Расчет плавкой вставки предохранителя онлайн по току
Для защиты электрических цепей от аварийных режимов работы, таких как повышенное потребление мощности или короткое замыкание, используют плавкие вставки или предохранители. Они устроены таким образом, что при протекании тока до определенного уровня ничего не происходит, но, согласно закону Джоуля-Ленца при протекании электрического тока происходит выделение тепла на проводнике. Поэтому при определенной силе тока тепла выделяется такое количество, что проводник плавкой вставки просто перегорает.
В электронных схемах предохранители устанавливают на входе питания, он нужен для защиты трансформатора, дорожек платы и других узлов. Также используется для защиты электродвигателя – их часто устанавливают в щитах, к которым происходит подключение. К примеру, при заклинивании ротора электродвигателя в цепи статора (и ротора тоже, для ДПТ, и двигателей с фазным ротором) будет протекать повышенный ток, который сожжет предохранитель. Но если его номинал подобран чрезмерно большим, то сгорят обмотки электрической машины.
Кроме самого проводника предохранитель состоит из стеклянного или керамического корпуса, а для больших мощностей и напряжений корпус заполняется внутри диэлектрическим порошкообразным материалом – это нужно для гашения дуги, возникающей при перегорании плавкой вставки.
Казалось бы, простое устройство и принцип работы, но для его расчетов нужно использовать ряд формул, что значительно усложняет задачу. Хотя можно избежать их, если использовать наш онлайн калькулятор, который производит расчет плавкой вставки предохранителя:
Давайте разбираться, как рассчитать диаметр проволоки. Для начала определяют Iном потребления защищаемого устройства. Его можно узнать из технической документации, для электродвигателей – прочитать на шильдике или определить по мощности устройства. Если параметр не указан, определите его по формуле:
Iном=P/U
После этого проводят расчеты по току, умноженному на коэффициент запаса, который равен 1,2-2,0, в зависимости от типа нагрузки и её особенностей. При имеющейся тонкой проволоке определенного диаметра рассчитывают Iплавления:
При диаметрах проволоки от 0,02 до 0,2 мм:
От 0,2 мм и выше:
Где:
- d – диаметр;
- k или m – коэффициент, он приведен в таблице для различных металлов.
Чтобы определить диаметр провода зная ток I:
Для малых I – d от 0,02 до 0,2 мм:
Для больших I – диаметр провода от 0,2 мм и выше:
Если нужно узнать количество тепла, которое выделяется на плавкой вставке, то используйте формулу:
Время и количество теплоты для плавления:
Где:
- m – масса проволоки;
- Лямбда – удельное количество телпоты плавления, табличная величина характерная для каждого материала.
Масса круглой проволоки:
Для проверки правильности расчётов вы можете измерить сопротивление проводника по формуле:
Кстати, предохранители высоковольтных цепей обычно имеют высокое сопротивление (килоОмы). Для удобства можно воспользоваться таблицей:
Как вы можете убедиться, расчет плавкой вставки предохранителя достаточно объёмный, поэтому проще посчитать защитный предохранитель с помощью нашего онлайн калькулятора по току. Как уже было сказано, его вы можете определить, исходя из мощности.
Как рассчитать плавкую вставку предохранителя
Плавкие вставки для предохранителей всегда перегорают в неподходящий момент. И что мы делаем? Конечно! Делаем из него “жука”. Если это сделать неправильно, можно навлечь на себя беду. Для того, чтобы правильно и безопасно восстановить плавкую вставку нужно всего лишь выбрать правильный диаметр используемой проволоки. Ниже приведен расчет диаметра провода для плавких вставок предохранителей по таблице.
Ток плавле- ния, А | Диаметр, мм | |||||
Медь | Алюминий | Никелин | Железо | Олово | Свинец | |
0,5 | 0,03 | 0,04 | 0,05 | 0,06 | 0,11 | 0.13 |
0,05 | 0,07 | 0,08 | 0,12 | 0,18 | 0,21 | |
0,09 | 0,1 | 0,13 | 0,19 | 0,29 | 0,33 | |
0,11 | 0,14 | 0,18 | 0,25 | 0,38 | 0,43 | |
0,14 | 0,17 | 0,22 | 0,3 | 0,46 | 0,52 | |
0,16 | 0,19 | 0,25 | 0,35 | 0,53 | 0,6 | |
0,18 | 0,22 | 0,28 | 0,4 | 0,6 | 0,68 | |
0,2 | 0,25 | 0,32 | 0,45 | 0,66 | 0,75 | |
0,22 | 0,27 | 0,34 | 0,48 | 0,73 | 0,82 | |
0,24 | 0,29 | 0,37 | 0,52 | 0,79 | 0,89 | |
0,25 | 0,31 | 0,39 | 0,55 | 0,85 | 0,95 | |
0,32 | 0,4 | 0,52 | 0,72 | 1,12 | 1,25 | |
0,39 | 0,48 | 0,62 | 0,87 | 1,35 | 1,52 | |
0,46 | 0,56 | 0,73 | 1,56 | 1,75 | ||
0,52 | 0,64 | 0,81 | 1,15 | 1,77 | 1,98 | |
0,58 | 0,7 | 0,91 | 1,26 | 1,95 | 2,2 | |
0,63 | 0,77 | 0,99 | 1,38 | 2,14 | 2,44 | |
0,68 | 0,83 | 1,08 | 1,5 | 2,3 | 2,65 | |
0,73 | 0,89 | 1,15 | 1,6 | 2,45 | 2,78 | |
0,82 | 1,3 | 1,8 | 2,80 | 3,15 | ||
0,91 | 1,1 | 1,43 | 3,1 | 3,5 | ||
1,22 | 1,57 | 2,2 | 3,4 | 3,8 | ||
1,08 | 1,32 | 1,69 | 3,64 | 4,1 | ||
1,15 | 1,42 | 1,82 | 2,55 | 3,9 | 4,4 | |
1,31 | 1,6 | 2,05 | 2,85 | 4,45 | ||
1,45 | 1,78 | 2,28 | 3,18 | 4,92 | 5,5 | |
1,59 | 1,94 | 2,48 | 3,46 | 5,38 | ||
1,72 | 2,10 | 2,69 | 3,75 | 5,82 | 6,5 | |
1,84 | 2,25 | 2,89 | 4,05 | 6,2 | ||
1,99 | 2,45 | 3,15 | 4,4 | 6,75 | 7,6 | |
2,14 | 2,6 | 3,35 | 4,7 | 7,25 | 8,1 | |
2,2 | 2,8 | 3,55 | 7,7 | 8,7 | ||
2,4 | 2,95 | 3,78 | 5,3 | 8,2 | 9,2 |
Диаметр плавкой вставки предохранителя выбирают в зависимости от тока плавления. За ток плавления обычно принимают значение тока в два раза превышающий номинальный ток. Т.е. если Ваше устройство потребляет ток 1А, ток плавления принимаем 2А. И согласно нему выбираем диаметр проволоки. В данном случае медь 0,09мм или алюминий 0,1мм.
