Проводимость алюминия и меди таблица – Сравнение меди и стали при использовании в качестве молниеотводов, молниеприемников, заземлителей и заземляющих проводников

Содержание

Сравнение медного и алюминиевого провода таблица. Выбор проводов и способа прокладки

При протекании тока по кабелю существуют потери энергии. Эти потери выражаются в виде нагрева самих проводов и вызваны сопротивлением электронов протеканию тока в проводах. Чем меньше внутреннее сопротивление кабеля, чем больше мощности по нему можно передать. Наименьшим сопротивлением обладает сверхпроводник, но на сегодняшний день по техническим условиям он не подходит. Следующим среди металлов с маленьким сопротивлением идет серебро, но оно дорогое, поэтому наиболее приемлемыми являются медь и алюминий.

Алюминий — легкий металл, дешевле меди, но ломкий и с более высоким внутренним сопротивлением. В советском союзе большинство внутридомовых сетей были протянуты алюминием, логика проектантов была понятна – дешево и раз все штукатурили и прятали в стены, то никаких проблем с дальнейшей эксплуатацией не было, о заземлении бытовых приборов вообще не задумывались.

С развитием электроники в дальнем зарубежье и до нас стали доходить приборы и аппараты, нуждающиеся в большой электрической мощности. При этом стали меняться нормы и правила прокладки сетей электроснабжения. Теперь мало кто выполняет электроснабжение дома алюминиевыми проводами. Все стремятся проложить толстый медный кабель, заштробить все в стены или упаковать всю электрику в стальные трубы. Вариантов много.

Суть выбора проводов в том, чтобы не переплатить и не потерять в благах, которые сулит удобство электроснабжения дома. Провода и кабели покрыты слоями изоляции. В проводах вокруг жилы металла идет пластиковое покрытие, а в кабелях вокруг нескольких сплетенных проводов идет слой защитной оболочки.

Ток, протекая по проводу, нагревает его. Температура плавления алюминия и меди большая. Например, медная проволока диаметром 1,16 мм плавится, если по ней пропустить ток 100 ампер, а вот провод диаметром 1,13 мм — только 15 ампер. Это объясняется тем, что пластиковая изоляция провода плавится при нагреве провода свыше 65°C. Следовательно, выбор сечения проводов и кабеля необходимо производить, исходя из температуры нагрева провода длительным током.

При выборе провода проще перейти от диаметра провода к величине квадратного сечения провода. Провод в своем сечении не обязательно является кругом, так же он может быть и квадратом и прямоугольником и даже треугольником. При треугольном сечении провода тяжело определить диаметр, поэтому принято считать провода как площадь поперечного сечения.

Площадь круглой жилы: S=п*r 2 =пd 2 /4

Площадь треугольной жилы при трех проводах в кабеле: S=п*r 2 /3

Площадь треугольной жилы при четырех проводах в кабеле: S=п*r 2 /4

Площадь квадратной жилы: S=a*а

Площадь прямоугольной жилы: S=a*b

где S — площадь;

r — радиус круглой жилы;

d — диаметр круглой жилы;

а — длина сечения жилы;

b — ширина сечения жилы;

Провода, проложенные вместе, греются и подогревают друг друга, поэтому для выбора провода или кабеля по таблице «Допустимые длительные токи для проводов и кабелей» выбираем тип провода или кабеля, находим соответствующую мощность (первая цифра) и ток (вторая цифра), находим сечение жилы провода или кабеля.

Ток не зависит от напряжения, а только от мощности потребителя. Поэтому, не имеет значения напряжение, которым питается потребитель. Только ток.

Не нужно учитывать провод, по которому при нормальном режиме работы оборудования ток не течет — провод заземления. Если в таблице значится ток при прокладке трех ПВ-1, то третий провод не провод заземления, а еще одна фаза или нуль. В таблицах приведены предельно допустимые мощность и токи. Мощность рассчитана для приборов работающих от 220 В (фаза и ноль). Нельзя превышать эти значения. Желательно оставлять небольшой запас по мощности — на всякий случай. Каждое соединение в щитке, в коробке является потребителем энергии, правда очень маленьким, но под него необходимо оставить запас.

В продаже встречаются кабели с маркировкой ГОСТ и ТУ. Обычно ГОСТ — нормальные сечения, т.е сечение соответствует площади, а вот ТУ — заниженного сечения, к примеру кабель ВВГ 3*6 ТУ имеет сечение жилы соответствующей кабелю ВВГ 3*4. Именно поэтому покупать провода лучше со штангенциркулем в руках.

