Расчет импульсного трансформатора однотактного – Извините, такой страницы Uploads_Pdf Calculation_Pulsed_Transformer Calculation_Pulsed_Transformer Pdf не существует

Содержание

Расчет трансформатора однотактного прямоходового преобразователя

Опубликовал admin | Дата 12 октября, 2014

     В рубрике «Самостоятельные расчеты» я приводил упрощенный расчет трансформатора тока для преобразователей напряжения от Владимира Денисенко. Теперь хочу предложить вам одну из его программ «Forward» предназначенную для расчета трансформаторов однотактного прямоходового преобразователя.
Программа не требует инсталляции на компьютер, имеет русский интерфейс, удобная и понятная. Окно программы показано на скрин 1.


     Кнопки, требующие пояснения, при наведении на них курсора, имеют всплывающие подсказки. Все данные после расчета можно сохранить в текстовом файле и использовать его в будущем.

Сам файл с расширением sav программа по умолчанию размещает в директории, где находится сама программа. Открыть его можно любым текстовым редактором. Помимо всего этого в программе предусмотрена возможность самостоятельного ввода параметров новых сердечников, как российского, так и импортного производства. При необходимости параметры ферритов фирмы EPCOS можно найти в рубрике «Справочный листок» журнала «Радио» за 2001 год номера десять и одиннадцать. Справочные данные отечественных магнитопроводов можно взять из справочника «Малогабаритные магнитопроводы и сердечники» Сидоров И.Н., Христинин А.А., Скорняков С.В. 1989. Справочник свободно можно найти в сети.

     При нажатии на кнопку «помощь» открывается окно с дополнительными пояснениями работы с программой и помощь в выборе некоторых вводимых параметров для расчета трансформатора.

По любезному согласию Владимира скачать программу можно с моего сайта.

Скачать “Расчет трансформатора однотактного прямоходового преобразователя”

Forward2000.rar – Загружено 12257 раз – 395 KB

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:9 264


Расчет трансформатора для обратноходового импульсного источника питания (Flyback)

Популярность обратноходовых источников питания (ОИП, Flyback) последнее время сильно возросла в связи с простотой и дешевизной этого схемного решения – на рынке можно часто встретить интегральные схемы, включающие в себя практически всю высоковольтную часть такого источника, пользователю остается только подключить трансформатор и собрать низковольтную часть по стандартным схемам. Для расчета трансформаторов также имеется большое количество программного обеспечения – начиная от универсальных программ и заканчивая специализированным ПО производителей интегральных схем.

Сегодня же я хочу поговорить о ручном расчете импульсного трансформатора. «Зачем это нужно?», может спросить читатель. Во-первых, ручной расчет трансформатора подразумевает полное понимание процессов, происходящих в источнике питания, чего зачастую не происходит, если начинающий радиолюбитель рассчитывает трансформатор в специальном ПО. Во-вторых, ручной расчет позволяет выбирать оптимальные параметры функционирования источника (и иметь представление, какой параметр в какую сторону надо изменить для достижения заданного результата) еще на этапе разработки.

Итак, начнем. Структурная схема ОИП представлена на рис. 1. Он состоит из следующих основных функциональных узлов: ключ Sw, трансформатор Т1, выпрямитель выходного напряжения VD1 и C2, фильтр высокочастотных помех С1 и снаббер Snb.

Рис. 1

Работает такой источник следующим образом (см. упрощенные графики на рис. 2): в начальный момент времени t0 ключ Sw открывается, подавая входное напряжение Uin на первичную обмотку трансформатора Т1. В это время напряжение на нижнем выводе обмотки I (точка а) равно нулю (относительно отрицательного провода входного напряжения), в обмотке I начинает линейно нарастать ток, а на обмотке II появляется напряжение, пропорциональное коэффициенту трансформации Т1 (UoutInv). Но полярность этого напряжения оказывается отрицательной (на верхнем по схеме выводе обмотки II, точка b), поэтому диод VD1 закрыт и напряжение на выходной конденсатор С2 не проходит. За промежуток Ton (от t0 до t1) ток через обмотку I линейно нарастает до значения Imax, и энергия запасается внутри трансформатора Т1 в виде магнитного поля.


Рис. 2

В момент времени t1 ключ Sw резко закрывается, ток через обмотку I прекращается и в ней возникает ЭДС самоиндукции, направленная так, чтобы продолжить прекратившийся ток. В этот момент обмотка I сама становится источником напряжения. Так получается потому, что энергия в катушке индуктивности запасается в виде тока (на самом деле, в виде магнитного поля, но он пропорционален току через катушку, поэтому формула энергии в катушке A = LI²/2), но по закону сохранения энергии она не может исчезнуть бесследно, она должна куда-то перейти. Следовательно, ток в катушке не может прекратиться мгновенно, поэтому катушка сама становится источником напряжения, причем любой амплитуды (!) – такой, чтобы обеспечить сразу после закрытия ключа продолжение того же самого тока Imax. Это является первой важной особенностью катушки индуктивности, которую следует запомнить –

при резком прекращении тока в катушке, она становится источником напряжения любой амплитуды, пытаясь поддержать прекратившийся в ней ток, как по направлению, так и по амплитуде
. Какой же именно «любой» амплитуды? Достаточно большой, чтобы, например, вывести из строя высоковольтный ключ или образовать искру в свече зажигания автомобиля (да, в зажигании автомобиля использует именно это свойство катушек индуктивности).

Все, что описано выше так и происходило бы, если бы обмотка I была единственной обмоткой трансформатора Т1. Но в нем еще есть обмотка II, индуктивно связанная с I. Поэтому, в момент времени t1 в ней тоже возникает ЭДС, направленная так, что в точке b оказывается плюс по отношению к земле. Эта ЭДС открывает диод VD1 и начинает заряжать конденсатор C2 током I2max. Т.е. заряд конденсатора C2 и передача энергии в нагрузку происходит в тот момент времени, когда ключ Sw закрыт.

Именно поэтому источники питания, построенные по такому принципу, называют обратноходовыми – потому что в них нет прямой передачи энергии из высоковольтной части в низковольтную, энергия сначала запасается в трансформаторе, а потом отдается потребителю.

В интервал времени от t1 до t2 линейно спадающий от I2max до 0 ток I2 вторичной обмотки поддерживает магнитное поле внутри катушки в соответствии с законом сохранения энергии и не дает напряжению на первичной обмотке (т.к. они индуктивно связаны) вырасти до неконтролируемого значения. Напряжение на обмотке I в этот момент становится равно напряжению выхода, умноженному на коэффициент трансформации Т1. Однако, полярность этого напряжения такова, что оно складывается с входным напряжением Uin и прикладывается к закрытому ключу Sw. Т.е. на закрытый ключ Sw прикладывается напряжение больше входного! Это также является важной особенностью ОИП, которую следует запомнить.

В момент времени t2 энергия, запасенная в трансформаторе Т1 заканчивается, диод VD1 закрывается, напряжение в точке b становится равным нулю, в точке a – входному напряжению питания, и все процессы в схеме прекращаются до момента t3, когда весь цикл повторяется с самого начала. При этом, в интервалах времени t0-t1 и t2-t4 питание нагрузки осуществляется исключительно за счет энергии, запасенной выходным конденсатором С2

.

Описанный режим работы ОИП называется режимом разрывных токов – т.е. за интервал Toff (t1-t3) вся энергия, запасенная в трансформаторе Т1 передается в нагрузку, поэтому, в момент t3 ток через первичную обмотку I начинает нарастать с нуля. Существует также режим неразрывных токов, когда на момент t3 некоторая часть энергии еще продолжает находиться в трансформаторе Т1, и ток через обмотку I в момент t3 начинается не с нулевого значения. Данный режим имеет свои особенности, преимущества и недостатки, о которых мы поговорим в следующий раз.

Итак, какими основными особенностями обладает ОИП в режиме разрывных токов? Выпишем основные пункты:

  1. Передача энергии от источника к потребителю в ОИП не идет напрямую, энергия сначала запасается в трансформаторе, а затем передается в нагрузку. Это однозначно определяет фазировку первичной и вторичной обмоток, а также заставляет использовать только однополупериодный выпрямитель на выходе блока. Также отсюда следует неявный вывод 2, который, как показала моя личная практика, к сожалению, не до конца понимают даже достаточно опытные конструкторы блоков питания.
  2. Максимальная мощность, которую может выдать ОИП в нагрузку, кроме всего прочего, ограничена максимальным количеством энергии, которую может запасти трансформатор! А это, в свою очередь, определяется конструктивными особенностями сердечника и не зависит от обмоток и количества их витков (ниже в статье я рассмотрю данный «парадокс» отдельно и приведу математические доказательства). Эта особенность ограничивает применение ОИП там, где нужны большие выходные мощности.
  3. Низковольтная цепь ОИП состоит из диода, конденсатора и, возможно, дополнительных фильтрующих элементов. Однако, в ОИП первым всегда стоит диод, затем идет конденсатор и никак иначе.
  4. В установившемся режиме работы ОИП количество энергии, полученное первичной обмоткой I трансформатора Т1 за время Ton равно (без учета потерь) количеству энергии, отданному обмоткой II за время Toff. Поскольку скорость приема или отдачи энергии катушкой определяется напряжением на ней, то зависимость между напряжением «заряда» и «разряда» определяется именно интервалами Toff и Ton. Т.е., по сути, в самом сложном режиме работы блока Duty cycle (коэффициент заполнения, D), равный Ton/(Ton + Toff) определяет отношение обратного напряжения на обмотке I к напряжению питания Uin. Этот пункт будет пояснен подробнее ниже.
  5. По закону сохранения энергии, ток I2max, отдаваемый обмоткой II в нагрузку в момент времени t1 численно равен току Imax, только что протекавшему в первичной обмотке, умноженному на отношение количества витков в обмотке I к количеству витков в обмотке II (пояснение ниже).
  6. Импульсное значение тока I2max значительно превышает средний выходной ток блока питания (в 2.5 и более раз), поэтому на выпрямительном диоде VD1 может рассеиваться значительная мощность. Именно эта особенность ограничивает применение ОИП там, где нужны большие выходные токи.
  7. То же самое (высокое импульсное значение тока) относится и к вторичной обмотке II.
  8. Обратное напряжение на диоде VD1 в несколько раз выше выходного напряжения. Это происходит из-за того, что обычно обратное напряжение на первичной обмотке (которое является прямым для диода) выбирается в несколько раз ниже входного, поэтому входное (которое является обратным для диода) после трансформации оказывается в несколько раз выше выходного.

Пояснение к п. 4. Из физики мы помним формулу для катушки индуктивности:

U(t) = L*(dI(t)/dt),

которая означает, что напряжение на катушке прямо пропорционально ее индуктивности, умноженной на скорость изменения тока в ней. Что это нам дает? Прежде всего, то, что если мы прикладываем к катушке постоянное напряжение U, то скорость изменения тока в ней постоянна. Это позволяет переписать формулу для постоянного напряжения без дифференциалов:

U = L*(ΔI/Δt),

и именно в соответствии с этой формулой графики тока на рис. 2 прямые. Далее, если мы прикладываем напряжение Uin к катушке на время Ton, ток в ней возрастет до значения

Imax = Uin*Ton/L

Теперь мы хотим (в самом нагруженном режиме работы), чтобы вся энергия катушки, которую мы только что набрали, была передана в нагрузку за интервал Toff, т.е. на момент t3 ток в катушке должен упасть до нуля. Здесь для упрощения представим, что мы как подаем, так и снимаем напряжение/ток с одной и той же катушки I, позже я объясню, почему такое допущение возможно. Посчитаем, на какое напряжение мы можем «разряжать» катушку, чтобы ток в момент t3 достиг нуля:

Udis = L*Imax/Toff,

Подставляем и упрощаем:

Udis = L*Uin*Ton/(L*Toff) = Uin*Ton/Toff

Т.е. напряжение, на которое мы должны «разряжать» катушку в моменты закрытия ключа Sw зависит только от входного напряжения и интервалов «заряда»-«разряда». Вспомним формулу коэффициента заполнения D:

D = Ton/(Ton + Toff),

таким образом:

Udis = Uin*D/(1 – D)

Но, напряжение, на которое мы «разряжаем» катушку – это и есть то обратное напряжение, которое возникает в первичной обмотке в моменты закрытия ключа. Т.е. мы получили, что оно зависит только от входного напряжения и коэффициента заполнения D и определяется формулой:

Uinv = Uin*D/(1 – D)

При работе в реальных условиях значение коэффициента заполнения D будет меняться в зависимости от входного напряжения и нагрузки блока питания. Свое максимальное значение D будет принимать при минимальном входном напряжении и максимальной выходной мощности — этот режим работы считается самым сложным, и данное максимальное значение D и задается при проектировании блока. Что будет в те моменты, когда входное напряжение блока будет выше или нагрузка будет неполной? D будет принимать меньшие значения, т.к. от более высокого напряжения энергия быстрее «запасется» в первичной обмотке, или же (в случае меньшей нагрузки) надо просто «запасать» меньшее количество энергии. В любом случае, обратное напряжение на первичной обмотке будет всегда одинаковым, т.к. оно жестко связано с выходным напряжением, а то, в свою очередь, стабилизируется схемой. Итак, максимальное обратное напряжение на ключе равно:

Usw = Umax + Umin*D/(1 – D)

Это важный момент при проектировании ОИП, т.к. обычно максимальное обратное напряжение на ключе является исходным параметром, т.е. максимальный коэффициент заполнения D также является исходной величиной. На практике обычно применяют следующие максимальные значения D: 25% (1/4), 33% (1/3) и реже 50% (1/2). Как вы понимаете, в последнем случае максимальное обратное напряжение на ключе будет равно удвоенному минимальному входному напряжению, что усложняет выбор полупроводникового прибора. Более низкие максимальные значения D, в свою очередь, снижают максимальную мощность при том же токе Imax, затрудняют процесс управления ключом Sw и снижают стабильность работы блока.

Почему же здесь мы применили допущение, что мы как подаем энергию, так и снимаем ее с первичной обмотки I, и что будет в реальности, когда снимается энергия с катушки II? То же самое. Напряжение на выводах любой обмотки трансформатора пропорционально скорости изменения магнитного поля в сердечнике (а поле пропорционально току, поэтому напряжение пропорционально скорости изменения тока). Поэтому не важно, с какой обмотки мы будем снимать энергию, если мы будем делать это с одной и той же скоростью, магнитное поле в трансформаторе будет уменьшаться одинаково, а на выводах первичной обмотки будет одно и то же напряжение. Но на какое напряжение надо «разряжать» вторичную обмотку, чтобы снятие энергии происходило с той же самой скоростью? Для этого сначала рассмотрим ток во вторичной обмотке.

Пояснение к п. 5. Пусть обмотка I имеет N1 витков, в то время как обмотка II – N2. Магнитное поле создается током, проходящим через каждый виток катушки, т.е. оно пропорционально произведению I*N. Тогда, получаем Imax*N1 = I2max*N2 (исходя из того, что обе обмотки намотаны в абсолютно одинаковых условиях), отсюда начальный ток вторичной обмотки:

I2max = Imax*N1/N2

Итак, ток во вторичной обмотке будет в N1/N2 раз выше, чем в первичной. Но на какое напряжение мы должны «разряжать» вторичную обмотку, чтобы к моменту t3 потратить всю энергию, запасенную в трансформаторе? Очевидно, что делать это мы должны с точно такой же скоростью; т.е. в каждый отдельный момент времени трансформатор будет терять одно и то же значение энергии dA(t). Но в первом случае dA(t) = Udis*I1(t)*dt (получено из A = W*T, W = U*I), а теперь это будет dA(t) = Uout*I2(t)*dt. Приравняем эти две функции:

Uout *I2(t) = Udis*I1(t), следовательно, в самом начале «разряда» моментальные мощности разряда должны быть равны:

Uout*I2max = Udis*Imax,

Uout = Udis*Imax/I2max = Udis*Imax/(Imax*N1/N2) = Udis*N2/N1

Т.е. для того, чтобы потратить всю энергию трансформатора к моменту t3, мы должны «разряжать» вторичную обмотку II на напряжение Udis*N2/N1, при этом ток разрядки будет линейно падать от Imax*N1/N2 до нуля. Таким образом, мы установили связь между выходным напряжением блока, количеством витков в обмотках и обратным напряжением на первичной обмотке трансформатора.

На этом сугубо теоретическая часть заканчивается, и мы можем перейти к практике. Первый вопрос, который, скорее всего, возникает на данный момент у читателя – это с чего вообще начать разработку ОИП? Ниже я приведу рекомендованную последовательность шагов. Начнем с ситуации, когда трансформатор планируется изготовить полностью самостоятельно (на него нет жестких ограничений).

  1. Определяем выходные напряжения и токи источника питания.
  2. Увеличиваем выходные напряжения на величину, падающую на выпрямительных диодах (VD1). Лучше всего воспользоваться справочной информацией, но в первом приближении можно брать 1В для обычных кремниевых диодов и 0.3В для диодов Шоттки. Особую точность следует соблюдать, когда ОИП имеет несколько выходных обмоток с разным напряжением, т.к. стабилизовать напряжение возможно только на одной из них.
  3. Считаем суммарную выходную мощность трансформатора.
  4. Считаем расчетную входную мощность блока как Pin = Pout/0.8 (здесь берется КПД блока 80%).
  5. Определяем частоту преобразования F. Обычно выбирается частота от 20КГц до 150КГц. Частоты ниже 20КГц могут быть слышны человеческому уху (блок будет «пищать»), частоты выше 150КГц накладывают более серьезные ограничения на элементную базу, также увеличиваются потери на переключение полупроводников (ключа и диодов). Увеличение частоты преобразования позволяет уменьшить габариты трансформатора, наиболее распространенный диапазон частот для ОИП: от 66 до 100 Кгц.
  6. Вычисляем максимальное входное напряжение, от которого нам придется работать. Обычно оно вычисляется как выпрямленное напряжение сети +20%, т.е. Umax = Uсети*1.7 (391В для сети 230В). На это напряжение также должен быть рассчитан конденсатор входного фильтра (не менее 400В в данном случае).
  7. Вычисляем минимальное входное напряжение, от которого нам придется работать. Обычно вычисляется как минимальное допустимое рабочее напряжение -20%, минус просадка напряжения на фильтрующем конденсаторе за полупериод входного напряжения. Для сети 230В и емкости конденсатора входного фильтра из расчета не менее 1мкф на 1 ватт нагрузки, можно брать (в среднем) значение Umin = 220В. Если представить, что напряжение на конденсаторе вообще не просаживается от одного полупериода входного напряжения до другого, то Umin можно взять 260В.
  8. Определяем коэффициент заполнения D исходя из максимально допустимого обратного напряжения на ключе (считается по формуле Uinv = Umax + Umin*D/(1 – D)).
  9. Рассчитываем количество энергии, которую необходимо передать во вторичную обмотку за один импульс: Aimp = Рin*1s/F = Рin/F.
  10. Решаем систему уравнений для самого тяжелого режима работы: A = LImax²/2, Umin = LImax*F/D, получаем L = Umin²*D²/(2*Aimp*F²), Imax = Umin*D/(L*F) – это будет требуемая индуктивность первичной обмотки и максимальный ток, протекающий через нее.
  11. Исходя из полученного Imax выбираем ключ.
  12. Если Imax получился несколько больше, чем может обеспечить имеющийся (выбранный) ключ, меняем исходные параметры – увеличиваем D (насколько возможно исходя из допустимого обратного напряжения ключа), увеличиваем емкость фильтрующего конденсатора, чтобы поднять Umin. На первый взгляд может показаться удивительным, но максимальный ток в первичной обмотке не зависит от частоты – если всё подставить в формулы, получим Imax = 2*Pin/(Umin*D). Исходя из этой формулы, можно было рассчитать максимальный ток и на этапе 8 (сразу после выбора D), но там было бы сложно объяснить, откуда взялся такой расчет.
  13. Если значение Imax все равно оказывается больше допустимого и увеличить его никак нельзя, следует рассмотреть конструкцию ОИП в режиме неразрывных токов.
  14. Исходя из требуемой индуктивности первичной обмотки и максимального тока в ней, выбираем сердечник трансформатора, рассчитываем необходимый зазор и количество витков первичной обмотки (формулы будут ниже в статье).
  15. По формуле N2 = Uout*N1*(1 – D)/(Umin*D) рассчитываем количество витков вторичной обмотки.
  16. Определяем среднеквадратичное значение токов в обмотках трансформатора по формуле Irms = Imax*SQRT(D/3), исходя из которых рассчитываем диаметр провода, необходимого для намотки. Чаще всего в импульсных источниках питания применяется плотность тока от 2 до 5 А/мм².
  17. Мотаем трансформатор по всем правилам намотки трансформаторов для ОИП.
  18. Для того, чтобы убедиться в правильности намотки, измеряем индуктивность первичной обмотки.

Теперь немного рассмотрим сам трансформатор и его конструкцию. Традиционно для импульсных источников питания трансформатор изготавливается на каком-либо сердечнике, выполненном из материала с высокой магнитной проницаемостью. Это позволяет при том же самом количестве витков обмоток сильно увеличить их индуктивность, т.е. сократить количество витков для достижения заданной индуктивности, и, следовательно, уменьшить габариты намотки. Однако, применение сердечника добавляет и недостатки – за счет магнитного гистерезиса в сердечнике теряется некоторая часть энергии, сердечник нагревается, причем потери в сердечнике растут с увеличением частоты (еще одна причина, из-за которой нельзя сильно повышать частоту преобразования). Также добавление сердечника вносит новое, ранее нигде не озвучиваемое ограничение – максимально допустимую плотность потока магнитной индукции Bmax. На практике это проявляется в том, что если увеличивать ток через обмотку, в определенный момент времени, когда ток достигнет определенного максимального значения, сердечник войдет в насыщение и дальнейшее увеличение тока не будет вызывать такое же как раньше увеличение магнитного потока. Это, в свою очередь, приведет к тому, что «относительная индуктивность» обмотки резко упадет, что вызовет еще более быстрое нарастание тока через нее. На практике, если не предусмотреть защиту ключа Sw ОИП от входа сердечника в насыщение, ключ просто сгорит от перегрузки по току. Поэтому во всех схемах ОИП, за исключением простейших блокинг-генераторов, применяется контроль тока через ключ Sw и досрочное закрытие ключа при достижении максимально допустимого тока через первичную обмотку.

Насколько же велико это максимальное значение плотности потока магнитной индукции? Для наиболее распространенного материала сердечников – феррита – оно считается равным 0.3Т. Это – среднее значение, оно может отличаться для каждого конкретного материала, поэтому здесь неплохо обратиться к справочнику. Также, оно зависит от температуры сердечника и, как вы, наверное, уже догадались, падает с ее увеличением. Если вы проектируете ОИП, предназначенный для работы в экстремальных условиях, где температура сердечника может доходить до 125 градусов, уменьшайте Bmax до 0.2Т.

Основная формула, которой вам придется пользоваться при расчете трансформаторов – это индуктивность обмотки по ее габаритам:

L = (μ0*μe*Se*N²)/le, где

μ0 – абсолютная магнитная проницаемость вакуума, 4πе-7,
μe – эффективная магнитная проницаемость сердечника,
Se – эффективная площадь сечения магнитопровода, м².
N – количество витков
le – длина средней магнитной линии сердечника, м

Плотность потока магнитной индукции в сердечнике:

B = (μ0*μe*I*N)/le, где

I – ток через обмотку, А

Таким образом, исходя из максимальной допустимой плотности потока магнитной индукции, максимально допустимый ток для обмотки будет равен:

Imax = (Bmax*le)/(μ0*μe*N)

А теперь еще один очень важный момент – на практике, если подставить реальные данные трансформатора в вышеприведенные формулы, окажется, что максимально допустимый ток в первичной обмотке оказывается в несколько раз меньше того, который нам нужен! Т.е. сердечник будет введен в насыщения еще до того, как мы сможем «вкачать» в него требуемую энергию Aimp. Так что же делать, не увеличивать же габариты трансформатора до неприличных значений?

Нет. Надо вводить в сердечник немагнитный зазор! Введение немагнитного зазора сильно снижает эффективную магнитную проницаемость сердечника, позволяя пропускать через обмотки значительно больший ток. Но, как вы понимаете, это потребует большего числа витков для достижения требуемой индуктивности обмотки.

Рассмотрим формулы для сердечника с зазором. Эффективная магнитная проницаемость сердечника с зазором:

μe = le/g, где

g – суммарная толщина зазора, м.

Следует отметить, что данная формула справедлива только если получаемая μe много меньше исходной магнитной проницаемости (несколько раз), а g много меньше размеров поперечного сечения сердечника. Итак, рассмотрим формулу индуктивности обмотки на сердечнике с зазором:

L = (μ0*Se*N²)/g

Формула от введения зазора стала только проще. Максимально допустимый ток через обмотку:

Imax = (Bmax*g)/(μ0*N)

Ну и последняя формула, которую можно вывести и самостоятельно. Размер зазора для заданного тока:

g = (I*μ0*N)/Bmax

А теперь сделаем интересный вывод. Как вы помните, энергия, запасенная в катушке, выражается формулой A = LI²/2. Так какую максимальную энергию можно запасти в каком-то абстрактном сердечнике? Подставим данные в формулы.

Amax = (μ0*Se*N²)*(Bmax*g) ²/((μ0*N) ²*2g) = Se*g*Bmax²/2μ0

Сейчас вы можете удивиться, но максимальная энергия, которую можно запасти в сердечнике, не зависит от того, какие обмотки на нем намотаны! Но это и логично, ведь энергия выражается в магнитном поле, а обмотки лишь позволяют его менять в ту или другую сторону! Количество витков в обмотках определяет только скорость, с которой магнитная индукция может достигнуть своего максимального значения при данном подведенном напряжении, но это максимальное значение определяется только конструкцией сердечника!

Данный вывод имеет огромное значение при проектировании ОИП на унифицированных сердечниках. Если перед вами стоит именно такая задача, то, прежде всего, вам необходимо рассчитать, какое максимальное количество энергии способен «впитать» выбранный сердечник за один импульс, чтобы понять, подходит ли он для вашей мощности блока. Как вы понимаете, в этом случае максимальную мощность блока можно повысить только за счет повышения частоты преобразования – чем чаще мы будем перекачивать энергию Amax от входа на выход, тем большую мощность блока в результате сможем получить.

Также, из полученной формулы видно, что количество энергии, которое может «уместиться» в сердечнике прямо пропорционально немагнитному зазору! Это позволяет использовать маленькие сердечники на больших мощностях за счет увеличения зазора в них. Ограничением теперь будет только физические размеры – увеличение зазора вызывает уменьшение магнитной проницаемости, что требует большее количество витков.

А теперь вернемся к структурной схеме ОИП на рис. 1. В ней остались два блока, о которых я ничего не сказал – это конденсатор С1 и снаббер Snb.

Назначение конденсатора С1 – заземление выходной части блока по высоким частотам. Дело в том, что любой трансформатор, даже намотанный по всем правилам с экранами, имеет какую-то межобмоточную емкость. Прямоугольное высокочастотное напряжение огромной амплитуды из точки а проходит через эту емкость в выходные цепи блока. Конденсатор С1, имеющий емкость намного больше емкости трансформатора Т1, заземляет выход блока по высоким частотам. Значение емкости этого конденсатора в ОИП чаще всего выбирают в районе 2нф, напряжение – около киловольта. Если предполагается жесткое заземление выхода блока (например, используется только розетка с заземлением), С1 можно не ставить.

Необходимость в Снаббере Snb также вытекает из неидеальности трансформатора Т1, но уже совсем другого рода. Не смотря на то, что обмотки I и II индуктивно связаны между собой, эта связь не составляет 100%. В схемотехнике ОИП принято говорить, что обмотка I представляет собой две части, соединенные последовательно, где первая полностью индуктивно связана с обмоткой II, а вторая – полностью изолирована от нее. Эту вторую часть обмотки I называют «индуктивностью рассеяния».

Когда в момент t1 ток в первичной обмотке (обоих частях ее) резко прекращается, индуктивность рассеяния также пытается его продолжить. А так, как она не связана ни с какой другой обмоткой, она генерирует высоковольтный импульс, прикладываемый к закрытому ключу Sw. Энергия этого импульса во много раз меньше полезной энергии Aimp (чем лучше трансформатор, тем она меньше вообще), но и ее может оказаться достаточно, чтобы повредить ключ (в случае с биполярным транзистором, например, ее вполне хватит для лавинного пробоя). Для защиты ключа от этого импульса, он гасится на специальном схемном решении.


Рис. 3

Самый простой вариант – RCD снаббер, выполненный из диода, конденсатора и резистора (см. рис. 3). Обратное напряжение, возникающее на обмотке I, открывает диод VD и начинает заряжать конденсатор С. В результате, вся энергия импульса передается в конденсатор. В перерывах между импульсами конденсатор разряжается через резистор R. Т.е. энергия, снимаемая с индуктивности рассеяния, превращается в конечном счете в тепло на резисторе R, поэтому мощность этого резистора должна быть значительной (достигает единиц ватт). Преимуществом снаббера можно считать его схемную простоту, и то, что часть энергии из конденсатора С можно выкачать обратно в трансформатор Т применяя медленный диод VD, но эти процессы уже несколько сложней нашей простой статьи. Основным же недостатком снаббера является то, что на нем падает и полезная мощность! Ведь рабочее обратное напряжение первичной обмотки Vinv также заряжает конденсатор до этого значения, т.е. полезная мощность Uinv²/R теряется впустую.

Схемным решением, лишенным этого недостатка является супрессор. Он представляет собой последовательно соединенный быстрый диод VD1 и мощный и быстрый стабилитрон VD2. Когда индуктивность рассеяния генерирует свой высоковольтный импульс, он открывает диод VD1, пробивает стабилитрон VD2 и энергия импульса рассеивается на нем. Стабилитрон VD2 выбирается с большим напряжением пробоя, чем обратное напряжение Uinv, поэтому он не рассеивает полезной мощности блока. К недостаткам супрессора можно отнести более высокий уровень электромагнитных помех, связанный с резким открытием и закрытием полупроводниковых приборов.

Что будет, если этот высоковольтный импульс не погасить ничем? В случае биполярного ключа, скорее всего, в нем возникнет лавинный пробой и блок питания перейдет в режим кипятильника. Современные же полевые транзисторы устойчивы к лавинному пробою и позволяют рассеивать некоторое количество энергии на стоке (это описано в документации), поэтому такой транзистор может работать и без снаббера или супрессора – его роль будет выполнять сам транзистор. Более того, я встречал некоторые дешевые китайские блоки питания, в которых так и было сделано. Однако, я настоятельно не рекомендую такой режим работы, т.к. он дополнительно снижает надежность блока. Супрессорный диод (стабилитрон) стоит очень дешево и рассчитан на колоссальные импульсные мощности (600W, 1.5KW), так почему бы не применять его по назначению?

Также из вышеописанного следует еще один вывод. Независимо от того, решили ли вы применять снаббер или супрессор, обратное напряжение на закрытом ключе будет еще выше, чем рабочее рассчитанное значение Usw! Это следует иметь в виду при выборе ключа.

Обычно современные ключевые транзисторы и микросхемы имеют допустимое обратное напряжение 600 – 800 вольт. При Umax = 391В, Umin = 220В, обратное напряжение на ключе Usw будет иметь следующие значения (в зависимости от D): D = 25%, Usw = 464B; D = 33%, Usw = 501B; D = 50%, Usw = 611B. Это означает, что для ключей с максимальным обратным напряжением 600В следует выбирать только D = 33% или меньше. Для ключей с обратным напряжением 700В можно выбирать D = 50%.

Ну и в завершении статьи приведу простой пример расчета ОИП. Допустим, мы хотим сделать простой блок питания, позволяющий получить на своем выходе 12В 1А. Рассчитаем его по пунктам:

  1. Выход блока – 12В 1А.
  2. До выходного диода (будем применять обычный кремниевый) должно быть 13В.
  3. Выходная мощность трансформатора – 13Вт.
  4. Расчетная входная мощность блока Pin = 13/0.8 = 16Вт.
  5. F = 100 КГц.
  6. Umax = 391В.
  7. Umin = 220В (емкость конденсатора входного фильтра – 22мкф).
  8. D = 33%, Uinv = 110В, Usw = 501В. Будем ориентироваться на ключи с обратным напряжением 600В.
  9. Aimp = 16/100000 = 1.6e-4Дж = 160мкДж.
  10. L = 1.65е-3Гн = 1.65мГн, Imax = 0.44А
  11. Производим выбор сердечника, расчет параметров намотки и зазора.

А теперь, для сравнения рассчитаем тот же ОИП для случая, когда допустимое напряжение сети может быть в интервале 85-230В. В чем будут отличия?
  1. Umax = 391B
  2. Umin = 85B (емкость конденсатора фильтра надо будет увеличить до 47мкф)
  3. D = 60%, Uinv = 128В, Usw = 519В, Будем ориентироваться на ключи с обратным напряжением 600В.
  4. Aimp = 16/100000 = 1.6e-4Дж = 160мкДж.
  5. L = 813мкГн, Imax = 0.63А

Заметьте, что параметры максимального тока через ключ изменились не столь значительно — с 0.44А до 0.63А, индуктивность упала в два раза, однако диапазон допустимых входных напряжений расширился очень существенно. В этом заключается еще одно преимущество ОИП — легкость в создании источников питания, работающих от широкого диапазона входных напряжений.

Возможно, в данной статье не до конца рассмотрены все нюансы построения ОИП, однако ее объем и так получился больше, чем планировалось. Но тем не менее, я надеюсь, что она сможет помочь начинающим радиолюбителям понять принципы и самостоятельно создавать обратноходовые источники питания.

Расчет обратноходового импульсного трансформатора: формулы, схемы, особенности

Обратноходовый импульсный трансформатор представляет собой устройство, необходимое для преобразования напряжения с гальванической развязкой. Сфера применения прибора обширная, по большей части это питание аппаратуры с малой и средней мощностью. Важно проводить тщательный расчет используемого обратноходового импульсного трансформатора, так как от этого полностью зависит эффективность процесса.

Что представляет собой устройство: составляющие части и принципиальная схема

Одноходовые трансформаторы импульсного типа представляют собой довольно распространенное оборудование. Дело в том, что при относительно малых показателях мощности они обеспечивают оптимально питание устройств.

Главным звеном принципиальной составляющей считают дроссель, выступающий или получателем энергии от первички или передатчиком энергии во вторичку. Именно от функционала дросселя зависит этап работы — первичный или вторичный цикл. Если дроссель подсоединяется к первичной обмотке, то появляется напряжение и ток нарастает равномерно. Энергия поступает в магнитопровод, а ключом считается транзистор. Диод ограничивает вторичная обмотка.

Если задействовать ключ, то ток пропадет на первичке, но дроссельный поток мгновенно изменения не покажет, следовательно, на вторичке образуется уменьшающийся последовательно ток. Именно он питает трансформатор или дроссель устройства. Понятно, что питание за счет энергии от конденсатора происходит на первом этапе. На втором же происходит ее преобразование и падение, которое можно рассчитать. Обычно этапы подачи и спада повторяются интервале от 20 КГц до 1 МГц.

Принципиальная схема трансформатора

Энергетические характеристики

Если рассматривать принципиальную схему устройства, то видно, что происходят спады и увеличения в линейном соотношении. Именно качеством и продолжительностью импульсов определяются характеристики выходного напряжения. Проводится модуляция для цепей обратной связи. Энергетические показатели трансформатора такого типа индивидуальны в каждом конкретном случае, но всегда устанавливаются ограничители, ведь прибор работает на максимальной мощности.

В результате этого микросхемы перестают обрабатывать импульсы. Создаются помехи и шумы, которые значительно влияют в негативную сторону на ход работы. Используется специальные модуляторы, которые сокращают энергетические потери импульсного трансформатора.

Принцип действия аппарата

Принцип действия устройства основан на импульсной подачи энергии. Оборудование разделяется на две обширных группы: с сигмамодуляцией и импульсной модуляцией. Первые отличаются тем, что они изменяются соотношения продолжительности импульсов с их частотой. Момент выбирается, когда закончится подача энергии и включится транзистор.

Продолжительность функционирования зависит от характеристик выходного напряжения. Если говорить о вариантах с широтно-импульсной модуляцией, то тут частота идентичная и постоянная. Напряжение — характеристика стабильная, определяется оно длительностью импульса к периоду его прохождения.

Импульсный трансформатор

Также принцип работы определяется тем непрерывный или прерывистый поток магнитного поля установлен. Нельзя сказать, что какой-то из них лучше, просто это определяет вариативность использования.

Любой одноходовый импульсный трансформатор имеет как достоинства, так и недостатки. Среди преимуществ использования выделяют:

  • минимальный вес и размеры, если сравнивать с другим видом оборудования, предназначенным для работы с частотой около 50 Гц;
  • не нужна защита от короткого замыкания, так как оно произойти теоретически не может;
  • сокращение использования меди, в результате чего трансформатор имеет минимальную цену;
  • изменение показателей в зависимости от характеристик питающей цепи;
  • нет помех, передача туда и обратно исключена из-за конструктивных особенностей.

Но, как и любое другое оборудование, обратноходовый импульсный трансформатор имеет и недостатки. К их числу относятся:

  • максимальный запас энергии составляет 200 Вт — показатель ограничен работой дросселя;
  • нет возможности работы на холостом ходу, то есть нагрузка подключается в обязательном порядке;
  • возникают электромагнитные помехи и передаются, так как они есть в нагрузке, а она нужна.

Так как недостатки не так существенны, если сравнивать их с преимуществами, трансформаторы такого типа пользуются популярностью.

Обратноходовой трансформатор

Область применения обратноходового трансформатора

Обратноходовый трансформатор пользуется в ряде случаев, когда требуется питание различной аппаратуры с показателями мощности до 200 Вт. К числу такой относят:

  • личные или офисные компьютеры;
  • техника, гаджеты и периферия;
  • типы сберегающих энергию ламп или системы ламп;
  • зарядные устройства для гаджетов и техники.

Трансформаторы обратно хода часто используются в комплекте с другими устройствами. Например, с ними изготовляются конструктивные узлы инверторных источников сварочного аппарата.

Для чего проводят ручной расчет трансформатора

Расчет преобразователя необходим по ряду причин. В первую очередь следует понимать, что он работает с устройствами с относительно небольшими мощностями, даже минимальное колебание показателя может привести к поломке. Второе — детальный просчет характеристик ручным образом позволит минимизировать помехи и энергетические потери. В результате это экономится бюджет.

Трансформатор

Как сделать расчет трансформатора однотактного обратноходового источника питания

Расчет самостоятельный необходим. Делается по определенному алгоритму. Начинается процесс с определения минимальных и максимальных значений тока, затем происходит расчет емкости конденсатора и трансформаторов. Отдельно подбираются конструктивные узды и диоды, а в самом конце рассчитывается коэффициент полезного действия трансформатора.

Определение максимального и минимального значений выпрямленного сетевого напряжения

Есть формулы для max выпрямленного сетевого U: квадратный корень из двух, умноженный на U максимального значения сети. Равняется показатель 226 для этого случая. Минимальный — квадратный корень из двух, умноженный на U минимально значения напряжения минус 2, умноженное на U прямого падения напряжения.

Выбор выпрямительных диодов

Расчет обратного показателя элементарный — он равен максимуму, который прописан выше, а именно — 226 В. Стандартная схема — U н *I н /2 U входного мин. *n,

где U н — напряжение нагрузки среднее, I н — ток нагрузки, а n – коэффициент преобразователя (принимается равным около 0,9).

Стандартно показатели для случая I пр. max = 10 A; U ОБР. MAX = 560 В.

Расчет емкости конденсатора

Емкость конденсатора рассчитывается по формуле: 0,5* U н* I н/n* U сети мин.*f сети*m* U, f сети представляет собой частоты в 400 Гр,  где m – полупериоды на транзит показателя U.

Расчет максимального коэффициента заполнения

Максимум данный показатель просчитывается как дробь, в верхней части которой находится значение напряжения дополнительное (которое образовалось в закрытом состоянии после передачи энергии на нагрузку), в в нижней сумма дополненного напряжения с разностью входного U min и падающего на транзисторе трансформатора.

Расчет трансформатора

Зная, как вычислить максимальный ток обмотки и коэффициент трансформации, количество витков проводится расчет трансформатора. Расчет тс позволяет вычислить оптимальный показатель диаметра проводов обмотки первичной и вторичной, чтоб соблюдались необходимые условия.

Для упрощения работы создают табличную форму, куда вписывают данные об обмотках и допустимой их плотности. Опираясь на данные подбирают толщину и наименование. На этом этапе потери тс в целом принимаются равными потерям обмоток.

Трансформаторы импульсные

Выбираем транзистор VT1

Путем опытных расчетов и выявления максимум напряжения для стандартного случая используют КП809Б1 с показателями 500 В, 25 А. Потери в нем равны сумме общих — не более 6,7 Вт.

Выбор выпрямительного диода VD9

Принимаем во внимание, что I VD9 = I 2 = 10,8 А. U обр. макс=3,5 кВ, соединяются последовательным образом. Падание напряжения 1В.

Выбор элементов узла управления

Напряжение запуска — 16 В, R7=67 кОм, R 9= 2,2 кОм, R 12=22 Ом. Мощность вычисляется по номиналу и выходному току схемы.

Расчет демпфирующей цепи

Ls принимаем 1,5 мкГн. Выбрав ОМБГ-1 с емкостью 0,5 мкф, то сопротивление резистора составит 140 В. Резистор подбирается по формуле E LS(энергия индуктивности)  =E CД (поглощения цепи) =Е С13.

обратноходовой импульсный трансформатор

Расчёт КПД

КПД вычисляется по формуле  U н* Iн/ U н Iн +Ре1 +Pvt1+Pvd9+Pr7+Py). Если расчеты произведены верно, то оно должно сравняться с указанным в первом пункте макс и мин.

Самостоятельный расчет трансформатора обратноходового не так сложен, как может показаться на первый взгляд. Проводится он самостоятельно не только для сопоставления КПД, но для проверки эффективности резисторов. В среднем на подсчет ручным способом выделить нужно около 2-3 часов новичку.

2.Расчет трансформаторов

2.1 Расчет трансформатора однотактного прямоходового

преобразователя

Схема однотактного прямоходового преобразователя с размагничивающей обмоткой показана на рисунке 2, временные диаграммы его работы – на рисунке 3.

Рисунок 2 – Схема однотактного прямоходового преобразователя

Рисунок 31 – Временные диаграммы работы ИИП

Работает преобразователь следующим образом.

На интервале [0; tu] транзистор VT открыт управляющим током iБ1. К первичной обмотке 1–2 трансформатора Т приложено напряжение u1 = Uп. Полярности напряжений на размагничивающей обмотке 3–4 и на вторичной обмотке 5–6 (u2) таковы, что диоды VD1 и VD3 закрыты, а диод VD2 открыт. Через вторичную обмотку протекает линейно нарастающий ток iL дросселя L, среднее значение которого равно току нагрузки IН. При достаточно большой величине L можно считать, что iL = iН (что обычно выполняется).

Считая трансформатор идеальным, можем записать:

, (2.1.1)

где – коэффициент трансформации от первичной обмотки ко вторичной;

w1 и w2 – числа витков первичной и вторичной обмоток соответственно;

I’н – приведенный ток нагрузки.

Перемагничивание сердечника трансформатора происходит по предельному частному циклу с Вмин = Вг. На интервале [0; tu] индукция В линейно нарастает от Вг до Вмакс.

При запирании транзистора индукция начинает уменьшаться, что сопровождается сменой полярности напряжений на обмотках трансформатора. При этом диод VD1 открывается, диод VD2 закрывается. К размагничивающей обмотке 3–4 оказывается приложенным напряжение питания Un, под действием которого сердечник трансформатора начнет размагничиваться (индукция начнет линейно убывать).

Обычно число витков размагничивающей обмотки берется равным числу витков wi первичной обмотки. Тогда на основании закона полного тока ток диода VD1 может быть определен следующим образом:

, (2.1.2)

где Н – напряженность магнитного поля в сердечнике трансформатора;

1ср – длина средней магнитной линии.

Учитывая, что iμ << i1, а следовательно, и i VD1 << i1, можно размагничивающую обмотку при выборе сердечника трансформатора не принимать в расчет.

Поскольку амплитуды положительной и отрицательной полуволн напряжения u1 первичной обмотки равны друг другу, то и время намагничивания сердечника равно времени его размагничивания (tu). Максимально возможное время намагничивания (Т – период коммутации транзистора), так как при большем его значении сердечник не будет успевать размагничиваться.

Размагничивающая обмотка вместе с диодом VD1 обеспечивает фиксацию напряжения коллектор – эмиттер транзистора на уровне 2Un. На этапе размагничивания диод VD3 открыт током дросселя L.

Для расчета трансформатора необходимо знать амплитуду напряжения UA2 на вторичной обмотке. Ее можно получить из регулировочной характеристики преобразователя, которая для режима безразрывного тока дросселя L имеет вид

. (2.1.3)

Для того чтобы иметь возможность регулирования (в том числе и автоматического регулирования) напряжения UH, целесообразно номинальное значение tu выбрать равным Т/4.

Теперь можно приступить к расчету трансформатора. Допустим, необходимо в нагрузке RH получить напряжение Uн = 5 В, ток IН = 1А. Выберем частоту преобразования f = 20 кГц (Т = 50 мкс).

При tu = Т/4 найдем

. (2.1.4)

Найдем действующее значение тока I2 вторичной обмотки (по-прежнему при tu = Т/4):

. (2.1.5)

Расчетная мощность Р2 вторичной обмотки составит:

(2.1.6)

Поскольку размагничивающая обмотка пока в расчет не принимается, то трансформатор можно рассматривать как двухобмоточный, а для такого трансформатора можем записать:

(2.1.7)

где РГ – габаритная мощность трансформатора.

Далее используем формулу габаритной мощности для определения величины:

(2.1.8)

Относительная длительность импульса q составит:

. (2.1.9)

В качестве материала сердечника будем использовать феррит марки 1500НМЗ, у которого В = 0,148 Тл при Н = 40 А/м, Вг = 0,08 Тл (см. приложение Г). Для любого феррита kс = 1. Для ориентировочных расчетов можно принять ко ≈ 0,3, j ≈ 3 А/мм2. Тогда по формуле (2.1.8) найдем

(2.1.10)

Полученному значению SCSO удовлетворяет сердечник, составленный из двух колец К20х12х6, у которого Sc = 48 мм2, So = 113 мм2, SCSO = 5,4∙10-9 м4.

Выбрав сердечник, можем определить число витков первичной обмотки

. (2.1.11)

Допустим, питание преобразователя осуществляется от источника с напряжением Un = 27 В. Тогда получим

(2.1.12)

Число витков вторичной обмотки

(2.1.13)

Найдем действующее значение тока I1 первичной обмотки, исходя из того, что для двухобмоточного трансформатора расчетные мощности первичной и вторичной обмоток равны друг другу:

.(2.1.14)

Найдем сечение и диаметры проводов первичной и вторичной обмоток:

;(2.1.15)

.(2.1.16)

Полученным значениям сечений соответствуют следующие диаметры проводов:

;(2.1.17)

.(2.1.18)

Будем использовать провод марки ПЭТВ-2 с диаметрами по меди d1 = 0,400 мм и d2 = 0,450 мм (диаметры по изоляции d1из= 0,460 мм и d2из =0,510 мм соответственно).

Найдем диаметр провода размагничивающей обмотки (напомним, что число витков этой обмотки выбрано равным w1 = 103 вит.), для этого необходимо оценить действующее значение тока I3 в этой обмотке. В результате имеем

, (2.1.19)

где Iμмакс – максимальное значение намагничивающего тока. При tu = Т/4 формула примет вид

. (2.1.20)

Величину Iμ макс найдем из формулы:

Н·lср=w1·Iμ, (2.1.21)

подставив Нмакс = 40 А/м, 1ср = 50,265 мм (для К20х12х6)

.(2.1.22)

По формуле (2.1.20) получим

.(2.1.23)

Найдем сечение S3 и диаметр d3 провода размагничивающей обмотки

;(2.1.24)

. (2.1.25)

Для провода марки ПЭТВ-2 ближайшим к полученному значению диаметра является диаметр da = 0,100 мм (диаметр по изоляции d3h4 = 0,128 мм).

Проверим размещаемость обмоток в окне сердечника. В качестве изоляции сердечника будем использовать стеклолакоткань марки ЛСЭ-105/130 толщиной Δиз = 0,10 мм, уложенную с 50%-ным перекрытием (рисунок 4). Предварительно у сердечника должны быть сняты острые кромки.

Рисунок 4 – Стеклолакоткань марки ЛСЭ-105/130

Первой будем мотать первичную обмотку. Найдем диаметр первого слоя

, (2.1.26)

где d – внутренний диаметр кольцевого сердечника.

По формуле (2.1.26) получим

.(2.1.27)

Длина первого слоя:

.(2.1.28)

Найдем максимальное число витков в первом слое без учета неплотности намотки

(2.1.29)

Видим, что первичная обмотка не укладывается в один слой, поэтому переходим к расчету второго слоя. Межслоевую изоляцию укладывать не будем, так как питающее напряжение Un невелико (27 В). Диаметр второго слоя:

. (2.1.30)

По формуле (2.1.30) найдем

. (2.1.31)

Длина второго слоя:

. (2.1.32)

Максимальное число витков во втором слое без учета неплотности намотки:

(2.1.33)

Таким образом, первичная обмотка уложится в два слоя. В первом слое можно разместить, к примеру, 60 витков, во втором – 43. Поверх первичной обмотки наложим межобмоточную изоляцию из стеклолакоткани ЛСЭ-105/130 толщиной 0,10 мм с 50%-ным перекрытием. Следующей будем мотать размагничивающую обмотку. Диаметр третьего слоя

(2.1.34)

По формуле (2.1.34) получим

. (2.1.35)

Длина третьего слоя:

. (2.1.36)

Максимальное число витков в третьем слое без учета неплотности намотки:

(2.1.37)

Ясно, что размагничивающая обмотка наверняка поместится в третьем слое. Переходим к расчету размещаемости вторичной обмотки. Поверх размагничивающей обмотки наложим межобмоточную изоляцию из стеклолакоткани ЛСЭ-105/130 толщиной 0,10 мм с 50%-ным перекрытием.

Диаметр четвертого слоя:

. (2.1.38)

По формуле (2.1.38) найдем:

(2.1.39)

Длина четвертого слоя:

(2.1.40)

Максимальное число витков в четвертом слое без учета неплотности намотки:

(2.1.41)

Видим, что вторичная обмотка не укладывается в один слой.

Диаметр пятого слоя:

(2.1.42)

По формуле (2.1.47) получим

(2.1.43)

Длина пятого слоя:

(2.1.44)

Максимальное число витков в пятом слое без учета неплотности намотки:

(2.1.45)

Очевидно, вторичная обмотка уложится в два слоя с числом витков в четвертом и пятом слоях – 40 и 36 соответственно.

Поверх вторичной обмотки наложим внешнюю изоляцию из стеклолакоткани ЛСЭ-105/130 толщиной 0,10 мм с 50%-ным перекрытием.

Диаметр отверстия в окне сердечника:

(2.1.46)

По формуле (2.1.46) получим

(2.1.47)

Заметим, что при расчете диаметров слоев не учитывалась неплотность укладки слоев, что делает расчет размещаемости обмоток приближенным. Тем не менее, учитывая относительно большой расчетный диаметр отверстия в окне сердечника (6,264 мм), можно с некоторой вероятностью утверждать, что все обмотки разместятся в окне сердечника.

Программа для расчёта импульсного трансформатора

Добавил: Chip,Дата: 05 Авг 2013

Бесплатная программа для расчёта импульсного трансформатора двухтактного преобразователя на ферритовых кольцах

Приведены образцы схем преобразования и выпрямления. На некоторых полях ввода программы и на некоторых результатах расчета, которые нуждаются в комментариях, размещены всплывающие подсказки. 

Подробнее о программе

1. Основная работа в программе происходит в группе «Оптимизация».
Автоматический расчет применяется при выборе другого сердечника или при изменении любых исходных данных (за пределами группы «Оптимизация») для получения отправной точки при оптимизации намоточных данных трансформатора.

2. В группе «Оптимизация» при изменении значений с помощью стрелок старт оптимизации запускается автоматически.
Но если новое значение введено «вручную», то следует запускать оптимизацию этой кнопкой.

3. Для ШИМ-контроллеров задается частота, равная половине частоты задающего генератора микросхемы. Импульсы задающего генератора подаются на выходы по очереди, поэтому частота на каждом выходе (и на трансформаторе) в 2 раза ниже частоты задающего генератора.
Микросхемы IR2153, и подобные ей этого семейства микросхем, не являются ШИМ-контроллерами, и частота на их выходах равна частоте задающего генератора.
Не стоит гнаться за большой частотой. При высокой частоте увеличиваются коммутационные потери в транзисторах и диодах. Также при большой частоте из-за малого числа витков ток намагничивания получается слишком велик, что приводит к большому току холостого хода и, соответственно, низкому КПД.

4. Коэффициент заполнения окна характеризует, какую часть окна сердечника займет медь всех обмоток.

5. Плотность тока зависит от условий охлаждения и от размеров сердечника.
При естественном охлаждении следует выбирать 4 — 6 А/мм2.
При вентиляции плотность тока можно выбрать больше, до 8 — 10 А/мм2.
Большие значения плотности тока соответствуют маленьким сердечникам.
При принудительном охлаждении допустимая плотность тока зависит от интенсивности охлаждения.

6. Если выбрана стабилизация выходных напряжений, то первый выход является ведущим. И на него надо назначать выход с наибольшим потреблением.
Остальные выходы считаются по первому.
Для реальной стабилизации всех выходов следует применять дроссель групповой стабилизации.

7. При однополярном выпрямлении, несмотря на больший расход меди, имеет преимущество схема выпрямления со средней точкой, так как потери на двух диодах будут в 2 раза меньше, чем на четырех диодах в мостовой схеме.

8. Для правильной работы дросселя в выпрямителе после диодов перед дросселем не должно быть никаких конденсаторов! Даже маленького номинала.

9. На числах витков обмоток в результатах расчета помещены всплывающие подсказки с числом слоев, занимаемых обмотой.

10. На числах проводов в обмотках в результатах расчета помещены всплывающие подсказки с плотностью тока в обмотке.

Автор: Денисенко Владимир, г. Псков

СКАЧАТЬ RingFerriteExtraSoft БЕСПЛАТНО (270kb)

****************************************************************************************



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Бесплатная программа для полного удаления программ Revo Uninstaller
  •  Программы — деинсталляторы можно разделить на три раздела:
    1 раздел. Специализированные модули универсальных утилит-твикеров. Такие модули чаще всего дублируют функционал стандартного менеджера установки и удаления программ (а иногда даже являются только оболочкой для него). Подробнее…

  • Бесплатная программа для расчёта скорости и тормозного пути
  • Как определить скорость автомобиля и тормозной путь?

    Ниже рассматривается небольшая бесплатная программка для расчёта тормозного пути автомобиля при известной скорости и наоборот (можно рассчитать скорость при известном тормозном пути).

    Тормозной путь — это расстояние, проходимое транспортным средством от момента привода в действие тормозного устройства до полной остановки.

    Полный тормозной путь включает в себя также расстояние, проходимое за время от момента восприятия водителем (машинистом) необходимости торможения до приведения в действие органов управления тормозами.

    Подробнее…

  • Новый безопасный браузер на основе Chromium
  • Новый безопасный браузер на основе Chromium от mail.ru

    Быстрый поиск

    Вводите поисковый запрос прямо в адресной строке. Подробнее…


Популярность: 22 338 просм.

  Расчет трансформатора на Ш — образном ферритовом сердечнике

Здравствуйте уважаемые коллеги!!

     Как построить импульсный трансформатор на ферритовом кольце я уже рассказывал в своих уроках здесь. Теперь  расскажу как я изготавливаю трансформатор на Ш — образном ферритовом сердечнике. Использую я для этого подходящие по размеру ферриты от старого «советского»оборудования, старых компьютеров, от телевизоров и другой электротехнической аппаратуры, которое у меня в углу валяется «до востребования».

     Для ИБП по схеме двухтактного полумостового генератора,  напряжение на первичной обмотке трансформатора, согласно схемы составляет 150 вольт, под нагрузкой примем 145 вольт. Вторичная обмотка выполнена по схеме двухполупериодного выпрямления со средней точкой.
Смотреть схему ИБП здесь.

     Приведу примеры расчета и изготовления трансформаторов для ИБП небольшой мощности 20 — 50 ватт для этой схемы. Трансформаторы такой мощности я применяю в импульсных блоках питания  для своих светильников на светодиодах. Схема трансформатора ниже. Необходимо обратить внимание, чтобы сложенный из двух половинок, Ш — сердечник не имел зазора.    Магнитопровод с зазором используется только в однотактных  ИБП.

     Вот два примера расчета типичного трансформатора для различных нужд. В принципе, все трансформаторы на разные мощности имеют одинаковый способ расчета, почти одинаковые диаметры провода и одинаковые способы намотки.  Если вам нужен трансформатор для ИБП мощностью до 30 ватт, то это первый пример расчета. Если нужен ИБП мощностью до 60 ватт, то второй пример. 

        Первый пример.
Выберем из таблицы ферритовых сердечников №17,  Ш — образный сердечник Ш7,5×7,5. Площадь сечения среднего стержня Sк = 56 мм.кв. = 0,56 см.кв.
Окно Sо = 150 мм.кв. Расчетная  мощность 200 ватт.
Количество витков на 1 вольт у этого сердечника будет: n = 0,7/Sк = 0,7 / 0,56 = 1,25 витка.
     Количество витков в первичной обмотке трансформатора будет: w1 = n х 145 = 1,25 х 145 = 181,25.  Примем 182 витка.
     При выборе толщины провода для обмоток, я исходил из таблицы «Диаметр провода — ток».
В своем трансформаторе я применил, в первичной обмотке, провод  диаметром 0,43 мм. (провод   большим диаметром  не  умещается в окне). Он имеет площадь сечения S = 0.145 мм.кв.  Допустимый ток  (смотреть в таблице) I = 0,29 A.
Мощность первичной обмотки будет: Р = V x I = 145 х 0,29 = 42 ватта.
     Поверх первичной обмотки необходимо расположить обмотку связи. Она должна выдавать напряжение v3 = 6 вольт.    Количество витков ее будет: w3 = n x v3 = 1,25 x 6 = 7,5 витка. Примем 7 витков.  Диаметр провода 0,3 — 0,4 мм.
Затем мотается вторичная обмотка w2. Количество витков вторичной обмотки зависит от необходимого нам напряжения.       Вторичная обмотка, например на 30 вольт, состоит из двух равных полуобмоток, w3-1 и w3-2 (смотреть по схеме).
     Ток во вторичной обмотке, с учетом КПД (k=0,95) трансформатора:  I = k xР/V = 0,95 x 42 ватта / 30 вольт = 1,33 А ;
     Подберем провод под этот ток. Я применил провод, нашедшийся у меня в запасе, диаметром 0,6 мм.  Его площадь сечения  S = 0,28 мм.кв.
Допустимый ток каждой из двух полуобмоток  I = 0,56 А. Так, как эти две вторичные полуобмотки работают вместе, то общий ток равен 1,12 А, что немного отличается от расчетного тока 1,33 А.
Количество витков в каждой полуобмотке для напряжения 30 вольт: w2.1 = w2.2 = n х 30 = 1,25 х 30 = 37,5 вит.
     Возьмем по 38 витков в каждой полуобмотке.
Мощность на выходе трансформатора:  Рвых = V x I = 30 В х 1,12 А = 33,6 Ватт, что с учетом потерь в проводе и сердечнике, вполне нормально.

     Все обмотки: первичная, вторичная и обмотка связи вполне уместились в окне Sо = 150 мм.кв.  

     Вторичную обмотку можно таким образом рассчитать на любое напряжение и ток, в пределах заданной мощности.

                Второй пример.
    Теперь поэкспериментируем. Сложим два одинаковых сердечника №17,  Ш 7,5 х 7,5 . 

     При этом площадь поперечного сечения магнитопровода «Sк», увеличится вдвое. Sк = 56 х 2 = 112 мм.кв. или 1,12 см.кв.
Площадь окна останется та же «Sо» = 150 мм.кв.     Уменьшится показатель n (число витков на 1 вольт). n = 0,7 / Sк = 0,7 /1,12 = 0,63 вит./вольт.
Отсюда, количество витков в первичной обмотке трансформатора будет:
w1 = n х 145 = 0,63 х 145 = 91,35.    Примем 92 витка.

     В обмотке обратной связи w3, для  6-ти вольт, будет: w3 = n x v3 = 0,63 х 6 = 3,78 витка. Примем 4 витка.
     Напряжение вторичной обмотки примем также как и в первом примере равным 30 вольт.
Количество витков вторичных полуобмоток, каждая по 30 вольт:     w2.1 = w2.2 = n х 30 = 0,63 х 30 = 18,9. Примем по 19  витков.
Провод для первичной обмотки я использовал диаметром 0,6 мм. : сечение провода 0,28 мм.кв.,  ток 0,56 А.
     С этим проводом мощность первичной обмотки будет:    Р1 = V1 x I = 145 В х 0,56 А = 81 Ватт.
Вторичную обмотку я мотал проводом диаметром 0,9 мм. Сечением  0,636 мм.кв. на ток 1,36 ампера.  Для двух полуобмоток  ток во вторичной  обмотке равен 2,72 ампера.
Мощность вторичной обмотки Р2 = V2 x I = 30 x 2,72 = 81,6 ватт.
Провод диаметром 0,9 мм. немного великоват, подходит с большим запасом, это не плохо.

     Провод  для обмоток я применяю из расчета 2 А на миллиметр квадратный (так он меньше греется, и падение напряжения на нем будет меньше), хотя все «заводские» трансформаторы мотают из расчета 3 — 3,5 А на мм.кв. и ставят вентилятор для охлаждения обмоток.
     Общий вывод из этих расчетов таков:
— при сложении двух одинаковых Ш — образных сердечников увеличивается площадь «Sк»  в два раза при той же площади окна «Sо».
     — число витков в обмотках (в сравнении с первым вариантом) изменяется.
     — первичная обмотка w1   с 182 витков уменьшается до 92 витка;
     — вторичная обмотка w2  с 38 витков уменьшается до 19 витков.

     Это значит, что в том же окне «Sо», с уменьшением количества витков в обмотках, можно разместить более толстый провод обмоток, то есть увеличить реальную мощность трансформатора в два раза.

     Я наматывал такой трансформатор, со сложенными сердечниками № 17, изготавливал под них каркас.

     Нужно иметь в виду, что трансформаторы,  по первому и второму примеру, можно использовать под меньшую нагрузку, вплоть от 0 ватт.  ИБП вполне хорошо и стабильно держат напряжение.

     Сравните внешний вид трансформаторов: пример-1, c одним сердечником  и пример-2, с двумя сложенными сердечниками. Реальные размеры трансформаторов разнятся незначительно.

Анализ ферритовых сердечников №18 и №19 подобен предыдущим примерам.
     Все наши выполненные расчеты — это теоретические прикидки. На самом деле, получить такие мощности от ИБП на трансформаторах этих размеров довольно сложно. Вступают в силу особенности построения схем самих импульсных блоков питания. Схему ИБП смотрите здесь.
Выходное напряжение (а следовательно и выходная мощность) зависят от многих причин:
     — емкости сетевого электролитического конденсатора С1,
     — емкостей С4 и С5,
     — падения мощности в проводах обмоток и в самом ферритовом сердечнике;
     — падения мощности на ключевых транзисторах в генераторе и на выходных выпрямительных диодах.
Общий коэффициент полезного действия «k» таких импульсных блоков питания около 85%.
Этот показатель все же лучше, чем у выпрямителя с трансформатором на стальном сердечнике, где  k = 60%. При том, что размеры и вес ИБП на феррите существенно меньше.

Порядок сборки ферритового  Ш — трансформатора.

            Используется готовый или собирается — изготавливается новый каркас под размеры сердечника.
Как изготовить «Каркас для Ш — образного трансформатора» смотрите здесь. Хотя в этой статье и говорится про каркас для трансформатора со стальным сердечником, описание вполне подходит и к нашему случаю.
     Каркас нужно поставить на деревянную оправку. Намотка трансформатора производится вручную.
      На каркас сначала  мотается первичная обмотка. Виток к витку заполняется первый ряд, затем слой тонкой бумаги, лакоткани, далее второй ряд провода и т.д.  На начало и конец провода надевается  тонкая ПВХ трубочка (можно изоляцию с монтажного провода) для жесткости провода, чтоб не обломился.
      Поверх первичной обмотки наносится два слоя бумаги (межобмоточная изоляция), затем нужно намотать витки обмотки связи  w3. Обмотка  w3 имеет  мало витков, а потому ее располагают скраю на каркасе. Затем наносятся витки вторичной обмотки.  Здесь желательно поступить таким образом, чтобы витки вторичной обмотки w2 не располагались поверх витков w3. Иначе могут возникнуть сбои в работе импульсного блока питания.
     Намотка ведется сразу двумя проводами (две полуобмотки), виток к витку в ряд, затем слой бумаги или скотч и второй ряд двух проводов. ПВХ трубку на концы провода можно не надевать, т.к. провод толстый и ломаться не будет.  Готовый каркас снимается с оправки и надевается на ферритовый сердечник. Предварительно проверьте сердечник на отсутствие зазора.
     Если каркас туго одевается на сердечник, будьте очень осторожны, феррит очень легко ломается.  Сломанный сердечник можно склеить. Я клею клеем ПВА, с последующей просушкой.
     Собранный ферритовый трансформатор, для крепости,  стягивается по торцу скотчем. Нужно проследить, чтобы  торцы половинок сердечника совпали без зазора и сдвига.

Расчет импульсного трансформатора

Содержание:
  1. Назначение и действие импульсного трансформатора
  2. Расчет исходных данных и выбор элементов устройства
  3. Намотка импульсных трансформаторов
  4. Видео

В электронике и электротехнике широко используются различные типы трансформаторов. Это дает возможность применения электронных систем во многих областях производственной и хозяйственной деятельности. Поэтому наряду с основными расчетами, большое значение приобретает расчет импульсного трансформатора. Данные устройства являются важными элементами, которые используются во всех схемах современных блоков питания.

Назначение и действие импульсного трансформатора

Импульсные трансформаторы применяются в системах связи и различных автоматических устройствах. Их основной функцией является внесение изменений в амплитуду и полярность импульсов. Основным условием нормальной работы этих устройств считается минимальное искажение передаваемых ими сигналов.

Принцип действия импульсного трансформатора заключается в следующем: при поступлении на его вход прямоугольных импульсов напряжения с определенным значением, в первичной обмотке происходит постепенное возникновение электрического тока и дальнейшее увеличение его силы. Подобное состояние, в свою очередь, приводит к изменению магнитного поля во вторичной обмотке и появлению электродвижущей силы. В этом случае сигнал практически не искажается, а небольшие потери тока ни на что не влияют.

При выходе трансформатора на проектную мощность, обязательно появляется отрицательная часть импульса. Его воздействие вполне возможно сделать минимальным, путем установки во вторичную обмотку простого диода. В результате, в этом месте импульс также максимально приблизится к прямоугольной конфигурации.

Главным отличием импульсного трансформатора от других аналогичных технических систем считается его исключительно ненасыщенный режим работы. Для изготовления магнитопровода применяется специальный сплав, обеспечивающий высокую пропускную способность магнитного поля.

Расчет исходных данных и выбор элементов устройства

В первую очередь необходимо правильно выбрать наиболее подходящий магнитопровод. К универсальным конструкциям относятся броневые сердечники с Ш-образной и чашеобразной конфигурацией. Установка необходимого зазора между частями сердечника делает возможным применение их в любых импульсных блоках питания. Однако, если собирается полумостовой двухтактный преобразователь, можно обойтись обычным кольцевым магнитопроводом. При расчетах необходимо учитывать внешний диаметр кольца (D), внутренний диаметр кольца (d) и высота кольца (Н).

Существуют специальные справочники по магнитопроводам, где размеры кольца представлены в формате КDxdxH.

Перед тем как производить расчет импульсного трансформатора необходимо получить определенный набор исходных данных. Сначала нужно определиться с питающим напряжением. Здесь имеются свои сложности, в связи с возможными скачками напряжения в сети. Поэтому для расчетов берется максимальное значение в 220 В + 10%, к которому применяются специальные коэффициенты:

  • Амплитудное значение составляет: 242 В х 1,41 = 341,22 В.
  • Далее 341,22 – 0,8 х 2 = 340 В за вычетом падения напряжения на выпрямителе.

Значение индукции и частоты определяется с помощью таблиц:

1. Марганец-цинковые ферриты.

Параметры

Марка феррита

6000НМ

4000НМ

3000НМ

2000НМ

1500НМ

1000НМ

Граничная частота при tgδ ≤ 0,1, МГц

0,005

0,1

0,2

0,45

0,6

1,0

Магнитная индукция B при Hм = 800 А / м, Тл

0,35

0,36

0,38

0,39

0,35

0,35

2. Никель-цинковые ферриты.

Параметры

Марка феррита

200НН

1000НН

600НН

400НН

200НН

100НН

Граничная частота при tgδ ≤ 0,1, МГц

0,02

0,4

1,2

2,0

3,0

30

Магнитная индукция B при Hм = 800 А / м, Тл

0,25

0,32

0,31

0,23

0,17

0,44

Намотка импульсных трансформаторов

При намотке импульсных трансформаторов необходимо учитывать особенности этих устройств. В первую очередь следует обращать внимание на равномерное распределение обмотки по всему периметру магнитопровода. В противном случае произойдет значительное снижение мощности устройства, а в некоторых случаях – его выход из строя.

В случае намотки провода своими руками, используется обмотка «виток к витку», выполненная в один слой. Исходя из такой технической характеристики, выполняется и расчет импульсного трансформатора в части определения необходимого количества витков. Диаметр провода, используемого для обмотки, нужно подобрать таким образом, чтобы весь провод точно уложился в один слой, а количество витков в этом случае будет совпадать с расчетными данными. Разница между данными калькулятора и результатом, полученным с помощью формулы, может составлять от 10 до 20%, что позволяет делать обмотку, не обращая внимания на точное количество витков.

Для выполнения расчетов существует формула: W = n (D – 10S – 4d) / d, в которой W–является количеством витков в первичной обмотке, n – постоянная величина, равная 3,1416, D – внутренний диаметр кольца магнитопровода, S – толщина изоляционной прокладки, d – диаметр изолированного провода. Максимальный допуск ошибок при вычислениях составляет от -5 до +10% в зависимости от плотности укладки проводов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *