Работа в электрическом поле. Потенциал
Работа сил электростатического поля. Понятие потенциала
Когда пробный заряд q перемещается в электрическом поле, можно говорить о работе, совершаемой в данный момент электрическими силами. Для малого перемещения ∆l→ формулу работы можно записать так: ∆A=F·∆l·cos α=Eq∆lcos α=Elq∆l.
Рисунок 1.4.1. Малое перемещение заряда и работа, совершаемая в данный момент электрическими силами.
Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.
Определение 1При перемещении заряда из одной точки электростатического поля в другую работа сил электрического поля будет зависеть только от величины этого заряда и положением начальной и конечной точки в пространстве. Форма траектории при этом не имеет значения.
У гравитационного поля есть точно такое же свойство, что неудивительно, поскольку соотношения, с помощью которых мы описываем кулоновские и гравитационные силы, одинаковы.
Исходя из того, что форма траектории не имеет значения, мы можем также сформулировать следующее утверждение:
Определение 2Когда заряд в электростатическом поле перемещается по любой замкнутой траектории, работа сил поля равна 0. Поле, обладающее таким свойством, называется консервативным, или потенциальным.
Ниже приведена иллюстрация силовых линий в кулоновском поле, образованных точечным зарядом Q, а также две траектории перемещения пробного заряда q в другую точку. Символом ∆l→ на одной из траекторий обозначается малое перемещение. Запишем формулу работы кулоновских сил на нем:
Электростатическое поле и перемещение заряда в проводнике: какую работу делает поле
Поворот стрелки компаса обеспечивает естественное магнитное поле Земли. Статический заряд притягивает пыль к пластиковой облицовке компьютерного монитора. Сердечник внутри индукционной катушки перемещается при подключении к источнику питания. Эти примеры показывают, каким образом проявляется работа электрического поля. До изучения его практического применения надо уточнить природу данного явления, основные определения и формулы.

Работу электростатического поля наглядно демонстрирует известный эксперимент с заряженной эбонитовой палочкой
Силы и их действие на заряженную частицу
Теоретический эксперимент для исключения паразитных воздействий выполняют в идеальной среде. Вакуум обеспечивает отсутствие механических препятствий. Удаленность массивных тел предотвращает гравитационные влияния. Устраняют световые потоки.

Формула, поясняющая зависимость между основными параметрами
Если частицу с единичным зарядом (q) поместить в такую среду с электростатическим полем, она начнет перемещаться из точки с потенциалом ϕ1 в другое место с энергетическим запасом ϕ2. Будет выполнена работа (А).
Неравномерность силовых параметров поля показывают специальными линиями, которые можно характеризовать следующим образом:
- направленность в сторону уменьшения потенциала от плюса (севера) к минусу (югу), соответственно;
- отсутствие пересечений в любой точке поля;
- уменьшение расстояния между отдельными компонентами свидетельствует об увеличении напряженности.
Что такое потенциал
Разница потенциалов перемещает заряженную частицу. Однако справедливо и обратное утверждение. По выполненным затратам определяют количество энергии, которую надо использовать на соответствующее передвижение. В базовых понятиях оперируют единичным положительным зарядом.

Заряды с разными потенциалами
На левом рисунке (1) изображены заряды со сравнительно небольшим энергетическим запасом. На правом (2) – показано измененное расположение силовых линий при увеличении потенциала.
Повышение напряженности допустимо только до определенного уровня, ограниченного диэлектрическими характеристиками материала (среды). При определенном значении происходит пробой между точками с разными потенциалами. Примеры – молния, короткое замыкание. При q1=q2 поле отсутствует.
Понятие потенциальной энергии заряда
Этот параметр определяют с учетом характеристик поля, расстояния между контрольными точками. Потенциальная энергия (W) заряда (q) будет равна работе, выполненной при его переносе из одной точки в другую.
Электростатическое поле
Такой вид поля создается неподвижными зарядами. Подразумевается поддержание определенной напряженности, не меняющейся на протяжении определенного времени.

Формулы для пояснения постоянства выполненной работы
Чтобы переместить заряд из первой точки во вторую, нужно учесть изменение расстояния r1 и r2. Понятно, что в данном случае не имеет значения траектория пути. В итоговой формуле нет косинуса угла. Кроме дистанции, остались только параметры потенциала вместе с постоянными величинами (π, e0).
Нижние рисунки демонстрируют равенство работ по перемещению заряда из «А» в «Б» по разным путям. В правой части показан пример с возвращением в исходную точку. Несмотря на отличия по отдельным отрезкам траектории (А1≠А2≠А3), итоговый результат будет равен нулю.
К сведению. Приведенные отношения характерны для статического поля в идеальных условиях. Изменяющиеся во времени силовые параметры и внешние воздействия оказывают влияние на итоговый результат (расчетный и практический).
Об однородном электрическом поле
Сложная конфигурация распределения силовых линий затрудняет вычисления, создание работоспособных конструкций с заданными параметрами. Проблему решают с применением двух пластин с разными зарядами. В центральной части такого сооружения сохраняется параллельность (одинаковые амплитудные значения) векторов напряженности.

Однородное поле, положительный (а) и отрицательный (б) точечные заряды
Практический пример однородного электрического поля – пластины типового конденсатора. Даже при сворачивании в спираль функциональных компонентов типовых радиодеталей сохраняется единство физических параметров большей части рабочего объема. Симметричность нарушается на краях, однако с учетом малых размеров соответствующими незначительными воздействиями можно пренебрегать. В точечных зарядах радиальные линии направлены в стороны для положительного и к центру для отрицательного потенциала, соответственно.
Работа по передвижению положительного заряда
Перемещение заряженной частицы из области с положительным в точку с отрицательным потенциалом совершается при наличии электрического поля. Передвижение выполняется с ускорением.
Потоком называют количество линий, проходящих через определенную область поля. Это понятие условно, так как до сих пор в научной среде спорят о природе электричества. Тем не менее, соответствующее физическое воздействие достаточно точно описано формулами. Как показано на примерах, его используют при создании разных устройств и деталей.
Положительный заряд перемещается от высокого к низкому потенциалу. В каждой точке траектории можно определить силу воздействия. Для повышения точности вычислений в некоторых ситуациях приходится учитывать проводимость среды. Расчет типовых электрических цепей выполняют с помощью закона Ома.
Изображение электрических полей с помощью эквипотенциальных поверхностей
Силовые линии условны только отчасти. По стрелке компаса можно определить направление силового вектора в каждой точке. Если построить касательные по точкам, будет сформирована траектория определенного участка. Близкое расположение отдельных линий свидетельствует о большей напряженности.
Если соединить точки с одинаковыми потенциалами, получатся эквипотенциальные поверхности. Они перпендикулярно пересекают силовые линии. Общая картинка наглядно демонстрирует распределение основных параметров поля.

Эквипотенциальные поверхности
Работа электростатического поля при перемещении заряда по линиям эквипотенциальных поверхностей выполняется без дополнительных силовых воздействий. Эту особенность можно использовать для бесконтактного ограничения траектории движения элементов механических узлов. Пример с точечным зарядом показывает, что циркуляция вектора напряженности по замкнутой траектории равна нулю.
Следует отметить! Полезная работа может выполняться в прямом и обратном направлении. С учетом базового принципа сохранения энергии можно сделать правильный вывод о накоплении потенциала в ходе этого процесса. Практическое применение – конденсатор в колебательном контуре.
В данной публикации подробно рассмотрена электростатика. Необходимо помнить о том, что нужны соответствующие коррекции при рассмотрении динамических процессов.
Видео
Работа электрического поля при перемещении заряда
Чем на самом деле является напряжение? Это способ описания и измерения напряженности электрического поля. Само по себе напряжение не может существовать без электронного поля вокруг положительных и отрицательных зарядов. Так же, как магнитное поле окружает Северный и Южный полюса.
По современным понятиям, электроны не оказывают взаимного влияния. Электрическое поле – это нечто, что исходит от одного заряда и его присутствие может ощущаться другим.
О понятии напряженности можно сказать то же самое! Просто это помогает нам представить, как электрическое поле может выглядеть. Честно говоря, оно не обладает ни формой, ни размером, ничем подобным. Но поле функционирует с определённой силой на электроны.
Силы и их действие на заряженную частицу
На заряженный электрон, воздействует сила с некоторым ускорением, заставляя его перемещаться все быстрее и быстрее. Этой силой совершается работа по передвижению электрона.
Силовые линии – это воображаемые очертания, которые возникают вокруг зарядов (определяется электрическим полем), и если мы поместим какой-либо заряд в эту область, он испытает силу.
Свойства силовых линий:
- путешествуют с севера на юг;
- не имеют взаимных пересечений.
Почему у двух силовых линий не возникает пересечений? Потому что не бывает этого в реальной жизни. То, о чём говорится, является физической моделью и не более. Физики изобрели её для описания поведения и характеристик электрического поля. Модель очень хороша при этом. Но помня, что это всего лишь модель, мы должны знать о том, для чего такие линии нужны.
Силовые линии демонстрируют:
- направления электрических полей;
- напряженность. Чем ближе линии, тем больше сила поля и наоборот.
Если нарисованные силовые линии нашей модели пересекутся, расстояние меж ними станет бесконечно малыми. Из-за силы поля, как формы энергии, и из-за фундаментальных законов физики это невозможно.
Что такое потенциал?
Потенциалом называется энергия, которая затрачивается на передвижение заряженной частицы из первой точки, имеющей нулевой потенциал во вторую точку.
Разность потенциалов меж пунктами А и Б – это работа, производимая силами для передвижения некоего положительного электрона по произвольной траектории из А в Б.
Чем больший потенциал у электрона, чем больше плотность потока на единицу площади. Такое явление подобно гравитации. Чем больше масса, тем больше потенциал, тем интенсивнее и плотнее гравитационное поле на единицу площади.
Небольшой заряд с низким потенциалом, с прореженной плотностью потока показан на следующем рисунке.
А ниже показан заряд с большим потенциалом и плотностью потока.
Например: во время грозы электроны истощаются в одной точке и собираются в другой, образуя электрическое поле. Когда сила станет достаточной, чтобы сломать диэлектрическую проницаемость, получается удар молнии (состоящий из электронов). При выравнивании разности потенциалов электрическое поле разрушается.
Электростатическое поле
Это разновидность электрического поля, неизменного повремени, образуемого зарядами, которые не двигаются. Работа передвижения электрона определяется соотношениями,
где r1 и r2 – расстояния заряда q до начальной и конечной точки траектории движения. По полученной формуле видно, что работа при перемещении заряда из точки в точку не зависит от траектории, а зависит лишь от начала и конца перемещения.
На всякий электрон действует сила, и поэтому при перемещении электрона в поле выполняется определенная работа.
В электростатическом поле работа зависит лишь от конечных пунктов следования, а не от траектории. Поэтому, когда движение происходит по замкнутому контуру, заряд приходит в исходное положение, и величина работы становится равной нулю. Это происходит потому, что падение потенциала нулевое (поскольку электрон возвращается в ту же самую точку). Так как разность потенциалов нулевая, чистая работа будет также нулевой, ведь потенциал падения равен работе, деленной на значение заряда, выраженное в кулонах.
Об однородном электрическом поле
Однородным называется электрическое поле меж двух противоположно заряженных плоских металлических пластин, где линии напряженности параллельны между собой.
Почему сила действия на заряд в таком поле всегда одинаковая? Благодаря симметрии. Когда система симметрична и есть только одна вариация измерения, всякая зависимость исчезает. Есть много других фундаментальных причин для ответа, но фактор симметрии – самый простой.
Работа по передвижению положительного заряда
Электрическое поле – это поток электронов от «+» до «-», приводящий к высокой напряженности области.
Поток – это количество линий электрического поля, проходящих через него. В каком направлении будут положительные электроны двигаться? Ответ: по направлению электрического поля от положительного (высокого потенциала) к отрицательному (низкому потенциалу). Поэтому положительно заряженная частица будет двигаться именно в этом направлении.
Интенсивность поля во всякой точке определяется как сила, воздействующая на положительный заряд, помещенный в эту точку.
Работа заключается в переносе электронных частиц по проводнику. По закону Ома, можно определить работу разными вариациями формул, чтобы провести расчет.
Из закона сохранения энергии следует, что работа – это изменение энергии на отдельном отрезке цепи. Перемещение положительного заряда против электрического поля требует совершения работы и в результате получается выигрыш в потенциальной энергии.
Заключение
Из школьной программы мы помним, что электрическое поле образуется вокруг заряженных частиц. На любой заряд в электрическом поле воздействует сила, и вследствие этого при движении заряда выполняется некоторая работа. Большим зарядом создается больший потенциал, который производит более интенсивное или сильное электрическое поле. Это означает, что возникает больший поток и плотность на единицу площади.
Важный момент заключается в том, что должна быть выполнена определенной силой работа по перемещению заряда от высокого потенциала к низкому. Тем самым уменьшается разница заряда между полюсами. Перемещение электронов от токи до точки требует энергии.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Поделиться ссылкой:
Работа электростатического поля по перемещению заряда. | |
а) Однородное электростатическое поле:
|
W=qEr |
Т.к. если вектор перемещения перпендикулярен вектору силы (напряженности поля), работа поля равна нулю, то работа электростатического поля по перемещению заряда по любой траектории определяется разностью координат этих точек. | |
Если обозначить координаты заряда в начальной и последующей точках r1 и r2, то: Т.е. работа равна разности двух эквивалентных величин, зависящих от характера взаимодействия и взаимного расположения. Но мы знаем, что работа — мера изменения энергии. Можно предположить: W=qEr — потенциальная энергия заряда в данной точке электростатического поля. Зависит от выбора начальной точки отсчета потенциальной энергии. | |
Тогда: | |
Т. е. работа при перемещении заряда между двумя точками в электростатическом поле — не зависит от формы траектории, а зависит от положения этих точек. — равна убыли потенциальной энергии заряда в этом поле; — работа по замкнутой траектории равна нулю. | |
Электростатическое поле, как и гравитационное, потенциальное: А = — mg(h2— h1) = —ΔW |
|
б) Произвольное электростатическое поле. При перемещении заряда в произвольном поле из точки 1 в точку 2 работа должна быть равна по величине и противоположна по знаку работе в направлении от точки 2 к точке 1. В противном случае нарушается закон сохранения энергии: Пусть А12 < A21. Тогда внешняя сила может перемещать заряд по пути 12, а силы поля — по пути 21. Мы будем получать выигрыш в работе, т.е. получим вечный двигатель, что невозможно. |
Работа электрического поля при перемещении заряда
На пробный электрический заряд, помещенный в электростатическое поле, действует сила, заставляющая этот заряд перемещаться. Значит, эта сила совершает работу по перемещению заряда. Получим формулу для расчета работы этой силы.
Рассмотрим однородное электрическое поле (такое поле существует между пластинами плоского заряженного конденсатора вдали от его краев):
Допустим,
что мы поместили пробный заряд в точку М. Тогда сила
во всех точках поля имеет один и тот же
модуль и направление. Под действием
силы заряд перемещается в точку N.
Работа, совершенная полем:
Представим,
что заряд переместился по пути MKN. Работа поля по
перемещению заряда:
Представим, что заряд переместился из точки N в точку M по криволинейной траектории. Тогда мы можем разделить эту траекторию на малые участки, каждый из которых можно будет считать прямолинейным. Запишем работу на каждом таком участке, затем эти работы сложим и придем к тому же результату. Значит ее работа не зависит от траектории движения, а зависит только от расположения начальной и конечной точки движения. Мы рассмотрели однородное электрическое поле, но полученный вывод верен для любого электростатического поля.
Сила, работа которой не зависит от формы пути, проходимого точкой приложения силы, называется консервативной (потенциальной) силой. Следовательно, сила, действующая на заряд в электрическом поле – консервативная.
Допустим, что в некотором электростатическом поле пробный заряд q0 переместился из точки 1 в точку 2. Из механики известно, что работа консервативных сил по перемещению заряда равна убыли потенциальной энергии системы:
В одной точке электрического поля разные заряды могут обладать различной потенциальной энергией, но отношение потенциальной энергии к заряду для данной точки поля оказывается постоянной величиной. Она называется потенциалом и ее принимают за энергетическую характеристику данной точки поля:
Из выражений (1) и (2) получим:
Т. е. работа, совершаемая силами электрического поля при перемещении заряда, равна произведению заряда на разность потенциалов начальной и конечной точек траектории движения заряда.
Физический
смысл потенциала:
Предположим, что заряд равен единице,
тогда .
Таким образом,потенциал – физическая величина, численно равная
той потенциальной энергии, которой
обладает пробный заряд, равный единице,
помещенный в данную точку поля. (Так мы
говорим для краткости: на самом деле
Wp – потенциальная энергия системы
зарядов, образующих поле и пробного
заряда, внесенного в это поле).
За единицу потенциала принимают потенциал такой точки поля, в которой пробный заряд 1 Кл обладает потенциальной энергией 1 Дж. Эта единица – 1 Вольт.
Доказано, что потенциал в некоторой точке поля, созданного точечным зарядом q рассчитывается по формуле:
(*),
где
r – расстояние от заряда, образующего поле, до точки, в которой нужно найти потенциал.
Потенциал – скалярная величина. Потенциалы точек поля, созданного положительным зарядом, являются положительными величинами и наоборот. Если поле создано несколькими зарядами, то потенциал каждой точки этого поля есть алгебраическая сумма потенциалов отдельных полей.
Из формулы (*) видно, что потенциал равен нулю, в точках пространства, расположенных бесконечно далеко от заряда, образующего поле.
/*—————————————————-
Можно дать другое толкование физического смысла потенциала:
Предположим, что под действием сил поля заряд переместился из точки поля 1 в бесконечно далекую точку. Тогда работа, совершенная сила ми поля:
.
Но
,
т. к. в бесконечно далекой точке поле
отсутствует. Следовательно,
Значит, потенциал поля в точке 1 – физическая величина, численно равная работе, которую совершат силы поля, перемещая единичный заряд из данной точки поля в бесконечно далекую точку.
—————————————————-*/
Значение потенциала данной точки поля зависит от выбора поверхности нулевого потенциала. В физике считают, что нулевым потенциалом обладают точки пространства, бесконечно далекие от зарядов, образующих поле. В радиотехнике считают, что нулевым потенциалом обладают точки поверхности земли. В формулу работы входит разность потенциалов, а эта величина не зависит от выбора точки нулевого потенциала.
Поверхности, перпендикулярные к силовым линиям называются эквипотенциальными поверхностями (поверхностями равного потенциала). Все точки таких поверхностей имеют одинаковый потенциал. Работа поля по перемещению заряда по эквипотенциальной поверхности равна нулю.
Работа по перемещению заряда в электрическом поле. Потенциал
Теперь известно, что на заряд, помещенный в электрическое поле, действует сила. Следовательно, перемещение заряда в электрическом поле будет сопровождаться работой
dA = Fdl
dA > 0 в случае, если работа совершается силами поля;
dA < 0 в случае, если работа совершается внешними силами против сил поля.
Рассмотрим перемещение пробного заряда Q0 из точки 1 в точку 2 в поле сил, создаваемых зарядом Q.
Поле сил – центральное (рис. 73). Работа на пути dl будет равна
Отсюда работа по перемещению заряда из точки 1 в точку 2
Если работа совершается внешними силами, то
Электростатическое поле является потенциальным. Это значит, что работа по перемещению заряда не зависит от пути, по которому перемещается заряд, а зависит только от начального и конечного положения заряда.
Тело, находящееся в потенциальном поле сил, обладает потенциальной энергией, за счет которой совершается работа силами поля. Следовательно, полученное выражение для работы можно представить как разность потенциальных энергий заряда Q0 в поле сил, созданном зарядом Q
Таким
образом, потенциальная энергия в каждой
точке поля зависит от величины пробного
заряда Q0.
Но если взять отношение W/Q0,
то оно будет зависеть только от точки
поля, и не будет зависеть от величины
помещенного в эту точку заряда.
Отношение = φ называют потенциалом поля.
Потенциалом
электрического поля называется физическая величина, равная
отношению потенциальной энергии, которую
приобретает положительный заряд Q0,
если его переместить из в данную точку поля, к величине этого
заряда
.
Из равенства А12 = -А21 следует другое определение.
Потенциалом поля называется физическая величина, численно равная работе, которую совершают силы поля над единичным положительным зарядом, при удалении его из данной точки поля в бесконечность.
Потенциал – величина скалярная. При суперпозиции (наложении) электрических полей потенциал суммарного электрического поля определяется как алгебраическая сумма потенциалов налагаемых полей
Выражение для работы по перемещению заряда из точки с потенциалом φ1в точку с потенциалом φ2 имеет вид
A12 = Q (φ2 – φ1).
Работа измеряется в Дж или эВ. 1эВ = 1,6 ∙10-19 Дж.
Для наглядного изображения поля вместо линий напряженности (силовых линий) можно воспользоваться поверхностями равного потенциала или эквипотенциальными поверхностями. Эквипотенциальная поверхность – это такая поверхность, все точки которой имеют одинаковый потенциал. Если потенциал задан как функция координат x, y, z, то уравнение эквипотенциальной поверхности имеет вид:
φ (x,y,z) = const.
Эквипотенциальные
линии – линии, образующиеся от пересечения
эквипотенциальной поверхности плоскостью
проводятся так, что направление нормали
к ним совпадает с направлением вектора в той же точке (рис.74).
Эквипотенциальную поверхность можно провести через любую точку поля. Следовательно, таких поверхностей может быть бесконечное множество.
Рис. 74
Условились, однако, проводить их таким образом, чтобы разность потенциалов для двух соседних эквипотенциальных поверхностей была всюду одна и та же. Тогда по их густоте можно судить о величине напряженности поля.
3.1. Работа сил электрического поля:
Таким образом, работа, совершаемая силами поля, не зависит от формы пути, по которому перемещался заряд, а зависит только от расстояния d, измеряемого вдоль силовой линии между начальным и конечным положением заряда.
3.1.2. В неоднородном поле точечного заряда q (см. рис. 2 ) Найдем работу по перемещению пробного заряда q’ из точки 1 в точку 2 в поле, создаваемом точечным зарядом q: |
.
(2)
И в этом случае работа сил не зависит от формы пути. Она является только функцией начального и конечного положения заряда.
Для
замкнутой траектории L она равна нулю, т. к. ,
т. е.
или
(3)
Т. E. ЦИРКУЛЯЦИЯ ВЕКТОРА НАПРЯЖЕННОСТИ ПО ЛЮБОМУ ЗАМКНУТОМУ КОНТУРУ РАВНА НУЛЮ.
В механике было приведено следующее определение: «Силы, работа которых не зависит от формы пути, называются консервативными силами, а поля, работа сил которых не зависит от формы пути, называются потенциальными полями». Таким образом, рассмотренное нами электростатическое поле является потенциальным, а кулоновские силы — консервативными.
3.2. Потенциал электростатического поля
Известно, что работа сил потенциального поля может быть представлена как убыль потенциальной энергии, т. е. . (4)
Отсюда
следует, что потенциальная энергия
пробного заряда q’
в поле заряда q будет
При
потенциальная энергия должна обращаться
в нуль, поэтому значение постоянной С полагаем равным нулю. В итоге получаем,
что
(5)
Величину (6)
называют
потенциалом электрического поля в
данной точке. Потенциал ,
наряду с напряженностью электрического
поля
,
используется для описания электрического
поля. Потенциал точечного заряда q, как следует из
(5)
и
(6),
, (7)
т.
е. (прямо пропорционален величине заряда
и обратно пропорционален расстоянию
от него). Потенциал в СИ измеряется в
вольтах: 1
В= 1Дж/1 Кл.
Если
поле создает система точечных зарядов то
потенциал
.
(8)
Из
формулы
(6)
вытекает, что заряд q’, находящийся в точке поля с потенциалом , обладает
потенциальной энергией
.
(9)
Следовательно,
работу сил поля над зарядом q’ можно выразить через разность потенциалов ,(10)
здесь — разность потенциалов между двумя
точками поля, которая называется
напряжением. Напряжение
тоже измеряется в вольтах.