Расшифровка мтз в электрике – 1. ПРИНЦИП ДЕЙСТВИЯ, ХАРАКТЕРИСТИКИ И ПАРАМЕТРЫ СРАБАТЫВАНИЯ МАКСИМАЛЬНОЙ ТОКОВОЙ ЗАЩИТЫ (МТЗ) И ТОКОВОЙ ОТСЕЧКИ (ТО)

Содержание

принцип действия, виды, примеры схем

В силу разных причин аварии в электросетях случаются довольно часто. При коротком замыкании губительно действует на все электроприборы сверхток. Если не предпринять защитных мер, то последствием от неуправляемого увеличения тока может стать не только повреждение электроустановок на участке от места аварии до источника питания, но и выведение из строя всей энергосистемы. Во избежание негативных последствий, вызванных авариями, применяются разные схемы электрозащиты:

  • отсечка;
  • дифференциально-фазная;
  • высокоэффективная максимальная токовая защита электрических цепей (МТЗ).

Из перечисленных видов защиты самой распространённой является МТЗ. Этот простой и надёжный способ предотвращения опасных перегрузок линий нашёл широкое повсеместное применение благодаря обеспечению селективности, то есть, обладанию способностью избирательно реагировать на различные ситуации.

Устройство и принцип действия

Конструктивно МТЗ состоят из двух важных узлов: автоматического выключателя и реле времени. Они могут быть объединены в одной конструкции либо размещаться отдельными блоками.

Отличия от токовой отсечки

Из всех видов защиты по надёжности лидирует токовая отсечка. Примером может служить защита бытовой электросети устройствами с применением плавких предохранителей или пакетных автоматов. Метод токовых отсечек гарантирует обесточивания защищаемой цепи в аварийных ситуациях. Но для возобновления подачи электроэнергии необходимо устранить причину отсечения и заменить предохранитель, либо включить автомат.

Недостатком такой системы является то, что отключение может происходить не только вследствие КЗ, но и в результате даже кратковременного превышения параметров по току нагрузки. Кроме того, требуется участие человека для восстановления защиты. Эти недостатки не критичны в бытовой сети, но они неприемлемы при защите разветвлённых линий электропередач.

Благодаря тому, что в конструкциях МТЗ предусмотрены реле времени, задерживающие срабатывание механизмов отсечения, они кратковременно игнорируют перепады напряжений. Кроме того, токовые реле сконструированы таким образом, что они возвращаются в исходное положение после ликвидации причины, вызвавшей размыкание контактов.

Именно эти два фактора кардинально отличают МТЗ от простых токовых отсечек, со всеми их недостатками.

Принцип действия МТЗ

Между узлом задержки и токовым реле существует зависимая связь, благодаря которой отключение происходит не на начальной стадии возрастания тока, а спустя некоторое время после возникновения нештатной ситуации. Данный промежуток времени слишком короткий для того, чтобы величина тока достигла критического уровня, способного навредить защищаемой цепи. Но этого хватает для предотвращения возможных ложных срабатываний защитных устройств.

Принцип действия систем МТЗ напоминает защиту токовой отсечки. Но разница в том, что токовая отсечка мгновенно разрывает цепь, а МТЗ делает это спустя некоторое, наперёд заданное время. Этот промежуток, от момента аварийного возрастания тока до его отсечения, называется выдержкой времени. В зависимости от целей и характера защиты каждая отдельная ступень времени задаётся на основании расчётов.

Наименьшая выдержка времени задаётся на самых удалённых участках линий. По мере приближения МТЗ к источнику тока, временные задержки увеличиваются. Эти величины определяются временем, необходимым для срабатывания защиты и именуются ступенями селективности. Сети, построенные по указанному принципу, образуют зоны действия ступеней селективности.

Такой подход обеспечивает защиту поврежденного участка, но не отключает линию полностью, так как ступени селективности увеличиваются по мере удаления МТЗ от места аварии. Разница величин ступеней позволяет защитным устройствам, находящимся на смежных участках, оставаться в состоянии ожидания до момента восстановления параметров тока. Так как напряжение приходит в норму практически сразу после отсечения зоны с коротким замыканием, то авария не влияет на работу смежных участков.

Примеры использования защиты

МТЗ используют:

  • с целью локализации и обезвреживания междуфазных КЗ;
  • для защиты сетей от кратковременных перегрузок;
  • для обесточивания трансформаторов тока в аварийных ситуациях;
  • в качестве протектора при запуске мощного, энергозависимого оборудования.

Задержка времени очень полезна при пуске двигателей. Дело в том, что на старте в цепях обмоток наблюдается значительное увеличение пусковых токов, которое системы защиты могут воспринимать как аварийную ситуацию. Благодаря небольшой задержке времени МТЗ игнорирует изменение параметров сети, возникающие при пуске или самозапуске электродвигателей. За короткое время показатели тока приближаются к норме и причина для аварийного отключения устраняется. Таким образом, предотвращается ложное срабатывание.

Пример подключения МТЗ электродвигателя иллюстрирует схема на рисунке 1. На этой схеме реле времени обеспечивает уверенный пуск электромотора до момента реагирования токового реле.

МТЗ с выдержкой времениРисунок 1. МТЗ с выдержкой времени

Аналогично работает задержка времени при кратковременных перегрузках в защищаемой сети, которые не связаны с аварийными КЗ. Отсечка действует лишь в тех случаях, когда на защищаемой линии возникает значительное превышение номинальных значений, которое по времени превосходит величину выдержки.

Для надёжности защиты на практике часто используют схемы двухступенчатой и даже трёхступенчатой защиты участков цепей. Стандартная трёхступенчатая защитная характеристика выглядит следующим образом (Рис. 2):

Карта селективности стандартной трёхступенчатой защитыРис. 2. Карта селективности стандартной трёхступенчатой защиты

На абсциссе отмечено значения тока, а на оси ординат время задержки в секундах. Кривая в виде гиперболы отображает снижение времени защиты от возрастания перегрузок. При достижении тока отметки 170 А включается отсчёт времени МТЗ. Задержка времени составляет 0,2 с, после чего на отметке 200 А происходит отключение. То есть, разрыв цепи происходит в случае отказа защиты остальных устройств.

Расчет тока срабатывания МТЗ

Стабильность работы и надёжность функционирования максимально-токовой защиты зависит от настройки параметров по току срабатывания. Расчёты должны обеспечивать гарантированное срабатывание реле при авариях, однако на её работу не должны влиять параметры тока нагрузки, а также кратковременные всплески, возникающие в режиме запуска двигателей.

Следует помнить, что слишком чувствительные реле могут вызывать ложные срабатывания. С другой стороны, заниженные параметры срабатывания не могут гарантировать безопасности стабильной работы электроприборов. Поэтому при расчетах уставок необходимо выбирать золотую середину.

Существует формула для расчёта среднего значения тока, на который реагирует электромагнитное реле [ 1 ]:

Iс.з. > Iн. макс.,

где Iс.з. – минимальный первичный ток, на который должна реагировать защита, а Iн. макс. – предельное значение тока нагрузки.

Ток возврата реле подбирается таким образом, чтобы его хватило повторного замыкания контактов в отработавшем устройстве. Для его определения используем формулу:

Iвз = kн.×kз.×Iраб. макс.

Здесь Iвз– ток возврата, kн. – коэффициент надёжности,  kз – коэффициент самозапуска, Iраб. макс. величина максимального рабочего тока.

Для того чтобы токи возврата и срабатывания максимально приблизить, вводится коэффициент возврата, рассчитываемый по формуле:

kвIвз Iс.з с учётом которого Iс.з. = kн.×kз.×Iраб. макс / kв

В идеальном случае kв = 1, но на практике этот коэффициент всегда меньший за единицу. Чувствительность защиты тем выше, чем выше значение kв.. Отсюда вывод: для повышения чувствительности необходимо подобрать kв в диапазоне, стремящимся к 1.

Виды максимально-токовых защит

В электрических сетях используют 4 разновидности МТЗ. Их применение диктуется условиями, которые требуется создать для уверенной работы электрооборудования.

МТЗ с независимой от тока выдержкой времени

В таких устройствах выдержка времени не меняется. Для задания уставок периода, достаточного для активации реле с независимыми характеристиками, учитывают ступени селективности. Каждая последующая выдержка (в сторону источника тока) увеличивается от предыдущей на промежуток времени, соответствующий ступени селективности. То есть, при расчётах необходимо соблюдать условия селективности.

МТЗ с зависимой от тока выдержкой времени

В данной защите процесс задания уставок МТЗ требует более сложных расчётов. Зависимые характеристики, в случаях с индукционными реле, выбирают по стандарту МЭК: t

сз = A / (k— 1), где A, n – коэффициенты чувствительности, k = Iраб  / Iср — кратность тока.

Из формулы следует, что выдержка времени уже не является константой. Она зависит от нескольких параметров, в т. ч. и от силы тока, попадающего на обмотки реле, причём эта зависимость обратная. Однако выдержка не линейная, её характеристика приближается к гиперболе (рис. 3). Такие МТЗ используют для защиты от опасных перегрузок.

Характеристика МТЗ с зависимой выдержкойРисунок 3. Характеристика МТЗ с зависимой выдержкой

МТЗ с ограниченно-зависимой от тока выдержкой времени

В устройствах данного вида релейных защит совмещено две ступени защиты: зависимая часть с гиперболической характеристикой и независимая. Примечательно, что времятоковая характеристика независимой части является прямой, плавно сопряжённой с гиперболой. При малых кратностях критичных токов характеристика зависимого периода более крутая, а при больших – пологая кривая (применяется для защиты электромоторов большой мощности).

МТЗ с пуском (блокировкой) от реле минимального напряжения

В данном виде дифференциальной защиты применена комбинация МТЗ с использованием влияния минимального напряжения. В электромеханическом реле произойдёт размыкание контактов только тогда, когда возрастание тока в сети приведёт к падению разницы потенциалов. Если падение превысит нижнюю границу напряжения уставки – это вызовет отработку защиты. Поскольку уставка задана на падение напряжения, то реле не среагирует на резкие скачки тока в сети.

Примеры и описание схем МТЗ

С целью защиты обмоток трансформаторов, а также других элементов сетей с односторонним питанием используются различные схемы.

МТЗ на постоянном оперативном токе.

Особенность данной схемы в том, что управление элементами защиты осуществляется выпрямленным током, который меняет полярность, реагируя на аварийные ситуации. Мониторинг изменения напряжения выполняют интегральные микроэлементы.

Для защиты линий от последствий междуфазных замыканий используют двухфазные схемы на двух, либо на одном токовом реле.

Однорелейная на оперативном токе

В данной защите используется токовое пусковое реле, которое реагирует на изменение разности потенциалов двух фаз. Однорелейная МТЗ реагирует на все межфазные КЗ.

Схема на 1 релеСхема на 1 реле

Преимущества: одно токовое реле и всего два провода для подсоединения.

Недостатки:

  • сравнительно низкая чувствительность;
  • недостаточная надёжность – при отказе одного элемента защиты участок цепи остаётся незащищённым.

Однорелейка применяется в распределительных сетях, где напряжение не превышает 10 тыс. В, а также для безопасного запуска электромоторов.

Двухрелейная на оперативном токе

В данной схеме токовые цепи образуют неполную звезду. Двухрелейная МТЗ реагирует на аварийные междуфазные короткие замыкания.

Схема на 2 релеСхема на 2 реле

К недостаткам этой схемы можно отнести ограниченную чувствительность. МТЗ выполненные по двухфазным схемам нашли широкое применение, особенно в сетях, где используется изолированная нейтраль. Но при добавлении промежуточных реле могут работать в сетях с глухозаземлённой нейтралью.

Трехрелейная

Схема очень надёжная. Она предотвращает последствия всех КЗ, реагируя также и на однофазные замыкания. Трехфазные схемы можно применять в случаях с глухозаземлённой нейтралью, вопреки тому, что там возможны ситуации с междуфазными так и однофазными замыканиями.

Из рисунка 4 можно понять схему работы трёхфазной, трёхлинейной МТЗ.

Схема трёхфазной трёхрелейной защитыРисунок 4. Схема трёхфазной трёхрелейной защиты

Схема двухфазного трёхрелейного подключения МТЗ изображена на рисунке 5.

Схема двухфазного трёхрелейного подключения МТЗРис. 5. Схема двухфазного трёхрелейного подключения МТЗ

На схема обозначены:

  • KA — реле тока;
  • KT — реле времени;
  • KL — промежуточное реле;
  • KH — указательное реле;
  • YAT — катушка отключения;
  • SQ — блок контакт, размыкающий цепь;
  • TA — трансформатор тока.

Видео в дополнение темы

Принцип действие МТЗ: разновидности максимально-токовых защит

МТЗ (расшифровка – максимальная токовая защита) – распространенная техника предохранения электросетей от последствий краткосрочных перегрузок и замыканий. Она может быть задействована в разветвленных сетях, асинхронных двигателях. Электрику нужно знать особенности механизма и его отличия от других предохранительных методов.

Реле времени

Реле времени

Принцип действия

МТЗ – это разновидность защитного механизма электросети с использованием реле, применяемая при угрозе короткого замыкания на некотором отрезке электроцепи.

Принцип действия максимальной токовой защиты достаточно схож с таковым у механизма отсечки. Если при использовании последней ток вырубается сразу же, то при применении МТЗ выключение происходит по истечении некоторого временного отрезка. Он называется выдержкой времени. То, какое значение он примет, определяется близостью места, где происходит инцидент, к поставщику питания. Чем дальше располагается отрезок, тем меньше число. Значение, на которое показатель близлежащего участка отличается от такового для удаленного (ступень селективности), описывает период, по истечении которого защита включается на ближнем участке (отключая и дальний), если она не активизировалась на дальнем, на котором случился инцидент КЗ.

Важно! Показатель ступени надо делать небольшим, чтобы система успела включиться до причинения инцидентом серьезных повреждений электросети.

Отличия от токовой отсечки

В МТЗ используются реле времени, позволяющие игнорировать скачки напряжения, что невозможно при отсечке (которая срабатывает не только при эпизоде короткого замыкания, но и при повышении тока любой другой природы и продолжительности). Кроме того, использование механизма отсечки требует задействования оператора для возобновления нормального функционирования системы. Реле сами приходят в первоначальное состояние, когда причина размыкания будет ликвидирована.

Разновидности максимально-токовых защит

Ориентируясь на условия работы в конкретной электросети, можно выбрать один из четырех типов системы.

МТЗ с независимой от тока выдержкой времени

Параметр задержки здесь неизменен, период активации зависит только от ступени селективности: на каждом последующем отрезке время увеличивается на эту величину.

МТЗ с зависимой от тока выдержкой времени

Используется расчет выдержки по нелинейной формуле. Параметр зависит от величины тока на обмотках. Используется в системах, где предохранение от избыточных нагрузок имеет особенную значимость для безопасности.

МТЗ с ограниченно-зависимой от тока выдержкой времени

Здесь совмещены две компоненты: не зависящая от тока часть и зависящая, причем у последней время-токовая характеристика имеет вид гиперболы. Чем больше перегрузка, тем более пологий вид имеет графическое представление. Такая установка используется в высокомощных электромоторах.

МТЗ с пуском (блокировкой) от реле минимального напряжения

Здесь инициатором размыкания контактов становится разность потенциалов. Уставка привязывается к падению напряжения ниже определенной границы.

Задание уставок

Защита МТЗ определяется тем, насколько правильно выбрана уставка – величина тока, при достижении которой включается функция. При определении ее значения учитывают назначение сети (например, при самостоятельном запуске электродвигателя после временного выключения питания показатель может превышать номинальный, тогда МТЗ не должна выключать его) и минимальный ток замыкания в ней. При зависимой (полностью или ограниченно) время-токовой характеристике ориентируются на значение, когда реле перегрузки вот-вот сработает, а время задают, ориентируясь на независимую часть.

Важно! Иногда блокировка в защитной системе ставится с ориентацией на напряжение, тогда параметром срабатывания, задаваемым в качестве уставки, становится оно.

Реализация

В основном, систему реализуют с применением устройств, совмещающих функции пуска и задержки времени, либо с помощью сочетания нескольких разных реле, каждое из которых выполняет одну из этих функций. Сейчас все чаще применяются микропроцессоры, реализующие, помимо обозреваемого, еще ряд процессов релейной защиты.

Схемы защиты МТЗ

Применяется несколько вариантов конструкций, различающихся устройством.

Трехфазная схема защиты МТЗ на постоянном оперативном токе

Трехфазная конструкция

Трехфазная конструкция

В главный блок входят два реле: времени и пуска. Используются также указательное реле и еще одно добавочное, ставящееся тогда, когда временное реле неспособно замкнуть цепочку катушки выключения.

Двухфазные схемы защиты МТЗ на постоянном оперативном токе

Они применяются, когда нужно, чтобы система включалась лишь при замыкании между фазами. Существуют схемы с одиночным реле и с парой.

Двухрелейная схема

Ее плюс – реагирование на любые межфазовые замыкания. Минус – меньшая восприимчивость при двухфазных замыканиях за трансформатором. Повысить ее вдвое можно, поставив третье реле. Схема в основном используется для конструкций с изолированной нейтралью – случающиеся в них замыкания происходят только между фазами. Возможно применение при глухом заземлении, но тогда для предотвращения однофазного замыкания ставится добавочная конструкция, срабатывающая при токе нулевой последовательности.

Одно-релейная схема МТЗ

Плюс схемы – легкость конструирования. Минусы – наименее высокая чувствительность, несрабатывание при некоторых типах замыканий с двумя фазами.

Выбор тока срабатывания защиты МТЗ

Выбор осуществляется с расчетом, чтобы установка уверенно срабатывала при повреждающих воздействиях, но не проявляла активности при недолгих толчках (к примеру, когда запускается электродвигатель) или высоком токе нагрузки. Дифференциация последнего от ситуации, когда должна активизироваться защита, является основной задачей. Также установка не должна быть излишне восприимчивой, иначе цепь будет отключаться, когда это не нужно.

Должны соблюдаться условия:

  • реле не должны активизироваться нагрузочным током, поэтому параметр, при котором срабатывает МТЗ, должен быть больше максимального нагрузочного показателя;
  • возвратный ток реле должен превышать нагрузочное значение, идущее по защите после окончания замыкания – это нужно для возврата реле в начальное положение.

Чувствительность защиты МТЗ

Значение коэффициента, вариабельно в зависимости от вида защиты. В главной зоне коэффициент обычно равен 1,5, в резервной – его часто берут равным 1,2.

Выдержка времени защиты МТЗ

Для ее нахождения проводится следующий расчет. Узнается время работы первой из защит при замыкании:

T1=tп1+to1+tв1,

где:

  • Т1 – искомое время,
  • tп1 – погрешность выдержки,
  • to1 – время вырубания выключателя,
  • tв1 – выдержка для этого реле.

Вторая защита не сработает при условии, что время выдержки для нее будет больше Т1, т.е. tв2>T1.

Tв2=Т1+tп2+tз,

где:

  • tп2 – погрешность второго реле,
  • tз – запасное время.

Таким образом, ступень будет равна Т=tв2-tв1=tп1+tо1+tп2+tз (для независимой время-токовой характеристики).

Выбор времени действия защит МТЗ

Время действия

Время действия

Используется формула:

tв(n)=tв(n-1)+t.

На картинке выше разница между временем t2 и t1, t3 и t2 и любыми другими соседними идентична.

Примеры и описание схем МТЗ

Для защиты разных компонентов сетей с питанием, поступающим с одной стороны, используются схемы различных типов.

Однорелейная на оперативном токе

Схема с одним реле на оперативном токе

Схема с одним реле на оперативном токе

Применяется реле пуска, реагирующее на изменения разности фазовых потенциалов. Плюсами являются ее простота и малый расход ресурсов – нужны только одно реле и два кабеля. Минусы – невысокая восприимчивость и то, что, если отказал какой-то элемент, фрагмент линии теряет предохранение. Схема подойдет для сетей с напряжением до 10 кВ.

Двухрелейная на оперативном токе

Схема с парой реле

Схема с парой реле

Эта схема, как и предыдущая, защищает электролинии от последствий короткого замыкания между фазами. Цепи в ней формируют усеченную звезду. Она надежна, но, как и предыдущая, не очень чувствительна.

Трехрелейная

Это наиболее надежная и единственная подходящая для конструкций с заземленной наглухо нейтралью схема.

Хотя отсечка тока эффективнее предотвращает короткие замыкания, применение обозреваемого метода больше подходит для предохранения разветвленных электролиний. Для максимально эффективной работы необходимо правильно задать в схеме уставки.

Видео

Максимальная токовая защита — это… Что такое Максимальная токовая защита?

Максима́льная то́ковая защи́та (МТЗ)— вид релейной защиты, действие которой связано с увеличением силы тока в защищаемой цепи при возникновении короткого замыкания на участке данной цепи. Данный вид защиты применяется практически повсеместно и является наиболее распространённым в электрических сетях.

Принцип действия

Принцип действия МТЗ аналогичен принципу действия токовой отсечки. В случае повышения силы тока в защищаемой сети защита начинает свою работу. Однако, если токовая отсечка действует мгновенно, то максимальная токовая защита даёт сигнал на отключение только по истечении определённого промежутка времени, называемого выдержкой времени. Выдержка времени зависит от того, где располагается защищаемый участок. Наименьшая выдержка времени устанавливается на наиболее удалённом от источника участке. МТЗ соседнего (более близкого к источнику энергии) участка действует с большей выдержкой времени, отличающейся на величину, называемую ступенью селективности. Ступень селективности определяется временем действия защиты. В случае короткого замыкания на участке срабатывает его защита. Если по каким-то причинам защита не сработала, то через определённое время (равное ступени селективности) после начала короткого замыкания сработает МТЗ более близкого к источнику участка и отключит как повреждённый, так и свой участок. По этой причине важно, чтобы ступень селективности была больше времени срабатывания защиты, иначе защита смежного участка отключит как повреждённый, так и рабочий участок до того, как собственная защита повреждённого участка успеет сработать. Однако важно так же сделать ступень селективности достаточно небольшой, чтобы защита успела сработать до того, как ток короткого замыкания нанесёт серьёзный ущерб электрической сети.

Уставку (или величину тока, при которой срабатывает защита) выбирают, исходя из наименьшего значения тока короткого замыкания в защищаемой сети (при разных повреждениях токи короткого замыкания отличаются). Однако при выборе уставки следует так же учитывать характер работы защищаемой сети. Например, при самозапуске электродвигателей после перерыва питания, значение силы тока в сети может быть выше номинального, и защита не должна его отключать.

Реализация

Реализуется МТЗ, как правило, с помощью реле тока. Реле тока могут быть как мгновенного действия, так и срабатывающие с выдержкой времени, определяемой величиной тока, в этом случае для обеспечения необходимой выдержки времени дополнительно используют реле времени. В современных схемах релейной защиты и автоматики чаще всего используются микропроцессорные блоки защиты, которые сочетают в себе свойства этих реле.

Литература

  • «Релейная защита и автоматика систем электроснабжения» Андреев В. А. М. «Высшая школа» 2007 ISBN 978-5-06-004826-1
  • «Релейная защита энергетических систем» Чернобровов Н. В., Семенов В. А. М. Энергоатомиздат 1998 ISBN 5-283-010031-7
  • «Максимальная токовая защита» Шабад М. А. Ленинград. Энергоатомиздат. 1991
  • Гуревич, В. И. Электрические реле : устройство, принцип действия и применения : настольная книга инженера.- Москва: Солон-Пресс, 2011. — 688 с.: ил.

Токовая отсечка и максимальная токовая защита

electroНе все понимают отличия между токовой отсечкой и максимальной токовой защитой, которые в большинстве источников для краткости обозначаются аббревиатурами ТО (не путать с техническим обслуживанием) и МТЗ. И это объяснимо, так как и отсечка, и максимальная защита выполняют одну и ту же функцию – предохранение эл/цепи, ее элементов и присоединенных устройств от разрушения (выхода из строя).

Так в чем их смысл и есть ли какая-то разница между ними? С этим мы и разберемся.

При написании данной статьи автор изучил различные источники и пришел к выводу, что по этому вопросу очень много путаницы. Именно поэтому он рекомендует  в первую очередь обратиться к основополагающему документу – ПУЭ (3.2.) . А весь остальной материал, встречающийся в интернете, следует рассматривать лишь как пояснения (разъяснения) к положениям правил. Причем нужно относиться к этой информации критически, сопоставляя ее с тем, что прописано (хотя и несколько «скуповато»), в ПУЭ.

res

По принципу действия максимальная токовая защита и отсечка идентичны. Элементы, их обеспечивающие, реагируют на один и тот же параметр электрической цепи – ток, точнее, на его величину. При превышении им определенного, заданного значения (уставки) защитное устройство срабатывает. Разница в том, как именно?

Ток, протекающий по проводникам (а они характеризуются своим удельным сопротивлением, в зависимости от материала – алюминий или медь) приводит к их нагреву. И чем выше его значение, тем сильнее. При повреждениях изоляции и коротких замыканиях данный параметр может вырасти резко и достигать большой величины. Результат вполне прогнозируем. Кстати, это одна из основных причин, если верить статистике, всех воспламенений в электрифицированных зданиях и сооружениях.

2016-0

Именно поэтому для каждой электрической цепи предусматривается свой номинал тока, при превышении которого цепь должна разрываться. В этом – смысл любой защиты данного типа.  Многое зависит от того, где именно произошло повреждение. В силу удельного сопротивления металлов быстрее среагирует то устройство, которое расположено ближе к «аварийной зоне». Многое зависит и от электрической схемы. Если она сложная, то в ней предусматривается несколько защитных автоматов – общий и на каждой «нитке» (также прописано в ПУЭ).

С учетом множественности вариантов проектирования электрических цепей однозначно сказать, в чем принципиальная разница между токовой отсечкой и МТЗ, нельзя. Все зависит от характеристик схемы и места расположения в ней того или иного защитного изделия. Если суммировать всю информацию по ТО и МТЗ, то можно сделать следующие выводы.

  • Селективности (синоним слова избирательность) обеспечиваются: МТЗ – задержкой срабатывания (выдержкой времени), ТО – отстройкой по номиналу тока. Яркий пример – УЗО. Но это не обязательное условие, так как если на линии лишь 1 автомат, причем одноступенчатый, то задержки времени быть не должно.
  • Максимальная токовая защита является основной. При включении в цепь дифференциального устройства она переходит в категорию резервной. ТО используется лишь как дополнительная функция предохранения линии и оборудования. Более подробно об этом можно узнать в ПУЭ 3.2.16 (26).
  • Токовая отсечка – разновидность МТЗ, только с ограниченным «радиусом действия».

2016-01-21_141911

Все остальные суждения по данному вопросу (например, что ТО является основным видом защиты) – не более чем выдумки, вызванные малой осведомленностью тех, кто делает подобные заявления.

Автор будет рад, если статья поможет читателю понять, в чем разница между токовой отсечкой и максимальной защитой.

Максимальная токовая защита — выбор и принцип действия РЗА

В нормальном режиме по линии, в трансформаторе, двигателе течет рабочий ток, значение которого известно и определяется номинальными параметрами.

Однако, порой возникают аварийные, переходные ситуации, когда происходят перерывы питания, вследствие коротких замыканий, самозапуска, перегрузок. Значение тока повышается до величины, которая может привести к нарушению работоспособности электрической сети, выхода из строя электрооборудования.

Чтобы не происходило подобных аварий, необходимо на этапе проектирования предусмотреть методы защиты от переходных токов. Для этого служит релейная защита, а в частности защита от токов короткого замыкания — максимальная токовая защита. Эта защита также относится к токовым, как и токовая отсечка.

На линиях с односторонним питанием МТЗ устанавливается в начале линии со стороны источника питания. Так как сеть может состоять из нескольких линий, то на каждой из них ставят свой комплект защит. При повреждении на одном из участков линии сработает защита этого участка и отключит линию. Защиты других линий отстроены по времени, таким образом соблюдается селективность. Они отключатся, не успев сработать. Время срабатывания увеличивается в направлении от потребителя к системе.

На линиях с двухсторонним питанием защита МТЗ является дополнительной и достижение селективности одними лишь средствами выдержки времени является невозможным. Поэтому в таких сетях применяются направленные защиты.

Классификация МТЗ

Максимальные токовые защиты классифицируются на трехфазные и двухфазные (в зависимости от схемы исполнения), в зависимости от способа питания (с постоянным или переменным опертоком), защиты с зависимой и независимой характеристикой.

Принцип действия максимальной токовой защиты

При достижении током величины уставки подается сигнал на срабатывание реле времени с заданной выдержкой времени. Затем после реле времени сигнал идет на промежуточное реле, которое мгновенно отправляет ток в цепь отключения выключателя.

У зависимых защит выдержка времени задается уставкой на реле, у независимых — выдержка зависит от величины тока. Зависимые защиты проще отстраивать и согласовывать.

Схема защиты МТЗ

На рисунке выше приведена схема максимальной токовой защиты — токовые цепи и цепи управления.

Параметры и расчет максимальной токовой защиты

МТЗ не может совмещать в себе функцию защиты от перегрузки, так как действие МТЗ должно происходить по возможности быстрее, а защита от перегрузки должна действовать, не отключая допустимые кратковременные токи перегрузки или пусковые токи при самозапуске электродвигателей.

  1. То есть первое условие выбора МТЗ — отстройка от максимального рабочего тока нагрузки
  2. После срабатывания защиты реле должно вернуться в рабочее положения. Ток возврата должен быть больше максимального рабочего тока, с учетом самозапуска, после предотвращения нарушения снабжения
  3. Ток срабатывания защиты равен коэффициенту запаса отнесенный к коэффициенту возврата и умноженный на коэффициент запуска и максимальный рабочий ток
  4. Ток срабатывания реле зависит от коэффициента схемы (зависит от реле), тока срабатывания защиты отнесенных к коэффициенту трансформатора тока
  5. Чувствительность защиты определяется отношением минимального тока короткого замыкания в конце зоны защиты к току срабатывания защиты
  6. Ступень времени для согласования выдежек времени зависит от выдержки времени соседней защиты, погрешности замедления реле времени соседней защиты, времени отключения выключателя соседней защиты. Для защит с независимой выдержкой времени это время может быть 0,4-0,5с, для защит с зависимой — 0,6-1с

К достоинствам МТЗ относится их простота и наглядность, надежность, невысокая стоимость. К недостаткам можно отнести большие выдержки времени вблизи источников питания, хотя именно там токи короткого замыкания должны отключаться быстро.

Максимальная токовая защита является основной в сетях до 10кВ, однако, применение она нашла и в сетях выше 10кВ.

Сохраните в закладки или поделитесь с друзьями



Последние статьи


Самое популярное

как выбрать трансформатор тока

Что такое «пуск мтз от реле минимального напряжения»? Зачем применяется?

Для повышения чувствительности максимальной токовой защиты применяются схемы с пуском (с блокировкой) от реле минимального напряжения. Такая защита называется максимальной токовой защитой с пуском (блокировкой) по напряжению (рис. 3-8).

Из схемы видно, что защита будет действовать на отключение только после срабатывания реле минимального напряжения.

Для обеспечения надёжной работы защиты при всех видах междуфазных и однофазных к.з. устанавливаются три реле минимального напряжения 1, включаемые на линейные напряжения сети и одно реле минимального напряжения 2 реагирующее на появление напряжения нулевой последовательности.

В сетях с изолированной нейтралью токовая часть схемы МТЗ с пуском по напряжению выполняется двухфазной. В части реле напряжения схема выполняется 3‑х фазной для обеспечения надёжной работы при 2‑х фазных к.з., а реле напряжения, реагирующее на нулевую последовательность, не устанавливается, так как защита должна действовать только при междуфазных к.з.

Рис.3-8 Схема МТЗ с блокировкой минимального напряжения.

Ток срабатывания МТЗ с пуском по напряжению отстраивается не от максимального тока нагрузки линии, а от тока нормальной нагрузки Iн. норм, который обычно в 1,52,0 раза меньше Iн. макс..

(3-13)

В результате этого чувствительность защиты при к.з. резко повышается.

Напряжение срабатывания защиты выбирается исходя из следующих условий:

при этом

где:

коэффициент надёжности

Учитывая, что окончательная формула для расчёта напряжения срабатывания МТЗ с пуском по напряжению:

(3-14)

Напряжение Uраб.мин. обычно принимается на 5-10% ниже нормального значения.

Чувствительность проверяется по максимальному значению напряжения при к.з. в конце зоны действия защиты, при этом коэффициент чувствительности:

Напряжение срабатывания реле максимального напряжения реагирующего на появление напряжения нулевой последовательности отстраивается от напряжения небаланса фильтра напряжений нулевой последовательности (обмотки разомкнутого треугольника ТН), т.е. Uс.р.>Uкб и обычно принимается равным 15-20% максимального напряжения на зажимах реле при однофазных к.з.

  1. То с выдержкой времени (назначение, чувствительность, селективность).

Сочетанием ТО и МТЗ можно обеспечить надёжную защиту линии на всём её протяжении. Такая защита называется токовой защитой со ступенчатой характеристикой выдержки времени.

Токовая защита со ступенчатой выдержкой времени срабатывания может выполняться 2-х или 3-х ступенчатой. В 2-х ступенчатой защите в качестве первой ступени используется ТО, а в качестве второй – МТЗ. В 3-х ступенчатой защите первая ступень представляет собой мгновенную ТО, вторая ступень – ТО с выдержкой времени, а третья – МТЗ.

Первая ступень защиты обеспечивает отключение к.з. сопровождающихся большими токами к.з. в начале линии. Вторая ступень предназначена для отключения поврежденной линии при возникновении к.з. вне зоны первой ступени, а третья ступень выполняет функции дальнего резервирования.

На рис. 3-14 изображена радиальная сеть с односторонним питание защиты которой осуществляются 3-х ступенчатыми токовыми защитами (участки А-Б и Б-В).

Рис.3-14. Выбор тока и времени срабатывания 3-х ступенчатых токовых защит.

Токи срабатывания первых ступеней защиты (мгновенных ТО) отстраиваются от токов максимального к.з. на шинах противоположных подстанций:

макс

макс

Их время срабатывания определяется временем действия исполнительного органа защиты – промежуточных реле:

Токи и времена срабатывания вторых ступеней защит (ТО с выдержкой времени) отстраиваются от токов и времени срабатывания первых ступеней защит предыдущего участка сети:

Параметры срабатывания третьих ступеней защит (МТЗ) определяется как у обычной максимальной токовой защиты.

Чувствительность вторых ступеней защит определяется минимальным током к.з. в конце защищаемой линии и считается приемлемой, если

Кч1,31,5.

Очевидно, что при к.з. на линии будет действовать первая (при к.з. в начале линии) или вторая (при к.з. в конце линии) ступень защиты, а третья ступень будет выполнять функции резервной защиты при повреждениях на соседних (следующих) участках сети.

Выводы:

  1. Токовые защиты со ступенчатой характеристикой выдержки времени, представляющие собой сочетание токовых отсечек и максимальной токовой защиты обеспечивают быстрое отключение к.з. на защищаемой линии.

  2. Токовые ступенчатые защиты нашли широкое применение для защиты от междуфазных к.з. в радиальных высоковольтных сетях напряжением до 35 кВ с односторонним питанием.

  3. По принципу действия ступенчатые токовые защиты не обеспечивают требование селективности в кольцевых сетях и сетях с несколькими источниками питания.

  1. Необходимость применения токовых направленных защит на примере МТО.

Токовые направленные отсечки основаны на том же принципе, что и токовые ненаправленные отсечки.

Реле направления мощности в схемах направленных отсечек не позволяет им действовать при мощности к.з. направленной к шинам. Следовательно, отстройка тока срабатывания направленной отсечки должна вестись только от токов к.з. направленных от шин в линию. В этом заключается принципиальное отличие токовой направленной отсечки от ненаправленной.

Направленные отсечки применяются в сетях с 2-х сторонним питанием, тогда обычная токовая отсечка оказывается слишком грубой из‑за необходимости отстройки её от тока к.з. протекающего с противоположного конца защищаемой линии к шинам подстанции, где установлена ТО. В этом случае Iс.з. у направленной отсечки меньше, а зона её действия значительно больше, чем у ненаправленной отсечки.

Схема мгновенной направленной отсечки отличается от схемы направленной максимальной токовой защиты только отсутствием реле времени.

Направленные ТО могут выполняться мгновенными или с выдержкой времени. Ток срабатывания её выбирается аналогично простой ТО с тем отличием, что направленную токовую отсечку не требуется отстраивать от к.з. за шинами данной подстанции (от к.з. «за спиной»), т.к. в этом случае мощность к.з. направлена к шинам и защита блокируется реле направления мощности. Кроме того, направленные отсечки необходимо отстраивать от токов при качаниях или снабжать специальной блокировкой от качаний.

Сочетание токовых направленных отсечек (мгновенных и с выдержками времени) и максимальных токовых направленных защит позволяет получить токовые направленные защиты со ступенчатой характеристикой выдержки времени.

Как правило, первые и вторые ступени представляют собой токовые направленные отсечки без выдержки времени и с выдержкой времени, а третья ступень – максимальную токовую направленную защиту.

Ступенчатые направленные защиты являются основным видом защит для линий напряжением до 35 кВ в кольцевых сетях, а также в сетях с 2-х сторонним питанием.

Выводы:

принцип действия, схема, уставки, видео

mtz blocirovka 2 Обычная максимально токовая защита не всегда может отличить короткое замыкание от токов перегрузки, возникающих кратковременно. Например, при самозапуске электродвигателей потребляемый ими ток может быть классифицирован МТЗ как ток короткого замыкания.

Попытка отстроится от подобных режимов работы приводит либо к загрублению уставок по току, либо к необходимости увеличение выдержки времени срабатывания защиты. И то, и другое является нежелательным.

Чтобы обычной МТЗ дать информацию о том, что произошло именно короткое замыкание, применяют блокировку по напряжению.

Принцип действия защиты

Токовая часть защиты реализуется на обычных реле тока.

Но контакты их не действуют напрямую на выходное реле или на отключающую катушку выключателя. На этом пути дополнительно включаются нормально замкнутые контакты реле напряжения.

Выходные контакты реле тока подключаются параллельно друг другу. Последовательно с ними подключаются также собранные в параллель контакты реле напряжения, контролирующих все три линейных напряжения.

Срабатывание защиты происходит лишь в том случае, если сработает любая из комбинаций токовых и напряженческих реле.

 А такое бывает только в случае короткого замыкания, при прочих режимах, считающихся номинальными, глубокой посадки напряжения не происходит. Соответственно, защита при штатных перегрузках работать не будет.

По количеству токовых реле конструкция защиты может быть в трехфазном (для генераторов) или двухфазном исполнении. Но во всех случаях количество реле напряжения все равно должно равняться трем.

mtz blocirovka 1 Если предполагается защита при однофазных КЗ то дополнительно к контактам реле напряжения подключается нормально разомкнутый контакт реле напряжения нулевой последовательности, подключенного к соответствующей обмотке ТН.

Для формирования выдержки по времени сигнал из описанной выше схемы поступает на катушку реле времени. По сравнению с обычной МТЗ этот вид защиты имеет более высокую чувствительность.

Предотвращение излишних действий защиты на отключение. В цепи отключения устанавливается накладка для вывода защиты из действия. А вывод этот может потребоваться.

Ложное действие защиты возможно при неисправностях в цепях ТН, сопровождающихся срабатыванием одного или нескольких реле в цепях блокировки. В основном эти случаи возникают в результате перегорания предохранителей на стороне высокого или низкого напряжения ТН.

Поэтому в схему РЗА обязательно входит узел контроля исправности этих цепей.

Интересное видео о настройке и работе ТО и МТЗ смотрите в видео ниже:

Он может работать на сигнал или на вывод защиты из действия.

Обычной практикой является работа на сигнал, поскольку совпадение неисправности ТН с перегрузкой на присоединении, защищенной МТЗ с блокировкой по напряжению, считается маловероятным. У оперативного персонала есть время на принятие решения: вывести защиту из действия или найти неисправность в цепи ТН.

Требования к уставкам защиты

 Уставка по току МТЗ с блокировкой по напряжению определяется только исходя из номинальных токов защищаемого оборудования, без учета самозапуска электродвигателей потребителей.

Уставка по времени срабатывания выбирается с учетом селективности отключения.

Напряжение для срабатывания реле блокировки определяется с учетом его снижения при номинальных режимах работы, когда защита работать не должна.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *