Рабочая обмотка и пусковая: Сопротивление пусковой и рабочей обмотки однофазного двигателя — советы электрика – Однофазный двигатель с пусковой обмоткой схема подключения — Moy-Instrument.Ru

Схема подключения однофазного электродвигателя 220в через конденсатор. Отличие пусковой и рабочей обмоток

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

  • Обмотки электромотора
  • Конденсаторы
  • Косвенное включение
  • Заключение

Обмотки электромотора

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.


Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-тр

Как определить рабочую и пусковую обмотки

Как определить рабочую и пусковую обмотки однофазного электродвигателя

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.

Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) — провода красного цвета
  • пусковая (В1-В2) — провода синего цвета

В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя .

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники. можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.

2. Измерение омического сопротивления обмоток

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

Снимаем изоляцию с проводов.

Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.

Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).

Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).

Делаем вывод: первая обмотка — пусковая, вторая — рабочая.

Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).

По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.

Одеваю бирки на провода. Вот что получилось.

Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно. Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так.

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.

В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.

Вот, что у меня получилось:

Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения .

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание.

Добрый вечер, Дмитрий! Я сам работаю электриком в ЭТЛ. У меня вопрос по поводу испытаний кабельной линии из сшитого полиетилена. Вы сталкивались с этим, какое подавали напряжение, какие были токи утечки, сколько по времени проходит испытание одной фазы? Заранее спасибо. если можно отправьте свой ответ мне на
почту.

Артем, здравствуйте. Об испытании кабелей из сшитого полиэтилена я писал в комментариях в этой статье .

здравствуйте Дмитрий. а не могли бы вы подробно написать статью о масляных выключателях, (соленоид, контактор включения, катушку отключения, его испытания, замеры характеристик) и также испытания силовых трансформатор и его замеры. очень нужно, есть нюансы в голове.

SLV, я планировал написать эти статьи, особенно про разные типы приводов (ПЭ-11, ПС-10, ПЭ-21 и др.), про высоковольтные масляные и вакуумные выключатели, установленные, как в камерах КСО, так и на каретках, но боюсь, что многим посетителям сайта это будет не интересно. Вот постоянно и откладываю…

Здравствуйте, Дмитрий!
Вы все очень замечательно объясняете, огромное спасибо! Не могли бы Вы прояснить, что означает в автоматических выключателях, к примеру 6кА или 35кА, если они рассчитаны на один ток срабатывания? И почему у них такая разница в цене?

Борис, значения 4,5 (кА), 6 (кА), 10 (кА) и т.д. означают электродинамическую стойкость аппарата защиты при коротком замыкании в сети, т.е. показывают насколько автомат устойчив к короткому замыканию. Для дома (квартиры) вполне хватит 4,5 (кА), т.к. линии от ТП до жилого дома и от ВРУ до квартир достаточно длинные, они обладают большим активным сопротивлением, что приводит к снижению токов короткого замыкания до значений 0,5-1,5 (кА), а чаще и того меньше.

я весь интернет перерыл, нифига не могу разобрать, книги на работе читал, не могу понять и все.кстати немогли бы вы сказать что все таки значит тангенс диэлектрических потерь масла, вот все про него говорят на работе а никто и толком точно незнает.)

И ещё одно.Раньше многие подключали 3-х фазные двигатели к однофазной цепи, но время ушло.Многие сейчас покупают готовые однофазные.У меня была таблица соотношения мощности двигателя к мощности конденсаторов.А тут один знакомый попросил подключить в гараже движок трехфазник.Таблицу я не нашел,пришлось подбирать.
Так вот, нет ли у вас такой таблицы.Они были в старых учебниках по электротехнике.Если есть, прошу опубликовать или отправить на мой E-mail.
C уважением, Николай.

Николай, читайте здесь. Там есть расчет емкости рабочего и пускового конденсаторов в зависимости от мощности двигателя.

Добрый день! Подскажите пожалуйста по проблемке. Однофазный двигатель с конденсаторным стартом. Время от времени двигатель не пускается-гудит. Батарея конденсаторов собрана из трёх МБГП-2 конденсаторов по 2мкФ 630В. Кондёры на тестере показывают полную ёмкость. Чем грозит увеличение ёмкости конденсаторов? и чем грозит уменьшение вольтажа их же с 630В до 450В?Спасибо! сопротивление обмоток 50 Ом пусковая 20 Ом рабочая марку двигателя сейчас не помню.

Вадим, если двигатель гудит, то значит отсутствует вращающий момент. Это может произойти по следующим причинам: либо вышли из строя конденсаторы (отсутствие или малая емкость), либо возникает межвитковое в одной из обмоток двигателя. Лучше начать с простого и заменить старые конденсаторы на новые. Емкость увеличивать не нужно, ну если только совсем немного в ту или иную сторону, а вот вместо 630 (В) можно смело использовать 450 (В).

Добрый день. Конденсаторы показывают номинальную ёмкость. найти другие у нас оказалось проблемой. либо большая либо меньшая ёмкость, либо габарит не подходящий. либо ценник не реальный и сроки поставки. как я понял если я увеличу с шести до почти семи мкФ то особых проблем не будет?двигатель по условию работает по секунд пятнадцать.проблема с пуском носит не систематический характер. как вычислить межвитковое? на трёх фазных асинхронных знаю, прибор есть.спасибо.

Здравствуйте,знатоки.Что,если непредсказуемо меняется направление вращения двигателя.Но,если я использую обмотку с меньшим сечением как рабочую,то тогда все отлично работает,и при перемене контактов,правильно меняет направление вращения,и работает около часа без перегрева.Движок обычный старый СССР.Одна обмотка 14 Ом, вторая 56 Ом.

Доброго времени суток,сегодня взялся запустить вытяжку бытовую над плитой, блок управления скоростью двигателя уже давно приказал долго жить….со светом нет проблем, а вот с эл.двигателя идут четыре провода, как же с ними быть. кого куда подключать? Пвсевдосенсорные кнопки выдернул, поставил фиксируемые, вытяжка KRONA GALA с тремя скоростями вращения вентилятора….Помогите с подключением.

А как вы определили что пусковая обмотка должна иметь большее сопротивление чем рабочая? исходя из чего? обьясните пожалуйста

Здравствуйте,у меня двигатель 2ДАК71-40-1.0-у2 имеется четыре провода(черный,красный,серый,белый)все они прозваниваются между собой,подскажите пожалуйста как подкючить?

http://zametkielectrika.ru

Особенности схем обмоток одно-и двухфазных двигателей

Категория:

   Обмотка электрических машин

Публикация:

   Особенности схем обмоток одно-и двухфазных двигателей

Читать далее:



Особенности схем обмоток одно-и двухфазных двигателей

Однофазные асинхронные двигатели мощностью до 1, редко до 2 кВт, широко применяют в условиях, когда имеется только однофазная сеть, например, для привода механизмов различных приборов, электрифицированного инструмента, в бытовых механизмах и т. п. Если обмотку двигателя питать однофазным током, то электромагнитное поле в нем будет не вращающимся, как в трехфазных машинах, а пульсирующим, энергетические показатели будут хуже, чем у трехфазных, а пусковой момент будет равен нулю, т. е. двигатель без специальных устройств не сможет начать работать. Поэтому в статорах однофазных двигателей устанарливают две обмотки, которые часто называют также фазами обмотки. Одна из них — главная, или рабочая, другая — вспомогательная. Обмотки располагаются по пазам статора так, что их оси сдвинуты друг относительно друга в пространстве на электрический угол 90°. Если фазы токов обмоток будут не одинаковы, т. е. сдвинуты во времени, то электромагнитное поле в двигателе становится вращающимся. Энергетические показатели двигателя улучшаются и появляется пусковой момент. При сдвиге фаз токов на электрический угол 90° и одинаковых мдс обмоток поле становится круговым и кпд однофазного двигателя будет наибольшим. Добиться этого можно, выполнив обе обмотки двигателя одинаковыми и подключив последовательно к одной из них конденсатор. Такие двигателями называются однофазными конденсаторными.

Рис. 1. Оси обмоток двух- и однофазных двигателей:
а — расположение катушек разных фаз в пазах статора, б — условное изображение фаз обмотки

Рекламные предложения на основе ваших интересов:

Емкость конденсатора, необходимая для получения кругового поля, зависит от активных и индуктивных сопротивлений обмоток двигателя и от его нагрузки. Для однофазных конденсаторных двигателей конденсатор рассчитывают так, чтобы поле было круговым при номинальной нагрузке. Его включают последовательно с одной из фаз обмоток на все время работы. Этот конденсатор называют рабочим и обозначают Ср. Во время пуска двигателя емкость рабочего конденсатора оказывается недостаточной для образования кругового поля и пусковой момент двигателя невелик. Для увеличения пускового момента параллельно с рабочим конденсатором включают второй — пусковой конденсатор. Суммарная емкость рабочего и пускового конденсаторов обеспечивает получение кругового вращающегося поля во время пуска двигателя и пусковой момент его увеличивается. После разгона двигателя пусковой конденсатор отключают, а рабочий остается включенным. Таким образом, двигатель запускается и работает с номинальной нагрузкой при вращающемся круговом поле.

Рис. 2. Схемы включения однофазных двигателей:
а — с постоянно включенным конденсатором (конденсаторные двигатели), б— с рабочим и пусковым конденсаторами, в — с пусковым элементом

Рис. 3. Схема однослойной концентрической обмотки

В однофазных конденсаторных двигателях обе обмотки, и главная и вспомогательная, выполняются одинаковыми, т. е. с одинаковым числом витков и катушек, из одинакового обмоточного провода. Они располагаются в одинаковом числе пазов, симметрично со сдвигом осей на 90°.

В статорах большинства одно- и двухфазных двигателей применяют всыпные однослойные обмотки с концентрическими катушками. Они имеют либо четыре выводных конца — начала и концы главной и вспомогательной фаз, либо только три. При трех выводах концы главной и вспомогательной фаз соединяются между собой внутри корпуса и наружу выводится провод от места их соединения — общая точка обмотки.

Для уменьшения вылета лобовых частей катушек однослойные обмотки часто выполняют вразвалку. Если число пазов на полюс и фазу четное, то обмотки вразвалку по существу не отличаются от таких же обмоток трехфазных машин. Если же число q нечетное, то большие катушки в группах делают «расчесанными», т. е. отгибают лобовые части половины их витков в одну, а второй половины — в другую сторону.

Необходимость установки конденсаторов удорожает однофазные двигатели, увеличивает их габариты и снижает надежность, так как конденсаторы выходят из строя чаще, чем сами двигатели. Поэтому большинство однофазных асинхронных двигателей рассчитывают на работу только с одной — главной обмоткой. Однако для того, чтобы их можно было пустить, устанавливают и вторую — вспомогательную обмотку, которую часто называют пусковой. Она предназначается только для создания вращающегося поля при пуске двигателя. Такие однофазные двигатели называют двигателями с пусковой фазой.

Рис. 4. Схема однослойной концентрической обмотки

Сдвиг фаз токов главной (рабочей) и пусковой обмоток достигается изменением сопротивления пусковой обмотки путем включения последовательно с ней так называемого пускового элемента — конденсатора или резистора (чаще всего используют более дешевый — резистор).

Пусковые обмотки, как празило, отличаются от рабочих и по числу витков, и по числу катушек, и сечением провода. Они обычно занимают 1/3 всех пазов статора. В оставшихся 2/3 пазов располагается рабочая обмотка. Схемы соединений и числа полюсов рабочей и пусковой обмоток одинаковы.

Рис. 5. Схема однослойной концентрической обмотки однофазного двигателя с пусковой фазой с 2=24, 2р=4; С1—С2—главная фаза, В1—В2 — пусковая фаза

Рис. 6. Образование бифилярных витков

Рис. 7. Схема обмотки с катушками, имеющими бифилярные витки:
а — изображение катушек с бифилярными витками на схеме обмотки, б — схема обмотки

Чтобы избежать установки резисторов, которые должны быть рассчитаны на полный пусковой ток, во многих однофазных двигателях пусковую обмотку выполняют с повышенным сопротивлением пусковой фазы. Для этой цели пусковую обмотку наматывают из провода меньшего сечения, чем рабочую, или выполняют ее с частично бифилярной намоткой. При этом длина провода обмотки возрастает, ее активное сопротивление увеличивается, а индуктивное сопротивление и мдс остаются такими же, как и без бифилярных витков. Чтобы образовались бифилярные витки, катушку пусковой обмотки выполняют из двух секций со встречным направлением намотки. Одна секция, направление намотки которой совпадает с нужной для пуска машины полярностью, называется основной, а секция со встречной намоткой — бифилярной. Бифилярная секция имеет всегда меньше витков, чем основная. На схемах обмоток катушки, имеющие частично бифилярную намотку, обозначают петле. На рис. 7, б показана схема обмотки с пусковой фазой, имеющей частично бифилярную намотку. Главная обмотка выполнена концентрическими катушками вразвалку. Петли у катушек пусковой фазы на схеме обозначают, что они выполнены с частично бифилярной намоткой.

Пусковая обмотка однофазных двигателей рассчитана только на кратковременную работу — на время пуска двигателя. Ее необходимо отключить от сети сразу же, как только двигатель разгонится, иначе она перегреется и двигатель выйдет из строя. Такие двигатели применяются, например, для привода компрессоров во всех бытовых холодильниках. Тепловое реле холодильника включает обе обмотки двигателя, а после его разгона отключает пусковую обмотку. Двигатель работает с одной включенной рабочей обмоткой.

В небольших, мощностью до нескольких десятков ватт однофазных асинхронных двигателях вращающееся поле и в период пуска и во время работы получают более простым способом. Двигатель делают с явнополюсным статором. Часть площади полюсного наконечника охватывают короткозамкнутым витком, в котором индуктируется эдс и возникает ток. Под влиянием тока в витке поток полюса раздваивается и фаза потока под частью полюсного наконечника, охваченной короткозамкнутым витком, сдвигается по сравнению с основным потоком. В результате поле становится вращающимся, однако не круговым, так как нельзя таким образом достичь сдвига фаз на 90°, а эллиптическим, но достаточным для возникновения небольшого пускового момента. Такие двигатели называют однофазными с экранированными полюсами или с коротко-замкнутыми витками на полюсе. Они широко применяются, например, в различных бытовых вентиляторах, так как пуск вентиляторов происходит с малым моментом сопротивления на валу. Основным достоинством двигателей с экранированными полюсами является простота их конструкции и технологии изготовления.

В отличие от однофазных двухфазные двигатели питаются от двухфазной сети. Они используются в основном в различных системах управления, в которых сдвиг фаз питающей сети создается самой схемой. Их статор имеет также две обмотки, одна из которых носит название обмотки возбуждения, а вторая — обмотки управления. Обмотка возбуждения подключена к сети с неизменным по амплитуде напряжением. Регулирование частоты вращения двигателей осуществляется изменением амплитуды тока обмотки управления или его фазы. Иногда применяется и тот и другой метод управления одновременно. При равенстве токов и сдвиге их фаз на 90° поле двигателя круговое. При изменении тока обмотки управления или его фазы поле становится эллиптическим, электромагнитный момент двигателя и частота его вращения уменьшаются.

Двигатели рассчитывают так, что при пульсирующем поле они работать не могут. Поэтому при уменьшении сдвига фаз токов в обмотках до нуля или снятия напряжения с обмотки управления двигатели останавливаются. Как только фаза тока в обмотке управления изменится или подано напряжение при постоянном сдвиге фаз, двигатели начинают работать. Обмотки двухфазных двигателей в большинстве случаев одинаковые и симметрично расположены в пазах статора.

Рис. 8. Короткозамкнутый виток на полюсе асинхронного однофазного двигателя:
1 — короткозамкнутый виток, 2 — обмотка, 3 — сердечник

Рекламные предложения:


Читать далее: Намотка катушек из круглого провода

Категория: — Обмотка электрических машин

Главная → Справочник → Статьи → Форум


Определение концов обмоток статора

 После выполнения всех необходимых работ по замене мотор-компрессора холодильника необходимо правильно определить выводные концы обмоток статора — для дальнейшего подключения.   То есть механику приходится определять, к каким проходным контактам в кожухе мотор-компрессора присоединены выводные концы пусковой и рабочей обмоток статора.

Как определить концы обмоток статора

Расположение проходных контактов у различных типов  мотор-компрессоров соответственно разные и запомнить схему присоединения выводных концов обмоток статора к проходным контактам по каждому холодильнику, — невозможно.

Для определения выводных концов:

  • рабочей;
  • пусковой

обмоток статора мотор-компрессора, можно воспользоваться тем или иным прибором, на примере:

  • низкоомный амперметр;
  • авометр;
  • омметр;
  • мультиметр \с наличием диапазона для измерения сопротивления\.

Определение концов электродвигателя

 В том случае, если нет в наличии одного из перечисленных приборов, — можно воспользоваться одним из простейших способов для такого определения.   На примере практически любого электродвигателя известно, что наименьшее сопротивление имеет  рабочая обмотка статора, наибольшее сопротивление будет соответствовать — пусковой обмотке.

Соответственно, если воспользоваться батарейкой и лампочкой от карманного фонарика, при протекании тока по рабочей обмотке — лампочка будет гореть ярче чем при протекании тока по пусковой обмотке.

Выводные концы рабочей и пусковой обмоток определяют включением какого-либо из вышеуказанных приборов попеременно между каждой парой проходных контактов.   Стрелка прибора при этом в зависимости от сопротивления той или иной обмотки, включенной между данной парой контактов, будет отклоняться по разному.   Если же воспользоваться той же самой электролампочкой, то яркость лампочки будет разной при таком определении.

Подобная диагностика как и для всех бытовых электроприборов проводится пассивным способом.   То есть здесь нужно соблюдать меры техники безопасности, а именно,  необходимо обесточить холодильник \вынуть электрическую вилку из штепсельной розетки\.

После попеременной проверки для каждой пары проходных контактов, определяется пара контактов, между которыми будет наибольшее сопротивление и наименьшее сопротивление.

На кожухе мотор-компрессора выведены три контакта, к которым подсоединены концы:

  • рабочей;
  • пусковой

обмоток и третий выведенный контакт  является общим  как для подключения рабочей так и для подключения пусковой обмоток.   Для того чтобы определить, к какому же из первых двух контактов подключен конец пусковой обмотки  и к какому контакту конец рабочей обмотки, проводятся поочередные замеры сопротивлений.

Чтобы получить более подробный  ответ на данный вопрос: «Как определить концы обмоток статора?» —  рассмотрим все на примере.

Концы обмоток статора.  Схема проходных контактов

 

рис.1

Перед нами рисунок мотор-компрессора \рис.1\ с выводными концами  обмоток статора:

  • П — контакт выводного конца пусковой обмотки;
  • Р — контакт выводного конца рабочей обмотки;
  • О — контакт общего выводного конца для обеих обмоток,

— но нам неизвестно, какой  именно контакт  из трех,  принадлежит:

  • рабочей обмотке;
  • пусковой обмотке

и общему выведенному концу.

Теперь условно присвоим номера для каждого выведенного контакта \рис.2\.     После выполненных замеров сопротивлений, запишем полученные результаты.

рис.2

 

Представим, что для проходных контактов сопротивление будет следующим:

  • 1-3 наибольшее сопротивление;
  • 2-3 наименьшее сопротивление;
  • 1-2 среднее сопротивление.

Из полученных результатов будет следовать, что  к контакту \1\ присоединен конец пусковой обмотки, к  контакту  \2\ присоединен  общий конец, к контакту \3\  присоединен конец рабочей обмотки.

После того как нам  стали известны проходные контакты,  можно без труда  выполнить подключение мотор-компрессора холодильника.

Следующие подробности по ремонту холодильников, — Вы сможете найти на этом сайте.

 

 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *