Расчет косинуса: Вычисление синуса, косинуса, тангенса и котангенса онлайн – Косинус угла — cos(A) | Формулы и расчеты онлайн

Вычисление синуса, косинуса, тангенса и котангенса онлайн

Определения синуса, косинуса, тангенса и котангенса

trigСинус угла \alpha (обозначается \sin\alpha) – ордината точки P_{\alpha}, полученной поворотом точки P(1; 0) вокруг начала координат на угол \alpha.

Косинус угла \alpha (обозначается \cos\alpha

) – абсцисса точки P_{\alpha}, полученной поворотом точки P(1; 0) вокруг начала координат на угол \alpha.

Тангенс угла \alpha (обозначается \operatorname{tg}\alpha) – отношение синуса угла \alpha

к его косинусу, т.е.

    \[\operatorname{tg}\alpha = \frac{\sin\alpha}{\cos\alpha}.\]

Котангенс угла \alpha (обозначается \operatorname{ctg}\alpha) – отношение косинуса угла \alpha к его синусу, т.е.

    \[\operatorname{ctg}\alpha = \frac{\cos\alpha}{\sin\alpha}.\]

Таблица значений синуса, косинуса, тангенса и котангенса

Калькулятор синусов, косинусов, тангенсов и котангенсов

Данный калькулятор поможет легко вычислить значения этих тригонометрических функций от углов, заданных в градусах, радианах или градах.

Таблица косинусов, найти значения угла косинусов

Косинус угла представляет собой одну из тригонометрических функций. Является соотношением ближнего к углу прямоугольного треугольника катета к гипотенузе. Записывается следующим образом: cos (А) = АС/АВ, где АС – ближний катет угла (А), АВ – гипотенуза.

Зачем необходимо производить такие сложные на первый взгляд вычисления? Еще с древних времен известна аксиома: знаю угол – знаю его тригонометрическую функцию. Соответственно, если известен cos любого угла, в таблице Брадиса можно найти этот угол. И наоборот – зная угол, не сложно вычислить косинус. Отсюда можно найти следующие данные: длина катетов и гипотенузы.

Эти данные используются не только в голых математических вычислениях. Невозможно составить даже элементарный план местности, не зная тригонометрических функций. Посредством онлайн калькулятора можно облегчить задачу и получать требуемые данные за доли секунды.

Таблица косинусов от 0° — 360°


Cos(1°)0.9998
Cos(2°)0.9994
Cos(3°)0.9986
Cos(4°)0.9976
Cos(5°)0.9962
Cos(6°)0.9945
Cos(7°)0.9925
Cos(8°)0.9903
Cos(9°)0.9877
Cos(10°)0.9848
Cos(11°)0.9816
Cos(12°)0.9781
Cos(13°)0.9744
Cos(14°)0.9703
Cos(15°)0.9659
Cos(16°)0.9613
Cos(17°)0.9563
Cos(18°)0.9511
Cos(19°)0.9455
Cos(20°)0.9397
Cos(21°)0.9336
Cos(22°)0.9272
Cos(23°)0.9205
Cos(24°)0.9135
Cos(25°)0.9063
Cos(26°)0.8988
Cos(27°)0.891
Cos(28°)0.8829
Cos(29°)0.8746
Cos(30°)0.866
Cos(31°)0.8572
Cos(32°)0.848
Cos(33°)
0.8387
Cos(34°)0.829
Cos(35°)0.8192
Cos(36°)0.809
Cos(37°)0.7986
Cos(38°)0.788
Cos(39°)0.7771
Cos(40°)0.766
Cos(41°)0.7547
Cos(42°)0.7431
Cos(43°)0.7314
Cos(44°)0.7193
Cos(45°)0.7071
Cos(46°)0.6947
Cos(47°)0.682
Cos(48°)0.6691
Cos(49°)0.6561
Cos(50°)0.6428
Cos(51°)0.6293
Cos(52°)0.6157
Cos(53°)0.6018
Cos(54°)0.5878
Cos(55°)0.5736
Cos(56°)0.5592
Cos(57°)0.5446
Cos(58°)0.5299
Cos(59°)0.515
Cos(60°)0.5
Cos(61°)0.4848
Cos(62°)0.4695
Cos(63°)0.454
Cos(64°)0.4384
Cos(65°)0.4226
Cos(66°)0.4067
Cos(67°)0.3907
Cos(68°)0.3746
Cos(69°)0.3584
Cos(70°)0.342
Cos(71°)0.3256
Cos(72°)0.309
Cos(73°)0.2924
Cos(74°)0.2756
Cos(75°)0.2588
Cos(76°)0.2419
Cos(77°)
0.225
Cos(78°)0.2079
Cos(79°)0.1908
Cos(80°)0.1736
Cos(81°)0.1564
Cos(82°)0.1392
Cos(83°)0.1219
Cos(84°)0.1045
Cos(85°)0.0872
Cos(86°)0.0698
Cos(87°)0.0523
Cos(88°)0.0349
Cos(89°)0.0175
Cos(90°)0
Cos(91°)-0.0175
Cos(92°)-0.0349
Cos(93°)-0.0523
Cos(94°)-0.0698
Cos(95°)-0.0872
Cos(96°)-0.1045
Cos(97°)-0.1219
Cos(98°)-0.1392
Cos(99°)-0.1564
Cos(100°)-0.1736
Cos(101°)-0.1908
Cos(102°)-0.2079
Cos(103°)-0.225
Cos(104°)-0.2419
Cos(105°)-0.2588
Cos(106°)-0.2756
Cos(107°)-0.2924
Cos(108°)-0.309
Cos(109°)-0.3256
Cos(110°)-0.342
Cos(111°)-0.3584
Cos(112°)-0.3746
Cos(113°)-0.3907
Cos(114°)-0.4067
Cos(115°)-0.4226
Cos(116°)-0.4384
Cos(117°)-0.454
Cos(118°)-0.4695
Cos(119°)-0.4848
Cos(120°)-0.5
Cos(121°)-0.515
Cos(122°)-0.5299
Cos(123°)-0.5446
Cos(124°)-0.5592
Cos(125°)-0.5736
Cos(126°)-0.5878
Cos(127°)-0.6018
Cos(128°)-0.6157
Cos(129°)-0.6293
Cos(130°)-0.6428
Cos(131°)-0.6561
Cos(132°)-0.6691
Cos(133°)-0.682
Cos(134°)-0.6947
Cos(135°)-0.7071
Cos(136°)-0.7193
Cos(137°)-0.7314
Cos(138°)-0.7431
Cos(139°)-0.7547
Cos(140°)-0.766
Cos(141°)-0.7771
Cos(142°)-0.788
Cos(143°)-0.7986
Cos(144°)-0.809
Cos(145°)-0.8192
Cos(146°)-0.829
Cos(147°)-0.8387
Cos(148°)-0.848
Cos(149°)-0.8572
Cos(150°)-0.866
Cos(151°)-0.8746
Cos(152°)-0.8829
Cos(153°)-0.891
Cos(154°)-0.8988
Cos(155°)-0.9063
Cos(156°)-0.9135
Cos(157°)-0.9205
Cos(158°)-0.9272
Cos(159°)-0.9336
Cos(160°)-0.9397
Cos(161°)-0.9455
Cos(162°)-0.9511
Cos(163°)-0.9563
Cos(164°)-0.9613
Cos(165°)-0.9659
Cos(166°)-0.9703
Cos(167°)-0.9744
Cos(168°)-0.9781
Cos(169°)-0.9816
Cos(170°)-0.9848
Cos(171°)-0.9877
Cos(172°)-0.9903
Cos(173°)-0.9925
Cos(174°)-0.9945
Cos(175°)-0.9962
Cos(176°)-0.9976
Cos(177°)-0.9986
Cos(178°)-0.9994
Cos(179°)-0.9998
Cos(180°)-1
Cos(181°)-0.9998
Cos(182°)-0.9994
Cos(183°)-0.9986
Cos(184°)-0.9976
Cos(185°)-0.9962
Cos(186°)-0.9945
Cos(187°)-0.9925
Cos(188°)-0.9903
Cos(189°)-0.9877
Cos(190°)-0.9848
Cos(191°)-0.9816
Cos(192°)-0.9781
Cos(193°)-0.9744
Cos(194°)-0.9703
Cos(195°)-0.9659
Cos(196°)-0.9613
Cos(197°)-0.9563
Cos(198°)-0.9511
Cos(199°)-0.9455
Cos(200°)-0.9397
Cos(201°)-0.9336
Cos(202°)-0.9272
Cos(203°)-0.9205
Cos(204°)-0.9135
Cos(205°)-0.9063
Cos(206°)-0.8988
Cos(207°)-0.891
Cos(208°)-0.8829
Cos(209°)-0.8746
Cos(210°)-0.866
Cos(211°)-0.8572
Cos(212°)-0.848
Cos(213°)-0.8387
Cos(214°)-0.829
Cos(215°)-0.8192
Cos(216°)-0.809
Cos(217°)-0.7986
Cos(218°)-0.788
Cos(219°)-0.7771
Cos(220°)-0.766
Cos(221°)-0.7547
Cos(222°)-0.7431
Cos(223°)-0.7314
Cos(224°)-0.7193
Cos(225°)-0.7071
Cos(226°)-0.6947
Cos(227°)-0.682
Cos(228°)-0.6691
Cos(229°)-0.6561
Cos(230°)-0.6428
Cos(231°)-0.6293
Cos(232°)-0.6157
Cos(233°)-0.6018
Cos(234°)-0.5878
Cos(235°)-0.5736
Cos(236°)-0.5592
Cos(237°)-0.5446
Cos(238°)-0.5299
Cos(239°)-0.515
Cos(240°)-0.5
Cos(241°)-0.4848
Cos(242°)-0.4695
Cos(243°)-0.454
Cos(244°)-0.4384
Cos(245°)-0.4226
Cos(246°)-0.4067
Cos(247°)-0.3907
Cos(248°)-0.3746
Cos(249°)-0.3584
Cos(250°)-0.342
Cos(251°)-0.3256
Cos(252°)-0.309
Cos(253°)-0.2924
Cos(254°)-0.2756
Cos(255°)-0.2588
Cos(256°)-0.2419
Cos(257°)-0.225
Cos(258°)-0.2079
Cos(259°)-0.1908
Cos(260°)-0.1736
Cos(261°)-0.1564
Cos(262°)-0.1392
Cos(263°)-0.1219
Cos(264°)-0.1045
Cos(265°)-0.0872
Cos(266°)-0.0698
Cos(267°)-0.0523
Cos(268°)-0.0349
Cos(269°)-0.0175
Cos(270°)-0
Cos(271°)0.0175
Cos(272°)0.0349
Cos(273°)0.0523
Cos(274°)0.0698
Cos(275°)0.0872
Cos(276°)0.1045
Cos(277°)0.1219
Cos(278°)0.1392
Cos(279°)0.1564
Cos(280°)0.1736
Cos(281°)0.1908
Cos(282°)0.2079
Cos(283°)0.225
Cos(284°)0.2419
Cos(285°)0.2588
Cos(286°)0.2756
Cos(287°)0.2924
Cos(288°)0.309
Cos(289°)0.3256
Cos(290°)0.342
Cos(291°)0.3584
Cos(292°)0.3746
Cos(293°)0.3907
Cos(294°)0.4067
Cos(295°)0.4226
Cos(296°)0.4384
Cos(297°)0.454
Cos(298°)0.4695
Cos(299°)0.4848
Cos(300°)0.5
Cos(301°)0.515
Cos(302°)0.5299
Cos(303°)0.5446
Cos(304°)0.5592
Cos(305°)0.5736
Cos(306°)0.5878
Cos(307°)0.6018
Cos(308°)0.6157
Cos(309°)0.6293
Cos(310°)0.6428
Cos(311°)0.6561
Cos(312°)0.6691
Cos(313°)0.682
Cos(314°)0.6947
Cos(315°)0.7071
Cos(316°)0.7193
Cos(317°)0.7314
Cos(318°)0.7431
Cos(319°)0.7547
Cos(320°)0.766
Cos(321°)0.7771
Cos(322°)0.788
Cos(323°)0.7986
Cos(324°)0.809
Cos(325°)0.8192
Cos(326°)0.829
Cos(327°)0.8387
Cos(328°)0.848
Cos(329°)0.8572
Cos(330°)0.866
Cos(331°)0.8746
Cos(332°)0.8829
Cos(333°)0.891
Cos(334°)0.8988
Cos(335°)0.9063
Cos(336°)0.9135
Cos(337°)0.9205
Cos(338°)0.9272
Cos(339°)0.9336
Cos(340°)0.9397
Cos(341°)0.9455
Cos(342°)0.9511
Cos(343°)0.9563
Cos(344°)0.9613
Cos(345°)0.9659
Cos(346°)0.9703
Cos(347°)0.9744
Cos(348°)0.9781
Cos(349°)0.9816
Cos(350°)0.9848
Cos(351°)0.9877
Cos(352°)0.9903
Cos(353°)0.9925
Cos(354°)0.9945
Cos(355°)0.9962
Cos(356°)0.9976
Cos(357°)0.9986
Cos(358°)0.9994
Cos(359°)0.9998
Cos(360°)1

Смотрите также

Нахождение значений синуса, косинуса, тангенса и котангенса

Для того, чтобы определить значение угла α, необходимо воспользоваться подходящей функции из тригонометрии. Во время решения задач постоянно возникает необходимость в том, чтобы узнать значение углов. Для некоторых углов можно найти точные значения, для других сложно определить точную цифру и можно вывести только приблизительное значение.

В этой статье мы подробно поговорим о функциях из тригонометрии. Мы не только расскажем о свойствах синуса, тангенса и других функций, но и узнаем, как правильно вычислять значения для каждого отдельного случая.

Рассмотрим подробно каждый случай.

Определение 1

Приближенное число для каждой из известных функций можно найти по определению. Для одних можно указать точные значения, для других – только приблизительные.

Соотношения сторон и углов фигуры используются для того, чтобы определить значения для 30°, 45°, 60°. Если угол выходит за пределы 90°, то перед вычислением значения следует воспользоваться специальной формулой для того, чтобы привести угол к нужному виду.

Если известно значение синуса для α, можно быстро узнать значение косинуса для этого же угла. Это легко выполнить с помощью основных тождеств, которые представлены в геометрии.

В некоторых случаях для того, чтобы узнать sin или cos угла, можно использовать подходящую тригонометрическую формулу. Например, по известному значению синуса 45°, мы сможем определить значение синуса 30°, воспользовавшись правилом из тригонометрии.

Если для примера не подходит ни одно из приведенных выше решений, можно найти приближенное значение. В этом вам помогут таблицы основных тригонометрических функций, которые легко можно найти.

Если взять за основу определения, возможно определить значения для определенного угла α. Также можно вычислить значения тангенса и котангенса для определенного случая. Можно найти значений основных функций из тригонометрии для частных вариантов. Это углы 0°, 90°, 180°, 270°, 360°.

Разобьем эти углы на четыре группы: 360·z градусов (2π·z рад), 90+360·z градусов (π2+2π·z рад), 180+360·z градусов (

Основные формулы тригонометрии | umath.ru


1. Определения синуса, косинуса, тангенса и котангенса угла.

trigСинус угла \alpha (обозначается \sin\alpha) – ордината точки P_{\alpha}, полученной поворотом точки P(1; 0) вокруг начала координат на угол \alpha.

Косинус угла \alpha (обозначается \cos\alpha) – абсцисса точки P_{\alpha}, полученной поворотом точки P(1; 0) вокруг начала координат на угол \alpha.

Тангенс угла \alpha (обозначается \operatorname{tg}\alpha) – отношение синуса угла \alpha к его косинусу, т.е.


Котангенс угла \alpha (обозначается \operatorname{ctg}\alpha) – отношение косинуса угла \alpha к его синусу, т.е.
2. Основное тригонометрическое тождество:
3. Зависимость между синусом, косинусом, тангенсом и котангенсом:
4. Чётность, нечётность и периодичность тригонометрических функций.

Косинус – чётная функция, а синус, тангенс и котангенс – нечётные функции аргумента \alpha:


Синус и косинус – периодические с периодом 2\pi функции, а тангенс и котангенс – периодические с периодом \pi функции: Число 2\pi является наименьшим положительным периодом синуса и косинуса, а число \pi – наименьшим положительным периодом тангенса и котангенса.
Для любого целого n справедливы равенства
5. Формулы сложения:
6. Формулы двойного и тройного аргумента:
7. Формулы понижения степени:
8. Формулы приведения:
9. Формулы суммы и разности синусов:
10. Формулы суммы и разности косинусов:
11. Формулы суммы и разности тангенсов:
12. Преобразование произведения синусов и косинусов в сумму (разность):
13. Выражение синуса и косинуса через тангенс половинного аргумента:

Онлайн калькулятор синуса, косинуса, тангенса и котангенса

  • ГЛАВНАЯ
    • расчеты
    • мониторинг
    • консалтинг
  • ОБЪЕКТЫ
    • сосуды и аппараты
    • здания и сооружения
    • трубопроводы
    • прочие
  • ОНЛАЙН
    • сосуды и аппараты
    • трубопроводы
    • прочие
    • математика
  • МАТЕРИАЛЫ
    • статьи
    • презентации
    • отчеты
    • log-files
    • прочие
  • ЛИТЕРАТУРА
    • сосуды и аппараты
    • здания и сооружения
    • трубопроводы

Функция косинуса: онлайн калькулятор, формулы, график

Косинус — тригонометрическая функция, которая геометрически определяется как соотношение прилежащего катета к гипотенузе. Как и все тригонометрические функции, косинус нашел широчайшее применение в науке.

История вопроса

Тригонометрия как наука возникла еще в Древней Индии, когда ученые разработали таблицу соотношений катетов и гипотенуз и их численных значений для основных углов. Термин «косинус» — сравнительно молодой, так как изначально ученые пользовались только синусом и тангенсом угла. Complementry sinus, он же дополнительный синус, он же косинус — это просто синус угла, смещенного на 90 градусов. Именно поэтому для расчета соотношений прилежащего к углу катета и гипотенузы использовался синус смещенного угла, что упрощало расчеты.

Геометрически косинус — это соотношение прилежащего катета к гипотенузе. Прилежащий катет — это сторона прямоугольного треугольника, которая вместе с гипотенузой образует рассматриваемый угол. Как и любая тригонометрическая функция, изначально косинус рассчитывался только для углов. Для любого значения угла косинус имеет строго определенное значение и никогда не изменяется. С развитием математической науки тригонометрические функции были расширены на всю числовую ось, и сегодня легко взять косинус не только целого числа, но также вещественного и даже комплексного.

Определение косинуса

Итак, есть прямоугольный треугольник, катеты которого обозначаются как A и B, а гипотенуза как C. Из определения косинуса мы получаем, что для заданного угла AC его соотношение прилежащего катета и гипотенузы будет равно cosAC = A/C. Изначально косинусы рассчитывались только для прямоугольных треугольников, однако с развитием математической науки косинусы прочно вошли в расчеты и сейчас используются для любых треугольников. Одним из таких примеров является теорема косинусов — теорема евклидовой геометрии, которая расширяет теорему Пифагора на любые плоские треугольники.

Теорема косинусов

Для любого треугольника справедливо равенство:

a2 = b2 + c2 — 2b × c × cosA,

где угол A — это угол, противолежащий стороне a.

Данное уравнение правдиво для любых плоских треугольников и при помощи него легко определить угол или одну из сторон. Если угол A — прямой, то выражение 2b×c×cosA обращается в ноль, так как cos90 = 0. Следовательно, напротив прямого угла лежит наибольшая сторона или гипотенуза, а теорема косинусов превращается в классическую теорему Пифагора:

a2 = b2 + c2,

где a — гипотенуза.

Использование косинусов

В повседневной жизни тригонометрические функции не находят применения. Вся бытовая математика находится на уровне математических познаний древних греков, когда для простейших расчетов используются элементарные арифметические функции и рациональные соотношения. Однако большая часть современных технологий функционирует с использованием различных тригонометрических функций. К примеру, для определения мощности электротехнических приборов используется косинус фи — косинус угла между векторными значениями тока и напряжения. Еще пример: через тригонометрические функции легко перевести геодезические углы в привычные нам координаты на земной поверхности.

Наша программа представляет собой онлайн-калькулятор, который позволяет рассчитывать значения основных тригонометрических функций углов, выраженных в градусах или радианах. Для использования калькулятора требуется выбрать в меню программы требуемую функцию и ввести величину угла в градусах. Калькулятор вычисляет и обратную функцию арккосинуса. Если требуется определить угол по известному значению косинуса, введите значение функции в ячейку «Косинус» и выполните расчет. Программа мгновенно выдаст значение угла. Рассмотрим пару примеров использования калькулятора.

Примеры из жизни

Вычисление углов

Пусть в задаче по геометрии дан треугольник со сторонами A = 3 см, B = 4 см и C = 5 см. Требуется найти значения всех углов. На первый взгляд это сложная задача, однако мы знаем, что 3, 4 и 5 — это классическая пифагорова тройка, следовательно, известны значения катетов и гипотенуз. Очевидно, что угол AB = 90 градусов, так как катеты всегда образуют прямой угол. Теперь мы можем найти углы AC и BC. Косинус угла численно равен дроби, в числителе которой стоит прилежащий катет, а в знаменателе — гипотенуза. Прилежащие катеты — это образующие угол катеты, следовательно, cosAC = A/C и cosBC = B/C. Подсчитаем численные значения:

  • cosAC = A/C = 3/5 = 0,6;
  • cosBC = B/C = 4/5 = 0,8.

Теперь определим соответствующие углы при помощи нашего калькулятора. Углы с такими значениями косинусов равны соответственно 53,13 и 36,87 градуса. Правильность решения легко проверить, сложив величины углов:

90 + 53,13 + 36,87 = 180.

Расчет косинусов

Прямая задача определения численных значений функций — это вычисление косинуса в зависимости от величины угла. Для такой задачи можно использовать таблицу Брадиса — четырехзначные таблицы значений тригонометрических функций для целочисленных величин углов. Вычислим значения косинусов для основных углов. Для этого введем значения в ячейки «Косинус»:

  • cos30 = 0,866;
  • cos45 = 0,707;
  • cos60 = 0,5;
  • cos90 = 0;
  • cos120 = –0,5;
  • cos150 = — 0,866;
  • cos180 = — 1.

Это основные значения косинусов для стандартных величин углов треугольника. В целом значения тригонометрических функций периодически повторяются каждые 360 градусов.

Заключение

Тригонометрия — определенно важный раздел математики, функции которого повсеместно используются в современных технологиях. Наши калькуляторы прекрасно подходят для элементарных расчетов по геометрии и тригонометрии.

Функция COS — Служба поддержки Office

В этой статье описаны синтаксис формулы и использование функции COS в Microsoft Excel.

Описание

Возвращает косинус заданного угла.

Синтаксис

COS(число)

Аргументы функции COS описаны ниже.

Замечания

Если угол задан в градусах, умножьте его на ПИ()/180 или воспользуйтесь функцией РАДИАНЫ, чтобы преобразовать его в радианы.

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Формула

Описание

Результат

=COS(1,047)

Косинус 1,047 радиан

0,5001711

=COS(60*ПИ()/180)

Косинус 60 градусов

0,5

=COS(РАДИАНЫ(60))

Косинус 60 градусов

0,5

Отправить ответ

avatar
  Подписаться  
Уведомление о