Пример расчета тока однофазного КЗ
В данной статье, я буду рассматривать пример расчета тока однофазного КЗ (ОКЗ) используя в первом варианте справочные таблицы представленные в [Л1], а во втором варианте справочные таблицы из [Л2].
С методами определения величины тока однофазного КЗ и с приведенными справочными таблицами для всех элементов короткозамкнутой цепи, можно ознакомиться в статье: «Расчет токов однофазного кз при питании от энергосистемы».
Исходные данные:
- масляный трансформатор напряжением 6/0,4 кВ, мощностью 1000 кВА со схемой соединения обмоток – Y/Yо.
- от трансформатора до ВРУ используется кабель марки ААШвУ 3х95 длиной 120 м.
- от ВРУ до двигателя используется кабель марки ААШвУ 3х95+1х35 длиной 150 м.
Рис.1 — Расчетная схема сети эл. двигателя
Вариант I
1. Расчет тока однофазного КЗ будет выполнятся по формуле приближенного метода при большой мощности питающей энергосистемы (Хс < 0,1Хт) [Л1, с 4 и Л2, с 39]:
где:
- Uф – фазное напряжение сети, В;
- Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
- Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.
2. По таблице 2 [Л1, с 6] определяем сопротивление трансформатора при вторичном напряжении 400/230 В, Zт/3 = 0,027 Ом.
3. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:
где:
- Zпт.уд.1 = 0,729 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 12 [Л1, с 16];
- l1 = 0,120 км – длина участка №1.
- Zпт.уд.2 = 0,661 Ом/км – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 13 [Л1, с 16];
- l2 = 0,150 км – длина участка №2.
4. Определяем ток однофазного КЗ:
Обращаю ваше вниманию, что при определении величины тока однофазного КЗ приближенным методом, сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас [Л2, с 40].
Вариант II
Определим ток однофазного КЗ по справочным таблицам из [Л2].
1. По таблице 2.4 [Л2, с 29] определяем сопротивление трансформатора Zт/3 = 33,6 мОм.
2. Определяем полное сопротивление цепи фаза-нуль для участка от тр-ра до точки КЗ по формуле 2-27 [Л2, с 40]:
где:
- Zпт.уд.1 = 0,83 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95, определяется по таблице 2.11 [Л2, с 41];
- l1 = 120 м – длина участка №1.
- Zпт.уд.2 = 1,45 мОм/м – полное удельное сопротивление петли фаза-нуль для кабеля марки ААШвУ 3х95+1х35, определяется по таблице 2.10 [Л2, с 41].
Обращаю ваше внимание, что в данной таблице значение Zпт.уд. приводится для кабелей независимо от материала оболочки кабеля.
Если же посмотреть [Л1, с 16], то в таблице 13 для 4-жильных кабелей с алюминиевой оболочкой 3х95+1х35, Zпт.уд. = 0,661 мОм/м. Принимаю Zпт.уд.2 = 1,45 мОм/м, для того чтобы было наглядно видно, на сколько будет отличатся значение тока однофазного КЗ от расчета по «Варианту I». На практике же, лучше совмещать справочные таблицы из [Л1 и Л2].
3. Определяем ток однофазного КЗ:
Как видно из результатов расчета (вариант I: Iк = 1028 А; вариант II: Iк = 627 А), полученные значения тока однофазного КЗ почти в 2 раза отличаются. По каким справочным таблицам выполнять расчет тока однофазного КЗ, уже решайте сами, в любом случае это приближенный метод, поэтому, если нужны точные значения тока однофазного КЗ, следует рассчитывать по формуле представленной в ГОСТ 28249-93.
Литература:
1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
Поделиться в социальных сетях
Расчет токов однофазного кз в сети 0,4 кВ
В данной статье речь пойдет об определении величины тока однофазного тока к.з. в сетях 0,4 кВ с глухозаземленной нейтралью.
Данный вопрос очень актуален, так как электрические сети 0,4 кВ, являются наиболее распространёнными.
В настоящее время существует два метода расчета однофазного КЗ – точный и приближенный и оба метода основаны на методе симметричных составляющих.
1. Точный метод определения тока однофазного КЗ
1.1 Точный метод определения тока однофазного КЗ, представлен в ГОСТ 28249-93 формула 24, и рассчитывается по формуле:
Используя данный метод можно с большой степенью точности определять токи КЗ при известных сопротивлениях прямой, обратной и нулевой последовательности цепи фаза-нуль.
К сожалению, на практике данный метод не всегда возможно использовать, из-за отсутствия справочных данных на сопротивления прямой, обратной и нулевой последовательности для кабелей с алюминиевыми и медными жилами с учетом способов прокладки фазных и нулевых проводников.
2. Приближенный метод определения тока однофазного КЗ
2.1 Приближенный метод определения тока однофазного кз при большой мощности питающей энергосистемы (Хс < 0,1Хт), рассчитывается по формуле [Л1, с 4 и Л3, с 39]:
где:
- Uф – фазное напряжение сети, В;
- Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
- Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.
2.2 Если же питающая энергосистема имеет ограниченную мощность, то тогда ток однофазного кз определяется по формуле 2-26 [ Л3, с 39]:
2.3 Значение Z∑ определяется по таблице 2.9 или можно определить по формуле 2-25 [ Л3, с 39]:
где:
Значение Zт/3 для различных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 [Л1, с 6,7].
Сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас.
2.4 Полное сопротивление трансформатора Zт, определяется по формуле 2-24 [Л3, с 39]:
2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 [Л3, с 40]:
где:
- Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 [Л3, с 41,42] или по таблицам [Л2], мОм/м;
- l – длина участка, м.
Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для различных кабелей и шинопроводов согласно [Л3, с 41,42].
Справочные таблицы 7, 10 со значениями активных сопротивления медных и алюминиевых проводов, кабелей [Л1, с 6, 14].
Справочные таблицы 11, 12, 13 со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4) — жильных кабелей с различной изоляций и при температуре жилы +65(+80) С [Л1, с 15, 16].
На практике согласно [Л1, с 5] рекомендуется использовать приближенный метод определения тока однофазного КЗ. При таком методе, допустимая погрешность в расчете тока однофазного КЗ при неточных исходных данных в среднем равна – 10% в сторону запаса; 18-20% — при схеме соединения трансформатора Y/Y0, когда преобладает активная нагрузка и для зануления используется 4-я жила либо оболочка кабеля; 10-12% — при использовании стальных труб для зануления электропроводки.
Из выше изложенного, следует, что при использовании данного метода, создаётся не который запас при расчете, который гарантирует срабатывания защитного аппарата, согласно требованиям ПУЭ.
Литература:
1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
Поделиться в социальных сетях
Особенности расчета однофазных токов КЗ в сети 0,4 кВ
Привет всем.
Сегодня поговорим о расчете однофазных токов коротких замыканий в низковольтных сетях. Почему именно однофазных?
Во-первых потому, что для выбора уставок эти токи обычно являются определяющими по критерию чувствительности. Во-вторых, потому, что с расчетами этих токов больше всего вопросов, и основные связаны с вычислением параметров нулевой последовательности кабелей и сопротивления дуги. Давайте их проанализируем.
Источники информации для расчета однофазных ТКЗ в сетях 0,4 кВ
Основным документом определяющим правила расчета токов КЗ в сетях до 1000 В является ГОСТ 28249-93. Стоит, однако, отметить, что этот документ в основном направлен на расчеты ТКЗ для выбора оборудования, а не уставок РЗА и автоматических выключателей.
Второй источник — это известная книга А.В. Беляева «Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ», которая, хоть и не является нормативным документом, гораздо более подробно описывает правила расчета ТКЗ именно для выбора уставок автоматических выключателей.
В принципах расчета однофазных токов КЗ, приведенных в этих источниках есть существенные различия. Приведем основные в Табл. 1
Табл.1. Различия в методиках вычисления однофазных КЗ
Наверное, надежнее пользоваться методикой, приведенной в действующем ГОСТ, но есть две проблемы.
Первая в том, что найти достоверную информацию о сопротивлениях нулевой последовательности кабелей 0,4 кВ очень непросто потому, что производители не приводят ее в каталогах. В приложениях ГОСТ есть данные по r0 и x0 кабелей, но без указания конкретного типа и не для всех сечений.
Вторая причина состоит в сложности определения сопротивления дуги по ГОСТ (Приложение 9), где в приведенной формуле (40) сопротивление дуги зависит от тока КЗ, который нужно определить с учетом сопротивления дуги! Как это сделать на практике не очень понятно. Графики зависимости сопротивления дуги от сечения и длины кабеля (то же Приложение 9) также не слишком полезны потому, что для однофазных КЗ, многих типов кабелей там просто нет, а аппроксимировать нелинейные зависимости такое себе занятие.
По сравнению с ГОСТ методика, приведенная в книге А.В. Беляева намного более понятная и простая в применении.
Предлагаю оценить величины токов КЗ по этим двум методикам, чтобы выяснить какая из них больше подходит под наши задачи (выбор уставок защитных аппаратов)
Для примера будем использовать расчетную схему на Рис. 1
Рис.1 Расчетная схема сети 0,4 кВ
В схеме на Рис. 1 я постарался взять такие кабели, параметры которых есть и в ГОСТе, и книге А.В. Беляева. По крайней мере для линий 1 и 3.
Ниже привожу сканы из источников с указанием исходных данных по сопротивления НП и петли «фаза-ноль» для кабелей. Сопротивления прямой последовательности кабелей для обоих методов принял одинаковыми (это так и есть по источникам). Параметры трансформатора также одинаковы для обоих методов.
Рис.2. Исходные данные по сопротивления zпт.уд. из книги А.В. Беляева
Рис.3 исходные данные по уд. сопротивлениям НП из ГОСТ 28249-93
Не буду вас мучать формулами, а сразу приведу результат расчета. В конце я приложил форму Эксель, где можно посмотреть как исходные данные, так и сами формулы. Активное сопротивление медных кабелей, а также их zпт. уменьшено в 1,7 раза по сравнению с табличными (как для книги А.В. Беляева, так и для ГОСТ)
Рис.4. Результат расчета однофазных КЗ для сети 0,4 кВ по разным методикам
Как видно, разница в расчетах очень большая, причем для трех- и двухфазных КЗ она не превышает 8% (здесь не показана)
Очевидно, что такое различие в однофазных токах КЗ обусловлено разницей в параметрах нулевой последовательностей кабелей. Это особенно хорошо видно по токам металлического КЗ, где нет влияния дуги, рассчитанной по разным методикам.
Чувствительность автоматов проверяют по дуговым КЗ и здесь ситуация немного лучше. Видно, что для сопротивление дуги отчасти компенсирует различие в токах КЗ, особенно для удаленных КЗ, но все равно эта разница очень велика.
Какие причины могут быть для такой большой разницы?
- Во-первых, это мое неправильное определение точки исходных данных. В книге А.В. Беляева указано (Таблица 7), что сопротивления петли даны для «кабелей или пусков проводов с алюминиевыми жилами». Здесь не указан ни конструкция кабеля, ни тип изоляции. Возможно здесь учтена определенная проводящая оболочка, вокруг жил.
- Во-вторых, ни в первом, ни во втором источнике не указано на что именно происходит однофазное КЗ. Сопротивление контуров «фаза — ноль» и «фаза — заземляющие конструкции» может сильно различаться.
- В-третьих, в методике А.В. Беляева есть несколько допущений, которые ведут к снижению токов КЗ, а именно арифметическое сложение полных сопротивлений трансформатора и кабелей и уменьшение в 1,7 раза сопротивления петли «фаза-ноль» для медных кабелей, в то время как уменьшаться должно только активное сопротивление.
В пользу методики по «петле» говорят два основных момента:
- Сопротивление петли «фаза-ноль» измеряют при наладке на объекте и если будет большое расхождение с расчетами, то всегда можно отправить проектировщику на проверку откорректированные исходные данные. С сопротивлениями НП так не получится.
- Токи однофазных КЗ через эту методику получаются ниже, чем через ГОСТ, а это лучше для проверки чувствительности. Если пройдете проверку на этих токах, то пройдете и на ГОСТовских
Если вы автоматизировали расчеты токов КЗ, например, в том же Экселе, то можете считать сразу двумя способами и выбирать наиболее подходящий для ваших условий
Как бы то ни было, этот пример показывает, что существует большая разница в расчетах однофазных токов КЗ в сети 0,4 кВ по разным методикам, и стоит осторожно относится к выбору как самой методики, так и исходных данных.
А что вы думаете по этому поводу? Пишите в комментариях
P.S. Мои расчеты ТКЗ по Рис.1 находятся здесь
Расчеты методика А.В. Беляева vs ГОСТ
Список литературы
- ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ
- А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Учебное пособие. Энергоатомиздат. 1988 г.
пример расчета в сетях 0,4 кВ
Ни один проект по электрике не обходится без расчетов. Одним из них является расчет токов короткого замыкания. В статье рассмотрим пример расчета в сетях 0,4кВ. Файл с примером расчета в Word вы сможете скачать ближе к концу статьи, а также выполнить расчет самостоятельно не покидая сайта (в конце статьи есть онлайн-калькулятор).
Исходные данные: ГРЩ здания запитан от трансформаторной подстанции с двумя трансформаторами по 630кВА.
где:
ЕC – ЭДС сети;
Rт, Xт, Zт – активное, реактивное и полное сопротивления трансформатора;
Rк, Xк, Zк – активное, реактивное и полное сопротивления кабеля;
Zц – сопротивление петли фаза-нуль для кабеля;
Zш – сопротивление присоединения шин;
K1 – точка короткого замыкания на шинах ГРЩ.
Параметры трансформатора:
Номинальная мощность трансформатора Sн = 630 кВА,
Напряжение короткого замыкания трансформатора Uк% = 5,5%,
Потери короткого замыкания трансформатора Pк = 7,6 кВт.
Параметры питающей линии:
Тип, число (Nк) и сечение (S) кабелей АВВГнг 2x (4×185),
Длина линии L = 208 м
Реактивное сопротивление трансформатора:
Xт = 13,628 мОм
Активное сопротивление трансформатора:
Rт = 3,064 мОм
Активное сопротивление кабеля:
Rк = 20,80 мОм
Реактивное сопротивление кабеля:
Xк = 5,82 мОм
Сопротивление энергосистемы:
Xc = 1,00 мОм
Суммарное реактивное сопротивление участка:
XΣ=Xc+Xт+Xк=20,448 мОм
Суммарное активное сопротивление участка:
RΣ=Rт+Rк=23,864 мОм
Полное суммарное сопротивление:
RΣ=31,426 мОм
Ток трехфазного короткого замыкания:
IK3=7,35 кА (Icn)
Ударный ток трехфазного короткого замыкания:
iУ=10,39 кА (Icu)
Ток однофазного короткого замыкания:
IK1=4,09 кА
Чтобы не считать каждый раз вручную на калькуляторе и переносить цифры в Microsoft Word, я реализовал эти расчет прямо в Word. Теперь надо только ответить на вопросы, которые он задаёт. Вот так это выглядит:
Весь расчет занял меньше минуты.
Чтобы скачать пример расчета ТКЗ в Word, нажмите на кнопку: СКАЧАТЬ ПРИМЕР
Онлайн-калькулятор для расчет токов короткого замыкания
Для тех, кому нужно быстро рассчитать токи короткого замыкания, сделал калькулятор прямо на сайте. Теперь можете посчитать токи КЗ онлайн. Щелкайте переключателям, двигайте ползунки, выбирайте значения из списка — всё моментально автоматически пересчитается.
Удельные сопротивления меди и алюминия в онлайн-калькуляторе приняты в соответствии с рекомендациями ГОСТ Р 50571.5.52-2011, Часть 5-52 (1,25 удельного сопротивления при 20°С):
- удельное сопротивление меди — 0,0225 Ом·мм/м
- удельное сопротивление алюминия — 0,036 Ом·мм/м.
Подпишитесь и получайте уведомления о новых статьях на e-mail
Читайте также:
10. Пример расчета токов КЗ в сети напряжением 0,4 кВ
10. Пример расчета токов КЗ в сети напряжением 0,4 кВ
- Категория: И.Л. Небрат «Расчеты токов короткого замыкания в сетях 0,4 кВ»
Расчет токов КЗ – трехфазных, двухфазных, однофазных в сети 0,4 кВ схемы, приведенной на рис. 7
Рис.8 Расчетная схема к примеру
Необходимо рассчитать токи КЗ в сети 0,4 кВ собственных нужд электростанции. Расчет выполняется для проверки отключающей способности автоматических выключателей, проверки кабельных линий на термическую стойкость, а также для выбора уставок токовых катушек автоматических выключателей и проверки их чувствительности.
С этой целью выполняются расчеты металлических и дуговых КЗ трехфазных, двухфазных и однофазных.
Расчетная схема представлена на рис.7
Расчет выполняется в именованных единицах, сопротивления расчетной схемы приводятся к напряжению 0,4 кВ и выражаются в миллиомах. Параметры элементов расчетной схемы приводятся в таблицах Приложения 1
Расчеты выполняются в соответствии с методикой рекомендованной ГОСТ 28249-93 на расчеты токов КЗ в сетях напряжением до 1 кВ.
Короткие замыкания рассчитываются на шинах 0,4 кВ РУ (точка К1) и на вторичной силовой сборке за кабелем КЛ1 (точка К2).
В данном примере расчеты дуговых КЗ выполняются с использованием снижающего коэффициента КС , поэтому переходные сопротивления контактов, контактных соединений кабелей и шинопроводов в расчетных выражениях для определения суммарного активного сопротивления R∑ не учитываются, эти сопротивления учтены при построении характеристик зависимости коэффициента Кс от полного суммарного сопротивления до места К3, Кс = ∫(Z∑), полученных экспериментальным путем. Характеристики Кс = ∫(Z∑) приведены на рис. 6.
Система
Мощность короткого замыкания
Sк=100мВ•А, UН ВН=6,3 кВ.
ТС3-1000/6,0, схема соединения обмоток ∆/Y0
Sк=1000 кВ•А, UН ВН=0,4 кВ,
Uк=8%.
Сопротивления трансформатора, приведены к UН ВН=0,4 кВ, определяются по таблице 1 Приложения 1:
R1=R2=R0=1.9 мОм,
X1=X2=X0=12.65 мОм.
Шинопровод III 1
IIIМА-4-1600, длина 15м.
Удельное параметры шинопровода по данным таблицы II Приложения1
R1 уд=0,03 мОм/м
прямая последовательность
X1 уд =0,014мОм/м
R0 уд=0,037 мОм/м
нулевая последовательность
X0 уд =0,042мОм/м
Трансформаторы тока ТТ1
Удельные параметры трансформатора тока по данным таблицы 14 Приложения1:
Ктт=150/5,
R1=R0=0,33 мОм,
X1=X0=0.3 мОм.
Кабельная линия КЛ1
АВВГ- (3*185+1*70),
=100м.
Удельные параметры кабеля по данным таблицы 7 Приложения 1:
R1 уд=0,208 мОм/м
прямая последовательность
X1 уд =0,063мОм/м
R0 уд=0,989 мОм/м
нулевая последовательность
X0 уд =0,244мОм/м
Автоматический выключатель АВ1
Тип “Электрон” , IН =1000А.
Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ1:
Rкв= 0,25 мОм,
Хкв= 0,1 мОм.
Автоматический выключатель АВ2
Тип А3794С, Iн= 400А.
Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ2:
Rкв= 0,65 мОм,
Хкв= 0,17 мОм.
Расчет параметров схемы замещения
Все сопротивления расчетной схемы приводятся к Uбаз= 0,4 кВ.
Система
Сопротивление системы учитывается индуктивным сопротивлением в схеме замещения прямой последовательности. По формуле (3)
Трансформатор
Для трансформатора со схемой соединения обмоток ∆/Y0 активные и индуктивные сопротивления обмоток одинаковы для всех трех последовательностей.
R1Т= R2Т= R0Т=1,9 мОм,
X1Т= X2Т= X0Т=12,65 мОм.
Шинопровод III 1
Сопротивление шинопровода III 1 определяем по известным удельным сопротивлениям шинопровода и его длине:
R1Ш= R2Ш= 0,03•15=0,45 мОм;
X1Ш= X2Ш= 0,014•15=0,21 мОм;
R0Ш= 0,037•15=0,555 мОм;
X0Ш= 0,042•15=0,63 мОм.
Кабельная линия КЛ1
Сопротивление кабельной линии КЛ1 определяется по известным удельным сопротивлениям кабеля и его длине:
R1кл= R2кл= 0,208•100=20,8 мОм;
X1кл= X2кл= 0,063•100=6,3 мОм;
R0кл= 0,989•100=98,9 мОм;
X0кл= 0,244•100=24,4 мОм.
Схема замещения прямой ( обратной ) последовательности представлена на рис. 9, схема замещения нулевой последовательности – на рис. 10.
Рис. 9 Схема замещения прямой ( обратной ) последовательности к примеру
Рис. 10 Схема замещения нулевой последовательности к примеру
Расчет токов короткого замыкания для точки К1
Трехфазное КЗ.
Ток металлического трехфазного КЗ определяется по формуле:
По схеме замещения прямой последовательности суммарные сопротивления R1S и X1S определяем арифметическим суммированием сопротивлений до точки КЗ.
R1S = 0,33 + 1,9 + 0,45 + 0,25 = 2,93 мОм
X1S = 1,6 + 0,3 + 12,65 + 0,21 + 0,1 = 14,86 мОм
Полное суммарное сопротивление до точки К1 :
мОм
Ток трехфазного металлического КЗ :
кА
Ток трехфазного дугового КЗ определяется с использованием снижающего коэффициента КС . Кривые зависимости коэффициента КС от суммарного сопротивления до места КЗ, приведены на рисунке 6, построены для начального момента КЗ (кривая 1) и установившегося КЗ (кривая 2).
Расчеты показывают, что разница токов дуговых КЗ для разных моментов времени незначительна, примерно составляет 10%. Поэтому можно рекомендовать для практических расчетов дуговых КЗ определять ток по минимальному снижающему коэффициенту КС2 (кривая 2), полагая, что ток в процессе дугового КЗ практически не изменяется. В данном примере расчет дуговых КЗ производится с использованием обеих характеристик, т.е. определяются и КС1 и КС2
Расчет дугового трехфазного КЗ выполняется в следующем порядке :
1. Определяются значения снижающего коэффициента для начального момента КЗ (КС2) по кривым 1 и 2 рис.6.
При мОм КС1 = 0,67 КС2 = 0,58
2. Ток трехфазного дугового КЗ определяется по формуле :
= 15,27 × 0,67 = 10,23 кА tКЗ » 0
= 15,27 × 0,58 = 8,86 кА tКЗ > 0,05 с.
Ударный ток КЗ определяется по формуле :
Ударный коэффициент КУ определяется по характеристике, приведенной на рисунке 5.
Находим отношение
Этому отношению соответствует КУ = 1,6
Определяем кА
Ток металлического двухфазного КЗ определяется по формуле :
Полное суммарное сопротивление до точки К1 при двухфазном КЗ определяется по формуле :
мОм
Определяем ток двухфазного металлического КЗ
кА
проверяем кА
Расчет дугового двухфазного КЗ :
Определяем коэффициенты КС1 и КС2.
для мОм КС1 = 0,68, а КС2 = 0,6
Определяем токи двухфазного дугового КЗ
tКЗ » 0
tКЗ> 0,05 с.
Ток металлического однофазного К3 IКм(1) определяется по формуле IКм(1) =
Полное суммарное сопротивление цепи до точки К1 при однофазном К3 определяем по формуле
;
Предварительно определяем суммарные активное и индуктивное сопротивления нулевой последовательности до точки К1 из схемы замещения на рис.10.
R0∑=1,9+0,555+0,25=2,7 мОм
X0∑=12,65+0,63+0,1=13,38 мОм
Определяем полное сумарное сопротивление цепи для однофазного К3
мОм
Определяем ток однофазного металлического К3
кА
Расчет дугового однофазного К3:
Определяем коэффициенты Кс1 и Кс2.
Для =14,65 мОм Кс1=0,66 , а Кс2=0,58.
Определяем токи однофазного дугового К3
=15,66•0,66=10,33 кА tкз ≈0
=15,66•0,58=9,1 кА tкз>0,05 с
Расчет токов короткого замыкания для точки К2.
Трехфазное К3
Определяем суммарные активное и индуктивное сопротивления до точки К2 в соответствии со схемой замещения на рис. 9.
R1∑=0,33+1,9+0,455+0,25+0,65+20,8=24,38 мОм
X1∑=1.6+0.3+12.65+0.21+0.1+0.17+6.3=21.33 мОм
Суммарное сопротивление
мОм
Определяем ток однофазного металлического К3
кА
Определяем токи дугового К3.
В соответствии с графиком для мОм
Коэффициенты Кс1 и Кс2 соответственно равны 0,74 и 0,67.
Определяем токи дугового К3
=7,14•0,74=5,28 кА tкз ≈0
=7,14•0,67=4,78 кА tкз>0,05 с
Определяем ударный ток iу = Ку· ·
По отношению Ку = 1,05, тогда
iу=1,05··7,14=10,6 кА.
Двухфазное К3
Для расчета двухфазного К3 в точке К2 определяем следующие величины.
Полное суммарное сопротивление до точки К3 для двухфазного К3
мОм.
Ток двухфазного металлического К3
По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =37,44 мОм соответственно равны 0,78 и 0,69.
Токи двухфазного дугового К3
=6,17•0,78=4,81 кА tкз ≈0
=6,14•0,69=4,26кА tкз>0,05 с
Однофазное К3
Для расчета однофазного К3 в точке К2 определяем следующие величины:
Суммарные активное и индуктивное сопротивления нулевой последовательности относительно точки К2 в соответствии со схемой замещения нулевой последовательности (рис. 10):
R0∑=1,9+0,555+0,25+0,65+98,9=102,25 мОм
X0∑=12,65+0,63+0,1+0,17+24,4=38 мОм.
Полное суммарное сопротивление до места К3 при однофазном К3
Ток однофазного металлического К3
кА.
Определяем токи дугового К3
По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =57,2 мОм соответственно равны 0,82 и 0,72.
=4,04•0,82=3,31 кА tкз ≈0
=4,04•0,72=2,91кА tкз>0,05 с
Все результаты расчетов токов К3 приведены в таблице 4, что представляется удобным для дальнейшего анализа, выбора уставок защитных аппаратов и проверки кабелей.
Таблица 4
Результаты расчетов токов К3
Виды К3 Точка К3
|
Трехфазное К3
|
Двухфазное К3
|
Однофазное К3
|
|||||||||||||
IКМ кА |
IКД НАЧ кА |
IКД УСТ кА |
iУД кА |
IКМ кА |
IКД НАЧ кА |
IКД УСТ кА |
IКМ кА |
IКД НАЧ кА |
IКД УСТ кА |
|||||||
К1 |
15,27 |
10,23 |
8,86 |
34,6 |
13,2 |
8,98 |
7,92 |
15,66 |
10,33 |
9,1 |
||||||
К2 |
7,14 |
5,28 |
4,78 |
10,6 |
6,17 |
4,81 |
4,26 |
4,04 |
3,31 |
2,91 |
||||||
Этот пример наглядно показывает, что аналитические методы расчетов токов К3 очень трудоемкий, особенно для электроустановок с большим количеством элементов 0,4 кВ. Поэтому еще раз обращаем внимание на необходимости освоения и более широкого применения для практических расчетов компьютерных программ, в том числе, программа, которая разработана на кафедре РЗА ПЭИпк и успешно используется на многих энергообьектах (описание программы см. на стр. 3).
Пример приближенного расчета токов короткого замыкания в сети 0,4 кв
Часто инженерам для проверки отключающей способности защитных аппаратов (автоматические выключатели, предохранители и т.д.), нужно знать значения токов короткого замыкания (ТКЗ). Но на практике не всегда есть возможность быстро выполнить расчет ТКЗ по ГОСТ 28249-93, из-за отсутствия данных по различным сопротивлениям, особенно это актуально при расчете однофазного тока короткого замыкания на землю.
Для решения этой задачи, можно использовать приближенный метод расчета токов короткого замыкания на напряжение до 1000 В, представленный в книге: «Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.».
Рассмотрим на примере расчет ТКЗ в сети 0,4 кВ для небольшого распределительного пункта, чтобы проверить отключающую способность предохранителей, используя приближенный метод расчета ТКЗ представленный в книге Е.Н. Зимина.
Обращаю Ваше внимание, что в данном примере будет рассматриваться, только расчет ТКЗ для предохранителей FU1-FU6 из условия обеспечения необходимой кратности тока короткого замыкания.
Расчет
Известно, что двигатели получают питание от трансформатора мощность 320 кВА. Кабель от трансформатора до РЩ1 проложен в земле, марки АСБГ 3х120+1х70, длина линии составляет 250 м. На участке от распределительного щита ЩР1 до распределительного пункта РП, проложен кабель марки АВВГ 3х25+1х16, длина линии составляет 50 м. Однолинейная электрическая схема представлена на рис.1.
Рис.1 – Однолинейная электрическая схема 380 В
Расчет токов к.з. для точки К1
Для проверки на отключающую способность предохранителя FU1, нужно определить в месте его установки ток трехфазного короткого замыкания.
1. Определяем активное и индуктивное сопротивление фазы трансформатора:
где:
- Sт – мощность трансформатора, кВА;
- с – коэффициент, равный: 4 – для трансформаторов до 60 кВА; 3,5 – до 180 кВА; 2,5 – до 1000 кВА; 2,2 – до 1800 кВА;
- d – коэффициент, равный: 2 – для трансформаторов до 180 кВА; 3 – до 1000 кВА; 4 – до 1800 кВА;
- k = Uн/380, Uн — номинальное напряжение на шинах распределительного пункта.
2. Определяем активное и индуктивное сопротивление кабеля марки АСБГ 3х120+1х70:
где:
- L – длина участка, км;
- Sф и S0 – сечение проводника фазы и соответственно нулевого провода, мм2;
- а – коэффициент, равный: 0,07 – для кабелей; 0,09 – для проводов, проложенных в трубе; 0,25 – для изолированных проводов, проложенных открыто;
- b – коэффициент, равный: 19 – для медных проводов и кабелей; 32 – для алюминиевых проводов и кабелей;
3. Определяем полное сопротивление фазы:
4. Определяем ток трехфазного короткого замыкания:
Для проверки на отключающую способность предохранителей FU2 – FU6, нужно определить однофазный ток короткого замыкания на землю в конце защищаемой линии.
Расчет токов к.з. для точки К2
5. Определяем суммарные активные и индуктивные сопротивления кабелей цепи короткого замыкания:
6. Определяем полное сопротивление петли фаза-нуль:
где:
Zт(1) = 22/Sт*k2 – расчетное полное сопротивление трансформатора току короткого замыкания на землю, k=Uн/380.
7. Определяем ток однофазного короткого замыкания на землю:
Аналогично выполняем расчет ТКЗ для точек К3-К6, результаты расчетов заносим в таблицу 1. Зная токи к.з., можно теперь выбрать плавкие вставки для предохранителей FU1 – FU6, исходя из условия обеспечения необходимой кратности тока короткого замыкания.
Таблица 1 – Расчет токов к.з.
Точка КЗ | Rф, Ом | R0, Ом | Хф, Ом | Х0, Ом | Rт, Ом | Хт, Ом | Zф-0, Ом | Zт, Ом | Iк.з.(3), А | Iк.з.(1), А |
---|---|---|---|---|---|---|---|---|---|---|
К1 | 0,07 | 0,02 | — | — | 0,0078 | 0,023 | — | 0,089 | 2468 | — |
К2 | 0,241 | 0,374 | 0,022 | 0,022 | — | — | 0,674 | — | — | 326 |
К3 | 0,374 | 0,598 | 0,0231 | 0,0231 | — | — | 0,99 | — | — | 222 |
К4 | 0,174 | 0,278 | 0,022 | 0,022 | — | — | 0,512 | — | — | 429 |
К5 | 0,694 | 1,11 | 0,0259 | 0,0259 | — | — | 1,8 | — | — | 122 |
К6 | 0,174 | 0,278 | 0,022 | 0,022 | — | — | 0,512 | — | — | 429 |
Поделиться в социальных сетях
Расчет токов короткого замыкания: особенности процесса
Короткое замыкание между проводниками является опаснейшим явлением, как в электрической сети частного домовладения, так и в сложных разводках подстанций и питающих цепей мощного производственного оборудования. Короткое замыкание может стать причиной пожара и выхода из строя дорогостоящих электроприборов, поэтому расчёт токов короткого замыкания, является обязательным этапом перед осуществлением прокладки кабелей для различных потребителей электричества.
Кто занимается вычислением КЗ
Расчёт КЗ, производится квалифицированными специалистами, которые не только производят необходимые вычисления, но и несут ответственность за дальнейшую эксплуатацию электрического оборудования.
Домашние электрики также могут осуществить данные вычисления, но только при наличии начальных знаний о природе электричества, свойствах проводников и о роли диэлектриков, в их надёжной изоляции друг от друга.
При этом, полученный результат значения короткого замыкания, перед проведением электротехнических работ, необходимо перепроверить самостоятельно, либо воспользоваться услугами специализированных фирм, которые осуществляют данные вычисления на платной основе.
Как рассчитать ток короткого замыкания используя специальные формулы, будет подробно описано далее.
Особенности расчёта
Расчёт токов трёхфазного оборудования производится с применением специальных формул.
Если расчёт тока трёхфазного короткого замыкания, необходимо сделать для электрических сетей напряжением до 1000 В, то необходимо учитывать следующие нюансы при проведении расчётов:
- Трёхфазная система должна считаться симметричной.
- Питание трансформатора принимается за неизменяемую величину, равную его номинальному значению.
- Момент возникновения КЗ принято считать при максимальном значении силы тока.
- ЭДС источников питания, удалённых на значительное расстояния от участка электрической сети, где происходит КЗ.
Также при вычислении параметров КЗ необходимо правильно посчитать результирующее сопротивление проводника, но делать это необходимо через приведение единого значения мощности.
Если производить расчёт сопротивления стандартными формулами известными из курса физики, то можно допустить ошибки, по причине неодинакового номинального напряжения в момент возникновения короткого замыкания для различных участков электрической цепи. Выбор такой базисной мощности позволяет значительно упростить расчёты, и значительно повысить их точность.
Напряжение, при вычислении тока короткого замыкания также принято выбирать не исходя из номинального значения, а с превышением данного показателя на 5%. Например для электрической сети 380 В, базисное напряжение для расчёта токов короткого замыкания составит 0,4 кВ.
Для сети переменного тока наприряжением 220 В, базисное напряжение будет равно 231 В.
Формулы вычисления трёхфазного замыкания
Расчёт токов коротких замыканий в электроэнергетических системах трёхфазного электричества производится с учётом особенности возникновения данного процесса.
Из-за проявления индуктивности проводника, в котором происходит короткое замыкание, сила КЗ изменяется не мгновенно, а происходит нарастание данной величины по определённым законам. Чтобы методика расчёта токов короткого замыкания позволила произвести высокоточные вычисления, необходимо высчитать все основные величины вносимые в расчётные формулы.
Часто для этой цели требуется воспользоваться дополнительными формулами или специальным программным обеспечением. Современные возможности вычислительной техники, позволяют осуществлять сложнейшие операций в считанные секунды.
Методы расчёта токов короткого замыкания могут быть расширены применением специального программного обеспечения. В данном случае, может быть использована компьютерная программа, которая может быть написана любым квалифицированным программистом.
Если вычисление параметров КЗ в трёхфазной сети осуществляется вручную, то в для получения точного результата этого значения применяется формула:
где:
Хвн — сопротивление между точкой короткого замыкания и шинами.
Хсист — сопротивление всей системы по отношению к шинам источника.
Uс — напряжение на шинах системы.
Если какой-либо показатель отсутствует при проведении расчётов, то его можно высчитать применив для этого дополнительные формулы, или следует применить специальные программы для компьютера.
В том случае, когда расчёт КЗ, необходимо произвести для сложной разветвлённой сети, производится преобразование схемы замещения. Для максимально упрощения вычислений схема представляется с одним сопротивлением и источником электричества.
Для упрощения схемы необходимо:
- Сложить все показатели параллельно подключённого сопротивления электрических цепей.
- Сложить последовательно подключённые сопротивления.
- Вычислить результирующее сопротивлению, путём сложения всех параллельно и последовательно подключённых сопротивлений.
Расчёт однофазной сети
Расчет токов коротких замыканий в электроэнергетических системах однофазного напряжения допускает проведение упрощённых вычислений. Обычно, электроприборы тока однофазного не потребляют много электричества, и для надёжной защиты квартиры или дома от возникновения короткого замыкания, достаточно установить автоматический выключатель рассчитанный на величину срабатывания, равную 25 А.
Если требуется осуществить приблизительный расчёт однофазного короткого замыкания, то его производят по формуле:
где
Uf — напряжение фазы.
Zt — сопротивление трансформатора, при возникновении КЗ.
Zc — сопротивление между фазным и нулевым проводником.
Ik — однофазный ток короткого замыкания.
Вычисление параметров КЗ в однофазной цепи с использованием данной формулы производится с погрешностью до 10%, но в большинстве случаев этого достаточно для осуществления правильной защиты электрической сети.
Основным затруднением для получения данных рассчитанных по этой формуле, является сложность в получении значения Zc.
Если параметры проводника известны и переходные сопротивления также определены, то сопротивление между фазным и нулевым проводником рассчитывается по формуле:
где:
rf — активное сопротивление фазного провода, Ом;
rn — активное сопротивление нулевого провода, Ом;
ra — суммарное активное сопротивление контактов цепи фаза-нуль, Ом;
xf» — внутреннее индуктивное сопротивление фазного провода, Ом;
xn» — внутреннее индуктивное сопротивление нулевого провода, Ом;
x’ — внешнее индуктивное сопротивление цепи фаза-нуль, Ом.
Таким образом подставляя известные значения в формулы приведённые выше, легко найдём ток короткого замыкания для однофазной сети.
Вычисление параметров КЗ в однофазной сети осуществляется в такой последовательности:
- Выяснится параметры питающего трансформатора или реактора.
- Определяются параметры используемого проводника.
- Если электрическая схема слишком разветвлена, то её следует упростить.
- Определяется полное сопротивление можду «фазой» и «0».
- Вычисляется полное сопротивление трансформатора или реактора, если данное значение нельзя получить из документации к источнику питания.
- Значения подставляются в формулу.
Если вся последовательность действий была проведена верно, то таким образом можно рассчитать силу тока при возникновении КЗ в однофазной сети.
Вычисление КЗ по паспортным данным
Значительно упрощается задача по расчёту КЗ, если имеются паспортные данные реактора или трансформатора. В этом случае достаточно номинальные значения электричества и напряжения подставить в расчётные формулы, чтобы получить значение тока КЗ.
Сила и мощность КЗ могут быть определены по следующим формулам:
В данной формуле значение Iном равно номинальному току электрического трансформатора или реактора.
Определение тока КЗ в сети неограниченной мощности
Если необходимо рассчитать КЗ в системе, где мощность источника электричества несоизмеримо выше суммарной мощности потребителей электричества, то величину напряжения можно условно считать неизменной.
В таких условиях мощность электричества будет равна бесконечности, а сопротивление проводника — нулю. Данные условия могут быть применены только к таким расчётным условиям, когда точка короткого замыкания удалена на значительное расстояние от источника электричества, а результирующее сопротивление цепи в десятки раз превышает сопротивление системы.
Для электрической сети неограниченной мощности сила электрической напряжённости рассчитывается по формуле:
Ik=Ib/Xрез
где:
Ik — сила тока короткого замыкания;
Ib — базисный ток;
Хрез — результирующее напряжения сети.
Подставив значение в формулу можно получить значение параметров КЗ в сети неограниченной мощности.
Руководящие указания по расчёту токов короткого замыкания, изложенные в данной статье, содержат основные принципы, по которым определяется сила тока в проводнике в момент образования этого опасного явления.
Если возникает сложность в проведении данных расчётов самостоятельно, то можно воспользоваться услугами профессиональных инженеров-электриков, которые проведут все необходимые вычисления.
Расчёт токов короткого замыкания и выбор электрооборудования по совету профессионалов позволит гарантировать бесперебойное и безопасное использование электрических сетей в частном доме или на производстве.