Допустимые длительные токи для проводов и кабелей с медными жилами в зависимости от их количества при прокладке вместе

Сечение, кв.мм
Диаметр жилы, мм
Мощность / ток
Один провод ПВ-1 или ПВ-3 , кВт / А Два провода ПВ-1 или ПВ-3 при прокладке вместе, кВт / А Три провода ПВ-1 или ПВ-3 при прокладке вместе, кВт / А Четыре провода ПВ-1 или ПВ-3 при прокладке вместе, кВт / А Один двухжильный кабель ВВГ, ПВС или ПУНГП, кВт / А Один трехжильный кабель ВВГ, ПВС или ПУНГП, кВт / А
0,50,792,2 / 101,98 / 91,76 / 81,54 / 71,76 / 81,54 / 7
0,75
0,97
2,86 / 132,64 / 122,42 / 112,2 / 102,42 / 112,2 / 10
11,133,3 / 153,08 / 142,86 / 132,64 / 122,86 / 132,64 / 12
1,51,384,4 / 203,74 / 173,3 / 153,08 / 14
3,52 / 16
2,86 / 13
2,51,785,94 / 275,28 / 244,84 / 224,84 / 224,84 / 224,18 / 19
42,257,92 / 367,48 / 346,82 / 315,94 / 276,16 / 28

Удельная электрическая проводимость алюминия — Морской флот

Под удельной проводимостью металлов (еще ее называют удельной электропроводностью) подразумевают способность металла проводить электрический ток (измеряется в Ом/м). Несмотря на то, что все металлы являются проводниками, некоторые из них проводят электрический ток лучше, некоторые — хуже.

Ниже приведена удельная проводимость некоторых металлов и сплавов при температуре 20 °C:

Алюминий — 37 000 000

Вольфрам — 18 200 000

Железо чистое — 10 000 000

Золото — 45 500 000

Иридий — 21 100 000

Константан — 2 000 000

Магний — 22 700 000

Манганин — 2 330 000

Медь — 58 100 000

Молибден — 18 500 000

Нейзильбер — 3 030 000

Никель — 11 500 000

Нихром — 893 000

Олово — 8 330 000

Платина — 9 350 000

Ртуть — 1 040 000

Свинец — 4 810 000

Серебро — 62 500 000

Сталь литая — 7 690 000

Цинк — 16 900 000

Популярные металлыУдельная электрическая проводимость алюминия Медь
&nbsp&nbsp Вопросы и ответы
Удельная электрическая проводимость алюминия Часто во время осуществления сварки или пайки металлов и их сплавов возникают неожиданные проблемы. О многих из них мы и поговорим в разделе «вопросы и ответы»

Перейти в раздел >>

&nbsp&nbsp Технологии работ
Удельная электрическая проводимость алюминия
Удельная электрическая проводимость алюминияКак производится закалка и отпуск стали

Удельная электрическая проводимость алюминияСпособы резки металла под водой

Удельная электрическая проводимость алюминияСварка угловых и тавровых соединений

Удельная электрическая проводимость алюминия
Удельная электрическая проводимость алюминияОбслуживание и уход за сварочным оборудованием

Удельная электрическая проводимость алюминияСварочные генераторы постоянного тока

Удельная электрическая проводимость алюминияХарактеристики источников питания

Удельная электрическая проводимость алюминияЭлектрошлаковая сварка углеродистых сталей

Удельная электрическая проводимость алюминия Эмалирование металлов – технология, которая позволяет наносить на поверхность изделий из стали специальный защитный слой, отличающийся великолепными эстетическими свойствами.

Узнать подробности >>

Удельная электрическая проводимость алюминия
Удельная электрическая проводимость алюминияТехнология производства покрытых электродов

Удельная электрическая проводимость алюминияЭлектроды для дуговой сварки, наплавки, резки

Удельная электрическая проводимость алюминияГазоэлектрическая сварка в среде углекислого газа

Удельная электрическая проводимость алюминияСамоходные однодуговые сварочные головки

Удельная электрическая проводимость алюминияЭлектрическая сварочная дуга и ее свойства

Удельная электрическая проводимость алюминияКак нам известно из закона Ома, ток на участке цепи находится в следующей зависимости: I=U/R. Закон был выведен в результате серии экспериментов немецким физиком Георгом Омом в XIX веке. Он заметил закономерность: сила тока на каком-либо участке цепи прямо зависит от напряжения, которое к этому участку приложено, и обратно — от его сопротивления.

Позже было установлено, что сопротивление участка зависит от его геометрических характеристик следующим образом: R=ρl/S,

где l- длина проводника, S — площадь его поперечного сечения, а ρ — некий коэффициент пропорциональности.

Таким образом, сопротивление определяется геометрией проводника, а также таким параметром, как удельное сопротивление (далее — у. с.) — так назвали этот коэффициент. Если взять два проводника с одинаковым сечением и длиной и поставить их в цепь по очереди, то, измеряя силу тока и сопротивление, можно увидеть, что в двух случаях эти показатели будут разными. Таким образом, удельное электрическое сопротивление — это характеристика материала, из которого сделан проводник, а если быть еще более точным, то вещества.

Проводимость и сопротивление

У.с. показывает способность вещества препятствовать прохождению тока. Но в физике есть и обратная величина — проводимость. Она показывает способность проводить электрический ток. Выглядит она так:

σ=1/ρ, где ρ — это и есть удельное сопротивление вещества.

Если говорить о проводимости, то она определяется характеристиками носителей зарядов в этом веществе. Так, в металлах есть свободные электроны. На внешней оболочке их не больше трех, и атому выгоднее их «отдать», что и происходит при химических реакциях с веществами из правой части таблицы Менделеева. В ситуации же, когда мы располагаем чистым металлом, он имеет кристаллическую структуру, в которой эти наружные электроны общие. Они-то и переносят заряд, если приложить к металлу электрическое поле.

В растворах носителями заряда являются ионы.

Если говорить о таких веществах, как кремний, то по своим свойствам он является полупроводником и работает несколько по иному принципу, но об этом позже. А пока разберемся, чем же отличаются такие классы веществ, как:

Проводники и диэлектрики

Есть вещества, которые ток почти не проводят. Они называются диэлектриками. Такие вещества способны поляризоваться в электрическом поле, то есть их молекулы могут поворачиваться в этом поле в зависимости от того, как распределены в них электроны. Но поскольку электроны эти не являются свободными, а служат для связи между атомами, ток они не проводят.

Проводимость диэлектриков почти нулевая, хотя идеальных среди них нет (это такая же абстракция, как абсолютно черное тело или идеальный газ).

Условной границей понятия «проводник» является ρ

Характерными свойствами чистого алюминия являются его малый удельный вес, низкая температура плавления, высокая тепловая и электрическая проводимость, высокая пластичность, очень большая скрытая теплота плавления и прочная, хотя и очень тонкая пленка окиси, покрывающая поверхности металла и защищающая его от проникновения кислорода внутрь.

Малая плотность делает алюминий основой легких конструкционных материалов; большая пластичность позволяет применять к алюминию все виды обработки давлением и получать из него листы, прутки, проволоку, трубы, тончайшую фольгу, штампованные детали с глубокой вытяжкой и др. Хорошая электрическая проводимость обеспечивает широкое применение алюминия в электротехнике. Так как плотность алюминия в 3,3 раза ниже, чем у меди, а удельное сопротивление лишь в 1,7 раза выше, чем у меди, то алюминий, на единицу массы имеет вдвое более высокую проводимость, чем медь. Прочная пленка окиси быстро покрывает свежий разрез металла уже при комнатной температуре, обеспечивая алюминию высокую устойчивость против коррозии в атмосферных условиях.

Сернистый газ, сероводород, аммиак и другие газы, находящиеся в воздухе промышленных районов, не оказывают заметного влияния на скорость коррозии алюминия. Действие пара на алюминий также не-значительно. Алюминий, не содержащий меди, достаточно стоек (в отсутствие элект-ческого тока) в естественной морской воде. В концентрированных азотной и серной кислотах алюминий также практически устойчив. В разбавленных кислотах и растворах едких щелочей алюминий быстро разрушается. Однако в растворах аммиака он достаточно стоек. В контакте с большинством металлов и сплавов, являющихся благородными по электрохимическому ряду потенциалов, алюминий служит анодом и, следовательно, коррозия его в электролитах будет прогрессировать. Чтобы избежать образования гальванопар во влажной атмосфере, место соединения алюминия, с другими металлами герметизируется лакировкой или другим путем.

Длительные испытания проводов из алюминия показали, что они в отношении устойчивости против коррозии не уступают медным.

Таблица 8-16 Химический состав технического алюминия (ГОСТ 11069-64)
Удельная электрическая проводимость алюминия

Влияние примесей на электрическую проводимость алюминия различно. Примеси, образующие с алюминием твердые растворы, сильно снижают электропроводность; примеси, не входящие в твердые растворы, почти не оказывают влияния на снижение проводимости. На рис. 8-4 показано изменение проводимости алюминия в зависимости от содержания примесей.

Рис. 8-4. Изменение проводимости алюминия в зависимости от содержания примесей.
Удельная электрическая проводимость алюминия

Физические свойства алюминия марок А5; А6 и АЕ, предназначенного для изготовления шин и проводов, приведены ниже:

Плотность при 20 °С, кг/м3 . 9700

Удельное электрическое сопротивление при 20 °С (не более), мкОм м:

проволока твердая и полутвердая . 0,0283

Температурный коэффициент сопротивления в интервале 0-150 °С, Удельная электрическая проводимость алюминия. 0,004

Температурный коэффициент линейного расширения (20-100 °С), Удельная электрическая проводимость алюминия. Удельная электрическая проводимость алюминия

Теплопроводность, Вт/(м °С). 2,05

Температура плавления, °С . 660-647

Теплота плавления, Дж/кг . Удельная электрическая проводимость алюминия

Температура отжига, °С . 350-400

Средняя теплоемкость (0-100 °С), Дж/(кг °С). 240

В табл. 8-17 приведена ориентировочная зависимость механических свойств алюминия от температуры.

Выбор сечения провода, кабеля (медного, алюминиевого) по мощности. Расчет сечения исходя из диаметра (видео)

 Использование полезной работы электрического тока, уже является чем-то обыденным, незаменимым и само собой разумеющимся. Действительно, с тех пор, когда были получены первые токи от первой батарейки, великим ученым Алессандро Вольтом, в далеком 1800 году, прошло всего-то два столетия. Однако теперь сеть проводов, электрических соединений буквально пронизывает все и вся на поверхности земли и в наших домах. Если всю эту сеть нескончаемых проводов представить себе со стороны, то это будет подобно нервной или кровеносной системе в нашем организме. Роль всех этих проводов для современного общества, пожалуй, не менее значима, чем функция одной из вышеупомянутых систем живого организма. Что же, раз это так важно и серьезно, то при выборе проводов и кабелей, для создания нашей собственной коммуникативной электрической сети стоит подходить с особым вниманием и придирчивостью. Дабы она работала стабильно, без сбоев и отказов. Что же в себя включает данный выбор проводов и кабелей? Во-первых, это определиться с применяемым для проводки материалом, будь то медь или алюминий. Во-вторых, определиться с количеством жил в проводнике, 2 или 3. В-третьих, необходимо подобрать сечения жил исходя из тока, которые будет проходить по проводам, то есть исходя из мощности нагрузки. В-четвертых, выбрать провод исходя из расчетного значения, ближайшее большее сечение по типоряду относительного расчетного. О мелочах и того можно говорить намного больше сказанного, поэтому пока остановимся на этом, и попытаемся все же раскрыть тему нашей статьи о расчете и выборе провода или кабеля исходя из мощности нагрузки.

Чем отличается кабель от провода

Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Не смотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.
 Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.

 

Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию. Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.

Какой провод, кабель выбрать для прокладки проводки (моножилу или многожильный)

 При монтаже электропроводки обычно применяют провода и кабели марки ПВС, ВВГнг, ППВ, АППВ. В этом списке встречаются как гибкие кабели, так и с моножилой. Здесь мы хотели бы сказать вам одну вещь. Если ваша проводка не будет шевелиться, то есть это не удлинитель, не место сгиба которое постоянно меняет свое положение, то предпочтительно использовать моножилу. Вы спросите почему? Все просто! Не смотря на то, насколько хорошо не были бы уложены в защитную изоляционною оплетку проводники, под нее все же попадет воздух, в котором содержится кислород. Происходит окисление поверхности меди. В итоге, если проводников много, то площадь окисления намного больше, а значит токопроводящее сечение «тает» на много больше. Да, это процесс длительный, но и мы не думаем, что вы собрались менять проводку часто. Чем больше она проработает, тем лучше. Особенно это эффект окисления будет сильно проявляться у краев реза кабеля, в помещениях с перепадом температуры и при повышенной влажности. Так что мы вам настоятельно рекомендуем использовать моножилу! Сечение моножилы кабеля или провода изменится со временем незначительно, а это так важно, при наших дальнейших расчетах.

Выбираем провод (кабель) из меди или алюминия (документ ПЭУ)

 В СССР большинство жилых домов оснащались алюминиевой проводкой, это было своеобразной нормой, стандартом и даже догмой. Нет, это совсем не значит, что страна была бедная, и не хватало на меди. Даже в некоторых случая наоборот. Но видимо проектировщики электрических сетей решили, что экономически можно много сэкономить, если применять алюминий, а не медь. Действительно, темпы строительства были огромнейшие, достаточно вспомнить хрущевки, в которых все еще живет половина страны, а значит эффект от такой экономии был значительным. В этом можно не сомневаться. Тем не менее, сегодня другие реалии, и алюминиевую проводку в новых жилых помещениях не применяют, только медную. Это исходит из норм ПУЭ пункт 7.1.34 «В зданиях следует применять кабели и провода с медными жилами…». (До 2001 г. по имеющемуся заделу строительства допускается использование проводов и кабелей с алюминиевыми жилами) Так вот, мы вам настоятельно не рекомендуем экспериментировать и пробовать алюминий. Минусы его очевидны. Алюминиевые скрутки невозможно пропаять, так же очень трудно сварить, в итоге контакты в распределительных коробках могут со временем нарушиться. Алюминий очень хрупкий, два-три изгиба и провод отпал. Будут постоянные проблемы с подключением его к розеткам, выключателем. Опять же если говорить о проводимой мощности, то медный провод с тем же сечением для алюминия 2,5мм.кв. допускает длительный ток в 19А, а для меди в 25А. Здесь разница больше чем 1 КВт.
 Так что еще раз повторимся — только медь! Далее мы и будем уже исходить из того, что сечение рассчитываем для медного провода, но в таблицах приведем значения и для алюминия. Мало ли что.

Сколько примерно потребляют бытовые приборы, и как это отразиться на выборе, расчете сечения кабеля

Итак, мы уже определились с маркировкой кабеля, что это должна быть моножила, также с тем, что это должна быть медь, да и про подводимую мощность кабеля мы тоже «заикнулись» не просто так. Ведь именно исходя из показателя проводимой  мощности, будет рассчитываться провод, кабель на его применяемое сечение. Здесь все логично, прежде чем что-то рассчитать, надо исходить из начальных условий задачи. Этому нас научили еще в школе, исходные данные определяют основные пути решения. Что же, тоже самое можно сказать про расчет сечения медного провода, для расчета его сечения необходимо знать с какими токами или мощностями он будет работать. А для того чтобы нам знать токи и мощности, мы сразу должны знать, что именно будет подключено в нашей квартире, где лампочка, а где телевизор. Где компьютер, а куда мы включим зарядное устройство для телефона. Нет, конечно, со временем исходя из жизненных обстоятельств, что-то может поменяться, но нет кардинально, то есть примерная суммарная потребляемая мощность для всех наших помещений останется прежняя. Лучше всего сделать так, нарисовать план квартиры и там расставить и развешать все электроприборы, которые вам встретятся и которые запланированы. Скажем так.

Здесь неплохо было сориентироваться, сколько какой прибор потребляет. Именно для этого мы и приведем для вас таблицу ниже.

Подытожим данный абзац, мы должны представлять какие токи, мощности подводимые проводами и кабелями, должны быть обеспечены, для того, чтобы рассчитать необходимое нам сечение и выбрать подходящее. Об этом как раз далее.

Как рассчитать диаметр (сечение) провода (кабеля) исходя из силы тока, потребляемой мощности (медный и алюминиевый)

 Вот мы добрались и до сути нашей статьи. Однако всё, что было выше, упускать нельзя, а значит и мы умолчать не могли.
 Если попытаться изложить мысль логично и по-простому, то через каждое условное сечение проводника может пройти ток определенной силы. Заключение это вполне логичное и теперь лишь осталось узнать эти соотношения и соотнести для разных диаметров провода, исходя из его типоряда. Также нельзя умолчать, что здесь, при расчете сечения по току, в «игру вступает» и температура. Да, это новая составляющая – температура. Именно она способна повлиять на сечение. Как и почему, давайте разбираться.
 Все мы знаем о броуновском движении. О постоянном смещении ионов в кристаллической решетке. Все это происходит во всех материалах, в том числе и в проводниках. Чем выше температура, тем больше будут эти колебания ионов внутри материала. А мы знаем, что ток это направленное движение частиц. Так вот, направленное движение частиц будет сталкиваться в кристаллической решетке с ионами, что приведет к повышению сопротивления для тока. Чем выше температура, тем выше электрическое сопротивление проводника. Поэтому по умолчанию, сечение провода для определенного тока принимается при комнатной температуре, то есть при 18 градусах Цельсия. Именно при этой температуре приведены все справочные значения в таблицах, в том числе и наших.
 Не смотря на то, что алюминиевые провода мы не рассматриваем в качестве проводов для электропроводки, по крайней мере, в квартире, тем не менее, они много где применяются. Скажем для проводки на улице. Именно поэтому мы также приведем значения зависимостей сечения и тока и для алюминиевых проводов.
 Итак, для меди и алюминия будут следующие показатели зависимости сечения провода (кабеля) от тока (мощности). Смотрите таблицу.

Таблица проводников под допустимый максимальный ток для их использования в проводке

 С 2001 года алюминиевые провода для проводки в квартирах не применяются. (ПЭУ)

 Да, здесь как заметил наш читатель, мы фактически не привели расчета, а лишь предоставили справочные данные, сведенные в таблицу, на основании этих расчетов. Но смеем вас замерить, что для расчетов необходимо перелопатить множество формул, и показателей. Начиная от температуры, удельного сопротивления, плотности тока и тому подобных. Поэтому такие расчеты мы оставим для спецов. При этом необходимо заметить, что и они не являются окончательными, так как могут незначительно разнится, в зависимости от стандарта на материал и запаса провода по току, применяемого в разных странах.
 А вот о чем мы еще хотели бы сказать, так это о переводе сечения провода в диаметр. Это необходимо когда имеется провод, но по каким-то причинам маркировки на нем нет. В этом случае по диаметру провода можно вычислить сечения и наоборот из сечения диаметр.

Как рассчитать зависимость диаметра токопроводящей жилы (провода, кабеля) от его сечения (площади)

Этот абзац больше относится к курсу школы по геометрии алгебре, когда необходимо найти площадь круга исходя из его диаметра. Именно такая задача стоит перед тем, кто хочет перевести диаметр в сечение. Делается это очень просто.

Сечение равно по формуле — S=0,7853*D2, где D и есть диаметр окружности, а S это площадь. Также справедливо будет утверждение S=ПИ*R, где R — радиус

Общепринятые сечения медных проводов для проводки в квартире по сечению

 Мы с вами много говорили о наименованиях, о материалах, об индивидуальных особенностях и даже о температуре, но упустили из вида жизненные обстоятельства. Так если вы нанимаете электрика для того, чтобы он провел вам проводку в комнатах вашей квартиры или дома, то обычно принимаются следующие значения. Для освещения сечения провода берется в 1,5 мм 2, а для розеток в 2,5 мм 2.
 Если проводка предназначена для подключения бойлеров, нагревателей, плит, то здесь уже рассчитывается сечение провода (кабеля) индивидуально.

Выбор сечения провода исходя из количества коммуникаций в доме (квартире) (типовые схемы проводки)

О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, приброшенный во все комнаты, от которого идут отводы. Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.

Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)

Подводя итог о выборе сечения провода (кабеля) в зависимости от силы тока (мощности)

 Если вы прочитали всю нашу статью, и все наши выкладки, то наверняка уже осознали насколько сложно и одновременно просто выбрать алюминиевый или медный провод, по сечению исходя из токовой нагрузки и мощности. Да, расчет сечения потребует знания множества формул, поправок на материал и температуру, при этом если воспользоваться справочными таблицами, которые мы и привели, то все просто и понятно.
 Что же, кроме выбора сечения провода необходимо будет правильно соединить между собой провода, использовать соответствующие автоматы, УЗО, розетки и выключатели. Не забывать про особенности схемы подключения проводки в квартире. Все это скажется на выборе сечения провода в вашем конкретном случае. И только в этом случае, когда вы учтете все факторы, воспользуетесь справочными материалами, правильно смонтируете все элементы, можно будет говорить о том, что все сделано как надо!

Видео о подборе сечения проводник в зависимости от тока (А)

Основные принципы по выбоу сечения, исходя из тока питания еще раз рассмотрены в этом видео.

Физические свойства алюминия зависят от его чистоты

Основные свойства

Алюминий — химический элемент третей группы периодической системы Д.И. Менделеева.

Таблица физических свойств алюминия
Плотность , (кг/м3) 2,7
Температура плавления Тпл, °С 660
Температура кипения Ткип, °С 2 327
Скрытая теплота плавления, Дж/г 393,6
Теплопроводность l , Вт/м •град (при 20° С) 228
Теплоемкость Ср, Дж/(г · град) (при 0–100°С) 0,88
Коэффициент линейного расширения α × 10-6, 1/°С (пр°С) 24,3
Удельное электросопротивление ρ × 10-8, Ом× м (при 20°С) 2,7
Предел прочности σ в, МПа 40–60
Относительное удлинение δ , % 40–50
Твердость по Бринеллю НВ 25
Модуль нормальной упругости E , ГПа 70

Плотность алюминия

Плотность твердого и расплавленного алюминия снижается по мере увеличения его чистоты:

Плотность алюминия при 20°С
Степень чистоты, %   99,25 99,40 99,75 99.97 99,996 99.9998
Плотность при 20°С, г/см3  2,727 2,706 2,703 2,6996 2,6989 2,69808

Плотность расплавленного алюминия при 1000°С
Степень чистоты, % 99,25 99.40 99.75
Плотность, г/см3 2,311 2,291 2,289

Температура плавления и кипения.

В момент плавления алюминия возрастает объем металла: для алюминия чистотой 99,65 % — на 6,25%, для более чистого металла — на 6,60 %. По мере повышения степени чистоты алюминия температура его плавления возрастает:

Зависимисть температуры плавления алюминия от чистоты
Степень чистоты, % 99,2 99,5 99,6 99,97 99,996
Температура плавления, °С 657 658 659,7 659,8 660,24

Теплопроводность алюминия

Теплопроводность алюминия повышается с увеличением степени его чистоты. Для технического алюминия (99,49 и 99,70%) теплопроводность при 200°С равна соответственно 209 и 222 Вт/(м×К). Для электро­литически рафинированного алюминия чистотой 99,9% теплопроводность при 190°С возрастает до 343 Вт/(м×К). Примеси меди, магния и марганца в алюминии снижают его теплопроводность. Например, добавка 2 % Mn к алюминию снижает теплопроводность с 209 до 126 Вт/(м×К).

Электропроводность алюминия

Алюминий отличается высокой электропроводностью (четвертое место среди металлов — после серебра, меди и золота). Удельная электропроводность алюминия чистотой 99,99 % при 20°С равна 37,9 мкСм×м, что составляет 63,7% от электропроводности меди [59,5 мкСм×м]. Более чистый алюминий [99,999 %] обладает электропроводностью, равной 65,9% от электро­проводности меди.
На электропроводность алюминия влияет ряд факторов: степень деформации, режим термической обработки и т. д., решающую же роль играет природа примесей, присутствующих в алюминии. Примеси по их отрицательному влиянию на электропроводность алюминия можно расположить в следующий ряд: Cr, V, Mn, Ti, Mg, Ag, Сu, Zn, Si, Fe Ni.
Наиболее отрицательное влияние на электросопротивление алюминия оказывают примеси Сг, V, Мп и Ti . Поэтому в алюминии для электротехнической промышленности сумма Cr+V+Mn+Ti не должна превышать 0,015% (марка А5Е) и даже 0,01 % (А7Е) при содержании кремния соответственно 0,12 и 0,16 %.

Влияние примесей на электропроводность алюминия Проводимость

Основными примесями в алюминии являются кремний, железо, медь, цинк и титан. При малых содержаниях кремния в алюминии (0,06%) величина Fe : Si (в пределах от 0,8 до 3,8) сравнительно мало влияет на его электросопротивление. При увеличении содержания кремния до 0,15—0,16% влияние Fe : Si возрастает. Ниже приведено влияние Fe : Si на электропроводность алюминия:

Влияние Fe : Si на электропроводность алюминия
Fe : Si    1,07 1,44 2,00 2,68 3,56
Удельное электросопротивление алюминия,
×10-2 мкОм·мм:
 
нагартованного 2,812 2,816 2,822 2,829 2,838
отожженного 2,769 2,771 2,778 2,783 2,788

Удельное электрическое сопротивление отожженной алюминиевой проволоки (ρ, мкОм·м) при 20°С в зависимости от содержания примесей можно приблизительно определить по следующей формуле: ρ=0,0264+0,007×(% Si)+0,0007×(% Fe) + 0,04×[% (Cr+V + Mn + Ti)].

Отражательная способность

С повышением степени чистоты алюминия возрастает его способность отражать свет от поверхности. Так, степень отражения белого света от прокатанных алюминиевых листов (фольги) в зависимости от чистоты металла, возрастает следующим образом: для Аl 99,2%—75%, Аl 99,5%—84% и для Аl 99,8%—86%. Поверхность листа, изготовленного из электролитически рафинированного алюминия чистотой 99,996%, отражает 90% падающего на него белого света.

Сравнение меди и стали при использовании в качестве молниеотводов, молниеприемников, заземлителей и заземляющих проводников

При прохождении тока молнии в молниеотводе происходит выделение теплоты согласно закону Джоуля-Ленца. Температура проводника увеличивается прямо пропорционально его электрическому сопротивлению.

Согласно нормативной документации молниеотводы выполняют из проволоки сечением более 50 мм2. Ближайшим стандартным калибром проволоки является проводник с круглым сечением диаметром 8 мм (50,24 мм2). В большинстве случаев именно его рекомендуют использовать специалисты.

Поскольку сопротивление меди на порядок ниже сопротивления стали, температура нагрева молниеотвода при протекании тока молнии соответственно составит: медь 122ºС и сталь около 1000ºС. Учитывая то, что температура плавления стали превышает 1300ºС, молниеотвод способен единовременно выдержать однократное воздействие молнии. Однако, при одновременных повторных ударах проводник может перегреться и расплавиться.
медь сталь

 медьсталь
температура нагрева молниеотвода ø8 мм при протекании тока молнии122ºС≈1000ºС
температура плавления1000ºС1300ºС

Эти специфичные свойства стальных молниеотводов следует принимать в расчет при проектировании, выбирая конструкции крепления.

Различный состав обуславливает разную устойчивость к бактериальной коррозии. Медь устойчива к коррозии в грунте, а сталь подвержена разрушению.

Во влажном воздухе медь медленно окисляется и темнеет, образуя на поверхности слой оксида меди, который «консервирует» металл, в дальнейшем предотвращая коррозию. В аналогичных условиях сталь со временем полностью корродирует. Чтобы предотвратить окисление стали, ее покрывают слоем цинка (оцинкованная сталь).

Медь ‒ отличный проводник, проводимость меди многократно превышает проводимость стали.
медь сталь

 медьсталь
электрическая проводимость58,1х106 Ом/м7,7х106 Ом/м
электрическое сопротивление1,72х10-8 Ом*м13х10-8 Ом*м

Сталь представляет собой металлический сплав, а медь ‒ чистый металл. Сталь состоит из железа и углерода, тогда как медь является химическим элементом (Cu атомный номер 29).

Просмотров: 5410| Опубликовано: Среда, 15 Февраль 2017 19:11|

Алюминий в электротехнике

Алюминий для электротехнической промышленности

Так сложилось много лет назад, что большинство инженеров, конструкторов и проектировщиков в электротехнической промышленности считают медь и сталь практически единственными материалами, с которыми можно работать. Это связывают, в частности, с тем, что в конце 19-го века, когда зарождалась электрическая промышленность, доступного алюминия практически еще не было.

В настоящее время ситуация совершено другая: алюминия в мире производят где-то в два раза больше чем меди и объемы производства алюминия уступают только объемам производства стали.

В последние годы цены на сталь и медь растут значительно быстрее, чем цены на алюминий. В результате некоторые потребители, которые традиционно  применяли медь, переходят на алюминий. Однако сравнение физических и экономических  характеристик этих металлов «кричит» о том, что замен стали и меди на алюминий должно быть намного больше. Поэтому не удивительно, что применение алюминия в электротехнической отрасли неуклонно возрастает.

Свойства материала как электрического проводника

Для инженера-электрика наиболее важными свойствами и характеристиками материалов являются:

  • плотность,
  • электрическая проводимость,
  • прочность,
  • термическое расширение и
  • коррозионная стойкость.

Сравнение алюминия, стали и меди         

Плотность (г/см3):
Алюминий 1350: 2,70
Сталь: 7,86
Медь (отожженная): 8,93

Объемная проводимость (% IACS):
Алюминий 1350: 61
Сталь: 8
Медь (отожженная): 100

Удельная проводимость (на единицу массы):
Алюминий 1350: 100 %
Сталь: 4 %
Медь (отожженная): 50 %

Предел прочности (МПа):
Алюминий 1350: 125
Сталь: 300
Медь (отожженная): 235

Предел текучести (МПа):
Алюминий 1350: 110
Сталь: 170
Медь (отожженная): 104

Линейное термическое расширение (10-6 м/м·°С):
Алюминий 1350: 22
Сталь: 13
Медь (отожженная): 17

Электрические свойства

Отожженная медь имеет проводимость 100 % IACS. Сокращение IACS – обозначает «Международный стандарт по отожженной меди» –  сравнительная единица измерения электрической проводимости. Алюминий 1350-Н116 (АД0Е по ГОСТ 4784-97) имеет проводимость 61 % IACS, то есть эквивалентная меди проводимость будет достигаться при большем поперечном сечении алюминия. Однако поскольку алюминий намного легче меди этот увеличенный алюминиевый проводник будет весить в два раза меньше чем медный (8,93/2,70×0,61=2,02). В результате один килограмм алюминия будет обеспечивать ту же проводимость что и два килограмма меди. Поэтому, когда нет жестких ограничений по размерам проводника, для токопроводящих шин, кабелей и проводов вместо меди все чаще применяют алюминий.

Прочность

При одинаковых сечениях и медь, и сталь, конечно, прочнее алюминия. Однако прочность алюминия можно увеличить легированием и термомеханической обработкой, а также увеличить его толщину. Кроме того, поскольку технология прессования алюминия позволяет получать в отличие, например, от стали, поперечные сечения очень сложной формы. Поэтому алюминиевый элемент может быть сконструирован таким образом, чтобы конструкционно быть более эффективным, чем стальные элементы.

Сопротивление коррозии

В отличие от стали поверхность алюминия не нужно красить или покрывать, например, цинком, а потом следить, чтобы она не заржавела. Естественный слой оксида алюминия изолирует металл от дальнейшего контакта с воздухом и предотвращает дальнейшее окисление. При малейшем повреждении этого слоя он мгновенно сам восстанавливается.

Заблуждения и мифы

Алюминиевые проводники являются достаточно надежными. Все провода линий электропередач – алюминиевые. Они имеют многолетнюю репутацию надежной службы.

Однако еще в 60-70-е годы прошлого века сложилось мнение о проблемах  с алюминиевой проводкой в жилых домах и квартирах, в частности, возможном перегреве их соединений. Тщательные исследования этого вопроса, например, в Канаде, показали, что алюминиевые провода не являются в этом смысле какими-то особенными: при неправильном обращении перегреваться могут любые провода. Более того, в сотнях тысяч домов и квартир по всему миру алюминиевые провода продолжают работать. Другое дело, в 60-70-е годы никто не предполагал, что дома и квартиры будут так «напичканы» электрическим приборами: сечения алюминиевых проводов можно было заложить и потолще.

Алюминиевые профили в электротехнике  

Уличные и шоссейные осветительные столбы

Алюминиевые прессованные столбы имеют преимущества перед, например, стальными столбами, за счет их меньшего веса, меньшего соотношения прочность-вес, хорошего внешнего вида, долговременной коррозионной стойкости, низкой стоимости обслуживания, а также большей безопасности, особенно при применении специальных безопасных оснований. Когда на такой столб наезжает на большой скорости автомобиль, это основание разрушается и позволяет столбу двигаться вместе с автомобилем. Это снижает мощность удара по автомобилю и степень повреждений водителя и пассажиров. Это основание так «хитро» спроектировано, что оно разрушается от удара об столб, но выдерживает воздействующие на столб ветровые нагрузки.

Токопроводящие шины

Для всех типов шин применяют прессованный алюминий там, где это позволяет место для их размещения, так как они, в первую очередь, намного дешевле, а также их намного легче гнуть (рисунок 1).
shyny-alyuminievyeРисунок 1

Кабельные наконечники и гильзы

Кабельные наконечники и гильзы из прессованных алюминиевых труб имеют преимущества над аналогами из стали или пластика по прочности, проводимости, стоимости, коррозионной стойкости и легкости механической обработки (рисунок 2).
nakonechniki-alyuminievyeРисунок 2

Каналы для прокладки кабелей

Каналы для прокладки кабелей все чаще применяют из прессованного алюминия, а не из стали или пластика, так как они обеспечивают достаточную прочность, имеют малый вес, обладают высокой коррозионной стойкостью, являются немагнитными и огнестойкими (рисунок 3).
alyuminievyy-kabel-kanalРисунок 3

Шкафы электрических подстанций

Алюминиевые профили предпочтительнее, например, оцинкованной стали, за счет минимального технического обслуживания, прочности, коррозионной стойкости, малого веса (особенно при монтаже в полевых условиях и на высоте). Алюминиевые профили и листы легко подрезать и сверлить прямо «по месту», а главное, их не надо красить для защиты от коррозии.

Распределительные траверсы электрических столбов

Распределительные траверсы электрических столбов (те, которые горизонтальные) из прессованного алюминия обеспечивают необходимую прочность, но при этом мало весят и не требуют никакого технического обслуживания.

Радиаторы-гребенки

Прессованные алюминиевые пластинчатые радиаторы для рассеивания тепла («гребенки») весьма эффективны за счет высокой теплопроводности, малого веса, низкой стоимости. Главное преимущество алюминия – способность прессоваться во много  очень тонких ребер (рисунок 4).
alyuminievaya-grebenkaРисунок 4

Коаксильный кабель 

Наружный проводник коаксильного телевизионного кабеля чаще всего выполняют не из медной трубы, а из более дешевой алюминиевой. Технология изготовления такого кабеля представлена на рисунке 5.

kabel-koaksilnyy-allyuminievyyРисунок 5

 

Источник: P. Pollak, ET 2008.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *