Расчет потерь холостого хода трансформатора – Об уточнении нормативов и снижении потерь электроэнергии в силовых трансформаторах с учетом срока их службы. Измерение потерь холостого хода трансформаторов, параметры, периодичность, схема опыта

Содержание

Потери холостого хода трансформатора | Режимщик

Согласно Инструкции, потери холостого хода в силовом трансформаторе определяются по формуле:


где Т pi — время работы трансформатора, ч;

 — замеренное напряжение на высшей стороне трансформатора, кВ;

 

 — номинальное напряжение высшей обмотки трансформатора, кВ.

 

Напряжение на трансформаторе определяется с помощью измерений.

Пример.

Необходимо рассчитать величину потерь холостого хода силового трансформатора ТМ-25/10 за год.

Паспортные данные силового трансформатора ТМ-25/10:

По формуле находим: 

Величина потерь холостого хода силового трансформатора за год составила 1256 кВт.

Напоминаем – потери холостого хода силового трансформатора относятся к категории условно-постоянных потерь, то есть не зависят от объема проходящей через него мощности.

Потери электрической энергии. Введение
Расчет нагрузочных потерь электрической энергии в силовом трансформаторе

Расчет потерь электрической энергии в воздушной линии 10 кВ

 

 

что такое и как рассчитать?

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Режим холостого хода трансформатора

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря  электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Таблица значений холостого хода

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата.

Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

К = Е1/Е2 = W1/W2

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Схема трансформатора при холостом ходе

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым  классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Cos φ = P1/U1*L0

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.

Холдинг «Энергия» — мини-расчет потерь

  • Клиентам
    • Техприсоединение
      • Присоединение мощности
        • тарифы на техприсоединение Московская область 2014
        • Тарифы техприс. Мособласть до 2013 г.
      • Документы к заявке ТП
      • Мониторинг доступности электросетей
      • Расчет техприсоединения
      • Биржа мощности
      • Обсудить в FB
      • Документы к заявке ТП
      • Уведомительный порядок
      • Сроки по ТУ
    • Энергоаудит и консалтинг
      • Расчет тарифа на тепло
        • Расчет теплопотерь
          • Документы
          • Экспертиза
        • Экспертиза тарифа на тепло
        • Расчет НУР котельной
          • Документы
      • Потери электроэнергии
        • Цена расчёта потерь
          • Письмо Минфина по потерям
          • Письмо ФСТ №ЕП-6992/12
          • НДС и потери электроэнергии
        • Мини-расчет потерь
          • Потери на Собственные Нужды
          • Потери до ГБП
        • Норматив электропотерь 2015
        • Данные для расчета потерь
        • Адмрегламент по потерям
        • Потери в Реакторах
        • Бенчмаркинг потерь
        • Потери электроэнергии с 2015
        • Приказ по расчету потерь
          • Инструкция по расчету потерь электроэнергии
        • Инф.письмо МЭ,ФСТ потери с 2015
      • Энергоаудит
        • Исходные данные
        • Экспресс-энергоаудит
        • Энергопаспорт для ТСО
      • Оформление мощностей
      • Инвестрпрограммы
      • Расчет тарифа на передачу ээ
      • Программа энергосбережения
      • Расчет НУР ТЭС
      • Расчет техприсоединения
      • Сертификация
        • Сертификация в энергетической отрасли
      • Оценочная деятельность
        • Оценка сооружений
        • Оценка зданий
        • Оценка помещений
        • Оценка незавершёнки
        • Оценка земельных участков
        • Оценка сервитутов
          • Охранные зоны ЛЭП
        • Оценка промоборудования
        • Оценка офисного оборудования
        • Оценка бизнеса предприятия
        • Оценка акций
        • Нормативы оценки
      • Вступление в СРО
        • СРО в строительстве
      • Расчет НЗТ
    • Сетевая деятельность
      • Сетевое сопровождение
        • Инвестпрограммы
        • Сопровождение по ф.46
        • отчетность по приказу 340
      • Аренда электросетей
        • Электросети СНТ
          • Безвозмездное пользование электросетевым имуществом
        • Опросный лист
        • Регистрация Лизинга
      • Средние ЗП элетросетей
      • Электросетевые тарифы
        • Техприс Мособласть
          • Тарифы техпрес Мособл 2014
        • Тарифы на передачу ФСК
        • Индивидуалка Москва
        • Индивидуальные
          • Индивидуальные
          • Индивидуальные
        • Техприс Якутия
        • Тарифы Ростов
        • Индивидуалка на передачу Казань
        • Проблемы с тарифом
        • Альтернативное регулирование
        • Техприс Архангельск
        • Техприс Алайский край
      • Замерный день в энергетике
      • Критерии ТСО
        • Применение критериев ТСО
      • Бесплатное техприсоединение
      • Электросетевое имущество
        • Оформление прав собственности
        • госпошлина
          • Размеры госпошлины
        • Госрегистрация Доверительного управления
          • Налоги
        • Налог на сети
      • Отчетность Росстат
      • ТСО Мособласти
      • расчет пропускной способности
      • Монопотребитель
      • Срок поверки учета
    • Энергосбыт
      • Стандарт раскрытия информации филиал МО
        • 40б
        • 40в(20в)
        • 20к
        • шкафы-купе
    • Технические услуги
      • Эксплуатация электросетей
        • Расчет у.е.
      • Прайс монтаж КЛ
      • Прайс на внутренний электромонтаж
      • Монтаж ВЛЭП
      • Монтаж климат-систем
      • АИИСКУЭЭ-light
      • Аренда нагрузочных модулей
      • Энерголизинг Энергосервисные контракты
      • Расчет МТР для МТП
    • Электротехническая продукция
      • ММПС 110/10(6) кВ
      • ПКУ
        • GCHVM-W
        • РиМ-высоковольтный учет
      • КТП, БКТП, Тр, КСО, КРУ
        • МТП
      • РЩ
      • птицезащитные устройства
      • Кабельная арматура
      • Спецтехника
        • БКМ
        • ЭТЛ-10
          • Регистрация ЭТЛ
        • УИГ
      • Светодиодные светильники
      • Двери по ГОСТ 30247.2-97
      • Опоры ж/б СВ 95, 105, 110
        • Деревянные опоры ЛЭП
    • IT-услуги
      • Создание и поддержка сайтов
      • Электронная подпись
        • Электронные торги
        • Электронный документооборот
        • Работа на портале Госуслуг
        • Работа на портале Росреестра
        • Электронная отчетность
        • Отчетность в ФСТ
        • Работа в СМЭВ
        • Закупки по 223-ФЗ
      • Программы по теплу
      • АРМ «E-pass»
      • ПК по расчету потерь эл.эн. РТП3
      • Облачный учет энергоресурсов
      • 1C: Строительство
      • Прогрес++
      • Автокадонлайн
    • Электро-курилка
      • День энергетика. ГОЭЛРО
        • День кабельщика
        • Поздравления ко дню энергетика
          • Светить — и никаких гвоздей!
          • С Днем Энергетика! Присоединяйтесь к празднику!
          • Голро-2. Только плюсы. С днем Энергетика!
          • Вместе всегда тепло!
          • Да будет Свет! Чубайс
          • Свет и радость мы приносим Людям!
          • Спасибо за электрофикацию!
          • Конца света не будет!
          • Спасибо за Питание!
          • Сопротивление бесполезно!
          • Клип_Виагры
      • Юмор энергетика
      • Афоризмы энергетиков
        • Шарады
          • Зарядить смартфон!
          • Ответ по смартфонам
      • Истории из жизни энергетиков
      • Диалоги и реплики энергетиков
      • Форум
      • Удобные сервисы
        • Поиск дров
        • Гарант-онлайн
      • Игра Энергосеть
        • Правила
        • Фридман Фриз
        • Стать энергомагнатом
        • Русификация Power Grid
        • Компоненты
      • Energy-films
        • Видео-Energy
          • Птичку жалко!
          • Энерготреш
        • Покушение на ГОЭЛРО
        • Свободная энергия Теслы
        • Крутая энергетика
        • НИКОЛA ТЕСЛА: ЛУЧ СМЕРТИ
      • галерея ТП
      • Energy-traval
      • energyfm
      • Энергетика детям
        • Энерготовары для детей
    • Питающие центры
      • Питающие центры Ленобласти
      • СПб
    • Проверь контрагента!
  • Электроэнергетика России
    • Doingbusiness энергетика
      • doingbusiness методика по ТП
      • doing business 2014 Россия
      • doingbusiness-2018
      • doingbusiness-2018
    • Стоимость электроэнергии
      • Котловые тарифы
        • Предельники
        • Котел Москва
        • Котел Мособласть
        • Котел Алтай
        • Амур
        • Котел Ленобласти
        • Котел Башкоркостан
        • Белгород
        • Брянск
        • Владимир
        • Котел Волгоград
        • Череповец
        • Воронеж
        • Биробиджан
        • Иркутск
        • Котел Казань
        • Калуга
        • Курган
        • Котел Калининград
        • Кемерово
        • Иваново
        • Иркутск
        • Нижний Новгород
        • Мурманск
        • Котел Ростов
        • Свердловск
        • Ижевск
        • Тамбов
        • Томск
        • Котлы Томской области
        • Тверь
        • Саратов
        • Смоленск
        • Ставрополь
        • Рязань
        • Ростов
        • Республика Тыва
        • Республика Марий Эл
        • Сыктывкар
        • Республика Карелия
        • Республика Калмыкия

что это такое, как определить, формулы и таблицы

В результате энергопотерь происходит перерасход средств и материалов. Из-за этого электричество дорожает. Чтобы справиться с этой проблемой, стараются вовремя выявлять неполадки и предотвращать свои в работе. Негативно на работу устройства влияют потери на холостом ходу трансформатора. Для устранения данной проблемы постоянно разрабатываются новые методики.

Понятие холостого хода трансформатора

Когда у трансформатора наблюдается выделенное питание одной обмотки, а другие пребывают в разомкнутом состоянии. Этот процесс приводит к утечке энергии, что и называют потерями холостого хода. Его развитие происходит под влиянием ряда внешних и внутренних факторов.

Мощность трансформатора не используется в полной мере, а часть энергии утрачается по причине некоторых магнитных процессов, особенностями первичной обмотки и изоляционного слоя. Последний вариант влияет при использовании приборов, функционирующих на повышенной частоте.

Понятие холостого хода трансформатора

Какие факторы влияют на потери

Современные трансформаторы в условиях полной нагрузки достигают 99% КПД. Но устройства продолжают совершенствовать, пытаясь снизить утрату энергии, которая практически равны сумме потерь холостого хода, возникающих под влиянием разнообразных факторов.

Изоляция

Если на стягивающих шпильках установлена плохая изоляция или ее недостаточно, возникает замкнутый накоротко контур. Это один из главных факторов данной проблемы трансформатора. Поэтому процессу изоляции следует уделять больше внимания, используя для этих целей качественные специализированные материалы.

Изоляция трансформатор

Вихревые токи

Развитие вихревых токов связано с течением магнитного потока по магнитопроводу. Их особенность в перпендикулярном направлении по отношению к потоку. Чтобы их уменьшить, магнитопровод делают из отдельных элементов, предварительно изолированных. От толщины листа и зависит вероятность появления вихревых токов, чем она меньше, тем ниже риск их развития, приводящего к меньшим потерям мощности.

Чтобы уменьшить вихревые токи и увеличить электрическое сопротивление стали, в материал добавляют различные виды присадок.

Они улучшают свойства материала и позволяют снизить риск развития неблагоприятных процессов, плохо отражающихся на работе устройства.

Вихревые токи

Гистерезис

Как и переменный ток, магнитный поток также меняет свое направление. Это говорит о поочередном намагничивании и перемагничивании стали. Когда ток меняется от максимума до нуля, происходит размагничивание стали и уменьшение магнитной индукции, но с определенным опозданием.

При перемене направления тока кривая намагничивания формирует петлю гистерезиса. Она отличается в разных сортах стали и зависит от того, какие максимальные показатели магнитной индукции материал может выдержать. Петля охватывает мощность, которая постепенно перерасходуется на процесс намагничивания. При этом происходит нагревание стали, энергия, проводимая по трансформатору, превращается в тепловую и рассеивается в окружающую среду, то есть, она тратится зря, не принося никакой пользы всем пользователям.

Гистерезис

Характеристики электротехнической стали

Для трансформаторов используют преимущественно холоднокатаную сталь. Но показатель потерь в ней зависит от того, насколько качественно собрали устройство, соблюдались ли все правила в ходе производственного процесса.

Для уменьшения потерь можно также немного добавить сечения проводам на обмотке. Но это не выгодно с финансовой точки зрения, ведь придется использовать больше магнитопровода и других важных материалов. Поэтому размер обмоточных проводов меняют редко. Пытаются найти другой, более экономичный способ решения этой проблемы.

Характеристики электротехнической стали

Перегрев

В процессе работы трансформатора его элементы могут нагреваться. В этих условиях устройство не способно нормально выполнять свои функции. Все зависит от скорости этого процесса. Чем выше нагрев, тем быстрее прибор перестанет выполнять свои прямые функции и понадобится капитальный ремонт и замена определенных деталей.

В первичной обмотке

Если электрический ток по проводнику замыкается, то высокая вероятность утечки электрической энергии. Размер потерь зависит от величины тока в проводнике и его сопротивления, а также от показателя нагрузок, возлагаемых на прибор.

В первичной обмотке

Как определить потери

Этот процесс можно измерить, воспользовавшись мощной установкой. Формула включает такие действия: необходимо умножить показатели их мощности друг на друга. При использовании этого способа необходимо учитывать наличие определенных погрешностей. Искажение связано с тем, что коэффициент мощности учесть точно нельзя. Этот показатель называют конус игла. Он достаточно важен для работы устройства.

Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала

Чаще всего проблема утечки электроэнергии связана с движением вихревых токов и перемагничиванием. Под влиянием этих факторов нагревается магнитопровод, который обуславливает основную часть потерь холостого хода независимо от тока нагрузки. Развитие этого процесса происходит независимо от того, в каком режиме функционирует устройство.

 Постепенно, под влиянием определенных факторов могут меняться эти показатели в сторону значительного увеличения.

Таблица потерь ХХ

Мощность кВаНапряжение ВН/НН, кВПотери холостого хода Вт
25010/0,4730
31510/0,4360
40010/0,41000
50010/0,41150
63010/0,41400
80010/0,41800
100010/0,41950

Проверка устройства в режиме ХХ

Для этого выполняют такие действия:

  1. С использованием вольтметра проверяют напряжение, подающееся на катушку.
  2. Другим вольтметром исследуют напряжение на остальных выводах. Важно использовать устройство с достаточным сопротивлением, чтобы показатели были требуемого значения.
  3. Выполняют присоединение амперметра к цепи первичной обмотки. С его помощью можно добиться определения силы тока холостого хода. Также прибегают к применению ваттметра, с помощью которого стараются выполнить измерение уровня мощности.

После получения показаний всех приборов выполняют расчеты, которые помогут в вычислении. Чтобы получить нужные данные, необходимо показатели первой обмотки разделить на вторую. С применением данных опыта ХХ с результатами короткозамкнутого режима определяют, насколько полно устройство выполняет свои действия.

Проверка устройства в режиме ХХ

Особенности режима ХХ в трехфазном трансформаторе

На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.

Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.

Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.

Особенности режима ХХ в трехфазном трансформаторе

Примеры определения потерь ХХ на реальных моделях

Чтобы определить показатель потерь в течение года на трансформаторе типа ТНД мощностью в 16МВА, необходимо воспользоваться эмпирической формулой:

Формула

где:

  • n – сколько электротехнических устройств используется;
  • β – коэффициент загрузки трансформатора, представляющий собой отношение расчетной мощности к номинальной (β = Sp/Sн).

Вывод

Энергопотери в условиях холостого хода трансформатора связаны с магнитными потерями, потерями в первичной обмотке и изоляционном слое. Для снижения этого показателя до сих пор ведутся работы, несмотря на то, что КПД современных трансформаторов в условиях повышенной нагрузки составляет 99%.

Для снижения показателя утечки энергии необходимо снизить влияние провоцирующих факторов. Чтобы добиться этого, постоянно усовершенствуют технологию создания устройств, используют только прочные материалы, проверяя их экспериментальным путем.

6.6 расчет потерь двухобмоточных трансформаторов

*. Расчет потерь мощности и электроэнергии в силовом трансформаторе

Общую величину потерь активной мощности в трансформаторе определяют по формуле

, (*.1)

где – паспортные потери холостого хода трансформатора, кВт;

– паспортные потери короткого замыкания трансформатора, кВт;

– коэффициент загрузки силового трансформатора.

По формуле (*.1)

кВт.

Общую величину потерь реактивной мощности в трансформаторе определяют по формуле

, (*.2)

где – паспортный ток холостого хода трансформатора, %;

– паспортное напряжение короткого замыкания трансформатора, %;

– номинальная мощность трансформатора, кВ∙А.

По формуле (*.2)

= кВт.

Полные потери мощности в трансформаторе определяются по формуле:

(*.3)

кВ∙А.

Потери активной энергии в трансформаторе определяются по формуле:

, (*.4)

где – число часов работы трансформатора в году, час;

– время максимальных потерь, условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год:

(*.5)

где ТМ – время использования максимума нагрузки, условное число часов, в течение которых работа с максимальной нагрузкой передает за год столько энергии, сколько при работе по действительному графику, час.

С учетом известного ТМ:

час.

По формуле (*.4):

кВт·час.

Потери реактивной энергии в трансформаторе определяются по формуле:

. (*.6)

квар·час.

Полные потери элеткроэнергии в трансформаторе определяются по формуле:

(*.7)

кВ∙А.

Стоимость потерь С активной электроэнергии в трансформаторе определяется по формуле:

, (*.8)

где C0 – средняя стоимость 1 кВт∙часа электроэнергии, руб/кВт∙час.

руб/год.

Результаты расчета сведены в табл. *.1.

Таблица *.1

Результаты расчета потерь мощности и электроэнергии в силовом трансформаторе

Параметр

Размерность

Значение

Номинальная мощность трансформатора (Sном)

кВА

250

Активные потери холостого хода трансформатора (Pхх)

кВт

0,55

Активные потери короткого замыкания трансформатора (Pкз)

кВт

3,7

Ток холостого хода трансформатора (Iхх)

%

0

Напряжение короткого замыкания (Uкз)

%

0

Коэффициент загрузки трансформатора (Kз)

0,65

Временя максимума нагрузки (Тм)

час

4500

Число часов работы трансформатора в году (Tг)

час

8760

Средний тариф на активную электроэнергию (Co)

руб/кВт·час

3,5

Значение потерь активной мощности в трансформаторе (Pт)

кВт

2,11

Значение потерь реактивной мощности в трансформаторе (Qт)

кВар

0,00

Значение полных потерь мощности в трансформаторе (Sт)

кВА

2,11

Значение времени максимальных потерь () — условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год.

час

2886,21

Годовое значение потерь активной энергии в трансформаторе (Waт)

кВт·час

9329,87

Годовое значение потерь реактивной энергии в трансформаторе (Wрт)

кВар·час

0,00

Годовое значение полных потерь энергии в трансформаторе (Wт)

кВ∙А·час

9329,87

Годовая стоимость потерь активной энергии в трансформаторе (С)

руб/год

32654,54

Расчет потерь мощности и электроэнергии в силовом трансформаторе

Общую величину потерь активной мощности в трансформаторе определяют по формуле

, (*.1)

где – паспортные потери холостого хода трансформатора, кВт;

– паспортные потери короткого замыкания трансформатора, кВт;

– коэффициент загрузки силового трансформатора.

По формуле (*.1)

кВт.

Общую величину потерь реактивной мощности в трансформаторе определяют по формуле

, (*.2)

где – паспортный ток холостого хода трансформатора, %;

– паспортное напряжение короткого замыкания трансформатора, %;

– номинальная мощность трансформатора, кВ∙А.

По формуле (*.2)

= кВт.

Полные потери мощности в трансформаторе определяются по формуле:

(*.3)

кВ∙А.

Потери активной энергии в трансформаторе определяются по формуле:

, (*.4)

где – число часов работы трансформатора в году, час;

– время максимальных потерь, условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год:

(*.5)

где ТМ – время использования максимума нагрузки, условное число часов, в течение которых работа с максимальной нагрузкой передает за год столько энергии, сколько при работе по действительному графику, час.

С учетом известного ТМ:

час.

По формуле (*.4):

кВт·час.

Потери реактивной энергии в трансформаторе определяются по формуле:

. (*.6)

квар·час.

Полные потери элеткроэнергии в трансформаторе определяются по формуле:

(*.7)

кВ∙А.

Стоимость потерь С активной электроэнергии в трансформаторе определяется по формуле:

, (*.8)

где C0 – средняя стоимость 1 кВт∙часа электроэнергии, руб/кВт∙час.

руб/год.

Результаты расчета сведены в табл. *.1.

Таблица *.1

Результаты расчета потерь мощности и электроэнергии в силовом трансформаторе

Параметр

Размерность

Значение

Номинальная мощность трансформатора (Sном)

кВА

40

Активные потери холостого хода трансформатора (Pхх)

кВт

0,15

Активные потери короткого замыкания трансформатора (Pкз)

кВт

0,88

Ток холостого хода трансформатора (Iхх)

%

0

Напряжение короткого замыкания (Uкз)

%

0

Коэффициент загрузки трансформатора (Kз)

0,66

Временя максимума нагрузки (Тм)

час

4500

Число часов работы трансформатора в году (Tг)

час

8760

Средний тариф на активную электроэнергию (Co)

руб/кВт·час

3,5

Значение потерь активной мощности в трансформаторе (Pт)

кВт

0,53

Значение потерь реактивной мощности в трансформаторе (Qт)

кВар

0,00

Значение полных потерь мощности в трансформаторе (Sт)

кВА

0,53

Значение времени максимальных потерь () — условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год.

час

2886,21

Годовое значение потерь активной энергии в трансформаторе (Waт)

кВт·час

2420,37

Годовое значение потерь реактивной энергии в трансформаторе (Wрт)

кВар·час

0,00

Годовое значение полных потерь энергии в трансформаторе (Wт)

кВ∙А·час

2420,37

Годовая стоимость потерь активной энергии в трансформаторе (С)

руб/год

8471,28

Отчет сформирован автоматически на сайте www.online-electric.ru

Всё о потерях холостого хода трансформатора

Энергопотери всегда приводят к перерасходу средств и материалов. Они являются главным источником удорожания энергии. Соответственно, борьба с ними основана на своевременном выявлении неполадок и профилактике возможных сбоев работоспособности в целом. Основной, самый распространенной  проблемой принято считать  потери холостого хода трансформатора.

Содержание:

Составляющие потерь холостого хода

Холостой ход — это один из режимов работы всех трансформаторных устройств, который основан на выделенном питании какой-то одной обмотки в то время, как состояние всех остальных разомкнутое. При таком типе работы  все утечки, которые неизбежно возникают при номинальных значениях уровня напряжения и частоты, принято называть потерями холостого хода.

Утрата мощностных показателей холостого хода трансформирующего устройства включают в себя несколько обязательных составляющих:

  • магнитные потери мощности холостого хода, наблюдающиеся в стальных частях;
  • потери в первичной обмотке из-за тока холостого хода;
  • диэлектрические — в изоляционном слое.

Стоит отметить, что диэлектрические «утечки» актуальны только для приборов, работающих при повышенных частотах. Для силовых же трансформаторов, которые рассчитаны на определенную среднюю частоту в 50 Гц, такие потери несущественны и, как правило, не берутся в расчет при комплексном анализе причин.

Меньше одного процента от потери холостого хода в том числе и в силовых устройствах составляют и утечки в первичной обмотке.

Основная, самая существенная  доля «утечки» приходится на магнитные потери. Этот вид обсуждаемого явления также можно разделить на два типа: от гистерезиса и от вихревых токов. В современных устройствах, где используется холоднокатаная электротехническая сталь на первую причину приходится чуть менее трети всех объемов. А вот вихревые токи вытягивают до 75 процентов.

Значение качества электротехнической стали ↑

Для правильных исчислений, а при частоте 50 Гц, соотношение частей в магнитных потерях вычисляется математическим путем, используются эмпирически полученные данные характеристик различных видов стали.

Кроме того, большое значение играет конфигурация магнитной системы, ее массой, а также технологией производства пластик.

Совокупность всех факторов условно стоит разделить на конструктивные и технологические:

  • К первым следует отнести способ и форму стыковки пластин, тип сечения ярма и  метод прессовки и обработки стержней.
  • Ко вторым относятся способы резки стали на пластины, тщательность и методы удаления заусенцев, качество отжига пластин, лакировка, а также прессовка всей магнитной системы. Кстати, резка стали из рулонов производится с совпадением  условно видимой продольной оси пластин с направлением прокатки стального листа.

Кстати, еще одной из существенных причин увеличения потерь в уже эксплуатируемом трансформаторе могут являться нестабильные качественные характеристики используемой стали, а также небрежная сборка с допущением механических повреждений.

При этом, правильно рассчитанный и собранный трансформатор имеет отклонение фактических потерь от расчетных всего около пяти процентов. Это значение следует учитывать, контролируя предельные показатели ПХХ в рамках определенных технической документацией норм, которые соответствуют ГОСТ с прибавлением половины допуска. Кстати, по ГОСТу допуск потерь холостого хода в трансформаторных устройствах обозначен на уровне 15 процентов. То есть, нужно контролировать потери холостого хода в рамках половины этого значения, то есть 7,5 процентов.

На что влияют потери холостого хода трансформатора? ↑

На данный момент общий процент потерь от генерирующих мощностей до потребителя составляет порядка 18 процентов. Большая часть энергии теряется именно на этапе работы трансформаторных систем. На что влияют данные потерь и где применяются полученные в результате расчетов результаты?

Прежде всего такого рода информация учитывается при расчетах потери электроэнергии, а также при планировании модернизации оборудования и уровне затрат на обновление и ремонт.

От чего зависят потери холостого хода трансформатора? ↑

В середине прошлого столетия сталь горячей прокатки, используемую для производства основных трансформаторных узлов, заменили на холоднокатаный материал с ориентированной структурой зерен. Плюс новинки состоял в том, что она отличалась высокой магнитной проницаемостью и большей эффективностью. К началу XXI века характеристики используемой холоднокатаной стали в значительной мере улучшились. Причиной такого технологического роста стала очевидность соотнесения затрат с конечной стоимостью энергии.

В общем же снижению потерь в холостом режиме поспособствовали три важных причины:

  • применение стали с более совершенными свойствами;
  • совершенствование конструкции магнитной системы в целом, а кроме того новые принципы раскроя рулонов;
  • модернизация конструкции основного элемента — сердечников.
  • Что же касается самой стали, то производители работали сразу в трех направлениях:
  • постоянно улучшали ориентацию доменов;
  • стремились к максимальному уменьшению толщины исходных листов;
  • опробовали и внедрили новый способ очищения доменов — лазерную обработку стальных пластин.

Инженерный центр «ПрофЭнергия» имеет все необходимые инструменты для качественного проведения диагностики трансформаторов, слаженный коллектив профессионалов и лицензии, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если хотите заказать диагностику трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Причины потери холостого хода трансформатора ↑

Используемые сегодня трансформаторы можно разделить на сухие и масляные. Масляные до недавнего времени довольно активно использовались практически во всех сферах. Но так как они имеют некоторые ограничения по размещению и нюансы обслуживания, а также низкую пожаробезопасность, в последнее время все большей популярностью стали пользоваться модели сухих трансформаторов, не использующих в системе охлаждения масляные составы.

  • Активные потери холостого хода трансформатора есть и в тех, и в других устройствах. Основными их причинами являются:
  • Коррозия металла, которая происходит из-за нарушения целостности лакового слоя. В результате это значительно увеличивает вихревые токи и усиливает  нагрев стали, используемой в трансформаторе.
  • Витковое замыкание, происходящее в обмотках и приводящее к резкому скачку напряжения.
  • Недостаточная или некачественная изоляция стягивающих шпилек, приводящая к замкнутому накоротко контуру.
  • Магнитные зазоры или некачественная шихтовка.
  • Недостаточное или избыточное число витков на вольт, которое зависит от целого ряда характеристик. Числом витков можно не только увеличить потери холостого хода, но и значительно уменьшить их при правильном расчете.
  • Перегрев стальных узлов и элементов трансформатора неизбежно снижает качество работы трансформатора, все зависит только от скорости и прогрессии этих ухудшений. Чем выше температура, тем быстрее прибор выйдет из строя.

Это далеко не все возможные причины потери холостого хода силового трансформатора, многое также зависит и от условий эксплуатации, и от уровня обслуживания устройства. Но это частные случаи, причины в которых следует искать индивидуально.

Определение тока холостого хода трансформатора

Ток первичной обмотки трансформатора, возникающий при холостом ходе при номинальном синусоидальном напряжении и номинальной частоте, называется током холостого хода.

При расчет тока холостого хода трансформатора отдельно определяют его активную и реактивную составляющие.

Активная составляющая тока холостого хода вызывается наличием потерь холостого хода. Активная составляющая тока, А,

Iх.а = Рх / (mUф),

где Рх – потери холостого хода, Вт; Uф – фазное напряжение первичной обмотки, В.

Обычно определяют не абсолютное значение тока холостого хода и его составляющих, а их относительное значение по отношению к номинальному току трансформатора iоа, i0р, iо, выражая их в процентах номинального тока.

Тогда активная составляющая, %,

,

или

iоа = Рх /(10S),

где S – мощность трансформатора, кВ· А; Рх – потери холостого хода, Вт.

Расчет реактивной составляющей тока холостого хода усложняется наличием в магнитной цепи трансформатора немагнитных зазоров. При этом расчете магнитная система трансформатора разбивается на четыре участка – стержни, ярма, за исключением углов магнитной системы, углы и зазоры. Для каждого из этих участков подсчитывается требуемая намагничивающая мощность, суммируемая затем по всей магнитной системе. Также как и потери, реактивная составляющая тока холостого хода зависит от основных магнитных свойств стали магнитной системы и ряда конструктивных и технологических факторов, оказывающих на эту составляющую существенно большое влияние, чем на потери.

Немагнитные зазоры в шихтованной магнитной системе имеют особую форму – в месте зазора стыки пластин чередуются со сквозными пластинами. Магнитный поток вместе стыка проходит частично через зазор между пластинами и частично – через соседнюю сквозную пластину. Индукция в сквозных пластинах в зоне, лежащей против стыков, увеличивается. Вместе с этим происходит местное увеличение потерь и реактивной составляющей тока холостого хода, однако общая намагничивающая мощность для зазора оказывается существенно меньшей, чем при стыке частей стыковой магнитной системы.

В практике расчета намагничивающая мощность для зазоров шихтованных магнитных систем, собираемых из пластин горячекатаной или холоднокатаной стали, определяется для условного немагнитного зазора, по площади сечения стали в данном стыке, т.е. по активному сечению стержня или ярма, и по удельной намагничивающей мощности, отнесенной к единице площади активного сечения, qз, В∙А/м2, и определяемой экспериментально для каждой марки стали.

Удельные намагничивающие мощности для стали марок 3404 и 3405 приведены в табл.26.

Таблица 26. Полная удельная намагничивающая мощность в стали q и в зоне шихтованного стыка q3 для холоднокатаной стали марок 3404 и 3405 толщиной 0,35 и 0,30 мм при различных индукциях и f = 50 Гц

В, Тл

Марка стали и ее толщина

qз, В∙А/м2

3404,

0,35 мм

3404,

0,30 мм

3405,

0,35 мм

3405,

0,30 мм

3404

3405

1,30

1,32

1,34

1,36

1,38

1,40

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

1,66

1,68

1,70

1,72

1,74

1,76

1,78

1,80

1,82

1,84

1,86

1,88

0,900

0,932

0,964

0,996

1,028

1,060

1,114

1,168

1,222

1,276

1,330

1,408

1,486

1,575

1,675

1,775

1,958

2,131

2,556

3,028

3,400

4,480

5,560

7,180

9,340

11,500

20,240

28,980

37,720

46,460

0,870

0,904

0,938

0,972

1,006

1,040

1,089

1,139

1,188

1,238

1,289

1,360

1,431

1,511

1,600

1,688

1,850

2,012

2,289

2,681

3,073

4,013

4,953

6,364

8,247

10,130

17,670

25,210

32,750

40,290

0,860

0,892

0,924

0,956

0,988

1,020

1,065

1,110

1,156

1,210

1,246

1,311

1,376

1,447

1,524

1,602

1,748

1,894

2,123

2,435

2,747

3,547

4,347

5,551

7,161

8,770

15,110

21,450

27,790

34,130

0,850

0,880

0,910

0,940

0,970

1,000

1,041

1,082

1,123

1,161

1,205

1,263

1,321

1,383

1,449

1,526

1,645

1,775

1,956

2,188

2,420

3,080

3,740

4,736

6,068

7,400

12,540

17,680

22,820

27,960

7400

8200

9000

9800

10600

11400

12440

13480

14520

15560

16600

17960

19320

20700

22100

23500

25100

26700

28600

30800

33000

35400

37800

40800

44400

48000

52000

56000

60000

64000

6000

6640

7280

7920

8560

9200

10120

11040

11960

12880

13800

14760

15720

16800

18000

19200

20480

21760

23160

24680

27000

28520

30840

33000

35000

37000

39800

43600

47400

51200

При экспериментальных исследованиях стали удельная намагничивающая мощность, отнесенная к 1 кг стали или к 1 м2 площади зазора q, может определяться как полная мощность или как ее реактивная составляющая. В табл. 26 приведены значения полной удельной намагничивающей мощности.

Полная намагничивающая мощность трансформатора, В∙А, для магнитной системы может быть определена из следующего выражения:

Qx = Qx.c + Qx.я+ Qx.з = qcGc + qяGя + ∑nзqзПз,

Где qcи qя – удельные намагничивающие мощности для стержня и ярма, определяемые по табл.26 для холоднокатаной стали в зависимости от соответствующих индукций, В∙А/кг; Gcи Gя – масса стали в стержнях и ярмах, кг; nз – число немагнитных зазоров (стыков) в магнитной системе; qз – удельная намагничивающая мощность, В∙А/м2, для немагнитных зазоров, определяемая для индукции в стержне по табл.26; Пз площадь зазора, т.е. активное сечение стержня или ярма, м2.

При расчете тока холостого хода для плоской стержневой шихтованной магнитной системы, собранной из пластин холоднокатаной анизотропной стали, также как и при расчете потерь холостого хода, приходиться считаться с факторами конструктивными – форма стыков стержней и ярм, форма сечения ярма, способ прессовки стержней и ярм – и технологическими – резка рулонов стали на пластины, удаление заусенцев, отжиг пластин, покрытие их лаком, прессовка магнитной системы при сборке и перешихтовка верхнего ярма при установке обмоток.

От воздействия этих факторов реактивная составляющая тока холостого хода увеличивается при несовпадении линий магнитной индукции и прокатки стали, а также в результате механических воздействий при заготовке пластин и сборке остова. Отжиг пластин ведет к уменьшению реактивной составляющей тока холостого хода. На токе холостого хода влияние этих факторов сказывается более резко, чем на потерях.

Полный фазный ток холостого хода, А,

Ix = Qx/(mUф).

Относительное значение тока холостого в процентах номинального тока

i0 = Qx/10S.

Активная составляющая тока холостого хода, фазное значение, А,

Ix = Рх/(mUф)

и в процентах номинального тока

iоа = Рх/(10S).

Реактивная составляющая тока холостого хода, А,

Ix =

и в процентах номинального тока

iop =

Полученное значение тока холостого хода должно быть сверено с предельно допустимым значением по ГОСТ, техническим условиям или заданию на расчет трансформатора. Отклонение расчетного значения тока холостого хода от заданного гарантийного не следует допускать более чем на половину допуска разрешенного ГОСТ (по ГОСТ 11677-85 разрешенный допуск +30%).

При расчете тока холостого хода по намагничивающей мощности определяется среднее значение, тока холостого хода для всех стержней трансформатора. В симметричных магнитных системах, например однофазных, или пространственных, это среднее значение будет совпадать с действительным значением тока холостого хода для каждого стержня.

В несимметричной магнитной системе ток холостого хода в обмотке среднего стержня меньше, чем в обмотках крайних стержней. Током холостого хода трансформатора в этом случае считается среднее значение токов трех фаз.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *