Расчет падения напряжения на резисторе онлайн: Резистор. Падение напряжения на резисторе. Мощность. Закон Ома — МикроПрогер

Содержание

Резистор. Падение напряжения на резисторе. Мощность. Закон Ома — МикроПрогер

Итак, резистор… Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

 

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор —  у тока появился труднопреодолимый барьер, протекающий по цепи

ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Ограничение тока резистором

 

Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт.

Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа)  показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.

Падение напряжение на резисторе

Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.

 

Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше

напряжения падает на нем.

 

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).

V=I*R

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2.  При этом считаем сопротивление лампочки равным 0.

V=I*R    =>     R=V/I    =>    R= 12В / 0,2А   =>   R=60Ом

 Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.

 

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение

на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

 

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

 

Соединение резисторов

Резисторы в цепях электрического тока имеют последовательное и параллельное соединение.

 

Последовательное соединение резисторов

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:

Последовательное соединение резисторов

 

 

Параллельное соединение резисторов

При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:

Параллельное соединение резисторов

 

Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

Автор публикации

877 Комментарии: 0Публикации: 27Регистрация: 17-03-2016

Расчёт шунтирующего сопротивления амперметра. Супер онлайн калькулятор. :: АвтоМотоГараж

Для контроля величины тока применяется прибор называемый амперметром. Из практики могу сказать, что не всегда под рукой оказывается прибор с нужным диапазоном измерения. Как правило, диапазон либо мал, либо велик. Здесь мы разберем, как изменить рабочий диапазон амперметра.  Амперметры на большие токи от 20 ампер и выше имеют в своём составе внешний шунтирующий резистор. Он подключается параллельно амперметру. На рисунке 1 приведена схема включения амперметра с шунтирующем резистором.

 

В качестве примера в экспериментах будет использован амперметр M367 со шкалой до 150 ампер, соответственно при таком токе амперметр используется с внешним шунтирующим сопротивлением.

Если убрать шунтирующий резистор, то амперметр станет миллиамперметром с максимальным током отклонения стрелки 30 мА (далее будет пояснение, откуда это значение взялось). Таким образом, используя разные шунтирующие сопротивления можно сделать амперметр практически с любым диапазоном измерения.

Рассмотрим подробнее имеющийся измерительный прибор. Из его маркировок можно узнать следующее. Маркировка в верхнем правом углу (цифра 1 на изображении). Модель измерительной головки М367. Сделан на краснодарском заводе измерительных приборов (это можно определить по ромбику с буковками ЗИП). Год выпуска 1973. Серийный номер 165266.

Маркировка в нижнем левом углу (цифра 2 на изображении). Слева на право. Прибор предназначен для измерения постоянного тока. Магнитоэлектрический прибор с подвижной рамкой. Напряжение между корпусом и мангнитоэлектрической системой не должно превышать 2 КВ. Рабочее положение шкалы прибора вертикальное. Класс точности прибора в процентах 1,5. ГОСТ8711-60. Измерительная головка рассчитана на измерения силы тока до 150 ампер с использованием внешнего шунтирующего сопротивления рассчитанного на падение на нём напряжения номиналом в 75 милливольт.

Итак, это максимум что удалось узнать из маркировки амперметра. Теперь перейдём к расчетам. Сопротивление шунта определяется по формуле:

где :
Rш — сопротивление шунтирующего резистора;
Rприб — внутреннее сопротивление амперметра;
Iприб — максимально измеримый ток амперметром без шунта;
Iраб — максимально измеримый ток с шунтом (требуемое значение)

Если все данные для расчёта имеются, то можно приступать к самому расчёту.

Для упрощения можно воспользоваться онлайн калькулятором ниже:

 

В нашем случае из формулы видно, что данных не достаточно. Нам известен только максимальный измеряемый ток с шунтом. То есть, то, что мы хотим видеть в случае максимального отклонения стрелки амперметра.

Из маркировки прибора удалось узнать падение напряжения на шунтирующем сопротивлении. И это уже что-то. Из этого параметра ясно, что при подаче на прибор напряжения номиналом 0,075 вольт (75мВ) стрелка отклониться до крайнего значения на шкале 150 ампер. Таким образом, получается, что максимальное отклонение стрелки прибора достигается подачей напряжения 75 мВ. Вроде как данных для расчета по-прежнему не хватает. Необходимо узнать сопротивление прибора и ток, при котором стрелка откланяется до максимального значения без шунтирующего резистора. Далее предлагаю несколько способов для определения нужных параметров и решения задачи.

Способ первый. При помощи блока питания выясняем максимальное отклонение стрелки по току и напряжению без шунта. В нашем случае напряжение уже известно. Его замерять не будем. Измеряем ток и отклонение стрелки. Так как блока питания под рукой не оказалось, то пришлось воспользоваться очень разряженой батарейкой типа АА. Ток, который батарейка могла ещё отдать, составил 12 мА (по показаниям мультиметра). При этом токе стрелка прибора отклонилась до значения на циферблате 60А. Далее определяем цену деления и рассчитываем полное (максимальное) отклонение стрелки. Поскольку шкала циферблата амперметра размечена равномерно, то не составит труда узнать (рассчитать) ток максимального отклонения стрелки.

Цена деления прибора рассчитывается по формуле:

где:
х1 – меньшее значение,
х2 – большее значение,
n – количество промежутков (отрезков) между значениями

Для упрощения можно воспользоваться онлайн калькулятором ниже:

 

 

Расчёт показал, что цена деления прибора штатной шкалы составляет 5 ампер. При токе 12 мА стрелка отклонялась до показания 60А. Таким образом, цена одного деления без шунта составляет 1 мА. Всего делений 30, соответственно максимальное отклонение стрелки до значения 150А без шунта составляет 30 мА.

Далее при помощи закона Ома находим сопротивление прибора. 0,075/0,03=2,5 Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(10-0,03)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(5-0,03)=0,01509 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,5*0,03/(3-0,03)=0,02525 Ом для шкалы 3А мах

Для упрощения можно воспользоваться онлайн калькулятором расчёта сопротивления шунтирующего сопротивления выше.

Второй вариант. При помощи прецизионного мультиметра замеряем сопротивление амперметра и далее при помощи закона Ома (зная напряжение максимального отклонения стрелки) находим ток максимального отклонения стрелки. Измерения выполнялись прецизионными мультиметрами Mastech MS8218 и Uni-t UT71E. При измерении сопротивления амперметра значение составило 2,50-2,52 Ом прибором UT71E и 2,52-2,53 прибором MS8218.

Формула для расчёта тока отклонения стрелки до максимального значения:

Расчёт: 0.075/2.52=0.02976А

Для упрощения вычислений максимального тока отклонения стрелки амперметра можно воспользоваться калькулятором ниже:

 

Далее, как и в первом варианте выполняем расчёт сопротивления шунтирующего резистора (калькулятор выше). Для расчёта было принято среднее показание измеренного сопротивления амперметра двумя мультиметрами Rприб = 2,52Ом

Расчёт:
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(10-0,02976)=0,00752 Ом для шкалы 10А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(5-0,02976)=0,01508 Ом для шкалы 5А мах
Rш=Rприб*Iприб/(Iраб-Iприб)=2,52*0,02976/(3-0,02976)=0,02524 Ом для шкалы 3А мах

Если сравнить расчёты двух методик между собой, то получились совпадение данных до четвёртого знака после запятой, а в некоторых случаях даже до пяти знаков.

О тонкостях изготовления шунтирующего сопротивления расскажу в следующей статье: Как сделать шунт (шунтирующий резистор) для амперметра. Самый простой метод подбора.

И ещё одно продолжение этой тематики: Как изменить предел измерения амперметра. Как переделать амперметр постоянного тока на переменный.

Расчет линии с распределенной нагрузкой

При разработке различных электронных систем или систем электроснабжения частенько появляется необходимость электропитания нескольких потребителей (нагрузок), параллельно подключенных к одной линии. В следствии падения напряжения в питающих проводах, уменьшается и напряжение на потребителях (нагрузках) в зависимости от длины линии, тока или сечения проводов.

Например, такая ситуация может возникнуть при подаче питающего напряжения на несколько видеокамер, находящихся на одном линии электропитания. В результате чего мы можем получить неприятный эффект: чем дальше видеокамера находится от источника питания, тем меньше питающее напряжение на ней, что зачастую приводит к отключению устройства. Тот же самый эффект мы можем получить, подключив параллельно кучу лампочек к линии электропитания. Чем дальше находится лампа, тем слабее она светит.

В общем, нужда определения сечения кабеля и прочих параметров распределенных систем возникала у меня регулярно, а рассчитывать все эти гирлянды в экселе поднадоело. Решила написать этот онлайн калькулятор. Честно говоря, эта идея возникла давным-давно, но мне не хватало ни ума, ни времени, чтобы воткнуться в Javascript или PHP для реализации этой задумки. И только на днях этот барьер был преодолен. Калькулятор ориентирован на то, что распределенная линия проложена медным кабелем. Если надо другой металл или сплав (алюминий или, например, биметалл) — пишите, потом добавлю возможность выбора (уже добавила, прим. от 03 февраля 2021 г.)

…Блин, только заметила, что все это дело работает не во всех версиях Firefox. Буду думать, как это поправить.

Для использования калькулятора вдумчиво смотрим на чертеж и заполняем соответствующие поля.

Вводим количество потребителей (нагрузок Ri) на линии. Учитываем все, что хотим повесить на нее и запитать.

  шт.

Напряжение, подаваемое на линию, Uo

  В

Материал линии

МедьАлюминийСереброЖелезо

Жмем кнопку «Далее» и в появившейся таблице вводим прочие параметры линии: номинальную мощность каждого потребителя (резистора), длины участков линии и сечения проводов на участках. Если не знаем номинальную мощность потребителя, то ее придется рассчитать как произведение номинального напряжения и номинального потребляемого тока. Оба параметра можно взять в инструкции (паспорте) на потребитель.

Номер потребителя RНоминальная (паспортная) мощность потребителя, ВтДлинa участка, Li (м)Сечение провода на участке, Si (мм2)

После ввода параметров нагрузок на линии нажмите кнопку «Расчет линии с распределенной нагрузкой«. Внизу таблицы результатов расчета отобразится график распределения мощностей вдоль линии. Для корректировки вводных данных и очистки результатов расчета нажмите «Очистить таблицу результатов расчета».


Номер потребителя RНапряжение на потребителе, Ui (В)Сопротивление потребителя, Ri (Ом)Ток, протекаемый через потребитель, Ii (А)Фактическая мощность, выделяемая на потребителе, Pi (Вт)Сопротивление участка линии, Rучi (Ом)Ток в участке цепи Iучi, (A)Эквивалентное сопротивление участка линии, Ом

Диаграмма распределения мощностей, выделяемых на потребителях в линии с распределенной нагрузкой

Если бы ваш браузер поддерживал CANVAS, то тут бы был шикарный график мощностей, выделяемых на резисторах в линии с распределенной нагрузкой

Постоянный адрес страницы  http://nemezida.su/online_raschet_liniy_s_raspedelennoy_nagruzkoy. htm

Калькулятор сопротивления падения напряжения

Опубликовать ваши комментарии?

Калькулятор понижающего резистора GTSparkplugs

5 часов назад Введите следующие значения, чтобы вычислить Понижающееся сопротивление Пуск Напряжение — Пусковое напряжение цепи. Это необходимо в вольтах. Voltage — Требуемое напряжение , которое ниже, чем у вас. Current Draw — Сколько это устройство потребляет в AMPS, можно использовать десятичные дроби, поэтому 20 миллиампер равны 0.02 А, 1/2 А будет 0,5 А и т. Д.

Веб-сайт: Gtsparkplugs.com