Плавкая вставка не перегорает мгновенно, для этого требуется некоторое время, пусть даже очень малое. Поэтому, кратковременные перегрузки (например, пусковые токи) не вызывают разрушения плавкой вставки.
Плавкая вставка, даже небольшого диаметра, толщиной всего 0,2мм, при перегорании может разлетаться на мелкие части. Часть металла испаряется, часть разбрызгивается расплавленными каплями. Разлетающиеся части плавкой вставки имеют температуру близкую к температуре плавления материала, из которого они сделаны и могут нанести вред оборудованию или находящимся рядом людям. Поэтому, плавкая вставка обязательно должна быть в корпусе, который сможет противостоять воздействиям при разрушении плавкой вставки. В зависимости от номинала плавких вставок, корпуса изготавливают из пластмассы, стекла, керамики.
Плавкие вставки можно так же рассчитать по предложенной ниже методике.
Расчёт проводников для плавких предохранителей
Ток плавления проводника для применения в плавкой вставке (предохранителе) можно рассчитать по формулам:
где:
d – диаметр проводника, мм;
k – коэффициент, зависящий от материала проводника согласно таблице.
где:
m – коэффициент, зависящий от материала проводника согласно таблице.
Формула (1) применяется для малых токов (тонкие проводники d=(0,02 – 0,2) мм), а формула (2) для больших токов (толстые проводники).
Таблица коэффициентов.
Диаметр проводника для использования в плавком предохранителе рассчитывается по формулам:
Для малых токов (тонкие проводники диаметром от 0,02 до 0,2 мм):
Для больших токов (толстые проводники):
Количество теплоты выделяемое на плавкой вставке рассчитывается по формуле:
где:
I – ток, текущий через проводник;
R – сопротивление проводника;
t – время нахождения плавкой вставки под током I.
Сопротивление плавкой вставки рассчитывается по формуле:
где:
p– удельное сопротивление материала проводника;
l – длина проводника;
s – площадь сечения проводника.
Для упрощения расчетов сопротивление принимается постоянным. Рост сопротивления плавкой вставки вследствие повышения температуры не учитываем.
Зная количество теплоты, необходимое для расплавления плавкой вставки, можно рассчитать время расплавления по формуле:
где:
W – количество теплоты, необходимое для расплавления плавкой вставки;
I – ток плавления;
R – сопротивление плавкой вставки.
Количество теплоты, необходимое для расплавления плавкой вставки рассчитывается по формуле:
где:
лямбда – удельная теплота плавления материала из которого сделана плавкая вставка;
m – масса плавкой вставки.
Масса плавкой вставки круглого сечения рассчитывается по формуле:
где:
d – диаметр плавкой вставки;
l – длина плавкой вставки;
p – плотность материала плавкой вставки.
Плавкие вставки – электротехнические элементы для защиты аппаратуры от короткого замыкания и перенапряжения посредством отключения электроэнергии при превышении предельных значений токовых нагрузок. Размыкание цепи происходит вследствие расплавления предохранительной проволоки определенной толщины. Промышленности известны несколько типов данных устройств. Все они различаются внутренними и внешними конструктивными особенностями, а функционируют по единому принципу.
Сейчас с целью защиты квартирного электрооборудования используют более практичные многоразовые автоматы, однако до сих пор встречаются одноразовые плавкие вставки в пробках. Особенно они актуальны для помещений временных и старых построек, где установка эффективных современных щитков экономически неоправданна. В бытовых приборах же альтернативы классическому предохранителю по-прежнему нет.
Плавкие вставки активно используются и в промышленности. От них может зависеть работоспособность целого завода или инженерной сети. Промышленные предохранители лучше не покупать с рук, на рынке или в непроверенных организациях. Мудрое решение — обратиться к профессионалам в области электроники, например, в интернет-магазин Conrad.ru. В подобных вопросах скупой платит не дважды, а трижды
На принципиальных электросхемах графический символ вставки сродни символу резистора, но со сплошной линией, идущей посредине прямоугольника. Обозначается преимущественно как F либо Пр. За литерой обычно идет показатель величины тока защиты. Допустим, F1A указывает, что в схему вмонтирован предохранитель, рассчитанный на допустимую силу тока в 1 ампер. В некоторых случаях делают международное обозначение «fuse» («thermal fuse»).
Повторно использовать плавкие вставки можно, но осторожно…
Плавкие вставки имеют естественное свойство перегорать, и считается, что подобная продукция не ремонтируется. Это не так: если к делу подойти творчески, то потенциально каждая деталь успешно восстанавливается с последующим вторичным применением.
Дело в том, что корпус вставки не повреждается, в негодность приходит лишь калиброванный металлический волосок внутри него. Таким образом, если отслуживший свой срок волосок заменить, предохранитель вновь готов к употреблению. Однако такой вариант годится в крайнем случае, когда, например, запасного предохранителя в наличии не имеется, магазин закрыт, а музыкальное оформление торжества находится под угрозой.
В нормальной же ситуации надлежит использовать только заводское изделие. То есть рациональное решение состоит в том, чтобы временно восстановить вставку до замены новым аналогом, сохранив защитные функции. Акцентируем на этом внимание потому что, увы, нередко сограждане просто замыкают контакты первой попавшейся под руку проволокой, или того хуже, вставляют в пробку вместо предохранителя стальной штырек. Такого рода «изобретение» – вопиющее нарушение техники безопасности, способствующее перегреву контактов и возгоранию.
Поистине универсальное приспособление
Предохранитель приходит в негодность по 2 причинам: из-за колебаний сетевых параметров или неисправностей в самих электроприборах. Бывают технологические отказы и вследствие неудовлетворительного качества той или иной партии продукции. Причем величина напряжения питающей сети, в которой находятся плавкие вставки, принципиально роли не играет. Так, допускается устанавливать образец номиналом 1A и в панели предохранителей автомашины, и в переносной светильник, и в распредустройство на 380V.
Как правило, в процессе эксплуатации волосок, соединяющий противоположные концы корпуса предохранителя, может греться до t
+70˚С, и это нормальное явление. Однако если токовая нагрузка увеличивается, t соответственно также растет. При достижении точки плавления материала, из которого проводник выполнен, происходит его мгновенное перегорание, цепь надежно размыкается и электропитание прекращается.
Совершенно ясно, что, скажем, при возникновении КЗ металл плавится, а не горит. Поэтому предохранитель и назвали плавким элементом, а если в обиходе говорят «лампочка перегорела», это вовсе не значит, что вольфрамовую нить накаливания уничтожил огонь – просто она расплавилась, не выдержав скачка электричества при включении. То же происходит и с предохранителем.
Как правильно выбрать предохранитель
Самый распространенный на рынке – трубчатый предохранитель. Он изготавливается в виде полого керамического либо стеклянного цилиндра, с торцов заглушенного металлическими крышками, соединенными между собой волоском, расположенным внутри корпуса. В плавкие вставки для сверхбольших токов в полость цилиндра помещают наполнитель, в основном, кварцевый песок.
Если потребляемая мощность известна, номинальный ток предохранителя легко вычисляется по следующей формуле:
Inom = Pmax / U
- I nom – номинальный ток защиты, A.
- P max – максимальная мощность, W.
- U – напряжение питания, V.
Хотя лучше пользоваться специально созданными для этой цели таблицами.
Приведем некоторые данные из них:
- Максимальной потребляемой мощности в 10W соответствует номинал стандартного напряжения в 0,1A.
- 50W – 0,25A.
- 100W – 0,5A.
- 150W – 1A.
- 250W – 2A.
- 500W – 3A.
- 800W – 4A.
- 1kW – 5A.
- 1,2kW – 6A.
- 1,6kW – 8A.
- 2kW – 10A.
- 2,5kW – 12A.
- 3kW – 15A.
- 4kW – 20A.
- 6kW – 30A.
- 8kW – 40A.
- 10kW – 50A.
Рассмотрим ситуацию, при которой телевизор после грозы перестал включаться. Оказалось, перегорела вставка неопределенного номинала. Мощность телевизора – 120W. По справочнику находим: для аппаратуры с данной установленной мощностью ближайшее значение 150W, которому соответствует изделие, рассчитанное на 1A.
Если предохранитель всякий раз после очередной замены выходит из строя, то причина неисправности кроется не в нем, а в аппаратуре, нуждающейся в ремонте. Использование предохранителя, рассчитанного на больший ток, лишь усугубит положение вплоть до ее ремонтонепригодности.
Кулибиным на заметку
При выпуске предохранителей в зависимости от быстродействия и силы тока применяется калиброванная нить из алюминиевых, медных, нихромовых, оловянных, серебряных, свинцовых сплавов. Чтобы изготовить плавкие вставки в кустарных условиях доступны лишь медь да алюминий, но и этого вполне достаточно.
Создатели деталей электротехнической защиты руководствуются хорошо известным правилом: значение тока разрабатываемого устройства должно быть выше потребляемого оборудованием. Грубо говоря, если усилитель работает на 5A, то ток защиты предохранителя определяется в 10A. На колпачке или теле предохранителя выбивается маркировка, являющаяся его технической характеристикой. Наряду с этим, функциональные электрические показатели наносят и на крышку электроприбора возле точки монтажа предохранителя.
Толщину проволоки определяют микрометром. Если он отсутствует, подойдет и ученическая линейка. Сделайте 10-20 сплошных витков на линейку (чем больше намотаете – тем точнее окажется результат), поделите число закрытых миллиметровых делений на число витков и узнаете искомую толщину. Намотаем 10 витков, покрывших 6,5 мм. Расстояние поделим на количество и получим диаметр провода – 0,65 мм, из которых приблизительно 0,05 мм занимает электроизоляционный лак. В итоге истинный диаметр равен 0,6 мм.
Обратимся к справочнику:
- Току защиты предохранителя в 1A подходит соответственно толщина медного провода – 0,05 мм и алюминиевого – 0,07 мм.
- 2A – 0,09 мм – 0,10 мм.
- 3A – 0,11мм – 0,14 мм.
- 5A – 0,16 мм – 0,19 мм.
- 7A – 0,20 мм – 0,25 мм.
- 10A – 0,25 мм – 0,30 мм.
- 15A – 0,33 мм – 0,40 мм.
- 20A – 0,40 мм – 0,48 мм.
- 25A – 0,46 мм – 0,56 мм.
- 30A – 0,52 мм – 0,64 мм.
- 35A – 0,58 мм – 0,70 мм.
- 40A – 0.63 мм – 0,77 мм.
- 45A – 0,68 мм – 0,83 мм.
- 50A – 0,73 мм – 0,89 мм.
Таким образом, данная проволока сгодится для предохранителя на 30A.
Имеется 3 способа ремонта трубчатого предохранителя:
- Провод зачищается и завязывается на обоих колпачках на ряд витков. Указанный способ довольно рискованный, и прибегнуть к нему можно исключительно в качестве временной меры.
- Пайка также не требуется. Колпачки по очереди прогреваются на открытом огне, после чего снимаются и зачищаются ради хорошего контакта. Очищенный провод пропускается через цилиндр, концы загибаются на кромках, после чего колпачки надеваются на место. Но все равно это такой же «жучок», как и в первом случае, только менее примитивный.
- Напоминает оба предыдущих, и радикально отличается от них. Отремонтированный в результате предохранитель фактически невозможно отличить от нового, ибо восстанавливается он согласно заводской технологии, с пайкой.
Описанную технологию можно успешно использовать для ремонта любых типов вставок.
Предохранитель защищает от превышения тока в цепи и, не имеет значения напряжение питающей сети, в которой он установлен, это может быть батарейка на 1,5 В, и автомобильный аккумулятор на 12 В или 24 В, сеть переменного напряжения 220 В, трехфазная сеть на 380 В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1 А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380 В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу – при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволока.
Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.
Наибольшее распространение получили плавкие предохранители. Они дешевы и просты в изготовлении и в случае короткого замыкания в сети обеспечивает защиту проводки от возгарания.
Когда перегорает плавкий предохранитель (плавкая вставка), требуется быстро его заменить. Не всегда имеется запасной предохранитель на нужный ток. Проще всего защитный предохранитель выполнить из провода соответствующего диаметра. Причем расчет диаметр провода для необходимого тока плавления (защиты) можно выбрать из таблицы, где приведены значения для разных металлов. В качестве основания для закрепления (припаивания) плавкой вставки может использоваться каркас перегоревшего.
Таблица 5.1 Значения по току плавления для проволоки из разных металлов
Ток, А | Диаметр провода в мм | Ток, А | Диаметр провода в мм | ||||||
Медь | Алюмин. | Сталь | Олово | Медь | Алюмин. | Сталь | Олово | ||
1 | 0,039 | 0,066 | 0,132 | 0,183 | 60 | 0,82 | 1,0 | 1,8 | 2,8 |
2 | 0,069 | 0,104 | 0,189 | 0,285 | 70 | 0,91 | 1,1 | 2,0 | 3,1 |
3 | 0,107 | 0,137 | 0,245 | 0,380 | 80 | 1,0 | 1,22 | 2,2 | 3,4 |
5 | 0,18 | 0,193 | 0,346 | 0,53 | 90 | 1,08 | 1,32 | 2,38 | 3,65 |
7 | 0,203 | 0,250 | 0,45 | 0,66 | 100 | 1,15 | 1,42 | 2,55 | 3,9 |
10 | 0,250 | 0,305 | 0,55 | 0,85 | 120 | 1,31 | 1,60 | 2,85 | 4,45 |
15 | 0,32 | 0,40 | 0,72 | 1,02 | 160 | 1,57 | 1,94 | 3,2 | 4,9 |
20 | 0,39 | 0,485 | 0,87 | 1,33 | 180 | 1,72 | 2,10 | 3,7 | 5,8 |
25 | 0,46 | 0,56 | 1,0 | 1,56 | 200 | 1,84 | 2,25 | 4,05 | 6,2 |
30 | 0,52 | 0,64 | 1,15 | 1,77 | 225 | 1,99 | 2,45 | 4,4 | 6,75 |
35 | 0,58 | 0,70 | 1,26 | 1,95 | 250 | 2,14 | 2,60 | 4,7 | 7,25 |
40 | 0,63 | 0,77 | 1,38 | 2,14 | 275 | 2,2 | 2,80 | 5,0 | 7,7 |
45 | 0,68 | 0,83 | 1,5 | 2,3 | 300 | 2,4 | 2,95 | 5,3 | 8,2 |
50 | 0,73 | 0,89 | 1,6 | 2,45 |
Формула для расчета диаметра медной проволоки для предохранителя
Для определения более точных значений диаметра медной проволоки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.
Формула для расчета диаметра медной проволоки для ремонта предохранителя
где
I пр – ток защиты предохранителя, А;
d – диаметр медной проволоки, мм.
Видео: Простой расчет и изготовление предохранителей
Расчет диаметра провода для плавких вставок предохранителей
Автор: admin on 11 октября 2016
Плавкие предохранители широко используются в быту и промышленности для защиты электроустановок от токов короткого замыкания. Плавкие предохранители (пробки) имеет в наличии основная масса владельцев квартир и жилых домов. Малогабаритные предохранители имеются во всех типах бытовой радио-телеаппаратуры. Как бы ни было, но случаи перегорания «пробок» и других предохранителей не так уж и редки. К сожалению, в торговой сети купить вышедший из строя предохранитель на нужную силу тока не всегда возможно. Применять же «жучки» не рекомендуют ни пожарники, ни специалисты-электрики. Произвести ремонт или восстановление вышедшего из строя плавкого предохранителя можно самостоятельно, если использовать предлагаемую информацию о выборе диаметра проводов из различных металлов для замены перегоревшей плавкой вставки. Конечно, чаще всего для этих целей используют медь, но привожу данные и для таких металлов, как алюминий, никель, железо, олово, свинец. В таблице 1 приводятся данные о диаметре проводов, соответствующие силе тока плавления.
Таблица 1: Диаметры проводов, соответствующие силе тока плавления.
Для изготовления плавких вставок можно использовать обмоточные провода с эмалевой изоляцией и одиночные жилы многопроволочных монтажных проводов. При использовании обмоточных проводов с эмалевой лакостойкой изоляцией следует учитывать, что диаметр провода с изоляцией больше, чем диаметр собственно токопроводящей жилы. Измерить диаметр можно, пользуясь микрометром. Данные о диаметрах медных обмоточных проводов приведены в таблице 2.
Таблица 2: Диаметры медных обмоточных проводов.
Диаметр плавкой вставки предохранителя выбирают в зависимости от тока плавления. Для выбора диаметра вставки необходимо величину номинального тока, потребляемого прибором, установкой, узлом или блоком (в амперах), умножить на два, и по полученной величине тока плавления выбрать диаметр провода (в таблицах 1 и 2 он приведен в миллиметрах), на заводских предохранителях обозначается номинальный ток, при котором плавкая вставка продолжительное время не разрушается (не плавится). Кратковременное увеличение тока сверх номинального значения (при переходных процессах, пусках двигателей, различных наводках и т п.) не вызывает разрушения вставки. При напаивании сгоревших предохранителей залуживать необходимо только ту часть провода, которая припаивается к металлическим колпачкам.
Другие статьи по теме:
Комментарии закрыты, но вы можете Трекбэк с вашего сайта.Пример выбора плавких предохранителей
В предыдущей статье мы рассмотрели условия выбора плавких предохранителей. В этой же статье, речь пойдет непосредственно о примере выбора плавких предохранителей для асинхронных двигателей и распределительного щита ЩР1, согласно схеме рис.1 (схема дана в однолинейном изображении). Самозапуск двигателей исключен. Условия пуска легкие. Технические характеристики двигателей приведены в таблице 1.
Рис. 1 – Схема защиты плавкими предохранителями группы короткозамкнутых асинхронных двигателей
Таблица 1 – Технические характеристики двигателей 4АМ
Обозначение на схеме | Тип двигателя | Номинальная мощность Р, кВт | КПД η,% | Коэффициент мощности, cos φ | Iп/Iн |
---|---|---|---|---|---|
1Д | 4АМ112М2 | 7,5 | 87,5 | 0,88 | 7,5 |
2Д | 4АМ100L2 | 5,5 | 87,5 | 0,91 | 7,5 |
3Д | 4АМ160S2 | 15 | 88 | 0,91 | 7,5 |
4Д | 4АМ90L2 | 3 | 84,5 | 0,88 | 6,5 |
5Д | 4АМ180S2 | 15 | 88 | 0,91 | 7,5 |
Расчет
1. Определяем номинальный ток для двигателя 1Д:
2. Определяем пусковой ток для двигателя 1Д:
3. Определяем номинальный ток плавкой вставки предохранителя FU2:
Iн.вс. > Iпуск.дв/k = 111,15/2,5 = 44,46 А;
где:
k =2,5 — коэффициент, учитывающий условия пуска двигателя, в моем случаем пуск двигателей легкий. Подробно выбор коэффициента, учитывающий условие пуска двигателя рассмотрен в статье: «Условия выбора плавких предохранителей».
Выбираем плавкую вставку предохранителя FU2 на ближайший больший стандартный номинальный ток 50 А, по каталогу на предохранители NV-NH фирмы ETI, согласно таблицы 2.
Номинальный ток отключения для предохранителей NV/NH с характеристикой АМ составляет 100 кА. По этому условие Iном.откл > Iмакс.кз., будет всегда выполнятся.
Таблица 2
Аналогично рассчитываем номинальный ток плавкой вставки для двигателей 2Д-5Д и заносим результаты расчетов в таблицу 3.
Обозначение на схеме | Тип двигателя | Ном.ток, А | Пусковой ток, А | Номинальный ток плавкой вставки, А | Ном. ток предохранит., А | |
---|---|---|---|---|---|---|
Расчетный | Выбранный | |||||
1Д | 4АМ112М2 | 14,82 | 111,15 | 44,46 | 50 | 50 |
2Д | 4АМ100L2 | 10,5 | 78,8 | 31,52 | 40 | 40 |
3Д | 4АМ160S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4Д | 4АМ90L2 | 6,14 | 39,9 | 15,96 | 20 | 20 |
5Д | 4АМ180S2 | 28,5 | 213,7 | 85,48 | 100 | 100 |
4. Выбираем плавкую вставку предохранителя FU1.
4.1 Определяем наибольший номинальный длительный ток с учетом, что у нас включены все двигатели:
4.2 Определяем наибольший ток, учитывая что наиболее тяжелым режимом для предохранителя FU1, будет пуск наиболее мощного двигателя 5Д при находящихся в работе двигателях 1Д, 2Д, 3Д, 4Д.
Выбираем плавкую вставку предохранителя FU1 на номинальный ток 125 А.
Теперь нам нужно проверить выбранные плавкие вставки на отключающую способность короткого замыкания для отходящих линий в соответствии с ПУЭ раздел 1.7.79, время отключения не должно превышать 5 сек. Для проверки берется ток однофазного замыкания на землю в сети с глухозаземленной нейтралью.
Значения токов короткого замыкания для проверки отключающей способности предохранителей берем из статьи: «Пример приближенного расчета токов короткого замыкания в сети 0,4 кв».
Проверим выбранную плавкую вставку предохранителя FU2 на отключающую способность.
Двигатель 1Д защищен плавкой вставкой на 50 А, ток однофазного КЗ составляет 326 А, максимальный ток отключения плавкой вставки при времени 5 сек составляет 281 А согласно таблицы 2, Iк.з.(1) = 326A > Iк.з.max=281A (условие выполняется). Аналогично проверяем и остальные предохранители, результаты расчетов заносим в таблицу 4.
Проверим на отключающую способность предохранитель FU1, учитывая, что ток трехфазного короткого замыкания в месте установки предохранителя Iк.з(3) = 2468 А.
Предельно допустимый ток отключения для предохранителя FU1 с плавкой вставкой на 125 А составляет 100 кА > 2468 A (условие выполняется).
Таблица 4 – Результаты расчетов
Обозначение на схеме | Номинальный ток плавкой вставки, А | Iк.з.(3), А | Iк.з.(1), А | Максимальный ток отключения плавкой вставки при времени 5 сек. Iк.з.max, A | Примечание |
---|---|---|---|---|---|
FU1 | 125 | 2468 | — | — | |
FU2 | 50 | — | 326 | 281 | Условие выполняется |
FU3 | 40 | — | 222 | 195 | Условие выполняется |
FU4 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
FU5 | 20 | — | 122 | 86 | Условие выполняется |
FU6 | 100 (80) | — | 429 | 595 (432) | Условие не выполняется |
Как видно из результатов расчета для предохранителей FU4 и FU6 чувствительности к токам КЗ не достаточно. Чтобы увеличить чувствительность к токам КЗ, можно увеличить сечение кабеля, в данном случае увеличение сечение кабеля, является не целесообразным.
Либо уменьшить номинальный ток плавкой вставки для предохранителей FU4 и FU6, отстраиваясь от пусковых токов и учитывая, что условия пуска двигателя легкие (время пуска 5 сек.).
Как показывает опыт эксплуатации, для надежной работы вставок пусковой ток не должен превышать половины тока, который может расплавить вставку за время пуска.
Исходя из этого, выбираем ток плавкой вставки для предохранителей FU4 и FU6 на 80 А, где: Iк.з.max = 432 А при времени 5 сек., пусковой ток равен 213,7 А (условие выполняется).
Поделиться в социальных сетях
Выбор диаметра провода для ремонта предохранителя. Статьи компании «RS Group Company»
Для защиты электрической проводки и дорогостоящей радиоаппаратуры от короткого замыкания, бросков тока в питающей сети и обеспечения безопасной эксплуатации электроприборов широко используются плавкие вставки – предохранители.
Условное графическое обозначение плавкого предохранителя на схемах похоже на обозначения сопротивления, и отличается только тем, что через середину прямоугольника линия проходит не разрываясь.
При эксплуатации предохранители выходят из строя, и их приходится заменять новыми. Считается, что предохранители ремонту не подлежат. Но если к делу ремонта подойти грамотно, то практически любой предохранитель можно с успехом отремонтировать и применить повторно. Ведь корпус предохранителя остается целым, а перегорает только тонкая проволочка, размещенная внутри корпуса. Если перегоревшую проволочку заменить на такую же, то предохранитель сможет служить дальше. При этом технические характеристики отремонтированного предохранителя будут не хуже, чем были до ремонта.
Принцип работы предохранителя на видеоролике
При прохождении электрического тока меньше предельно допустимого, проволочка, соединяющая контакты предохранителя, нагревается до температуры около 70˚С. В случае превышения тока номинала предохранителя, проволочка начинает нагреваться сильнее и при достижении температуры плавления металла, из которого она сделана – расплавляется, электрическая цепь разрывается, и течение тока прекращается. Поэтому предохранитель и назвали плавким или плавкой вставкой. Видеоролик представлен в замедленном виде, для того, что бы было хорошо видно, как происходит перегорание провода в предохранителе. В реальных условиях провод в предохранителе перегорает практически мгновенно.
Предохранитель защищает от превышения тока в цепи и не имеет значения напряжение питающей сети, в которой стоит предохранитель, это может быть и батарейка на 1,5В, и автомобильный аккумулятор на 12В или 24В, сеть переменного напряжения 220В, трехфазная сеть на 380В. То есть Вы можете установить один и тот же предохранитель, например номиналом 1А и в колодке предохранителей автомобиля, и в фонарике и в распределительном щите 380В. Все типы плавких предохранителей отличаются только внешним видом и конструкцией, а работают по одному принципу, при превышении заданного тока в цепи, в предохранителе из-за нагрева расплавляется проволочка.
Основных причин выхода из строя предохранителя две, из-за бросков питающего напряжения или поломки внутри самой радиоаппаратуры. Редко, но встречаются отказы предохранителя и по причине плохого его качества.
Считается, что предохранитель ремонту не подлежит. Но это не совсем так.
В экстренной ситуации, когда под рукой нет запасного и, например, из-за отказавшегося работать автомобиля в пути или усилителя, и срывается музыкальное сопровождение школьного бала или свадьбы, а все магазины уже закрыты, выбирать не приходится. При грамотном подходе можно с успехом восстановить для временного использования до замены новым перегоревший предохранитель, сохранив его защитные функции. Зачастую такие проблемы решают банальным замыканием контактов держателя предохранителя любой попавшейся проволокой, а еще хуже, просто вставляют вместо предохранителя гвоздь или кусок толстой проволоки. Такое решение может окончательно все испортить и способствует возникновению пожара.
Трубчатые предохранители
Предохранитель трубчатой конструкции представляет собой стеклянную или керамическую трубочку, закрытую с торцов металлическими колпачками, которые соединены между собой проволочкой калиброванной по диаметру, проходящей внутри трубочки.
К колпачкам проволочка приваривается точечной сваркой или припаивается припоем. В предохранителях, рассчитанных на очень большие токи, часто полость внутри трубочки заполняют кварцевым песком.
Автомобильные предохранители
Предохранители в автомобилях выходят из строя очень редко. Обычно только в случаях, когда отказывает оборудование. Чаще всего при перегорании лампочек у фар. Дело в том, что когда обрывается нить накаливания у лампочки, образуется Вольтова дуга, нить при этом сгорает и становится короче, сопротивление резко уменьшается и величина тока многократно увеличивается. Бывает, плавкий предохранитель сгорает и при заклинивании стеклоочистителей. Реже при коротких замыканиях в электропроводке.
Перегоревший предохранитель положено заменять предохранителем такого же номинала. Напряжение бортовой сети автомобиля значения не имеет. Главное – соответствие тока защиты. Если трудно определить номинал сгоревшего предохранителя, то можно воспользоваться цветовой маркировкой.
Цветовая маркировка автомобильных предохранителей
Ток защиты, Ампер | 5,0 | 7,5 | 10,0 | 15,0 | 20,0 | 25,0 | 30,0 | 40,0 | 60,0 | 70,0 |
---|---|---|---|---|---|---|---|---|---|---|
Цвет корпуса | оранжевый | коричневый | красный | голубой | желтый | прозрачный | зеленый | фиолетовый | синий | черный |
Сейчас в продаже появились автомобильные предохранители с индикаторами неисправности. В корпус предохранителя вмонтирован светодиод или миниатюрная лампочка. При перегорании предохранитель начинает светиться. Такой индикатор можно сделать и самостоятельно, подсоединив к контактам предохранителя, параллельно проволочке, светодиод через токоограничивающий резистор или миниатюрную лампочку, рассчитанную на напряжение 12В.
Выбор предохранителя по мощности электроприбора
Мощность часто указывают на этикетках, приклеенных на изделиях. Если на изделии указана потребляемая мощность, то можно рассчитать номинальный ток предохранителя по ниже приведенной формуле.
I nom – номинальный ток защиты предохранителя, А.
P max – максимальная мощность нагрузки, Вт.
U – напряжение питающей сети, В.
Но гораздо удобнее воспользоваться готовыми данными из таблиц. Обратите внимание, первая таблица служит для выбора номинала предохранителя изделий, питающихся от бытовой электросети 220В, а вторая, для изделий, используемых в автомобилях с напряжением бортовой сети 12В.
Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 220В
Максимальная мощность потребления электроприбором, ватт (BA) | 10 | 50 | 100 | 150 | 250 | 500 | 800 | 1000 | 1200 | 1600 | 2000 | 2500 | 3000 | 4000 | 6000 | 8000 | 10000 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Номинал стандартного предохранителя, А | 0,1 | 0,25 | 0,5 | 1,0 | 2,0 | 3,0 | 4,0 | 5,0 | 6,0 | 8,0 | 10,0 | 12,0 | 15,0 | 20,0 | 30,0 | 40,0 | 50,0 |
Рассмотрим на примере как выбирать предохранитель.
Телевизор перестал работать после грозы. Определено, что сгорел предохранитель. Номинал его не известен. На этикетке задней крышки написано, что потребляемая мощность составляет 120Вт, бывает, что пишут и 120ВА. Это обозначение одной и той же мощности, но по стандартам разных стран. По таблице получается, что для электроприборов с максимальной потребляемой мощностью 120Вт (ближайшее значение 150Вт) является предохранитель на 1А.
Методика подбора предохранителя для защиты бортовой электропроводки автомобиля ничем не отличается от выбора для бытовой электропроводки 220В.
Таблица для выбора номинала предохранителя в зависимости от потребляемой мощности электроприбора при питающем напряжении 12В (бортовая сеть автомобиля)
Мощность электроприбора, ватт (BA) | до 50 | до 75 | до 100 | до 150 | до 200 | до 250 | до 300 | до 400 | до 600 | до 700 |
---|---|---|---|---|---|---|---|---|---|---|
Номинал стандартного предохранителя, А | 5,0 | 7,5 | 10,0 | 15,0 | 20,0 | 25,00 | 30,0 | 40,0 | 60,0 | 70,0 |
Цвет корпуса предохранителя | оранжевый | коричневый | красный | голубой | желтый | прозрачный | зеленый | фиолет. | синий | черный |
Если после двух замен предохранители каждый раз перегорали, значит, поврежден электроприбор и требуется уже его ремонт. Попытка установить предохранитель на больший ток может только нанести еще дополнительный вред изделию вплоть до не ремонтопригодности.
Если в таблицах нет данных для Вашего случая, например, напряжение питания изделия составляет 24В или 110В, то можете самостоятельно с помощью приведенного ниже онлайн калькулятора выполнить расчет.
Онлайн калькулятор для определения тока предохранителя | |
---|---|
Максимальная мощность нагрузки, Вт: | |
Напряжение питающей сети, В.: | |
При расчете на калькуляторе Вы получите точное значение тока. Для надежной работы предохранителя необходимо, чтобы его номинал был не менее чем на 5% больше. Например, если получено расчетное значение тока 1А, то нужно брать предохранитель большего ближайшего номинала из стандартного ряда, то есть 2А.
Иногда попытки определить номинал предохранителя считыванием информации не получается. На электроприборе надписей нет, на предохранителе не читаемая маркировка. При наличии амперметра, и опыта работы с ним, то вынув предохранитель и подключив амперметр к контактам колодки, в котором был установлен предохранитель, можно измерять ток и тем самым определить его номинал. Но тут есть подводный камень. Если предохранитель вышел из строя из-за неисправности электроприбора, то ток может быть на много больше, чем должен быть, в дополнение можно еще и вывести из строя измерительный прибор.
Выбор диаметра проволочки предохранителя
Для ремонта предохранителя необходимо заменить перегоревшую проволочку. При производстве предохранителей на заводах используют, в зависимости от величины тока и быстродействия, серебряные, медные, алюминиевые, никелиновые, оловянные, свинцовые и проволочки из других металлов. Для изготовления предохранителя в домашних условиях доступна только красная медь. Все электропровода сделаны из меди, и чем эластичней провод, тем тоньше в нем проводники и большее их количество. Поэтому вся ниже предложенная технология ориентирована на применение медной проволочки.
При выборе предохранителя для аппаратуры разработчики пользуются простым законом. Ток предохранителя должен быть больше максимально потребляемым изделием. Например, если максимальный ток потребления усилителя составляет 5 Ампер, то предохранитель выбирается на 10 Ампер. Первое, что необходимо найти на корпусе предохранителя его маркировку, из которой можно узнать, на какой ток он рассчитан. Часто величину тока пишут на корпусе изделия, рядом с местом установки предохранителя. Затем из ниже приведенной таблицы определить какого диаметра нужен провод.
Таблицы для выбора диаметра проволочки в зависимости от тока защиты предохранителя
Для ремонта предохранителей на ток защиты от 0.25 до 50 Ампер
Ток защиты предохранителя, Ампер | 0,25 | 0.5 | 1.0 | 2.0 | 3.0 | 5.0 | 7.0 | 10.0 | 15.0 | 20.0 | 25.0 | 30.0 | 35.0 | 40.0 | 45.0 | 50.0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволочки, мм | Медной | 0.02 | 0.03 | 0.05 | 0.09 | 0.11 | 0.16 | 0.20 | 0.25 | 0.33 | 0.40 | 0.46 | 0.52 | 0.58 | 0.63 | 0.68 | 0.73 |
Алюминиевой | — | — | 0.07 | 0.10 | 0.14 | 0.19 | 0.25 | 0.30 | 0.40 | 0.48 | 0.56 | 0.64 | 0.70 | 0.77 | 0.83 | 0.89 | |
Стальной | — | — | 0.32 | 0.20 | 0.25 | 0.35 | 0.45 | 0.55 | 0.72 | 0.87 | 1.00 | 1.15 | 1.26 | 1.38 | 1.50 | 1.60 | |
Оловянной | — | — | 0.18 | 0.28 | 0.38 | 0.53 | 0.66 | 0.85 | 1.02 | 1.33 | 1.56 | 1.77 | 1.95 | 2.14 | 2.30 | 2.45 |
Для ремонта предохранителей на ток защиты от 60 до 300 Ампер
Ток защиты предохранителя, Ампер | 60 | 70 | 80 | 90 | 100 | 120 | 160 | 180 | 200 | 225 | 250 | 275 | 300 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Диаметр проволочки, мм | Медной | 0.83 | 0.91 | 1.00 | 1.08 | 1.16 | 1.31 | 1.59 | 1.72 | 1.84 | 1.99 | 2.14 | 2.28 | 2.41 |
Алюминиевой | 1.00 | 1.10 | 1.22 | 1.32 | 1.42 | 1.60 | 1.94 | 2.10 | 2.25 | 2.45 | 2.60 | 2.80 | 2.95 | |
Стальной | 1.80 | 2.00 | 2.20 | 2.38 | 2.55 | 2.85 | 3.20 | 3.70 | 4.05 | 4.40 | 4.70 | 5.0 | 5.30 | |
Оловянной | 2.80 | 3.10 | 3.40 | 3.65 | 3.90 | 4.45 | 4.90 | 5.80 | 6.20 | 6.75 | 7.25 | 7.70 | 8.20 |
Формула для расчета диаметра медной проволоки для предохранителя
Для определения более точных значений диаметра медной проволочки для ремонта предохранителя, или если требуется предохранитель на ток защиты, значения которого нет в таблице, можно воспользоваться ниже приведенной формулой.
I пр – ток защиты предохранителя, А.
d – диаметр медной проволочки, мм.
Онлайн калькулятор для расчета диаметра проволоки в зависимости от тока | |
---|---|
Введите величину максимального тока, A: | |
Диаметр тонкого провода лучше всего измерять микрометром. Как пользоваться микрометром, в деталях описано в статье сайта Как измерять микрометром. Если у Вас под рукой нет микрометра для измерения диаметра проволочки, то можно воспользоваться обыкновенной линейкой.
Нужно намотать 10-20 витков к витку проволочки на линейку, поделить количество закрытых миллиметров на количество намотанных витков. Получите диаметр. Например, у меня намотано 10 витков провода, и они закрыли 6,5мм. Делим 6,5 на 10. Диаметр провода получается равным 0,65мм. 0,05мм занимает изоляция. Следовательно, реальный диаметр составляет 0,6мм. Такой провод подойдет для изготовления предохранителя на 30А. Провод мотал толстый для большей наглядности. Чем больше намотаете витков на линейку, тем точнее будет измерен диаметр проволочки. Нужно наматывать не менее одного сантиметра. Если в наличии проволочка малой длины, то намотайте ее на любой стержень, например, отвертку, зубочистку или карандаш, а линейкой измерьте ширину намотки.
Ремонт предохранителя
Ремонт можно выполнить тремя способами. Рассмотрим, как это делается на примере трубочного плавкого предохранителя. Автомобильные предохранители можно ремонтировать по аналогии.
Первый самый простой. Проволочка зачищается до блеска и наматывается на каждую чашку по несколько витков, затем предохранитель вставляется в держатель. Этот способ не надежен, и воспользоваться им можно, как временной мерой. Благодаря своей простоте он позволяет оперативно проверить исправность электроприбора. Если при включении проволочка расплавилась, значить дело не в предохранителе, и требуется более квалифицированный ремонт.
Второй способ несколько сложней. Но тоже не требует применения пайки. Нужно прогреть по очереди чашки зажигалкой или на газовой плите и удерживая через ткань руками снять их со стеклянной трубки. Нагревать можно и паяльником. Внутри чашки для хорошего контакта нужно тщательно очистить от остатков клея.
Продеть зачищенную проволочку через трубку по диагонали и надеть на место чашки. Плавкий предохранитель отремонтирован.
Третий способ по сути такой же, как и первых два. Но отремонтированный предохранитель практически не отличается от нового. Ремонт выполняется следующим образом. Заводская проволочка при изготовлении предохранителя продевается в отверстия в торцах чашек и фиксируется припоем. Для того, что бы вставить новую проволочку необходимо паяльником разогреть торцы чашек и зубочисткой или заточенной деревянной палочкой освободить отверстия в торцах чашек от припоя. Далее выполнить описанную выше заводскую операцию.
Бывает отверстия в чашках очень маленького диаметра и сложно их очистить от припоя. Тогда при наличии технической возможности проще просверлить отверстия сверлом диаметром 1-2 мм или расширить граненым шилом
Предложенная технология ремонта предохранителей и плавких вставок с успехом может быть применена для восстановления практически любых типов плавких предохранителей.
Плавкие вставки для предохранителей всегда перегорают в неподходящий момент. И что мы делаем? Конечно! Делаем из него “жука”. Если это сделать неправильно, можно навлечь на себя беду. Для того, чтобы правильно и безопасно восстановить плавкую вставку нужно всего лишь выбрать правильный диаметр используемой проволоки. Ниже приведен расчет диаметра провода для плавких вставок предохранителей по таблице.
Диаметр плавкой вставки предохранителя выбирают в зависимости от тока плавления. За ток плавления обычно принимают значение тока в два раза превышающий номинальный ток. Т.е. если Ваше устройство потребляет ток 1А, ток плавления принимаем 2А. И согласно нему выбираем диаметр проволоки. В данном случае медь 0,09мм или алюминий 0,1мм. Плавкая вставка не перегорает мгновенно, для этого требуется некоторое время, пусть даже очень малое. Поэтому, кратковременные перегрузки (например, пусковые токи) не вызывают разрушения плавкой вставки. Плавкая вставка, даже небольшого диаметра, толщиной всего 0,2мм, при перегорании может разлетаться на мелкие части. Часть металла испаряется, часть разбрызгивается расплавленными каплями. Разлетающиеся части плавкой вставки имеют температуру близкую к температуре плавления материала, из которого они сделаны и могут нанести вред оборудованию или находящимся рядом людям. Поэтому, плавкая вставка обязательно должна быть в корпусе, который сможет противостоять воздействиям при разрушении плавкой вставки. В зависимости от номинала плавких вставок, корпуса изготавливают из пластмассы, стекла, керамики. Плавкие вставки можно так же рассчитать по предложенной ниже методике. Расчёт проводников для плавких предохранителей Ток плавления проводника для применения в плавкой вставке (предохранителе) можно рассчитать по формулам: где: где: Формула (1) применяется для малых токов (тонкие проводники d=(0,02 – 0,2) мм), а формула (2) для больших токов (толстые проводники). Диаметр проводника для использования в плавком предохранителе рассчитывается по формулам: Для больших токов (толстые проводники): Количество теплоты выделяемое на плавкой вставке рассчитывается по формуле: где: Сопротивление плавкой вставки рассчитывается по формуле: где: Для упрощения расчетов сопротивление принимается постоянным. Рост сопротивления плавкой вставки вследствие повышения температуры не учитываем. Зная количество теплоты, необходимое для расплавления плавкой вставки, можно рассчитать время расплавления по формуле: где: Количество теплоты, необходимое для расплавления плавкой вставки рассчитывается по формуле: где: Масса плавкой вставки круглого сечения рассчитывается по формуле: где: Читайте также: Рекомендуемые страницы: Поиск по сайту |
Поиск по сайту: |