Расчет потерь в трансформаторе калькулятор: Калькулятор расчета потерь электроэнергии — Проект электроснабжения – Расчет нагрузочных потерь | Режимщик

Расчет силового трансформатора онлайн потерь мощности

Город

Регион/Область

Срок доставки

Майкоп

Республика Адыгея

3-4 дней

Уфа

Республика Башкортостан

1-3 дней

Улан-Удэ

Республика Бурятия

5-15 дней

Горно-Алтайск

Республика Алтай

1-2 дней

Минск — Козлова

Минск

1-2 дней

Назрань

Республика Ингушетия

1-2 дней

Нальчик

Кабардино-Балкарская Республика

1-2 дней

Элиста

Республика Калмыкия

1-2 дней

Черкесск

Республика Карачаево-Черкессия

1-2 дней

Петрозаводск

Республика Карелия

1-2 дней

Сыктывкар

Республика Коми

1-2 дней

Йошкар-Ола

Республика Марий Эл

1-2 дней

Саранск

Республика Мордовия

1-2 дней

Якутск

Республика Саха (Якутия)

1-2 дней

Владикавказ

Республика Северная Осетия-Алания

1-2 дней

Казань

Республика Татарстан

5-7 дней

Кызыл

Республика Тыва

5-7 дней

Ижевск

Удмуртская Республика

5-7 дней

Абакан

Республика Хакасия

5-7 дней

Чебоксары

Чувашская Республика

5-7 дней

Барнаул

Алтайский край

5-7 дней

Краснодар

Краснодарский край

5-7 дней

Красноярск

Красноярский край

5-7 дней

Владивосток

Приморский край

5-7 дней

Ставрополь

Ставропольский край

5-7 дней

Хабаровск

Хабаровский край

7-12 дней

Благовещенск

Амурская область

7-12 дней

Архангельск

Архангельская область

7-12 дней

Астрахань

Астраханская область

7-12 дней

Белгород

Белгородская область

7-12 дней

Брянск

Брянская область

7-12 дней

Владимир

Владимирская область

7-12 дней

Волгоград

Волгоградская область

7-12 дней

Вологда

Вологодская область

7-12 дней

Воронеж

Воронежская область

7-12 дней

Иваново

Ивановская область

7-12 дней

Иркутск

Иркутская область

7-12 дней

Калининград

Калиниградская область

7-12 дней

Калуга

Калужская область

4-7 дней

Петропавловск-Камчатский

Камчатская область

4-7 дней

Кемерово

Кемеровская область

4-7 дней

Киров

Кировская область

4-7 дней

Кострома

Костромская область

4-7 дней

Курган

Курганская область

4-7 дней

Курск

Курская область

1-3 дней

Санкт-Петербург

Ленинградская область

1-3 дней

Липецк

Липецкая область

1-3 дней

Магадан

Магаданская область

1-3 дней

Москва

Московская область

1-3 дней

Мурманск

Мурманская область

1-3 дней

Нижний Новгород

Нижегородская область

1-3 дней

Новгород

Новгородская область

1-3 дней

Новосибирск

Новосибирская область

1-3 дней

Омск

Омская область

1-3 дней

Оренбург

Оренбургская область

1-3 дней

Орел

Орловская область

1-3 дней

Пенза

Пензенская область

1-3 дней

Пермь

Пермская область

1-3 дней

Псков

Псковская область

1-3 дней

Ростов-на-Дону

Ростовская область

1-3 дней

Рязань

Рязанская область

1-3 дней

Самара

Самарская область

1-3 дней

Саратов

Саратовская область

1-3 дней

Южно-Сахалинск

Сахалинская область

1-3 дней

Екатеринбург

Свердловская область

1-3 дней

Смоленск

Смоленская область

1-2 дней

Тамбов

Тамбовская область

1-2 дней

Тверь

Тверская область

1-2 дней

Томск

Томская область

1-2 дней

Тула

Тульская область

1-2 дней

Тюмень

Тюменская область

1-2 дней

Ульяновск

Ульяновская область

1-2 дней

Челябинск

Челябинская область

1-2 дней

Чита

Читинская область

1-2 дней

Ярославль

Ярославская область

1-2 дней

Москва

г. Москва

1-2 дней

Санкт-Петербург

г. Санкт-Петербург

1-2 дней

Биробиджан

Еврейская автономная область

1-2 дней

пгт Агинское

Агинский Бурятский авт. округ

1-2 дней

Кудымкар

Коми-Пермяцкий автономный округ

1-2 дней

пгт Палана

Корякский автономный округ

1-2 дней

Нарьян-Мар

Ненецкий автономный округ

1-2 дней

Дудинка

Таймырский (Долгано-Ненецкий) автономный округ

1-2 дней

пгт Усть-Ордынский

Усть-Ордынский Бурятский автономный округ

1-2 дней

Ханты-Мансийск

Ханты-Мансийский автономный округ

1-2 дней

Анадырь

Чукотский автономный округ

1-2 дней

пгт Тура

Эвенкийский автономный округ

1-2 дней

Салехард

Ямало-Ненецкий автономный округ

1-2 дней

Грозный

Чеченская Республика

1-2 дней

Как посчитать потери мощности и электроэнергии?

Еще не изобрели и вряд ли изобретут способы передачи электроэнергии без потерь. В каждой линии, в каждом элементе системы электроснабжения происходят потери энергии. Потери мощности и энергии составляют около 12-15% от вырабатываемой электроэнергии.

Потери электроэнергии покрываются за счет увеличения мощности источников питания, а это значит за счет увеличения энергоресурсов. В наше время цены на энергоресурсы постоянно растут, поэтому вопрос энергосбережения очень актуален.

При проектировании нужно понимать, где происходят основные потери электроэнергии и принимать все необходимые меры к снижению данного показателя.

Рассмотрим случай электроснабжения объекта от трансформаторной подстанции. Большинство объектов подключено именно таким способом, т.е. от ТП 10/0,4кВ или от ТП 6/0,4кВ. Основными элементами, где происходят потери, является трансформатор и ЛЭП (КЛ или ВЛ).

Методика расчета потерь мощности и энергии:

1 Определение потерь мощности в трансформаторе.

Потери активной мощности в трансформаторах (в кВт) определяются по следующей формуле:

∆Pт=∆Pст+∆Pм·β2

где ∆Pст=∆Pх – потери холостого хода трансформатора при номинальном напряжении, кВт;

∆Pм=∆Pк – потери короткого замыкания трансформатора при номинальной нагрузке, кВт;

β=S/Sном,т – коэффициент загрузки трансформатора.

Потери реактивной мощности в трансформаторе (в квар) определяются выражением:

∆Qт=∆Qх+∆Qк·β2

 где ∆Qх – потери на намагничивание;

∆Qк – потери, обусловленные потоками рассеяния.

Потери реактивной мощности в трансформаторе

где uк – напряжение короткого замыкания трансформатора, %;

Iх – ток холостого хода трансформатора, %;

хт – индуктивное сопротивление трансформатора, Ом.

2 Определение потерь мощности в ЛЭП.

Потери активной мощности в трехфазной линии (в кВт) с равномерной загрузкой фаз определяются по следующей формуле:

∆Рл=3·I2max·rл·10-3

Потери реактивной мощности (в квар):

∆Qл=3·I2max·хл·10-3

Потери мощности в линии можно выразить в процентах от расчетной мощности:

∆Р’л=∆Рл·100/Рmax

Если реактивная составляющая потери напряжения мала и ей можно пренебречь, то потери мощности в линии можно найти через потери напряжения:

∆Р’л=∆U/cos2ϕ

При расчете потерь энергии используют такое понятие как время наибольших потерь τ.

Время наибольших потерь – это условное время, в течение которого при передаче электроэнергии с максимальной нагрузкой, потери энергии были бы такими, какие возникают в действительности при переменном графике нагрузки.

Время наибольших потерь определяют из кривых зависимости этого времени от годовой продолжительности использования максимума нагрузки.

Время наибольших потерь

3 Определение годовых потерь энергии в трансформаторе.

Годовые потери активной энергии в трансформаторе, кВт·ч:

∆Wат=∆Pст·t+∆Pм·β2·τ

где t – время работы трансформатора.

Годовые потери реактивной энергии в трансформаторе, квар·ч:

∆Wрт=Ix·Sномт·t/100+uк·Sномт·β2·τ/100

4 Определение годовых потерь энергии в ЛЭП.

Годовые потери активной энергии в линии, кВт·ч:

∆Wал=3·I2max·rл·τ·10-3

Годовые потери реактивной энергии в линии, квар·ч:

∆Wрл=3·I2max·хл·τ·10-3

Про годовую продолжительность использования максимума нагрузки будет написана отдельная статья.
Программа для расчета потери мощности и электроэнергии.

Советую почитать:

4 Расчет годовых потерь энергии в трансформаторах

Продолжительность нагрузок: зима – 185 суток (), лето –180 ()

4.1 Расчет для варианта схемы 1

Трансформаторы Т-1, Т-2 – ТДЦ-80000/110. Паспортные данные, необходимые для дальнейших расчетов, для этого трансформатора: ,,,

Годовые потери энергии в стали одного трансформатора:

Годовые потери энергии в меди для одного двухобмоточного трансформатора определяются по формуле:

Трансформатор Т-3 и Т-4 – АТДЦТН-125000/220/110-У1. Паспортные данные, необходимые для дальнейших расчетов, для этого трансформатора: ,,,,,,,,.

Годовые потери энергии в стали автотрансформатора:

Годовые потери энергии в меди в трехобмоточном автотрансформаторе определяются для каждой из обмоток НН, ВН, СН в соответствии с их загрузкой.

Удельные потери в обмотках автотрансформатора:

(1)

(2)

(3)

где – коэффициент выгодности определяется по формуле:

Годовые потери энергии в меди в обмотках автотрансформатора определяются по формулам:

Годовые потери энергии в меди в трансформаторе равны:

    1. Расчет для варианта схемы 2

Трансформаторы Т-1, Т-2 – ТДТН – 63000/110. Паспортные данные, необходимые для дальнейших расчетов, для этого трансформатора: ,,,,,,,,.

Годовые потери энергии в стали одного трансформатора:

Годовые потери энергии в меди в трехобмоточном трансформаторе определяются для каждой из обмоток НН, ВН, СН в соответствии с их загрузкой.

Удельные потери в обмотках трехобмоточного трансформатора:

Годовые потери энергии в меди в обмотках трансформатора определяются по формулам:

Годовые потери энергии в меди в автотрансформаторе равны:

Трансформатор Т-3 – ТД-80000/220. Паспортные данные, необходимые для дальнейших расчетов, для этого трансформатора: ,,,

Годовые потери энергии в стали одного трансформатора:

Годовые потери энергии в меди для одного двухобмоточного трансформатора определяются по формуле:

Трансформатор Т-4 – ТДЦ-125000/220. Паспортные данные, необходимые для дальнейших расчетов, для этого трансформатора: ,,,

Годовые потери энергии в стали одного трансформатора:

Годовые потери энергии в меди для одного двухобмоточного трансформатора определяются по формуле:

  1. Технико-экономическое сравнение структурных схем электростанций

Проведем технико-экономический расчет и сравнение между двумя системными схемами электростанции.

Для каждого из сравниваемых вариантов выбора трансформаторов намечается наиболее целесообразная схема электрических соединений РУ на всех напряжениях.

Экономическая целесообразность схемы определяется минимальными затратами:

  (7)

где  – капиталовложения на сооружения электроустановки, у.е;

– нормативный коэффициент экономической эффективности;

 – годовые эксплуатационные издержки, у.е/год;

  – ущерб от недоотпуска электроэнергии, у.е/год.

В учебном проектировании сравнение вариантов производится без учета ущерба, т.к. это составляющая предполагает определение надежности питания, вероятности и длительности аварийных отключений и других вопросов, рассматриваемых в специальной литературе. При сравнении схем допустимо учитывать капиталовложения только по отличающимся элементам.

Стоимость трансформаторов можно определить по выражению:

 

(8)

 

где – заводская стоимость трансформаторов;

– коэффициент, учитывающий стоимость ошиновки, аппаратов грозо-защиты, заземления, контрольных кабелей до щита управления, строительных и монтажных работ, а также материалов.

         Годовые эксплуатационные издержки определяются по формуле:

 

(9)

 

где  – издержки на амортизацию и обслуживание;

и – соответствующие отчисления в %;

– издержки, связанные с потерями электроэнергии:

 

(10)

                                             

где – стоимость 1 кВт·ч потерь электроэнергии, у.е./кВт·ч;

    – потери электроэнергии в элементах схемы, кВт·ч.

При выполнении РГР допускается принять ., , .

Отчисления на амортизацию и обслуживание равны:

Для варианта 1:

Для варианта 2:

Таблица 5 – Технико-экономическое сравнение вариантов

Наименование элемента

Заводская стоимость единицы, тыс у.е.

1 вариант

2 вариант

Кол-во ед., шт

Сумма, тыс.у.е.

Кол-во ед., шт

Сумма, тыс.у.е.

1. ТДЦ-80000/110

113.7

2

341.1

2. Трансформатор

АТДЦТН-125000/220/110-У1

195

2

546

3. Ячейка ЗРУ 10 кВ

20

1

20

4. Ячейка ОРУ 110кВ

30

1

30

5. Ячейка ОРУ 220кв

80

1

80

Итого:

1017.1

6. ТДТН – 63000/110

126

2

378

7. ТД-80000/220

133.7

1

187.18

8. ТДЦ-125000/220

186

1

260.4

9. Ячейка ЗРУ 10кВ

20

1

20

10. Ячейка ОРУ 110кВ

30

1

30

11. Ячейка ОРУ 220кВ

80

1

80

Итого:

955.58

Таблица 6 – Окончательный результат технико-экономического сравнения

Затраты

1 вариант

2 вариант

1 Расчетные капиталовложения,

К, тыс.у.е

1017.1

955.58

2 Отчисления на амортизацию и обслуживание, , тыс у.е

3 Стоимость потерь энергии, ., тыс.у.е.

4 Приведенные минимальные затраты, З, тыс. у.е.

Разница в затратах между вариантами 1 и 2 составляет:

что позволяет принять, как наиболее экономичный вариант 2.

7.4. Расчет потерь мощности в трансформаторах

Потери активной и реактивной мощности в трансформаторах и автотрансформаторах разделяются на потери в стали и потери в меди (нагрузочные потери). Потери в стали – это потери в проводимостях трансформаторов. Они зависят от приложенного напряжения. Нагрузочные потери – это потери в сопротивлениях трансформаторов. Они зависят от тока нагрузки.

Потери активной мощности в стали трансформаторов – это потери на перемагничивание и вихревые токи. Определяются потерями холостого хода трансформатора , которые приводятся в его паспортных данных.

Потери реактивной мощности в стали определяются по току холостого хода трансформатора, значение которого в процентах приводится в его паспортных данных:

Потери мощности в обмотках трансформатора можно определить двумя путями:

Потери мощности по параметрам схемы замещения определяются по тем же формулам, что и для ЛЭП:

,

где S – мощность нагрузки;

U – линейное напряжение на вторичной стороне трансформатора.

Для трехобмоточного трансформатора или автотрансформатора потери в меди определяются как сумма потерь мощности каждой из обмоток.

Получим выражения для определения потерь мощности по паспортным данным двухобмоточного трансформатора.

Потери короткого замыкания, приведенные в паспортных данных, определены при номинальном токе трансформатора

(7.1)

При любой другой нагрузке потери в меди трансформатора равны

(7.2)

Разделив выражение (7.1) на (7.2), получим

Откуда найдем :

Если в выражение для расчета , подставить выражение для определения реактивного сопротивления трансформатора, то получим:

Таким образом, полные потери мощности в двухобмоточном трансформаторе равны:

Если на подстанции с суммарной нагрузкой S работает параллельно n одинаковых трансформаторов, то их эквивалентные сопротивления в n раз меньше, а проводимости в n раз больше. Тогда,

Для n параллельно работающих одинаковых трехобмоточных трансформаторов (автотрансформаторов) потери мощности рассчитываются по формулам:

где Sв, Sс, Sн – соответственно мощности, проходящие через обмотки высшего, среднего и низшего напряжений трансформатора.

7.5. Приведенные и расчетные нагрузки потребителей

Расчетная схема замещения участка сети представляет собой довольно сложную конфигурацию, если учитывать полную схему замещения ЛЭП и трансформаторов. Для упрощения расчетных схем сетей с номинальным напряжением до 220 кВ включительно вводят понятие “приведенных”, “расчетных” нагрузок.

Приведенная к стороне высшего напряжения нагрузка потребительской ПС представляет собой сумму заданных мощностей нагрузок на шинах низшего и среднего напряжений и потерь мощности в сопротивлениях и проводимостях трансформаторов. Приведенная к стороне высшего напряжения нагрузка ЭС представляет собой сумму мощностей генераторов за вычетом нагрузки местного района и потерь мощности в сопротивлениях и проводимостях трансформаторов.

Расчетная нагрузкка ПС или ЭС определяется как алгебраическая сумма приведенной нагрузки и половин зарядных мощностей ЛЭП, присоединенных к шинам высшего напряжения ПС или ЭС.

Зарядные мощности определяются до расчета режима по номинальному, а не реальному напряжению, что вносит вполне допустимую погрешность в расчет.

Возможность упрощения расчетной схемы при использовании понятий “при-веденных” и “расчетных” нагрузок показано на рис. 7.3:

Рисунок 7.3 – Этапы упрощения расчетной схемы:

а) исходная схема; б) полная схема замещения;

в) схема замещения с приведенной нагрузкой;

г) схема замещения с расчетной нагрузкой

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *