почтовой связи

Данное словосочетание — это еще один вариант ответа на вопрос «ОПС – что это?».

На протяжении уже нескольких столетий именно почта специализируется на доставке писем, открыток и разногабаритных посылок, а также на пересылке денежных переводов.

Стоит отметить, что в современном мире большую конкуренцию ей составляют интернет и СМС-сообщения, онлайн-банкинг, а также частные курьерские службы. Несмотря на это, почтовые отделения по-прежнему не остаются без работы.

Количество ОПС в конкретном населенном пункте напрямую зависит от его размера и численности населения. Так, в деревнях и маленьких городах обычно существует по одному или два таких учреждения. Однако в больших городах их может быть более десятка, причем каждое из них будет иметь собственный индекс.

К примеру, отделения почтовой связи Москвы равномерно распределены по тринадцати почтовым районам города. При этом в общей массе в столице Российской Федерации свыше пятисот ОПС. И это уже после сокращения.

В столице Украины – городе Киеве — гораздо меньше таких учреждений. Их численность — чуть более 230.

Стоит отметить, что в большинстве стран мира сегодня идет активная модернизация ОПС. При этом почтовые отделения в маленьких городах и селах, как правило, находятся под угрозой закрытия из-за своей низкой рентабельности.

Организованное преступное сообщество

Также ОПС является синонимом для слова ОПГ (организованная преступная группировка).

Независимо от специфики деятельности, цель такого сообщества – использовать для получения прибыли все возможные способы, включая запрещенные законом.

Стоит отметить, что часто ОПС имеет легальные предприятия. Их работа не нарушает никакие законы. С их помощью осуществляется легализация неправомерных доходов.

Окружающая природная среда

Еще один вариант ответа на вопрос «ОПС – что это такое?» — окружающая природная среда.

Это понятие включает все естественные компоненты вроде атмосферного воздуха, недр земли, почвы, различные виды водоемов, в также природные комплексы, ландшафты и объекты, определяющие условия существования человека как биологического организма.

На них влияют следующие группы факторов:

  • Абиотические — неживая природа (климат, атмосфера, литосфера, гидросфера).
  • Биотические – отличные от человека живые организмы, являющиеся его «соседями».
  • Антропогенные – деятельность человечества.

Рассмотренные пять видов расшифровки аббревиатуры ОПС – это лишь наиболее известные варианты. На самом деле способов трактовки данного сокращения — несколько десятков. По этой причине, сталкиваясь с этим буквосочетанием, всегда нужно уточнить контекст, чтобы не попасть в нелепую ситуацию.

Источник: fb.ru

Source: monateka.com

Читайте также

Ограничители импульсных перенапряжений ОПС-1

18.09.2015

Ограничители импульсных перенапряжений ОПС-1

Не секрет, что чем сложнее является электротехническое и радиоэлектронное оборудование, тем более оно нуждается в защите от разного рода помех и колебаний питающего напряжения.

Ограничители импульсных перенапряжений ОПС-1 предназначены для защиты внутренних распределительных цепей жилых и общественных зданий от грозовых и коммутационных импульсных перенапряжений, таких как удары молнии, броски напряжений внутри сети, вызванные пуском-остановом мощных электродвигателей или переключениями на подстанции.

При использовании ограничителей ОПС необходимо помнить, что устанавливаться они должны до устройств защитного отключения (УЗО), коммутационных аппаратов и счетчика электроэнергии.

Особенности конструкции ограничителей ОПС-1:

  • Изготовлены в виде стандартных модулей шириной 18мм, с креплением на ДИН-рейку.
  • Насечки на контактных зажимах предотвращают перегрев и оплавление проводов за счет более плотного и большего по площади контакта.
  • На лицевой панели ограничителя ОПС1 реализован визуальный указатель «износа» сменного защитного модуля — если при осмотре индикатор затемнен более чем на 3/4, то необходима замена.
  • В каждом из полюсов предусмотрен встроенный предохранитель для защиты от сверхтоков.
  • Сменный варисторный модуль позволяет провести замену, не отключая подключенные провода и не снимая основание.

Применение:

  • Ограничители класса В – предназначены для защиты объектов от непосредственного воздействия тока молнии (выравнивают потенциал в здании), атмосферных и коммутационных перенапряжений. Устанавливают на вводе в здание во вводно-распределительном устройстве (ВРУ) или главном распределительном щите (ГРщ).
  • Ограничители класса С – предназначены для защиты электрооборудования объектов от остатков атмосферных и коммутационных перенапряжений, прошедших через ограничители класса В. Устанавливают в местных распределительных щитках (например, в вводном щитке квартиры, офиса). Осуществляют защиту внутренней проводки, автоматических и дифференциальных выключателей, контакторов, выключателей, розеток и др.
  • Ограничители класса D – предназначены для защиты электронной аппаратуры от остатков атмосферных, коммутационных перенапряжений и высокочастотных помех прошедших через ограничитель класса C. Устанавливают в распределительные коробки, розетки и могут встраиваться непосредственно в оборудование. Ограничители этого класса осуществляют защиту электрического оборудования с электронными приборами, переносных электрических устройств и др.

Правила подключения систем ОПС к энергоснабжению — ОРБИТА-СОЮЗ

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9436

1. Общие положения

Под энергоснабжением системы охранно-пожарной сигнализацией (ОПС) понимают электропитание источников питания постоянного тока ОПС от сети переменного тока напряжением 220 В и частотой 50 Гц.
Данный стандарт подключения составлен на основании правил устройства электроустановок (ПУЭ ) и указывает выбор точки подключения к электроснабжению, правила проектирования цепи энергоснабжения до места подключения источника электропитания ( ИЭП ) системы ОПС, технику безопасности при проведении обследования объекта на предмет энергоснабжения и монтажно-технических работ, систему обозначения схем энергоснабжения и цветомаркировку соединительных проводов.

2. Введение

Любая электронная система безопасности объекта должна осуществлять электропитание от сети переменного тока напряжением 220 В частотой 50Гц. Цепи электропитания системы ОПС от сети переменного тока должны быть независимы от других цепей электроснабжения объекта. Данные требования объясняются тем, что в случае перегрузки по цепи электроснабжения, в которую подключена система ОПС, срабатывает автоматический разъединитель и это может привести к отключению электропитания системы ОПС.

Для стабильной работы цепи электроснабжения системы ОПС необходимо правильно рассчитать мощность потребляемую системой и правильно в проектной документации заложить предельно-допустимый ток срабатывания автоматического разъединителя и сечение соединительных проводов.

3. Допуск на обследование объекта и обследование объекта, проектирование и подключение ИЭП ОПС к энергоснабжению

Для обследования объекта по цепям электроснабжения с целью подключения источников электропитания комплексной системы ОПС заказчик должен предоставить действующую документацию электроснабжения объекта. В случае отсутствия документации, подключение производится от вводного главного щита или его дублирующего щита через свободный автоматический разъединитель. Если он отсутствует, то устанавливается дополнительный автоматический разъединитель и от него через разрыв цепи фазного провода прокладывается магистраль электроснабжения по объекту. Это должно быть отображено и спроектировано в рабочем проекте и согласовано с заказчиком.

Обследование объекта должен производить инженер электрик со степенью допуска по электробезопасности не ниже четвертой, совместно с энергослужбой представителя заказчика. Точки подключения источников электропитания комплексной системы ОПС оговариваются с представителем энергоцеха заказчика и утверждаются заказчиком после предоставления проектной документации (указывается в проекте какой номер распределительного шита и на какой автоматический разъединитель производится подключение. Например: для подключения комплексной системы ОПС предоставляют автоматический разъединитель № 8 распределительного щита №2 см.( Рис. 1).

Если распределительный щит загружен и нет возможности добавить автоматический разъединитель для подключения системы ОПС то по согласованию с представителем энергоцеха заказчика предлагается разместить рядом распределительный щит или бокс, в котором устанавливается отдельный независимый автоматический разъединитель.

Автоматический разъединитель рассчитывается при проектировании на предельно допустимый ток потребления источника электропитания ОПС от электрической сети с целью защиты его от перегрузки по току потребления. Схема подключения бокса или распределительного щита приведена на Рис 2.Подключение фазного провода в уже имеющемся распределительном щите производится до автоматического разъединителя. Рабочий нейтральный провод « N » подключается от прежнего распределительного щита без разрыва в колодку « N » нового распределительного щита. Корпуса распределительных щитов соединяются между собой перемычкой с помощью резьбового соединения и от этой точки соединения отводится проводник, являющийся нулевым защитным проводником – « РЕ ».

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9433

Если в прежнем распределительном щите уже имеется колодка с нулевым защитным контактом, то проводник « РЕ » отводится от этой колодки. Во вновь созданном распределительном щите или боксе устанавливается автоматический разъединитель (см. Рис 2).

Если объект имеет несколько этажей, то в точке подключения источников электропитания комплексной системы ОПС можно устанавливать дополнительные боксы соединенные между собой и точкой подключения к сети энергоснабжения шлейфом.

4. Система обозначения и маркировка проводов по цвету

При проектировании цепей энергоснабжения применяются следующие обозначения ( согласно правил устройства электроустановок):

L1

О——————————— — первая фаза ( L1 )

L2

О——————————— — вторая фаза ( L2 )

L3

О——————————— — третья фаза ( L3 )

N

О——————-/———— — нейтральный провод (нулевой рабочий проводник N )

РЕ

О———————/———— — заземляющий провод ( нулевой защитный проводник РЕ )

РЕN

О———————/———- — совмещенный нулевой рабочий и защитный проводник ( РЕN )

—————      —————- — контакт автоматического разъединителя.

Cогласно ПУЭ (пункт 1.1.29) буквенно-цифровое и цветовое обозначение одноименных шин (проводов) в каждой электроустановке должны быть одинаковыми:

— при переменном трехфазном токе шины фазы (проводов) L1 окрашены желтым цветом, фазы L2 – зеленым, фазы L3 – красным, нулевая рабочая шина (провод) N – голубым, шина (провод), используемая в качестве нулевой защитной РЕ продольными полосами желтого и зеленого цветов;
— при переменном однофазном токе: шины (провода) L1, L2,L3, соответствующим цветом, в зависимости от того, какая фаза использована, нулевая рабочая шина (провод) N –голубым цветом, шина (провод) нулевая заземляющая РЕ – желто-зеленым цветом …

Если приведенные выше цвета в электрическом кабале отсутствуют, то выбираются подобные цвета или другие цвета проводов, но в данной электрической системе цветовая маркировка проводов должна быть по возможности единой, провода N и РЕ должны быть по возможности голубой цвет – N, желтозеленый –РЕ.

5. Размещение точки подключения ИЭП ОПС к энергоснабжению

Энергоснабжение ОПС осуществляется от однофазной сети переменного тока напряжением 220В частотой 50Гц и подключается к энергосистеме объекта. Токи потребления комплексной системы ОПС от сети переменного тока меньше, чем потребление от ИЭП по цепи постоянного тока.

В целях уменьшения потерь на активное сопротивление проводов и кабелей источники электропитания постоянного тока (ИЭП) системы ОПС должны находится как можно ближе к приемно–контрольным приборам. Поэтому, при размещении приемно–контрольных приборов и устройств электропитания необходимо учитывать расположение распределительного щита или бокса, к которому проектируется подключение ИЭП к сети переменного тока.

6 .Защитное заземление

Системы электроснабжения классифицируются Международной электротехнической комиссией (МЭК) в зависимости от способа заземления распределительных сетей и примененных мер защиты от поражения электрическим током. Распределительные сети подразделяются на сети с изолированной нейтралью и заземленной нейтралью. Стандарт МЭК – 364 подразделяет распределительные сети в зависимости от конфигурации токоведущих проводников, включая нулевой рабочий ( нейтральный ) проводник и типов систем заземления

Все установки переменного и постоянного тока напряжением до 1000 В должны удовлетворять требованиям основного правила устройства электроустановок. Одним из требований ПУЭ является защитное заземление. Кроме того заземление металлических корпусов электронных устройств системы ОПС защищает само устройство от электромагнитных помех и излучений.

Для качественного заземления электронных блоков необходимо иметь контур заземления, удовлетворяющий требованиям ПУЭ. Следовательно, при обследовании объекта необходимо обратить особое внимание на имеющийся контур заземления. Необходимо потребовать от заказчика полную документацию на контур заземления с очередной аттестацией Госэнергонадзора. Если срок поверки истёк, необходимо потребовать от заказчика провести поверку контура заземления и предоставить акт поверки. В акте обследования необходимо отметить состояние контура заземления, подтвержденное заказчиком.

Если контур заземления отсутствует или не удовлетворяет требованиям ПУЭ, его необходимо спроектировать, внести в проектную документацию и в смету. В процессе монтажа на объекте прокладывается контур заземления, затем его аттестовывают. Параметры проекта контура заземления и изготовленный контур должны соответствовать требованиям ПУЭ.

d0b1d0b5d0b7d18bd0bcd18fd0bdd0bdd18bd0b9434

Для заземления электроустановок в первую очередь должны быть использованы естественные заземляющие устройства. Искусственные заземлители должны применяться лишь при необходимости снижения плотности токов, протекающих по естественным защитным проводникам (РЕ – и РЕN – проводникам) или стекающих с естественных заземлителей.

6. Отображение в проектной документации

Все вышеуказанные параметры по энергоснабжению питающей сети ИЭП системы ОПС должны быть отображены в отдельном разделе проектной документации с указанием всех деталей подключения электропитания от сети переменного напряжением 220В. В проекте необходимо обязательно отобразить электрическую схему с указанием распределительного щита, от которого произведено подключение дополнительного распределительного щита (бокса). В спецификации указать какой автоматический разъединитель, тип и сечение кабелей и проводов, заложенных при проектировании.

7. Техника безопасности

Обследование объекта на предмет электроснабжения должно производится двумя лицами, причем один из них должен иметь группу по электробезопасности не ниже четвертой, другой не ниже третьей.
Инженер – электрик представитель производителя работ должен осматривать объект с представителем энергоцеха заказчика во избежание аварийных ситуаций.
Электрический распределительный щит, который подвергается обследованию, может находится под напряжением либо линейным (трёхфазная сеть 380В), либо фазным напряжением (однофазная сеть 220В). Опасные токоведущие части распределительного щита не должны быть доступны для преднамеренного прямого прикосновения к ним, а доступные к прикосновению открытые проводящие части, защитные проводники ( РЕ ), а также открытые токоведущие части цепей обратного тока, включая РЕN – проводники, не должны быть опасны при прямом прикосновении к ним.

При обследовании распределительного щита необходимо убедиться, что корпус распределительного щита имеет хорошее заземление.

Производить какие–либо действия в распределительном щите необходимо одной рукой, причем манжет одежды должен быть застёгнут плотно на кисте руки. Не должно быть болтающихся частей одежды, которыми можно было бы зацепиться за токоведущие шины. Замеры, подтверждающие наличие фазного напряжения в распределительном щите необходимо производить исправным измерительным инструментом в соответствии с ПУЭ. Щупы приборов должны быть изолированными и аттестованными на пробивное напряжение.

Литература :

1. Правила устройства электроустановок ( шестое переработанное и дополненное с изменениями).
2. Р.Н. Карякин « Устройство безопасных электроустановок

Разработал: Мулкиджанян П.П.
Методист ООО «Комби-Сервис»

ОПС1. Защита от импульсных Перенапряжений (2006)

1. В чем состоит опасность импульсных перенапряжений в сети 220/380В?

При воздействии перенапряжений возможен пробой и разрушение изоляции с возникновением тока утечки. Ток утечки свыше 0,1А может вызвать возгорание изоляции. Кроме того, с большой вероятностью могут выйти из строя полупроводниковые элементы электроприборов: диоды, конденсаторы, транзисторы, тиристоры, микросхемы.

2. Как осуществляется защита от импульсных перенапряжений в сети 220/380В?

Внешнюю защиту здания от атмосферных грозовых разрядов выполняет молниеотвод, соединенный с контуром заземления и системой выравнивания потенциалов инженерного оборудования здания (в соответствии РД 34.21.122-87).

Защита от импульсных перенапряжений в питающей сети 220/380В выполняется трехступенчато с помощью ограничителей перенапряжений (УЗИП). Например, первую ступень на вводе в здание выполняют УЗИП торговой марки IEK ОПС1-В, вторую ступень в щите учета — ОПС1-С, третью ступень в индивидуальном квартирном щитке — 0nC1-D. При размещении 2-3 ступеней защиты в одном щите их необходимо подключать через специальные разделительные дроссели. При установке каждой ступени защиты в отдельных щитах необходимо их разнести по длине линии на расстояние не менее 10 метров.

3. Что такое УЗИП?

Определение, данное ГОСТ Р 51992-2002, гласит, что «Устройство защиты от импульсных перенапряжений (УЗИП) -это устройство, которое предназначено для ограничения переходных перенапряжений и для отвода импульсов тока. Это устройство содержит, по крайней мере, один нелинейный элемент».

В качестве элементной базы для создания УЗИП, как правило, используют разрядники различных типов или оксидно-цинковые варисторы. Например, в устройствах, выпускаемых под торговой маркой IEK — ОПС1, — в качестве нелинейного элемента используется варисторный модуль.

4. Каковы особенности монтажа УЗИП?

При монтаже УЗИП необходимо учитывать то, что расстояния между УЗИП и главной заземляющей шиной (ГЗШ) должны быть минимальными. Соединяющие проводники должны прокладываться возможно кратчайшими путями (предпочтительна общая длина проводников к одному УЗИП не более 0,5 метра) без образования петель и острых углов. Соединительные проводники должны быть медными и иметь сечение не менее 4 мм2.

При подключении силовых кабелей к щитку необходимо избегать совместной прокладки защищенного и незащищенного участков кабеля, а также защищенного кабеля и кабеля заземления.

5. Каковы требования к месту установки УЗИП?

В системе TN-C-S устройства УЗИП должны быть установлены между каждым фазным проводником и проводником PEN или проводником N. В системе TN-S -между каждым фазным проводником и главной заземляющей шиной или главным заземляющим зажимом (выбирают самое короткое расстояние), а также между нулевым рабочим и нулевым защитным проводниками.

В системе TN-S оптимальная защита может быть обеспечена установкой УЗИП между каждым фазным проводником и нулевым рабочим проводником, а также между нулевым защитным и нулевым рабочим проводниками. Такая установка позволяет снизить риск от повреждения импульсным перенапряжением электронных элементов электробытовых приборов.

6. Что означает классификационное напряжение УЗИП, выполненного на основе варисторного модуля?

Классификационное напряжение УЗИП — это величина напряжения постоянного тока, при которой варистор открывается и через него начинает протекать ток величиной 1 мА (минимальное напряжение при открытии туннельного канала варистора).

7. Как устроен ОПС-1?

ОПС-1 состоит из основания и сменного модуля, соединенных двумя ножевыми контактами. Основание крепится на монтажной рейке, к нему подключают проводники от защищаемой линии и заземления. Модуль содержит последовательно соединенные дисковый варистор и плавкую вставку с индикатором срабатывания.

8. Как работает ОПС1?

Основной элемент ОПС1 — это варистор, обладающий свойством нелинейного сопротивления. При появлении на выводах варистора грозового или коммутационного перенапряжения он практически мгновенно снижает свое сопротивление в тысячи раз и пропускает через себя импульс тока. В том случае, когда импульс тока превышает максимальное значение, плавкая вставка, встроенная в варистор, перегорает, а индикатор срабатывания меняет свой цвет с зеленого на красный. Это означает, что сменный варисторный модуль необходимо заменить на новый.

9. С какой целью в ассортименте ИЭК имеются многополюсные исполнения ОПС-1?

С целью упрощения монтажа, повышения эстетики, снижения трудоемкости сборки и затрат на провода нижние зажимы объединены общей шиной, подключаемой к заземлению.

4- полюсное исполнение ОПС-1 используется для защиты трехфазных потребителей в сети TN-C-S и TN-S на участках с разделенным защитным и рабочим проводниками.

3-полюсное исполнение в сети TN-C-S и TN-С на участках с совмещенным защитным и рабочим проводником.

2-полюсное исполнение ОПС-1 используется для защиты однофазных потребителей.

1-полюсное исполнение ОПС-1 применяется для сборки многополюсных исполнений и для ремонта или замены отдельных полюсов.

10. Какие существуют нормативные документы по применению УЗИП?

В РФ при воздушном вводе в жилые и общественные здания установка ограничителей импульсных перенапряжений является обязательной (Правила устройства электроустановок. Раздел 6. Раздел 7. Глава 7.1. Глава 7.2). Отдельные вопросы применения рассматриваются в ГОСТ Р 50571.19-2000, ГОСТ Р 50571.20-2000, ГОСТ Р 50571.212000, ГОСТ Р 50571.22-2000, ГОСТ Р 50571.26-2002.

Устройство защиты от импульсных перенапряжений

Скачки напряжения пагубно влияют не только на электронику, но и на любую электротехнику в целом. Поэтому для защиты бытовых электроприборов требуется установка различных защитных устройств: ведь перепады напряжения могут вызвать различные неисправности. Одним из самых опасных видов считается импульсное перенапряжение, которое возникает по следующим причинам:

  • Гроза и межоблачные разряды;
  • Перехлесты высоковольтных линий передач и другие аварийные ситуации;
  • Паразитные токи, образующиеся при отключении реактивной нагрузки;
  • Электромагнитные помехи, создаваемые мощными промышленными электроустановками;

Для защиты от данного вида перенапряжений в быту и на производстве широко применяется специальное устройство УЗИП или ограничитель импульсных перенапряжений (ОПС).

Общая информация

Такое устройство защиты предназначено для установки в низковольтные (до 1000 В) силовые сети бытового и промышленного назначения. УЗИП обладает следующими достоинствами:

  • Техническая совершенность;
  • Эффективность и надежность защиты;
  • Невысокая стоимость.

Эти факторы позволяют установить устройство в каждом доме или квартире, и обеспечить надежную защиту всего электрооборудования от импульсных скачков напряжения.

Принцип работы

Основным элементом УЗИП является варистор, который выполнен из специального проводника. Уникальность разработки заключается в способности варистора пропускать электроток при многократно возросшем напряжении. При возникновении импульса сопротивление варистора падает до сотых долей Ома. В результате этого происходит шунтирование нагрузки, преобразование и рассеивание поглощенного импульса в виде тепловой энергии (нагревание корпуса).

 

Важно! Проводящий элемент варистора теряет свои характеристики после двух-трех разрядов молнии.

 

В большинстве моделей предусмотрено индикаторное окно, через которое можно визуально определить, является ли варистор работоспособным. Также в устройство защиты установлен предохранитель от сверхтоков.

Классификация

Нормативные акты предписывают установку трехуровневой защиты от импульсных перенапряжений. Для этого выпускаются и применяются УЗИП трех видов:

  1. Класс B. Устройство этого типа устанавливается на ВРУ или ГРЩ и предназначено для выравнивания входящего потенциала при прямом попадании молнии или возникновении коммутационных перенапряжений. При воздушном вводе и наличии громоотвода установка этого типа УЗИП обязательна;
  2. Класс C устанавливается на вводе в местах, где отсутствует вероятность прямого грозового разряда и при подземном вводном кабеле. Также такое устройство рекомендуется для подключения в качестве второго уровня защиты в жилых помещениях. В этом случае УЗИП обеспечивает защиту внутренней проводки, коммутационных соединений и розеточных групп от остаточного перен

Отправить ответ

avatar
  Подписаться  
Уведомление о