Работа трансформатора тока: Трансформатор тока — Википедия – конструктивная особенность и принцип работы, разновидности и классификация оборудования

Как работает трансформатор тока

Содержание:
  1. В каком режиме работает трансформатор тока
  2. В каком режиме работает измерительный трансформатор напряжения
  3. Видео

В процессе эксплуатации энергетических систем довольно часто решаются вопросы, связанные с необходимостью каких-либо установленных электрических величин в аналогичные величины с измененными значениями в определенной пропорции. Такая возможность позволяет выполнять безопасные измерения, производить моделирование определенных процессов в электроустановках. Для этого необходимо знать, как работает трансформатор тока, действие которого основано на законе электромагнитной индукции, применяемого для электрических и магнитных полей.

В процессе работы выполняется преобразование первичной величины вектора тока, протекающего в силовой цепи, во вторичный ток с пониженным значением. Во время такого преобразования соблюдается пропорциональность по модулю и точная передача угла.


В каком режиме работает трансформатор тока

Работа трансформатора может осуществляться в нескольких режимах. Одним из них является режим холостого хода, при котором вторичная обмотка находится в разомкнутом состоянии. Потребление тока первичной цепью самое минимальное, поэтому он называется током холостого хода. Магнитное поле холостого хода образуется вокруг первичной обмотки. Данный режим считается абсолютно безвредным для трансформатора.

Основным является режим нагрузки, в который трансформатор переходит из режима холостого хода. Во вторичной обмотке начинается течение тока, создающего магнитный поток, направленный против магнитного поля в первичной обмотке. В первый момент значение этого магнитного потока уменьшается, что приводит к уменьшению ЭДС самоиндукции в первичной обмотке.

Поскольку внешнее напряжение, приложенное к генератору, не изменяется, это приводит к нарушению электрического равновесия между приложенным напряжением и ЭДС самоиндукции, а ток в первичной обмотке увеличивается. Соответственно увеличивается и магнитный поток, а также электродвижущая сила самоиндукции. Однако значение тока в первичной обмотке будет выше, чем в режиме холостого хода. Таким образом, сумма магнитных потоков первичной и вторичной обмоток в режиме нагрузки, будет равна магнитному потоку первичной обмотки трансформатора в режиме холостого хода.

В режиме нагрузки, когда появляется вторичный ток, происходит возрастание первичного тока. Это приводит к падению напряжения во вторичной обмотке и его уменьшению. В случае снижения нагрузки, при которой вторичный ток уменьшается, наступает уменьшение и размагничивающего действия вторичной обмотки. Наблюдается рост магнитного потока в сердечнике и соответствующий рост самоиндукции ЭДС. Данный процесс, касающийся электрического равновесия, продолжается до тех пор, пока оно полностью не восстановится.

Одним из основных считается и режим короткого замыкания, при котором во вторичной цепи будет практически нулевое сопротивление. Ток во вторичной цепи достигает максимального значения, магнитное поле во вторичной обмотке также будет иметь наивысший показатель. Одновременно, магнитное поле в первичной обмотке уменьшается и становится минимальным. Следовательно, происходит и снижение индуктивного сопротивления в этой обмотке. В то же время возрастает ток, потребляемый первичной цепью. Данная ситуация приводит к возникновению режима короткого замыкания, опасного не только для самого трансформатора, но и для всей цепи. Защита от короткого замыкания обеспечивается путем установки предохранителей в первичной или вторичной цепи.

Особенности работы трансформатора тока в разных условиях:

  • Режим работы приближается к короткому замыканию, поскольку сопротивление нагрузки, подключаемой совместно со вторичной обмоткой, имеет минимальное значение. Фактически, работа трансформатора тока происходит в режиме короткого замыкания.
  • Трансформатор тока своим режимом работы существенно отличается от других трансформаторных устройств. При изменении нагрузки в обычном трансформаторе, значение магнитного потока в сердечнике не изменяется при условии постоянно приложенного напряжения.

В каком режиме работает измерительный трансформатор напряжения

Важнейшими элементами высоковольтных цепей являются измерительные трансформаторы напряжения. Данные устройства предназначены для понижения высокого напряжения, после чего пониженное напряжение может питать измерительные цепи, релейную защиту, автоматику и учет, а также другие элементы. Таким образом, трансформаторы напряжения позволяют измерять напряжение в высоковольтных сетях, от них поступает питание на катушки реле минимального напряжения, счетчики, ваттметры, фазометры, а также на аппаратуру, контролирующую состояние изоляции сети.

С помощью трансформатора осуществляется понижение высокого напряжения до стандартных значений. С их помощью происходит разделение измерительных цепей и релейной защиты с первичными цепями высокого напряжения. Подключение первичной обмотки производится к источнику входного напряжения сети, а вторичная обмотка соединяется параллельно с катушками реле и измерительных приборов. Работа трансформатора напряжения осуществляется в режиме, приближенном к холостому ходу. Это связано с высоким сопротивлением приборов, подключенных параллельно и низким током, потребляемым ими.

Для обеспечения нормальной работы вторичных цепей установка трансформаторов напряжения может выполняться не только на шинах подстанции, но и на каждой точке подключения. Перед началом электромонтажных работ необходимо осмотреть устройство, проверить целостность изоляции, исправность узлов и элементов. С целью дальнейшей безопасной эксплуатации трансформатора, его корпус и вторичная обмотка заземляется. В результате, создается защита от возможного перехода высокого напряжения во вторичные цепи в случае пробоя изоляции.

Каждый трансформатор обладает определенной номинальной погрешностью и классами точности, составляющими 0,2; 0,5; 1; 3. Уровень погрешности зависит от конструкции магнитопровода, размеров вторичной нагрузки и других факторов. Компенсировать погрешность напряжения можно, если уменьшить количество витков первичной обмотки и компенсировать угловую погрешность специальными компенсирующими обмотками.


Устройство, назначение и принцип работы трансформаторов тока

Трансформаторы тока широко используются в современной энергетике как оборудование по изменению различных электрических параметров в аналогичные с сохранением основных значений. Работа оборудования базируется на законе индукции, который актуален для полей магнитного и электрического типа, меняющихся синусоидально. Трансформатор преображает первичное значение тока с соблюдением модуля и передачи угла пропорционально исходным данным. Выбирать оборудование требуется, исходя из сферы использования приборов и количества подключенных потребителей.

Трансформаторы тока: устройство, принцип действия и типы

Трансформаторы тока: устройство, принцип действия и типы

Что такое трансформатор тока?

Данное оборудование используется в промышленности, городских коммуникациях и инженерных сетях, на производстве и в других сферах для подачи тока с определенными физическими параметрами. Подача напряжения производится на витки первичной обмотки, где в результате воздействия магнитного излучения образуется переменный ток. Это же излучение проходит по остальным виткам, за счет чего происходит движение сил ЭДС, а при закоротивших вторичных витках или при подключении к электроцепи в системе появляется вторичный ток.

Современные трансформаторы тока позволяют преобразовывать энергию с такими параметрами, чтобы ее применение не позволило нанести вред оборудованию, которое работает на ней. Кроме того, они дают возможность измерить повышенную нагрузку с максимальной безопасностью для техники и персонала, поскольку витки первичного и вторичного ряда имеют надежную изоляцию друг от друга.

Назначение трансформаторов

Определить, для чего нужен трансформатор тока, достаточно просто: сфера применения включает все отрасли, в которых происходит преобразование энергетических величин. Эти устройства относятся к числу вспомогательного оборудования, которое используется параллельно с измерительными приборами и реле при создании цепи переменного тока. В этих случаях трансформаторы преобразуют энергию для более удобной расшифровки параметров или соединения оборудования с разными характеристиками в одну цепь.

Также выделяют измерительную функцию трансформаторов: они служат для запуска электроцепей с повышенным напряжением, к которым требуется подключить измерительные приборы, но не представляется возможным сделать это напрямую. Основная задача таких трансформаторов – передача полученной информации о параметрах тока на приборы для измерительных манипуляций, которые подсоединены к обмотке вторичного типа. Также оборудование дает возможность контролировать ток в цепи: при использовании реле и достижении максимальных токовых параметров активируется защита, выключающая оборудование во избежание перегорания и нанесения вреда персоналу.

Принцип работы

Действие такого оборудования основано на законе индукции, согласно которому напряжение попадает на первичные витки и ток преодолевает создаваемое сопротивление обмотки, что вызывает формирование магнитного потока, передающегося на магнитопровод. Поток идет в перпендикулярном направлении относительно тока, что позволяет минимизировать потери, а при пересечении им витков вторичной обмотки активируется сила ЭДС. В результате ее воздействия в системе появляется ток, который сильнее сопротивления катушки, при этом напряжение на выходной части вторичных витков снижается.

Простейшая конструкция трансформатора, таким образом, включает сердечник из металла и пару обмоток, не соединенных друг с другом и выполненных в виде проводки с изоляцией. В некоторых случаях нагрузка идет только на первичные, а не вторичные витки: это так называемый холостой режим. Если же ко вторичной обмотке подсоединяют оборудование, потребляющее энергию, по виткам проходит ток, который создает электродвижущая сила. Параметры ЭДС обусловлены количеством витков. Соотношение электродвижущей силы для первичных и вторичных витков известно как коэффициент трансформации, вычисляется по отношению их числа. Регулировать напряжение для конечного потребителя энергии можно, изменяя число витков первичной либо вторичной обмотки.

Классификация трансформаторов тока

Существует несколько типов такого оборудования, которые разделяются по ряду критериев, включая назначение, метод монтажа, число ступеней преобразования и иные факторы. Перед тем как выбрать трансформатор тока, требуется учесть эти параметры:

  • Назначение. По этому критерию выделяют измерительные, промежуточные и защищающие модели. Так, устройства промежуточного типа используются при подключении приборов для вычислительных действий в системах релейной защиты и прочих цепях. Отдельно выделяют лабораторные трансформаторы, которые обеспечивают повышенную точность показателей, имеют большое количество коэффициентов преобразования.
  • Способ установки. Существуют трансформаторы для внешнего и внутреннего монтажа: они не только по-разному выглядят, но и имеют различные показатели устойчивости к внешним воздействиям (так, устройства для уличной эксплуатации имеют защиту от осадков и перепадов температур). Также выделяют накладные и портативные трансформаторы; последние имеют сравнительно небольшую массу и габариты.
  • Тип обмотки. Трансформаторы бывают одно- и многовитковыми, катушечными, стержневыми, шинными. Отличаться может как первичная, так и вторичная обмотка, также отличия касаются изоляции (сухая, фарфоровая, бакелитовая, масляная, компаундовая и пр.).
  • Уровень ступеней трансформации. Оборудование бывает одно- и двухступенчатым (каскадным), предел напряжения 1000 В может быть минимальным либо, напротив, максимальным.
  • Конструкция. По этому критерию выделяют две разновидности трансформаторов тока – масляные и сухие. В первом случае витки обмотки и магнитопровод находятся в емкости, содержащей специальную маслянистую жидкость: она играет роль изоляции и позволяет регулировать рабочую температуру среды. Во втором случае охлаждение происходит воздушным путем, такие системы применяют в промышленных и жилых зданиях, поскольку масляные трансформаторы нельзя устанавливать внутри по причине повышенной пожарной опасности.
  • Вид напряжения. Трансформаторы могут быть понижающими и повышающими: в первом случае напряжение на первичных витках снижено, а во втором – повышено.
  • Еще один вариант классификации – выбор трансформатора тока по мощности. Этот параметр зависит от назначения оборудования, количества подключенных потребителей, их свойств.

Параметры и характеристики

При выборе такого оборудования требуется учитывать основные технические параметры, влияющие на спектр применения и стоимость. Главные качества:

  • Номинальная нагрузка, или мощность: подбор по этому критерию можно сделать, воспользовавшись сравнительной таблицей характеристик трансформаторов. Значение параметра определяет другие токовые характеристики, поскольку строго нормируется и служит для определения нормального функционирования оборудования в выбранном классе точности.
  • Номинальный ток. Этот показатель определяет, в течение какого периода прибор может функционировать, не перегреваясь до критичных температур. В трансформаторном оборудовании, как правило, заложен солидный запас по уровню нагрева, при перегрузке до 18-20% работа происходит в нормальном режиме.
  • Напряжение. Показатель важен для качества обмоточной изоляции, обеспечивает бесперебойное функционирование техники.
  • Погрешность. Это явление возникает по причине воздействия магнитного потока, показатель погрешности является разницей между точными данными первичного и вторичного тока. Усиление магнитного потока в трансформаторном сердечнике способствует пропорциональному возрастанию погрешности.
  • Коэффициент трансформации, представляющий собой соотношение тока в первичных и во вторичных витках. Реальное значение коэффициента отличается от номинала на величину, равную степени потерь при преобразовании энергии.
  • Предельная кратность, выраженная в отношении первичного тока в действительном виде к номиналу.
  • Кратность тока, возникающего в витках обмотки вторичного типа.

Определяются ключевые данные трансформатора тока схемой замещения: она позволяет изучить характеристики оборудования в разных режимах, от холостого хода до полной нагрузки.

Главные показатели обозначают на корпусе прибора в виде специальной маркировки. Также она может содержать данные о способе подъема и монтажа оборудования, предостерегающие сведения о повышенном напряжении на вторичных витках (свыше 350 Вольт), информацию о наличии заземляющей площадки. Маркировка преобразователя энергии наносится в виде наклейки или с помощью краски.

Возможные неисправности

Как любое другое оборудование, трансформаторы время от времени выходят из строя, и им требуется квалифицированное обслуживание с диагностикой. Перед тем как проверить устройство, необходимо знать, какие бывают поломки, какие признаки им соответствуют:

  • Неравномерный шум внутри корпуса, потрескивание. Это явление обычно говорит об обрыве заземляющего элемента, перекрытии на корпус с витков обмотки или ослаблении прессовки листов, служащих для магнитопровода.
  • Слишком большой нагрев корпуса, увеличение силы тока на стороне потребления. Проблема может быть вызвана замыканием обмотки из-за износа или механического повреждения изоляционного слоя, частыми перегрузками, возникающими вследствие короткого замыкания.
  • Трещины изоляторов, скользящие разряды. Они появляются при не выявленном до старта эксплуатации производственном браке, набросе инородных предметов и перекрытием между вводом фаз разного значения.
  • Выбросы масла, в ходе которых разрушается мембрана выхлопной конструкции. Проблема объясняется межфазовым замыканием, происходящим по вине износа изоляции, снижением масляного уровня, перепадами напряжения или появлением сверхтоков при условии появления короткого замыкания сквозного типа.
  • Протечки масляной жидкости из-под прокладок или в кранах трансформатора. Основные причины – некачественная сварка узлов, слабое уплотнение, разрушение прокладок или непритертые крановые пробки.
  • Включение реле газозащиты. Такое явление возникает при разложении масла, которое происходит по причине обмоточного замыкания, обрыва цепи, выгорания контактов переключающего устройства или в случае замыкания на трансформаторный корпус.
  • Выключение реле газовой защиты. Проблему вызывает активное разложение масляной жидкости в результате межфазового замыкания, перенапряжения внутренней или внешней части либо вследствие так называемого «пожара стали».
  • Сработавшая дифференциальная защита. Эта неисправность появляется при пробое на вводный корпус, при перекрытии между фазами или в иных случаях.

transformator

transformator

Чтобы максимально повысить эффективность функциональности прибора, требуется регулярно выполнять поверку, используя тепловизор: оборудование позволяет диагностировать снижение качества контактов и уменьшение рабочей температуры. В ходе поверки специалисты выполняют следующий спектр манипуляций:

    1. Снятие показателей по напряжению и силе тока.
    2. Проверка нагрузки с использованием внешнего источника.
    3. Определение параметров в рабочей схеме.
    4. Вычисление коэффициента трансформации, сравнение и анализ показателей.

Расчет трансформатора

Основной принцип работы этого устройства определяется формулой U1/U2=n1/n2, элементы которой расшифровывают следующим образом:

  • U1 и U2 – напряжение первичных и вторичных витков.
  • n1 и n2 – их количество на обмотках первичного и вторичного типа соответственно.

Для определения площади сечения сердечника используют другую формулу: S=1,15 * √P, в которой мощность измеряют в ваттах, а площадь – в квадратных сантиметрах. Если сердечник, использующийся в оборудовании, имеет форму буквы Ш, показатель сечения вычисляют для среднего стержня. При определении витков в обмотке первичного уровня применяют формулу n=50*U1/S, при этом компонент 50 не является неизменяемым, в расчетах для профилактики появления электромагнитных помех рекомендуется ставить вместо него значение 60. Еще одна формула – d=0,8*√I, в которой d – это сечение провода, а I – показатель силы тока; она используется для вычисления диаметра кабеля.

Полученные при расчетах цифры доводят до круглых значений (например, расчетную мощность в 37,5 Вт округляют до 40). Округление допустимо исключительно в большую сторону. Все указанные формулы применяют для подбора трансформаторов, работающих в сети 220 Вольт; при сооружении высокочастотных линий используют другие параметры и расчетные методы.

Трансформатор тока: как работает?

Трансформаторы тока классифицируются:

  • по числу коэффициентов трансформации: с одним коэффици­ентом трансформации; с несколькими коэффициентами трансфор­мации, получаемыми изменением числа витков первичной или вторичной обмотки, или обеих обмоток, или применением нескольких вторичных обмоток с различным числом витков, соот­ветствующим различному номинальному вторичному току;
  • по числу ступеней трансформации: одноступенчатые; кас­кадные (многоступенчатые), т. е. с несколькими ступенями транс­формации тока;
  • по выполнению первичной обмотки: одновитковые; многовитковые.
Схема подключения трёхфазного электросчётчика через трансформаторы тока

Схема подключения трёхфазного электросчётчика через трансформаторы тока.

Одновитковые трансформатоьры тока имеют 2 разновидности:без собственной первичной обмотки; с собственной первичной обмоткой. Одновитковые трансформаторы тока, не имеющие собственной первичной обмотки, выполняются встроенными, шинными или разъемными.

Встроенный трансформатор тока представляет собой магнитопровод с намотанной на него вторичной обмоткой. Он не имеет собственной первичной обмотки. Ее роль выполняет токоведущий стержень проходного изолятора. Этот трансформатор тока не имеет изоляционных элементов между первичной и вто­ричной обмотками. Их роль выполняет изоляция проходного изо­лятора.

Трансформатор тока ТПЛ-10

Трансформатор тока ТПЛ-10: 1 — сердечник Р; 2 — сердечник класса 0,5; 3 — литой корпус; 4 — выводы первичной обмотки; 5 — выводы вторичных обмоток; 6 — крепежный уголок; 7 — заземляющий болт; 8 — паспортный щиток; 9 — предупредительная табличка.

Собственная первичная обмотка ТТ — токоведущий стержень проходного изолятора (шина). В шинном трансформаторе тока роль первичной обмотки выполняют одна или несколько шин распределительного устрой­ства, пропускаемые при монтаже сквозь полость проходного изоля­тора. Последний изолирует такую первичную обмотку от вто­ричной.

Разъемный трансформатор тока 2 тоже не имеет собственной первичной обмотки. Его магнитопровод состоит из 2-х частей, стягиваемых болтами. Он может размыкаться и смыкаться вокруг проводника с током, являющимся первичной обмоткой этого ТТ. Изоляция между первичной и вторичной обмотками наложена на магнитопровод со вторичной обмоткой.

Одновитковые ТТ, имеющие собственную первичную обмотку, выполняются со стержневой первичной обмоткой или с U-образной.

Трансформатор тока 3 имеет первичную обмотку в виде стержня круглого или прямоугольного сечения, закрепленного в проход­ном изоляторе.

Трансформатор тока 4 имеет U-образную первичную обмотку, выполненную таким образом, что на нее наложена почти вся внутренняя изоляция ТТ.

Многовитковые трансформаторы тока изготовляются с катушечной первичной обмоткой, надеваемой на магнитопровод; с петлевой первичной обмоткой 5, состоящей из нескольких витков; со звеньевой первичной обмот­кой 6, выполненной таким образом, что внутренняя изоляция трансформатора тока конструктивно распределена между первич­ной и вторичной обмотками, а взаимное расположение обмоток напоминает звенья цепи; с рымовидной первичной обмоткой, выполненной таким образом, что внутренняя изоляция трансфор­матора тока нанесена в основном только на первичную обмотку, имеющую форму рыма.

Основными параметрами и характеристиками трансформатора тока в соответствии с ГОСТ 7746—78 «Трансформаторы тока. Общие технические требования» являются:

Электромагнитная схема трансформатора

Электромагнитная схема трансформатора.

  1. Номинальное напряжение — действующее значение ли­нейного напряжения, при котором предназначен работать трансформатор тока, указываемое в паспортной таблице трансформатора тока. Для отечественных трансформаторов тока принята следующая шкала номинальных на­пряжений, кВ: 0,66; 6; 10; 15; 20; 24; 27; 35; 110; 150; 220; 330; 500; 750; 1150.
  2. Номинальный первичный ток I1н, указываемый в паспортной таблице трансформатора тока, — ток, проходящий по первичной обмотке, при котором предусмотрена продолжительная работа трансформатора тока. Для оте­чественных трансформаторов тока принята следующая шкала номинальных первичных токов, А: 1; 5; 10; 15; 20; 30; 40; 50; 75; 80; 100; 150; 200; 300; 400; 500; 600; 750; 800; 1000; 1200; 1500; 2000; 3000; 4000; 5000; 6000- 8000; 10 000; 12 000; 14 000; 16 000; 18 000; 20 000; 25 000; 28 000 ; 32 000, 35 000; 40 000. В трансформаторах тока, предназначенных для комплектова­ния турбо- и гидрогенераторов, значения номинального тока свыше 10 000 А могут отличаться от приведенных в данной шкале зна­чений. Трансформаторы тока, рассчитанные на номинальный первич­ный ток 15; 30; 75; 150; 300; 600; 750; 1200; 1500; 3000 и 6000 А, должны допускать неограниченно длительное время наибольший рабочий первичный ток, равный соответственно 16; 32; 80; 160; 320, 630; 800; 1250; 1600; 3200 и 6300 А. В остальных случаях наибольший первичный ток равен номинальному первичному току.
  3.  Номинальный вторичный ток I2н, указываемый в пас­портной таблице трансформаторов тока, —  ток, проходящий по вторичной обмотке. Номинальный вторичный ток принимается равным 1 или 5 А, причем ток 1 А допускается только для трансформаторов тока с номинальным пер­вичным током до 4000 А. По согласованию с заказчиком допу­скается изготовление трансформатора тока с номинальным вторичным током 2 или 2,5 А.
  4.  Вторичная нагрузка трансформатора тока z2н соответствует полному сопро­тивлению его внешней вторичной цепи, выраженному в омах, с указанием коэффициента мощности. Вторичная нагрузка может также характеризоваться полной мощностью в вольт-амперах, потребляемой ею при данном коэффициенте мощности и номиналь­ном вторичном токе. Вторичная нагрузка с коэффициентом мощности cos ср2 = 0,8, при которой гарантируется установленный класс точности трансформатора тока или предельная кратность первичного тока относительно его но­минального значения, называется номинальной вто­ричной  нагрузкой  трансформатора тока  z2н.ном Для отечественных трансформаторов тока установлены следую­щие значения номинальной вторичной нагрузки S2н .ном, выра­женной в вольт-амперах, при коэффициенте мощности cos р2 = 0,8: 1; 2; 2,5; 3; 5; 7,5; 10; 15; 20; 25; 30; 40; 50; 60; 75; 90; 100; 120. Соответствующие значения номинальной вторичной нагрузки (в омах) определяются выражением Z2н. ном = S2н. ном/I2н^2.
  5. Коэффициент трансформации трансформатора тока  равен отношению первич­ного тока ко вторичному. В расчетах трансформаторов тока применяются 2 величины: действительный коэффициент трансформации n и номинальный коэффициент трансформации nн. Под действительным коэффици­ентом трансформации n понимается отношение действительного первичного тока к действительному вторичному. Под номиналь­ным коэффициентом трансформации nн понимается отношение номинального первичного тока к номинальному вторичному.
  6. Стойкость трансформатора тока к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.
Измерительный трансформатор тока. Схема включения

Измерительный трансформатор тока. Схема включения.

Ток электродинамической стойкости Iд равен наибольшей амп­литуде тока короткого замыкания за все время его протекания, которую трансформатор выдерживает без повреждений, препятствующих его дальнейшей исправной работе. Ток Iд характеризует способность трансформатора тока противостоять механическим (электродинамическим) воздей­ствиям тока короткого замыкания.

Электродинамическая стой­кость может характеризоваться также кратностью Kд, представля­ющей собой отношение тока электродинамической стойкости к амплитуде номинального первичного тока. Требования электро­динамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока.

Ток термической стойкости Itт равен наибольшему действую­щему значению тока короткого замыкания за промежуток Tт, которое трансформатор тока выдерживает в течение всего промежутка времени без нагрева токоведущих частей до температур, превышающих допу­стимые при токах короткого замыкания   и без повре­ждений, препятствующих его дальнейшей работе.

Элементами, участвующими в преобразо­вании тока, являются пер­вичная 1 и вторичная 2 об­мотки, намотанные на один и тот же магнитопровод 3. Первичная обмотка включается последовательно (в рас­сечку токопровода высокого напряжения 4), т. е. обтекается током линии I1. Ко вторичной обмотке подключаются измерительные приборы (амперметр, токовая обмотка счетчика) или реле. При ра­боте трансформатора тока вторичная обмотка всегда замкнута на нагрузку.

Первичную обмотку совместно с цепью высокого напряжения называют первичной цепью, а внешнюю цепь, получаю­щую измерительную информацию от вторичной обмотки трансфор­матора тока (т. е. нагрузку и соединительные провода), называют вторичной цепью. Цепь, образуемую вторичной об­моткой и присоединенной к ней вторичной цепью, называют ветвью вторичного тока.

Из принципиальной схемы трансформатора видно, что между первичной и вторичной обмотками не имеется электрической связи. Они изолированы друг от друга на полное рабочее напря­жение. Это и позволяет осуществить непосредственное присоеди­нение измерительных приборов или реле ко вторичной обмотке и тем самым исключить воздействие высокого напряжения, при­ложенного к первичной обмотке, на обслуживающий персонал. Так как обе обмотки наложены на один и тот же магнитопровод, то они являются магнитно-связанными.

Схема трансформатора тока

Рисунок 1. Схема трансформатора тока.

На рис. 1 изображены только те элементы трансформатора тока, которые участвуют в преобразовании тока. Конечно, трансформатор тока  имеет много других элементов, обеспечивающих требуемый уро­вень изоляции, защиту от атмосферных воздействий, надлежащие монтажные и эксплуатационные характеристики. Однако они не принимают участия в преобразовании тока и будут рассмат­риваться ниже в соответствующих главах.

Перейдем к рассмотрению принципов действия трансформатора тока. По первичной обмотке 1 трансформатора про­ходит ток I1  называемый первичным. Он зависит только от параметров первичной цепи. Поэтому при анализе явлений, происходящих в трансформаторе тока, первичный ток можно считать заданной величиной. При прохождении первичного тока по первичной обмотке в магнитопроводе создается перемен­ный магнитный поток Ф1, изменяющийся с той же частотой, что и ток I1. Магнитный поток Ф1 охватывает витки как первичной, так и вторичной обмоток.

Пересекая витки вторичной обмотки, магнитный поток Ф1 при своем изменении индуцирует в ней элект­родвижущую силу. Если вторичная обмотка замкнута на некото­рую нагрузку, т. е. к ней присоединена вторичная цепь, то в такой системе «вторичная обмотка — вторичная цепь» под действием индуцируемой э. д. с. будет проходить ток. Этот ток согласно закону Ленца будет иметь направление, противоположное на­правлению первичного тока I1.

Ток, проходящий по вторичной обмотке, создает в магнитопроводе переменный магнитный поток Ф2, который направлен встречно магнитному потоку Ф1. Вследствие этого магнитный поток в магнитопроводе, вызванный первичным током, будет уменьшаться. В результате сложения магнитных потоков Ф1 и Ф2 в магнитопроводе устанавливается результирующий магнитный поток Ф0 = Ф1 — Ф2, составляющий несколько процентов магнитного по­тока Ф1. Поток Ф0 и является тем звеном, посред­ством которого осуществляется передача энергии от первичной обмотки ко вторичной в процессе преобразования тока.

Результирующий магнитный поток Ф0, пересекая витки обеих обмоток, индуцирует при своем изменении в первичной обмотке противо-э. д. с. Ех, а во вторичной обмотке — э. д. с. Ей. Так как витки первичной и вторичной обмоток имеют примерно одинаковое сцепление с магнитным потоком в магнитопроводе (если прене­бречь рассеянием), то в каждом витке обеих обмоток индуцируется одна и та же э. д. с. Под воздействием э. д. с. Е2 во вторичной обмотке протекает ток I2, называемый вторичным током.

Понижающий трансформатор напряжения

Понижающий трансформатор напряжения.

Если обозначить число витков первичной обмотки через W1, а вторичной обмотки — через W2, то при протекании по ним соот­ветственно токов I1 и I2 в первичной обмотке создается магнито­движущая сила F1 = I1*W1, называемая первичной маг­нитодвижущей силой (м. д. с), а во вторичной обмотке — магнитодвижущая сила F2 = I2*W2, называемая вто­ричной м. д. с. Магнитодвижущая сила измеряется в ам­перах.

При отсутствии потерь энергии в процессе преобразования тока магнитодвижущие силы F1 и F2 должны быть численно равны, но направлены в противоположные стороны. Трансформатор тока, у которого процесс преобразования тока не сопровождается потерями энергии, называется и де а л ь н ы м. Для идеального трансформатора тока справедливо следую­щее векторное равенство:

F1=-F2 или  I1W1=I2W2

Из этого равенства следует ,что I1/I2=W2/W1=n  т. е. токи в обмотках идеального трансформатора тока обратно пропорциональны числам витков.

Отношение первичного тока ко вторичному I1/I2  или числа витков вторичной обмотки к числу витков первичной обмотки W2/W1 называется коэффициентом трансформа­ции  п идеального трансформатора тока. Учитывая  это равенство , можно написать I1=I2*W2/W1=I2*n   т. е. первичный ток I1 равен вторичному току I2, умноженному на коэффициент трансформации трансформатора тока n.

В реальных трансформаторах тока  преобразование тока сопровождается потерями энергии, расходуемой на создание магнитного потока в магнитопроводе, на нагрев и перемагничивание магнитопровода, а также на нагрев проводов вторичной обмотки и вторичной цепи. Эти потери энергии нарушают установленные выше равенства для абсолютных значений м. д. с. F1 и F2.

В реальном трансформа­торе первичная м. д. с. должна обеспечить создание необходимой вторичной м. д. с, а также дополнительной м. д. с, расходуе­мой на намагничивание магнитопровода и покрытие других по­терь энергии. Следовательно, для реального трансформатора урав­нение будет иметь следующий вид:
где  — полная м. д. с. намагничивания, затрачиваемая на про­ведение магнитного потока Фо по магнитопроводу, на нагрев и перемагничивание его.

В соответствии с этим равенство   примет вид

i1*W1=i2*W2+i0*W1

где   i0 — ток  намагничивания,  создающий  в магнитопроводе магнитный поток Ф0 и являющийся частью первичного тока 11ш. Разделив все члены уравнения  на W1, получим  i1=i2*W2/W1+i0. При первичном токе, не превышающем номинальный ток трансформатора, ток намагничивания обычно составляет не более 1—3% первич­ного тока, и им можно пренебречь. В  этом случае I1=I2*n. Таким образом, вторичный ток трансформатора пропорциона­лен первичному току.  Для понижения измеряемого тока необходимо, чтобы число витков вторичной обмотки было больше числа витков первичной обмотки.

Реальный транс­форматор тока несколько искажает результаты измерений, т. е. имеет погрешности.Иногда пользуются так называемым приведением тока к пер­вичной или вторичной обмотке I0’=I0/n.

Часть приведенного первичного тока идет на намагничивание магнитопровода, а остальная часть трансформируется во вторичную цепь, т. е. первичный ток   как бы разветвляется по 2-м параллельным цепям: по цепи нагрузки и цепи намагничивания.  Сопротивление первичной обмотки трансформатора тока на схеме замещения не показано, так как оно не оказывает влияния на работу трансформатора.

Устройство трансформатора тока, типы и подключение обмоток, испытания и поверка

Токовый трансформатор

Трансформаторы тока (ТТ) представляет собой устройства, обеспечивающие пропорциональное соответствие вторичных и первичных токовых значений. Основной нагрузкой токовых трансформаторов являются цепи измерения и защиты.

Включение первичной обмотки производится в рассечку (разрыв) измеряемой линии, то есть последовательно. Вторичная обмотка трансформатора тока образует так называемые токовые цепи схем защиты и измерений.

Одной из особенностей ТТ является то, что цепи их вторичных обмоток при работе токового трансформатора строго запрещено размыкать.

Это влечёт за собой повышение напряжения вплоть до пробоя изоляции, а также повреждение магнитопровода вследствие перегрева.

Существуют специальные правила работы в токовых цепях. При необходимости отключить измерительный прибор или реле, включенные в токовую цепь, необходимо сначала закоротить выводы вторичной обмотки.

В релейных шкафах для соединения токовых цепей используются клеммники особой конструкции. В них предусмотрены дополнительные зажимы, позволяющие устанавливать закорачивающие перемычки до разрыва токовой цепи.

Токовый трансформаторный преобразователь, работающий в измерительных цепях, относится к средствам измерений со всеми вытекающими последствиями:

  • измерительные трансформаторы тока подлежат регулярной процедуре поверки;
  • измерительные трансформаторы, также как любое средство измерений имеют определённый класс точности.

Если быть более точным, класс точности присваивается не трансформатору тока, а отдельно взятой его вторичной обмотке. Дело в том что ТТ, особенно высоковольтный, представляет собой достаточно объёмную конструкцию, занимающую место в распределительном устройстве.

С другой стороны, вторичные токовые параметры нужны для измерений и работы различных защит, причём каждая защита подключена к отдельной обмотке. Поэтому обычно используются многообмоточные ТТ.

Каждая из вторичных обмоток имеет свой класс точности и предназначена для подключения определённых цепей. Например, согласно требованию ПУЭ, обмотки токовых трансформаторов, использующиеся в цепях коммерческого учёта должны иметь класс точности не хуже 0,5.

Счётчики технического учёта допускается подключать через трансформаторы тока с обмотками класса 1,0. Если для технического учёта используются встроенные ТТ, допускается использовать их обмотки, которые имеют класс точности хуже 1,0. Это распространяется на случаи, когда для достижения более высокого класса требуется установка дополнительных комплектов трансформаторов.

ТТ, использующиеся в цепях приборов релейной защиты и автоматики, называются защитными.

КОНСТРУКЦИИ И УСТРОЙСТВО ТРАНСФОРМАТОРОВ ТОКА

Конструктивную основу ТТ составляют магнитные сердечники, выполненные из тонколистовой электротехнической стали. Форма магнитного сердечника может быть прямоугольной либо тороидальной (имеющей форму бублика). В первом случае сердечник набирается из пластин, во втором – свивается из тонкой стальной ленты.

Вторичная обмотка наматывается на сердечник, первичная же может иметь различные конструкции:

  • одновитковую;
  • многовитковую.

Одновитковые конструкции подразделяются на стержневые и шинные устройства. В первом варианте внутри корпуса трансформатора через магнитопровод проходит стержень, на концах которого оборудованы линейные зажимы.

Во втором случае роль первички играет токоведущая шина распределительного устройства, то есть при монтаже он просто одевается на шину.

Исполнение может быть предназначено для наружной или внутренней установки. Кроме этого бывают встроенные варианты, располагающиеся внутри высоковольтных выключателей и вводах силовых трансформаторов. Классификация устройств по способу установки делит их на проходные и опорные.

Конструкции проходного типа используются в случаях, когда токопровод должен пройти через стену, потолок или перегородку распределительного устройства. То есть, проходные одновременно играют роль проходных изоляторов. Устройства опорного типа устанавливаются на несущие опорные конструкции распределительных устройств и сами служат опорой токоведущим шинопроводам.

ТТ выпускаются на все классы напряжений. Эти устройства предназначены для преобразования первичных токовых параметров различных уровней, но при этом токовый номинал вторичной обмотки составляет 1 ампер или 5 ампер. Наибольшее распространение получили устройства со вторичным токовым номиналом 5 ампер.

Большинство измерительных приборов предназначены для работы совместно с пятиамперными устройствами. Например, счётчики, подключаемые через трансформаторы тока, рассчитаны на номинал тока 5 ампер.

Коэффициенты трансформации принято указывать в виде дроби. В числителе ставится номинал в амперах для первичной цепи, в знаменателе – ток вторички. Например, 100/5, 500/5. Номинальное напряжение и коэффициент трансформации ТТ являются основными техническими параметрами этих устройств. Вторичные обмотки токовых трансформаторов должны быть заземлены на месте установки.

К особой категории относятся трансформаторы тока нулевой последовательности. Эти устройства представляют собой тороидальные сердечники с намотанной на них вторичной обмоткой. То есть, конструктивно они не отличаются от некоторых обычных типов . Разница заключается в том, что при установке через такой «бублик» пропускается не шина одной из фаз, а трёхжильный кабель целиком.

При работе электрооборудования распределительного устройства в нормальном режиме магнитные поля трёх фаз дают при сложении нулевой результат. Синфазные токи во всех фазах трёхфазной системы фиксируются трансформатором тока нулевой последовательности только при однофазных замыканиях на землю. Такие типы не используются для целей измерения, а только в цепях защит.

ИСПЫТАНИЯ ТРАНСФОРМАТОРНЫХ ПРЕОБРАЗОВАТЕЛЕЙ ТОКА

Перед вводом в работу ТТ подвергается стандартной процедуре проверок и испытаний. Объём предпусковых испытаний включает следующие виды работ:

  • проверка уровня изоляции;
  • замеры сопротивления вторичных обмоток;
  • проверка коэффициента трансформации;
  • снятие вольт — амперной характеристики.

Проверка изоляции производится с применением мегаомметра на 2500 вольт. При этом ориентируются на нормы, указанные в заводской документации. Испытания изоляции повышенным напряжением производится в сборе после монтажа в распределительном устройстве.

Сопротивление вторичных обмоток измеряется высокоточными мостами постоянного тока. Полученные результаты сравнивают с данными заводских замеров, приведённых в паспорте устройства. Результат, приведённый к температуре 20оС не должен отличаться от заводского более, чем на 2%.

Коэффициент трансформации трансформатора тока проверяется путём прогрузки первичным током. В ходе такой проверки все вторичные обмотки должны быть закорочены либо подключены к амперметрам. Коэффициент определяют как отношение первичного и вторичного токовых значений.

Вольт – амперная характеристика (ВАХ) позволяет выявить неисправности, например, межвитковое замыкание. В ходе данного испытания определяется намагничивающая характеристика. При этом снимаются значения напряжений обмотки при изменении токовых параметров.

Результаты предпусковых испытаний оформляются протоколами установленной формы. Выдаваться протоколы должны организацией, выполняющей пуско-наладочные работы. Организация должна обладать соответствующей лицензией.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Принцип работы трансформатора тока — Студопедия.Нет

Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.

Через силовую первичную обмотку с числом витков ω1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.

Пересекая перпендикулярно расположенные витки обмотки ω2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.

Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации. Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой —классом точности трансформатора тока.

В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.

Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.

 

Особенности конструкции. Принцип действия

Трансформаторы тока конструктивно состоят из:

— замкнутого магнитопровода;

 

 

— 2-х обмоток (первичной, вторичной).

 

 

Первичная обмотка включается последовательно, таким образом, сквозь нее протекает полный ток нагрузки. А вторичная — замыкается на нагрузку (защитные реле, расчетные счетчики и пр.), что позволяет создавать прохождение по ней тока, величина которого пропорциональна величине тока первичной обмотки. Поскольку сопротивление измерительных устройств незначительно, то принято считать, что все трансформаторы тока работают в режиме близком к КЗ. Это означает, что геометрическая сумма магнитных потоков равна разности потоков, генерируемых обеими обмотками.

Традиционно трансформаторы тока выпускают с несколькими группами вторичных обмоток, одна из которых предназначена для подключения аппаратов защиты, другие – для включения приборов контроля, диагностики и учета. К этим обмоткам в обязательном порядке должна быть подключена нагрузка. Ее сопротивление строго регламентируется, так как даже незначительное отклонение от нормируемой величины может привести к увеличению погрешности и как следствие снижению качества измерения, неселективной работе РЗ.

 

 

Трансформа́торнапряже́ния — одна из разновидностей трансформатора, предназначенная не для преобразования электрической мощности для питания различных устройств, а для гальванической развязки цепей высокого напряжения (6 кВ и выше) от низкого (обычно 100 В) напряжения вторичных обмоток.

Используется в измерительных цепях, преобразуя высокое напряжение линий электропередач генераторов в удобное для измерения низковольтное напряжение.

Кроме того, применение трансформатора напряжения позволяет изолировать низковольтные измерительные цепи защиты, измерения и управления от высокого напряжения, что, в свою очередь, позволяет использовать более дешёвое оборудование в низковольтных сетях и удешевляет их изоляцию.

Так как трансформатор напряжения не предназначен для передачи через него мощности, основной режим работы трансформатора напряжения — режим холостого хода.

Измерительный трансформатор напряжения по принципу выполнения мало отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток. В результате изготовления должен быть достигнут необходимый класс точности: по амплитуде и углу. Трехфазные трансформаторы напряжения с выведенными нулевыми выводами выполняются на пятистержневоммагнитопроводе, чтобы при коротком замыкании на стороне высокого напряжения суммарный магнитный поток замыкался по стали сердечника (при замыкании по воздуху возникает большой ток, приводящий к перегреву трансформатора). Трёхфазные трансформаторы с трёхстрежневыммагнитопроводомисходя из вышеуказанных причин не имеют внешних нулевых выводов и не применяются для регистрации «замыканий на землю». Чем меньше нагружена вторичная обмотка трансформатора напряжения (то есть чем ближе режим к режиму холостого хода либо, другими словами, чем больше сопротивление цепи вторичной обмотки), тем фактический коэффициент трансформации Кт ближе к номинальному значению. Это особенно важно при подключении ко вторичной цепи измерительных приборов, так как коэффициент трансформации влияет на точность измерений. В зависимости от нагрузки один и тот же трансформатор напряжения может работать в разных классах точности: 0,5; 1; 3.

 

Схема внутренних соединений приведена на рисунке:

Трансформатор напряжения НКФ-220

А-Х – обмотка высшего напряжения – ВН,

а-х – основная обмотка НН (номинальное напряжение В),

ад – хд – дополнительная обмотка НН (номинальное напряжение 100 В),

Р – связующая обмотка – для распределения нагрузки ТН, присоединенной к обмоткамНН, между трансформаторами нижнего и верхнего блоков,

П – выравнивающая обмотка – для равномерного распределения мощности, потребляемой вторичными обмотками по обеим ступеням.

 

 

Билет 10

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *