Проверка сопротивления контура заземления: Измерение сопротивления контура заземления. Проверка сопротивления заземления в Москве.

Содержание

Измерение сопротивления контура заземления. Проверка сопротивления заземления в Москве.

Регулярное проведение измерений электрических параметров линий энергоснабжения является залогом безаварийной и долговечной эксплуатации электрооборудования. Это в равной степени относится как к промышленным электроустановкам, использующимся на предприятиях, так и бытовым устройствам, применяемым в домах и частных подворьях.

Экономический ущерб, нанесенный выходом из строя какого-либо аппарата в результате аварии, вызванной нарушением электрических характеристик питающей сети, может быть весьма ощутимым. Но он становится несоизмеримо ничтожным, когда речь заходит о здоровье и, тем более, жизни людей.

Именно поэтому регулярно проводить некоторые виды электроизмерений не просто актуально и целесообразно, а обязательно, что регламентируется законодательно. Проверка сопротивления заземления входит в ряд таких процедур и выполняется согласно требованиям ПУЭ-7.

Подробно, насколько это возможно, разобраться в необходимости этой процедуры, методах ее проведения и возможных последствиях пренебрежительного отношения к ней, ставит перед собой задачу данная публикация.

Качество заземления. Почему так важно?

Абсолютное большинство сетей в стране построено по схеме с глухозаземленной нейтралью. Это значит, что в качестве нулевого проводника в них используется земля как объект с ничтожно малым сопротивлением и огромной емкостью. Поэтому заземлять предписано все объекты, которые по каким-либо причинам могут соприкасаться с фазным проводом. Номенклатура последних простирается от силовых трансформаторов и опор ЛЭП до корпусов промышленного оборудования и бытовых устройств.

Сергей Борисов

(вед. инженер ЭТЛ)

Проверка работоспособности системы заземления — залог безопасности работников Предприятия от поражения электрическим током. Проверка контура заземления является одним из обязательных измерений на объекте при выполнении работ по эксплуатационным испытаниям электроустановки Потребителя.

Повреждение изоляции, чаще всего механическое, приводит к тому, что на корпус станка, например, попадает высокий потенциал фазы. Будучи незаземленным, такое оборудование несет серьезную угрозу здоровью и даже жизни обслуживающего персонала из-за прохождения тока через человеческое тело. Безопасность людей в этом случае обеспечивается в первую очередь надежным заземлением, что не отменяет необходимости применения защитных автоматических выключателей и УЗО.

Говоря о молнии с ее колоссальным напряжением и о возможных последствиях для человека, попавшего под такой потенциал, задавать вопросы об актуальности защитных устройств не приходится. Заземление является единственным методом построения громоотводов.

Итак, измерение сопротивления заземления обеспечивает требуемый уровень защиты людей, работающих с электроустановками. Вне зависимости от природы возникновения опасности эта величина должна находиться в допустимых ПУЭ-7 пределах.

Как проводится проверка

Простейшее устройство заземления может состоять из единственного электрода, представляющего собой штырь определенных размеров, погруженный в землю на значительную глубину. Эффективность такого подхода вызывает сомнения, хотя позволяет использовать его для защиты некоторых сооружений.

Чаще всего заземлитель представляет собой систему таких электродов, объединенных в замкнутый контур стальной полосой. Его габариты и глубина залегания зависят от характеристик грунта. Для проверки качества защиты в общем случае нужно выполнить следующие действия:

  • визуальный осмотр позволяет проверить качество соединений элементов заземляющего устройства, отсутствие разрушений из-за механических повреждений и коррозии;
  • проверка непрерывности электрической цепи и ее ветвей до заземлителя;
  • собственно измерение сопротивления контура заземления с использованием соответствующего прибора (специалисты нашей компании снабжены аппаратурой, позволяющей с высокой точностью проводить подобные тесты).

Сравнивая полученное значение с нормативным для данного вида сооружений, выносится вердикт о соответствии качества заземления требованиям ПУЭ-7. Результаты испытания оформляются документально в виде соответствующего протокола, который может служить основанием для реконструкции или замены заземляющего устройства или отдельных его элементов.

Когда проводят замер сопротивления

Никто не запрещает домовладельцу или руководителю предприятия проводить проверки сколь угодно часто. Экономическая целесообразность и здравый смысл, а также требования регламента выступают в роли ограничивающих факторов. В общем случае подобные испытания проводятся на следующих основаниях:

  1. требование заказчика, при возникновении у него подозрений в неподобающем качестве заземления;
  2. после аварийных ситуаций, реконструкций и подобных ситуаций;
  3. приемо-сдаточные операции и регламентные работы требуют подписания соответствующего протокола, в том числе (наша компания обладает полным комплектом разрешительной документации на этот вид деятельности).

Касаемо регламентных работ, нужно отметить, что периодичность их проведения зависит от рабочего напряжения электроустановки и места ее использования. В соответствии с требованиями ПТЭЭП и ПУЭ визуальный осмотр должен проводиться не реже одного раза в полугодие, а замер сопротивления контура заземления значительно реже. На практике же, во избежание травматизма, эти процедуры совмещают с измерением сопротивления изоляции и выполняют один раз в три года.

Кратчайшие сроки проведения обследования заземляющих устройств и проведения сопряженных с этим замеров в Москве предлагает клиентам наша компания. Сотрудники лаборатории проведут работы на высоком уровне качества и оформят результаты документально. Кадровый состав и оснащенность современной измерительной аппаратурой, а также индивидуальный подход к каждому клиенту позволяют компании иметь превосходство над конкурентами.

Для получения подробной информации по проведению испытаний заземления и другим услугам нашей ЭТЛ обратитесь к нам в офис по телефону

Предварительный расчет стоимости услуг Вы можете осуществить с помощью калькулятора электроизмерений.

Другие услуги

Измерение сопротивления контура заземления: методы, приборы, недостатки

В основе безопасности использования электроэнергии лежит не только и не столько соблюдение всех норм при монтаже электроустановки, но и следование требованиям по ее эксплуатации, заложенным в нормативных документах. Заземляющий контур жилых домов и зданий требует периодического выполнения контрольных измерений и выявления неисправности. Расскажем в статье, как происходит измерение сопротивления заземления, какими способами.

Принцип работы заземляющего устройства

В обычных условиях контур заземления, соединенный посредством РЕ-проводника с системой выравнивания потенциалов и с корпусом каждого находящегося в здании электроприбора, бездействует: кроме незначительных по величине фоновых, токи по нему не идут.

При нарушении изоляции электропроводки и аварийной ситуации на поверхности корпуса поврежденного электроприбора образуется опасное напряжение, которое по контуру заземления переходит на потенциал земли. Благодаря этому величина напряжения, попавшего на непроводящие элементы, снижается до абсолютно неопасного значения, не способного нанести травму соприкасающегося с корпусом поврежденного прибора через землю человеку.

При нарушении контура заземления либо РЕ-проводника пути для отвода напряжения нет, и ток будет протекать сквозь тело человека, находящегося между землей и потенциалами неисправного бытового электроприбора.  Читайте также статью: → «Монтаж контура заземления в доме».

Почему заземляющее устройство становится неисправным?

При находящемся в работоспособном состоянии контуре ток по РЕ-проводнику переходит на токопроводящие электроды, находящиеся в контакте с почвой, а по ним постепенно переходит на потенциал земли. Весь поток делится на несколько составных частей.

При продолжительном пребывании в агрессивной среде грунта металлические поверхности тоководов окисляются, на них образуется окисная пленка. По мере развития коррозионных процессов прохождение тока ухудшается, электрическое сопротивление конструкции повышается. Возникающая на металлических элементах ржавчина, как правило, носит общий характер, хотя, местами можно увидеть ярко выраженные следы глубокой коррозии. Этот факт объясняется тем, что находящиеся в почве постоянно химически активные растворы щелочей, солей и кислот распределены неравномерно.

Частицы разрушенного коррозией металла отходят от тела проводника, ухудшая либо вовсе прекращая местный электрический контакт. Таких точек со временем возникает все больше, на фоне постепенно увеличивающегося сопротивления контура заземляющее устройство постепенно снижает проводимость и неспособно отвести в почву опасный потенциал. Своевременное выполнение замеров сопротивления заземления позволяет определить момент наступления критического состояния контура.

Максимально допустимое сопротивление заземления

Для каждого типа заземлителя сопротивление нормируется согласно ПУЭ (р — сопротивление грунта).

Характеристика электроустановки, ВСопротивление грунта удельное, Ом∙мСопротивление заземления
660/380<100

˃100

15

0,5р

380/220<100

˃100

30

0,3р

220/127<100

˃100

60

0,6р

Приборы для измерения сопротивления

Для выполнения замеров сейчас используются преимущественно современные цифровые приборы, пришедшие на смену устаревшим аналоговым устройствам. Сама технология выполнения измерений намного упростилась, улучшилась точность.Так как замеры необходимо выполнять 1 раз в шестилетний период, для выполнения измерений сопротивления заземления частных домов из-за дороговизны приборов экономически выгодно пригласить специалистов, имеющих все необходимое оборудование.

Для выполнения замеров чаще всего применяются следующие специальные виды приборов:

  • МС-08;
  • М-416 на полупроводниках и питанием от батареи;
  • Тестер СА-6415, оснащенный токовыми клещами.

Методика определения состояния ЗУ основывается на законе Ома для участка цепи. Для проверки через проверяемый элемент пропускается электроток от прошедшего калибровку источника напряжения, проводятся высокоточные замеры проходящего тока и определяется значение сопротивления. Читайте также статью: → «Расчет заземляющих устройств».

Выполнение замеров

Способ амперметра и вольтметра

По причине того, что контур постоянно всем свои объемом работает в грунте, именно его необходимо оценивать при выполнении измерений. С этой целью в почву на расстоянии не менее 20 м от подлежащего контролю заземляющей системы погружаются основной электрод и дополнительный, на которые подается переменный ток.

 

а) Принципиальная электрическая схема; б, в) Схемы сборки с прибором МС-08

По устроенной источником ЭДС, проводами и заглубленными в почву электродами цепи течет электрический ток, сила которого определяется при помощи амперметра. На поверхность заземляющего контура, очищенного во избежание малейшей погрешности, и контакты основного заземляющего электрода устанавливается вольтметр, замеряющий снижение напряжения на линии промеж контуром заземления и основным стержнем. При делении величин напряжения на силу тока определяется общее сопротивление исследуемой части цепи.

Если к точности измерений не предъявляется высоких требований, то можно ограничиться и этой величиной. При необходимости получения точных результатов, вычисленное значение следует откорректировать, вычтя из него сопротивление проводов и учтя воздействие диэлектрических свойств грунта на характер токов растекания в почве.

  • Основными преимуществами такого метода являются простота и несложность выполнения замеров для частных домов.
  • Недостаток — не обеспечивается требуемая точность измерений.

Трехпроводной способ измерения сопротивления

При выполнении работ по этому методу исходя из требований безопасности требуется отключение автоматического выключателя в вводном щитке питания либо снятия с заземлителя РЕ-проводника.

  • Проводник подключается замеряющему прибору и струбцине. На определенном удалении в землю забиваются стержни заземлителя, на которые навешиваются катушки с проводниками, концы которых подключаются.
  • Контакты проводов устанавливаются в разъемы измерительного устройства, проверяется работоспособность схемы к производству замеров и определяется напряжение помехи между электродами-штырями, значение которого должно быть менее 24В.
  • При большем напряжении следует изменить точки установки электродов и перепроверить эту величину. Снимаются показания с экрана устройства.

Совет #1. В целях контроля правильности выполнения работы следует провести несколько измерений, переставляя потенциальный стержень на различные расстояния. Отличие полученных значений друг от друга допускается до 5%.

Метод пробного электрода

Измерения необходимо производить до установки ЗУ. Порядок выполнения работ следующий:

  • перед проверкой в почву забивается немного возвышающийся над ней пробный стержень-заземлитель идентичный по длине будущему постоянному устройству;
  • определяется сопротивления тестером;
  • выполняется расчет удельного сопротивления грунта с учетом геометрических размеров пробного штыря.

Такой метод применим только при установке несложных заземляющих устройств, к примеру, при заземлении индивидуального дома. Читайте также статью: → «Для чего выполняется заземление крыши дома».

Четырехэлектродная схема измерения

Такая схема измерения, иначе называющаяся способом вертикального электрозондирования (ВЭЗ), дает достаточную точность результатов, так как при ней учитываются свойства всех слоев грунта — от глубинных до поверхностных. К внешним стержням (№1 и №2) подключается ЭДС, а на штырях, находящихся внутри (№3 и №4), определяется разность потенциалов.

Четырехэлектродная схема измерений

Компенсационный способ выполнения замеров

При выполнении замеров таким способом потребуются промышленные высокоточные приборы. Пара стержней-электродов заглубляется в землю на единой линии так, чтобы охватить заземляющий контур. Основным средством измерения является зонд, подключающийся к стержням №1 и №2 на максимальном приближении к шине (2) заземляющего контура.

Выполнение замеров компенсационным способом

Через погруженные в почву дополнительные штыри, грунт, проводники и первичную обмотку трансформатора подается электродвижущая сила. На вторичной обмотке возникает ток (I1). Реохордом (б) напряжения устанавливаются так, чтобы U1=U2, достигающееся обнулением показаний вольтметра, подключенного к реохорду посредством трансформатора.

Совет #2. Значение сопротивления заземления определяется установкой показаний вольтметра на ноль и кручением ручки реостата исходя из положения стрелки реохорда.

Применение калиброванного резистора

Измерение сопротивления через резистор

Через охлаждаемый резистор на заземляющее устройство электричество подается непосредственно с фазы питания. По известному значению сопротивления и определенному напряжению выявляется сила проходящего через заземлительное устройство тока. Измерения производятся при отсоединении РЕ-проводника от заземлителя, на который через калиброванное сопротивление 46 Ом подается фазное напряжение.

Преимущество данного метода, особенно эффективного в стесненных условиях города, заключается в следующем:

  • нет нужды в заглублении тяжелых электродов;
  • не требуется наличие многих метров проводов;
  • все измерения выполняются на малой площади земли.

Использование токовых клещей

При работе с клещами нет необходимости в отключении цепи заземления. В цепь подается напряжение и по ней начинает протекать ток. Определив его силу клещами, становятся известны все значения, требующиеся для выполнения расчета сопротивления.

а) Схема измерения; б) Схема эквивалентная

Что влияет на сопротивление заземления?

Сопротивление ЗУ находится в прямой зависимости от удельного сопротивления грунта, которое в разных условиях может иметь различные значения. Оно зависит от:

  • состава грунта;
  • температуры;
  • времени года.
Типы почвСопротивление удельное, кОм·см
МинимальноеСреднееМаксимальное
Зольные, засоленные, пустынные, шлаки0,592,377,0
Глины, глинистые сланцы, илистая, суглинок0,344,0616,0
То же с песком или гравием1,0215,8135,0
Гравий, песок, камни с небольшим количеством глины или суглинка59,094,0458,0

Сопротивление почвы значительно меняется при повышении влажности.  Потому, перед монтажом заземления и выполнением замеров крайне важно четко определить тип, геологический состав почв, находящихся на участке.

Влажность, %Сопротивление удельное, кОм·см
ЗемляСуглинок песчаный
0>0,109>0,109
2,5250150
516543
105318,5
151910,5
20126,3
306,44,2

Ошибки при выполнении замеров

Наиболее часто встречающимися ошибками являются:

  • выбор для выполнения замеров на электроустановках точек не с максимальным воздействием коррозии, а в случайном порядке;
  • пренебрежение проверки заземления нейтралей при сильной коррозии;
  • размещение основного и дополнительного электродов слишком близко от заземляющего устройства при замерах методом амперметра и вольтметра.

Часто задаваемые вопросы

Вопрос №1. Какие участки следует выбирать для контроля ВЛ?

Для выполнения замеров рекомендуется выбирать участки с наиболее агрессивными грунтами. При этом контролю подлежат не менее 2% опор.

Вопрос №2. Можно ли вместо высокоточных приборов использовать другие средства измерения?

В принципе, замеры можно произвести и мультиметром, но его применение чревато получением данных со слишком большой погрешностью.

Вопрос №3. Когда лучше всего проводить измерения?

Выполнять замеры лучше всего в разгар лета либо в середине зимы при благоприятной погоде и максимальном сопротивлении почвы.

Вопрос №4. Какова периодичность выполнения замеров?

Проверка производится сразу же после сдачи дома в эксплуатации. Согласно нормативам, периодичность замеров сопротивления должно проводиться каждые 6 лет, но для себя лучше выполнять их каждый год.

Вопрос №5. При выполнении нескольких замеров какой результат принимать окончательным?

Реальное значение сопротивления необходимо принимать по самому худшему результату.

Оцените качество статьи:

Проверка заземления оборудования, замеры заземления в Москве, цена от 1000 руб

Рассмотрим процесс на примере замеров сопротивления изоляции проводов розеточных групп:

  1. Устанавливаем прибор на ровной поверхности в горизонтальном положении, после чего калибруем. Для уменьшения влияния сопротивления соединительных проводов на результат измерения, располагаем прибор как можно ближе к измеряемому заземлителю.
  2. Выбираем необходимую схему подключения прибора.
  3. Забиваем стержни зонда и вспомогательного заземлителя в плотный не насыпной грунт на глубину не менее полуметра.
  4. Переходим непосредственно к измерению после выбора схемы подключения и после подключения прибора. Находим конечный результат.
  5. По завершении работ полученные данные заносятся в протокол проверки сопротивления заземления который передается на предприятие.

В работе используется прибор — мегомметр Ф4103-1М, состоящий из генератора непрерывного тока с ручным приводом, добавочного сопротивления и магнитоэлектрического логометра.

Прибор Ф4103-1М может использоваться только при температуре от -25 до +55 градусов, когда уровень влажности не превышает 90%.

Во время проверки заземления ВЛ проводят осмотр конструкций после выкапывания земли в месте их установки.

Оборудование проверяют до тех пор, пока не будут найдены ЗУ, находящиеся в хорошем состоянии, у стоящих друг за другом опор. Внеплановый осмотр должен в обязательном порядке осуществляться после вспучивания грунта, оползней либо обильных осадков.

Вскрытие почвы делают выборочно для отдельных опор. Остальные ЗУ осматривают визуально без проведения земляных работ.

Перед проведением измерений нужно свести к минимуму количество факторов, дающих погрешности при замерах:

  • поставить измерительный прибор в горизонтальное положение так, чтобы он находился как можно дальше от трансформаторов;
  • вводить электроды в почву точно по вертикали;
  • следить за тем, чтобы разнос электродов не проходил в непосредственной близости от металлоконструкций и соединительных проводов, не шел параллельно трассе НЭП;
  • следить за тем, чтобы расстояние между потенциальными и токовыми проводами составляло не меньше 1 метра;
  • делать замеры по 4-зажимной схеме.

Прежде чем приступить к замеру удельного сопротивления, в почве, где установлен стержень вспомогательного ЗУ и зонд, надо удалить растительность и верхний слой грунта.

Замерять сопротивление ЗУ нужно лишь тогда, когда у почвы наименьшая проводимость.

Приложение D ГОСТ Р 50571. 5.54-2013 содержит нормативные требования, предъявляемые к заземляющим электродам, которые находятся в почве, и к ее удельному сопротивлению.

У электрода сопротивление определяется его размером, формой и удельным сопротивлением грунта, куда он заглубляется. По этой причине на значение удельного сопротивления влияет длина электрода, глубина его вкапывания.

Понять, насколько грунт подходит, можно посредством визуального изучения его поверхностного слоя и растущих на нем растений. Более точные данные можно получить при помощи проведения замеров на заземляющих электродах, которые устанавливаются в такую почву.

На удельное сопротивление грунта влияет уровень влажности и температурный режим окружающей среды. Эти значения на протяжении года могут меняться. Особенно сильно меняется уровень влажности, который зависит от гранулирования грунта и степени его пористости. Чем меньше влажность земли, тем выше ее сопротивление.

Почва в зоне подтопления рек и грунтовых вод не может использоваться для установки ЗУ. Обычно она имеет каменную основу, обладает повышенным проницанием, с легкостью затопляется отфильтрованной водой с высоким удельным сопротивлением.

При установке системы заземления на подобных грунтах требуется использовать глубинные электроды, которые смогут достигать самых глубоких грунтовых слоев, обладающих лучшей проводимостью.

Отрицательные температуры повышают удельное сопротивление почвы, в результате чего его показания способны достигать нескольких тысяч Ом в промерзшем слое почвы. Толщина промерзания может составлять до 1 м и больше.

Засуха способствует увеличению удельного сопротивления грунта. Она может наблюдаться на глубине до 2 м.

Замер сопротивления контура заземления, сопротивления изоляции – «Гармония». Стоимость 1000 руб.


Безопасная и надежная эксплуатация электрооборудования зависит от многих параметров. Ключевое значение здесь играют такие характеристики, как сопротивление заземляющего контура и изоляции проводов.

Чтобы предотвратить несчастные случаи и аварийные ситуации на производстве, необходимо обеспечить периодический контроль этих характеристик.

АНО ДПО УСЦ «Гармония» осуществляет измерение сопротивления изоляции проводов, кабелей и контура заземления силами собственной аккредитованной электротехнической лаборатории, укомплектованной квалифицированными специалистами и оснащенной передовым измерительным оборудованием.

Измерение сопротивления заземления

Заземляющий контур выполняет функцию защиты персонала от поражения электрическим током в случае появления напряжения на нетоковедущих частях электрооборудования, например, на корпусе. В случае прикосновения человека к находящимся под напряжением нетоковедущим частям оборудования ток уходит в землю не через его тело, а через контур заземления. Это достигается за счет того, что контур обладает значительно меньшим электрическим сопротивлением. Таким образом, ключевым показателем является значение сопротивления.

При его увеличении заземляющий контур перестает эффективно выполнять свои функции, что может приводить к поражению людей электротоком. Поэтому Правила технической эксплуатации электроустановок потребителей (ПТЭЭП) предписывают регулярно проводить замеры заземления.

В соответствии с требованиями ПТЭЭП, замеры сопротивления заземления выполняются в засушливую погоду или в период сильного промерзания грунта. Это связано с тем, что в таких условиях сопротивление грунта имеет максимальное значение, что позволяет обеспечить оптимальную точность измерений. Сопротивление заземляющего устройства должно измеряться не реже чем один раз в 6 лет или при наличии любых подозрений в его работоспособности. Максимальные значения сопротивлений приводятся в ПТЭЭП. Переходное сопротивление металлосвязи (контакты соединения заземляемого оборудования с землей) должно измеряться ежегодно. Максимальное значение этого сопротивления не должно превышать 0,05 Ом.

Измерение сопротивление изоляции проводов и кабелей.

Важным видом услуг электролаборатории является измерение сопротивления изоляции. Данный вид работ предусматривает контроль степени изношенности изоляции электропроводки и дает возможность предотвратить короткое замыкание, которое может приводить к возникновению пожара и выходу из строя электрооборудования.

В соответствии с требованиями ПТЭЭП руководитель предприятия обязан обеспечить проведение измерений сопротивления изоляции проводов не реже чем один раз в 3 года. Выполнять замеры должны специальные сертифицированные организации, которые имеют в своем распоряжении необходимое лабораторное оборудование и квалифицированных специалистов.

Наши услуги

Учебно-сертификационный центр «Гармония» располагает собственной аккредитованной электротехнической лабораторией. Благодаря этому мы сможем оперативно выполнить замер сопротивления контура заземления или измерить сопротивление изоляции проводов и кабелей. Измерительные работы выполняются квалифицированными специалистами с применением современного оборудования.

Стоимость выполнения работ приятно удивит наших клиентов!

По результатам измерений заказчику представляется типовой технический отчет, а также протоколы испытаний. На основании измерений выдаются рекомендации по устранению нарушений заземляющего контура, а также относительно дальнейшего использования электропроводки или необходимости ее замены.

Полезно знать:

Инструктажи по охране труда

Охрана труда в офисе и на предприятии в значительной степени зависит от того, насколько высоким является уровень знан >>>

Правила по охране труда

Правила по охране труда представляют собой комплекс нормативных актов, требования которых должны обязательно исполнят >>>

что это такое, чем и как его измерять

Что такое заземление.

Заземление – это намеренное соединение частей и узлов электрооборудования, не находящихся в нормальном состоянии под напряжением с электродом, установленном в земле. При этом необходимо обозначить такое понятие как сопротивления растеканию.

При замыкании на землю, по мере удаления от электрода потенциал будет падать и, в конце концов, станет нулевым. Таким образом, сопротивление растеканию заземлителя – это параметр характеризующий сопротивление земли в месте установки электрода. Понятие сопротивления растеканию особенно актуально в сетях выше 1000 В.

Для чего нужно заземление.

Заземление необходимо для предотвращения поражения человека воздействием электрического тока, в случае его появления там, где при нормальных условиях его не должно быть. При касании корпуса прибора, находящимся под напряжением, сила тока, проходящего через тело человека, может оказаться смертельной.

Необходимостью снижения разности потенциалов и обусловлено применение защитного заземления. Кроме этого, замыкание на землю приводит к увеличению силы тока и, как следствие, к срабатыванию защитных устройств. Нормы сопротивления защитного заземления регламентируются ПУЭ, а также документом называемым «Правила и нормы испытания электрооборудования».

Конструкция заземления.

Заземление – это комплекс технических устройств защитного типа, состоящий из:

  1. Заземлителя — одного или нескольких вертикальных проводников (стержней), имеющих электрический контакт с землей и связанных между собой.
  2. Заземляющего проводника (путь для тока замыкания), соединяющего заземляемый объект и заземлитель.

 

На каждое заземление составляется паспорт. В паспорт заносится схема заземляющего устройства (длина, и схема расположения электродов контура), тип, удельное сопротивление грунта, а также результаты замера сопротивления заземления. Обязательным приложением к паспорту является акт на скрытые работы. Данный акт необходим в связи с тем, что большая часть заземляющего устройства находится под землей и этот акт представляет собой схему расположения элементов заземляющего устройства. В случае, если паспорт на заземление отсутствует, эксплуатация объекта запрещена.

Методика измерения сопротивления защитного заземления.

Для проверки сопротивления заземления используется метод амперметра-вольтметра, заключающийся в том, что через измеряемое сопротивление течет ток определенной величины и одновременно измеряется падение напряжения. Разделив значение тока на величину падения напряжения, получаем значение сопротивления. В принципе, под понятием измерения сопротивления заземления, подразумевается измерение сопротивления растеканию. Правила и нормы испытаний электрооборудования задают минимальное сопротивление заземления, рассчитанные с точки зрения безопасности. Нормы различаются в зависимости от типов электроустановок (глухозаземленная или изолированной нейтралью). Класс использованного напряжения также влияет на нормы сопротивления.

Приборы для измерения заземления.

Бытовой тестер для такой проверки использовать нельзя, так как он не способен генерировать достаточно высокое напряжение. Для измерений используется, как приборы уже давно выпускающиеся (МС-08, М-416 и др.), так и новые средства измерения, выполненные на современной электронной базе и характеризующиеся малым потреблением тока от источника питания. В настоящее время измерение защитного заземления можно выполнить также цифровым мультиметром или специальным тестером.

Порядок проведения измерения заземления (сопротивления растеканию заземлителя).

Для проведения проверки необходимо помимо прибора иметь два электрода (токовый и потенциальный) с проводами достаточной длины, как образец, можно предложить отрезок гладкой арматуры или трубы круглого сечения.
В зависимости от сложности конструкции заземлителя, измерение сопротивления проводят по двум разным схемам:

  1. Простой (одиночный) заземлитель.
    Применяется «линейная» схема подключения электродов. Потенциальный электрод устанавливают  на расстоянии не менее 20 м. от заземлителя, а токовый не менее, чем в 10-12 м. от потенциального.
  2. Сложный заземлитель.
    Используется, когда простая схема неприменима, ввиду того, что при расчетах сопротивление заземления она не будет соответствовать минимально допустимым нормам. Представляет собой несколько вертикальных стержней вбитых в землю, электрически связанных между собой (электросваркой, чтобы снизить переходное сопротивление). Такое устройство называется контуром заземления. В этом случае необходимо определить наибольшее расстояние (диагональ) защитного контура заземления. Потенциальный электрод нужно вбивать на расстоянии равным пяти диагоналям от места присоединения заземляющего проводника. Токовый зонд забивается не менее, чем в 20 м. от потенциального. Измерительный прибор необходимо располагать как можно ближе к выводу заземления.

Порядок проведения измерений.

Так как в настоящее время самый распространенный прибор для проведения измерения является измеритель сопротивления заземления М-416, в дальнейшем, как образец, будет рассматриваться именно это средство измерений. Данный прибор относится к системе, в которой принцип измерений основан на компенсационном методе.
Запрещается для проверки пользоваться приборами, не имеющих действующего клейма о поверке, результаты которой должны заноситься в паспорт на средство измерения.

  1. Проверить наличие элементов питания в батарейном отсеке, убедившись, что их напряжение находится в пределах нормы;
  2. Откалибровать прибор, установив переключатель диапазонов в положение 5 Ом (контроль), ручкой реохорда установить стрелку как можно ближе к нулевой отметке. При этом на шкале должны быть показания 5 Ом;
  3. Отсоединить контур от заземляющего проводника;
  4. Присоединить прибор к соответствующим электродам;
  5. Тщательно зачистив вывод измеряемого заземлителя (для того чтобы исключить влияние, которое может оказать на конечный результат переходное сопротивление), присоединить к нему прибор.

Примечание: В зависимости от планируемых показателей сопротивления заземления измерение прибор нужно подключать по двух- или четырехпроводной схеме. Первая применяется, если предполагаемое сопротивление более 5 Ом, а вторая для измерения более низких значений (при этом разделяются пути прохождения тока и измерения разности потенциалов, для исключения влияния сопротивления присоединяемых проводов при измерении). В этом случае присоединение к заземлителю осуществляется двумя проводниками. Паспорт прибора содержит наглядные рисунки, которые позволят произвести подключения без ошибок.

  1. Установить переключатель диапазонов в положение, соответствующее наибольшей чувствительности (Х1), нажав кнопку «Измерение», регулятором установить стрелку на нуль. При этом на шкале реохорда будет отражен искомый результат проверки сопротивления заземлителя. Если стрелка не устанавливается на нуль, необходимо переключателем выбрать другой диапазон и показания реохорда умножить на соответствующий множитель.

Примечание: Если измерение проводится тестером или мультиметром, необходимость выбора множителя отпадает — эти приборы обладают функцией автоматического выбора предела шкалы.
ВАЖНО! После проведения измерений, если сопротивление заземления в пределах нормы необходимо вновь присоединить заземляющий проводник к заземлителю!

Оформление результатов измерений (протокол).

После окончания измерений нужно оформить протокол результата замера. Протокол представляет собой бланк определенной формы, в котором отражаются наименование объекта, схема установки заземляющих стержней и их соединений (для этого понадобится паспорт объекта и акт на скрытые работы). Также протокол должен отражать схему контура заземления и метод, по которому проводилось измерение. В протокол необходимо включить графу, в которой указан прибор или тестер (его тип, заводской номер и пр.), которым проводилось испытание. Результаты, полученные при измерении, заносятся в паспорт заземляющего устройства.
Отдельно представляется протокол испытания переходных сопротивлений. Переходное сопротивление (также, его еще называют металлосвязью) – это возможные потери на пути прохождения тока, связанные со сварочными, болтовыми и др. соединениями всего контура заземления. Это испытание проводится специальным тестером – микроомметром.

ВАЖНО! Проводить испытания и выдавать протокол измерения сопротивления заземления может только испытательная лаборатория, аккредитованная в системе органов стандартизации.
После окончания измерений составляется соответствующий акт, и заземляющее устройство считается годным к эксплуатации.

Измерение сопротивления заземляющих устройств — МАКС-ЭНЕРГО в Самаре и Тольятти

Измерение сопротивления контура заземления специалистами электротехнической лабораторией проводится для того, чтобы установить соответствие имеющихся сопротивлений в цепи заземления предусмотренным стандартами значениям. Периодичность электротехнических измерений контура заземления определяет владелец. Она устанавливается в зависимости от уровня нагрузок при эксплуатации контура заземления. Рекомендуется проводить данную проверку минимум раз в год (см. п.п. 2.7.9, 2.7.13, 2.7.14, табл. 36 ПТЭЭП,  п. 1.7.101 ПУЭ).

Проведение измерения сопротивления контура заземления позволяет своевременно обнаружить и устранить риск поражения электрическим током.

 Чтобы обеспечить максимально точные результаты замеров, работы должны производиться при сухой погоде, когда высокое удельное сопротивление грунта. При измерении сопротивления заземления учитывается форма заземляющего устройства, состояние и вид почвы, погодные условия.

Измеренные показатели сопротивления контура заземления зависят от геометрических параметров устройства заземления и его расположения в земле, а также от свойств грунта, характеризующихся его удельным сопротивлением. Определение значения удельного сопротивления почвы затруднено в связи с неоднородностью строения и состава почвы, влиянием показателей температуры, влажности и других факторов.

Измерение сопротивления заземляющих устройств.

Наряду с изоляцией, заземление является важнейшим средством защиты от поражения током, определяющим электробезопасность. На первый взгляд может показаться странным в буквальном смысле этого слова «закапывать деньги в землю». Но когда речь идет о здоровье и жизни человека, то любые затраты, позволяющие предотвратить несчастный случай или смягчить его последствия, будут оправданы! Для этого применяется рабочее заземление, заземление молниезащиты и защитное заземление.

Рабочее заземление — это преднамеренное соединение с землей определенных точек электрической цепи (например, нейтральных точек обмоток генераторов, силовых и измерительных трансформаторов, а также при использовании земли в качестве обратного провода). Рабочее заземление предназначено для обеспечения надлежащей работы электроустановок в нормальных и аварийных условиях и осуществляется непосредственно или через специальные устройства (пробивные предохранители, разрядники, резисторы).

 Заземление молниезащиты — это преднамеренное соединение с землей разрядников и молниеприемников в целях отвода от них токов молнии в землю.

Защитное заземление — это заземление, выполняемое в целях электробезопасности (согласно п. 1.7.29 Правил устройства электроустановок издания 7, далее — ПУЭ) т.е. намеренное соединение с землей металлических нетоковедущих частей, которые могут оказаться под напряжением и предназначенное для защиты людей от поражения током при случайном прикосновении. Кроме того заземляющие устройства выполняют другие функции, связанные с безопасностью: снимают заряд статического электричества на взрыво- и пожароопасных объектах (например, на АЗС). Опасное напряжение на любой проводящей ток поверхности может оказаться по различным причинам: заряды статического электричества, вынос потенциала, разряд молнии, наведенное напряжение и пр.

Измерение сопротивления заземляющих устройств. Условия проведения работ?

1. Измерение сопротивления заземляющего устройства проводят в сухой период года.
2. Растворенные в воде соли и минералы придают почве свойства электролита, поэтому для измерения сопротивления заземления необходимо использовать переменный ток.
3. Чтобы избежать влияния токов промышленной частоты и их высших гармоник, применяют не кратную 50 Гц (60 Гц) частоту измерительного напряжения.
4. Наилучшую точность измерения заземления обеспечивает схема 4p по методу 62%.
5. Измерение сопротивления с помощью двух клещей имеет методическую погрешность, поэтому его рекомендуется применять только в многоэлементных системах заземления.
6. Метод Веннера позволяет быстро и просто измерить удельное сопротивление грунта.

Как выполняется измерение сопротивления заземления » сайт для электриков

Методики измерения

Рассмотрим, как измерить сопротивление контура заземления. Первоначальным этапом всех проверок электричества станут подготовительные работы. К ним отнесем следующие операции:

  • визуальный осмотр устройств заземления на целостность;
  • проверка сварочных швов;
  • измерение расстояние от здания;
  • осмотр крепежей;
  • подтверждение отсутствия утечек тока с шин.

Проверка заземления — последовательный и несложный процесс. Чтобы провести все вышеперечисленные операции самостоятельно в домашних условиях, применяют измеритель сопротивления заземления и зануления. Все данные, которые будут получены в процессе замеров параметров заземления, должны соответствовать правилам. Все данные по заземлению регулируют нормы ПУЭ.

Рассмотрим поэтапно измерение заземления:

Проверяем напряжение. В случае его отсутствия устанавливаем группу питательных элементов (батарейки, аккумуляторы). Необходимо, чтобы они были с габаритами 1,5х3 и с правильным соотношением полярности.
Прибор необходимо взять в руки и установить на ровную горизонтальную поверхность. Необходимо строго проследить, чтобы все углы аппарата были на одном уровне.
Затем последует процедура калибровки измерительного аппарата. Находим переключатель диапазона на панели инструментов устройства. Устанавливаем его в положение “контроль”. Нажав красную кнопку, воспользовавшись вращающейся ручкой, устанавливаем стрелку табло в положение ноля. В случае измерения заземления аппаратом М416 шкала на этом этапе покажет 5 (с отклонением в «+» или «-» 0,3). Если данные не соответствуют норме, прибор необходимо отдать в ремонт.
Выбираем более удобное расположение и определяемся со схемой, по которой следует работать аппарату.
Производим расчёт. Если необходимо получить укрупненные данные, соединяем первый и второй выводы с перемычкой. Аппарат М416 переключаем в схему трех зажимов.
В случае необходимости измерений по четырехзажимной схеме, ориентируемся на порядок действий, представленный на приборе.
Вбиваем в грунтовые массы стержень зонта и электрод, выполняющий вспомогательную функцию

Важно учитывать, что минимально допустимая глубина проникновения зонда и электрода — 0,5 м.
В процессе вбивания зонда в грунт производим только плавные удары, которые позволят снизить сопротивление заземляющего контура.
Провода, идущие к заземлению необходимо тщательно очистить от различных примесей, пыльного налета и красок. Лучше всего применять для этих целей напильник, к которому с другого конца прикрепляется кабель с сечением 2,5 мм.кв.
Когда все вышеперечисленные мероприятия предприняты, определена схема, откорректировано местоположение аппарата, можно приступать к расчету.
Фиксируем переключатель на отметке “х1”, производим вращение ручки и устанавливаем стрелку на нулевое значение.
Полученное значение умножается на соответствующее число

К примеру, если рычаг указывает на отметку “х10”, умножаем значение на 10.
Результаты измерения заносятся в акт проверки заземления (его еще называют протоколом проверки заземления).

Методики и способы измерения показателей

Существует несколько способов, как проверить заземление. Существуют специальные приборы для измерения параметров сопротивления заземления. Рассмотрим основные из методов замера при помощи электрооборудования:

  • токовые клещи;
  • амперметр-вольтметр;
  • специализированные приборы.

Возможно измерение сопротивления токовыми клещами. При их использовании нет надобности производить отключение самого устройства и применения дополнительных электродов. Процесс того как можно измерить заземление оперативный и достаточно точный. Принцип работы токовых клещей рассмотрим подробнее.

Через вторичную обмотку проходит переменный ток. Чтобы произвести расчет, нужно полученное значение ЭДС проводника разделить на численное определение тока. При измерении в домашних условиях используются клещи С.А 6412, С.А 6415, С.А 6410.

Рассмотрим, как проверить контур заземления при помощи амперметра-вольтметра. Понадобится собрать электроцепь. В ней ток будет двигаться сквозь проверяемый заземлитель и дополнительный электрод. Необходимо в цепь добавить потенциальный электрод. Предназначение его заключается в фиксации скачков напряжения. Расстояние от потенциального электрода до токового электрода и заземлителя одинаково, он находится в диапазоне безвредного потенциала и влияет на заземление. Для получения значения сопротивления нужно воспользоваться законом Ома произвести расчет по формуле R=U/I.

Для испытания  и проверки параметров сопротивления в домашних условиях многофункциональный мультиметр не будет удобным. В данном случае лучше использовать следующие измерители сопротивления:

  1. ИСЗ-2016;
  2. МС-08;
  3. Ф4103-М1;
  4. М-416.

Как измерить сопротивление заземления на примере прибора М-416 рассмотрим более подробно.

Проверка заземления в розетках

Самостоятельно определить заземление в розетке можно несколькими способами. Перед началом работ понадобится индикаторная отвертка – ей идентифицируются провода нуля и фазы. Если при контакте с клеммой загорелась лампочка – это фаза. Если индикатор не светится – это ноль.

Проверка мультиметром

Тестирование проводится даже при совпадении цветов по нормативам. Работать с мультиметром нужно так:

  1. Включить электропитание на дом в распредщитке.
  2. Измерить напряжение в розетках. Один щуп ставится на фазу, второй – на ноль.
  3. Переместить щуп датчика от нуля на проводник заземления – РЕ.
  4. Посмотреть, что показывает тестер. Если результат не изменился – с системой все в порядке. Если показатели нулевые – систему нужно заземлить заново.

Проверка контрольной лампочкой

Для изготовления контрольки понадобится лампочка с патроном и присоединенными к нему двумя медными проводами. Между всеми контактами самодельного устройства нужна изоляция. Проверка контролькой производится по принципу мультиметра:

  1. Первый щуп подключается на ноль, второй – на фазу.
  2. Щуп перемещается от нуля на подключение заземления.
  3. Об исправности контура свидетельствует загоревшаяся лампа.
  4. Слабый свет говорит о неправильной работе схемы и необходимости установки УЗО.

Когда в помещении проводка без цветовых индикаторов, узнать заземление можно так:

  1. Для определения нуля и фазы один концевик выводится на клемму земли, второй – по очереди к другим подключениям.
  2. Фаза находится в точке загорания светового индикатора.
  3. Если лампа не горит – РЕ не работает.

Косвенные доказательства отсутствия РЕ

Существует несколько моментов, по которым можно судить об отсутствии РЕ. Владельцев квартиры и дома должны насторожить:

  • стабильные удары током от бойлера, стиральной, посудомоечной машинки, холодильника;
  • шумы колонок при воспроизведении музыки;
  • наличие большого количества пыли около старых батарей.

Тестирование стрелочным (цифровым) вольтметром

Проверка величины напряжения и его наличия осуществляется при помощи вольтметров переменного тока. Стрелочные приборы работают без источника питания, а цифровые функционируют в любом положении, не повреждаются при механическом воздействии.

Правильный алгоритм использования вольтметра:

  1. Определяется максимально допустимая величина замеров для прибора по самому большому числу на шкале.
  2. Уточнение единиц измерения устройства – микровольты, вольты, милливольты.
  3. Подключение вольтметра параллельно участку электрической сети и контроль полярности проводом.
  4. Прикручивание проводов стрелочного устройства к гайкам и винтам. У моделей с постоянным напряжением есть обозначения «плюс» и «минус».

Коротко о проверках

Согласно ПТЭЭП, периодичность проверок контуров заземления (заземляющих устройств) должна составлять 1 раз в 6 лет. Визуальный осмотр видимых частей устройства должен проводиться 1 раз в полгода. Можно проводить проверки и чаще, особенно если есть подозрения на неисправность заземляющего оборудования.

Проверку сопротивления заземления обычно проводят в комплексе с другими испытаниями. Ее задача — оценить защитные свойства электрического оборудования.

Проводить проверку могут специальные организации, имеющие разрешения для таких работ, сертифицированные в Минэнерго, имеющие специальные лаборатории и приборы для проведения измерений. Сотрудники должны пройти соответствующее обучение, проверку на знания по охране труда, медицинский осмотр.

К сведению! Заземляющее устройство (контур заземления) необходим для защиты работников от поражения электрическим током из-за поломки электрооборудования. Если система работает, то ток по заземлителю будет идти в течение короткого промежутка времени. И опасная ситуация на предприятии не случится

Поэтому важно контролировать состояние заземляющих устройств

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Проведение замеров

И всё же в вопросе, как замерить сопротивление заземления, лучше пользоваться не мультиметром, а мегаомметром. Наилучшим вариантом считается электроизмерительный переносной прибор М-416. Его работа основывается на компенсационном методе измерения, для этого пользуются потенциальным электродом и вспомогательным заземлителем. Его измерительные пределы от 0,1 до 1000 Ом, работать прибором можно при температурных режимах от -25 до +60 градусов, питание осуществляется за счёт трёх батареек напряжением 1,5 В.

А теперь пошаговая инструкция всего процесса как измерить сопротивление контура заземления:

  • Прибор расположите на горизонтальной ровной поверхности.
  • Теперь произведите его калибровку. Выберите режим «контроль», нажмите красную кнопку и, удерживая её, установите стрелку в положение «ноль».
  • Некоторое сопротивление есть и у соединительных проводов между выводами, чтобы свести к минимуму это влияние расположите прибор поближе к измеряемому заземлителю.
  • Выберите нужную схему подключения. Можете проверить сопротивление грубо, для этого выводы соедините перемычками и подключите прибор по трёхзажимной схеме. Для точности измерений следует исключить погрешность, которую дадут соединительные провода, то есть между выводами снимается перемычка и применяется четырёхзажимная схема подключения (кстати, она нарисована на крышке прибора).
  • Выполните забивание в землю вспомогательного электрода и стержня зонда на глубину не меньше 0,5 м, имейте в виду, что грунт должен быть плотный и не насыпной. Для забивания используйте кувалду, удары должны быть прямыми, без раскачивания.

  • Место, где будете подсоединять проводники к заземлителю, зачистите напильником от краски. В качестве проводников применяйте медные жилы сечением 1,5 мм2. Если используете трёхзажимную схему, то напильник будет выполнять роль соединительного щупа между заземлителем и выводом, так как с другой его стороны подсоединяется медный провод сечением 2,5 мм2.
  • И теперь переходим уже непосредственно к тому, как измерить сопротивление заземления. Выберите диапазон «х1» (то есть умножение на «1»). Нажмите красную кнопку и вращением ручки стрелку установите на «ноль». Для больших сопротивлений необходимо будет выбрать и больший диапазон («х5» или «х20»). Так как мы выбрали диапазон «х1», то цифра на шкале и будет соответствовать измеренному сопротивлению.

Наглядно, как проводится измерение заземления на следующем видео:

Что такое заземление?

Защитное заземление – это преднамеренное соединение с землёй тех частей электрического оборудования, которые при нормальной работе электросети не находятся под действием напряжения, но могут попасть под его влияние в результате пробоя изоляции. Основной целью заземления является защита людей от действия электрического тока.

Главная составляющая защитного заземления – это контур. Он представляет собой конструкцию естественных или искусственных заземлителей, то есть несколько заземляющих электродов соединяются в единое целое. В качестве электродов чаще всего используют прутья из стали. Медные пруты применяют реже в силу того, что это дорого.

Но если есть финансовые возможности, то имейте в виду, что медь является идеальным вариантом и наилучшим проводником.

По логике понятно, что контур заземления должен располагаться в земле. Так как нас интересует защита дома, то неподалёку от строения и силового щитка выбирается подходящее место с нормальным грунтом. В землю вбиваются три штыря так, чтобы они располагались треугольником, и расстояние между ними было 1,5 м.

Теперь понадобится сварочный аппарат и металлическая шина, с помощью которых электроды нужно увязать между собой в равносторонний треугольник. Контур готов, теперь к нему нужно закрепить медный проводник, который дальше идёт в щиток и подсоединяется там к заземляющей шинке. А на эту шинку выводятся заземляющие проводники от всех розеток.

Перед использованием необходимо проверить контур на заземляющее сопротивление.

О том, что такое заземление – на следующем видео:

Методы определения наличия заземления

Известны профессиональные методики проверки устройств заземления, входящих в состав контура, охватывающего весь защищаемый объект. Однако стоимость аппаратуры, используемой при реализации этих способов, для рядового пользователя будет не подъемна. В связи с этим применяются более простые методики определения наличия местного контура или заземляющей PE жилы в конкретном доме или квартире.

Проверка мультиметром

Тестовая проверка заземления посредством мультиметра может быть проведена при соблюдении следующих условий:

  1. Перед тем как проверяется заземление в загородном доме или квартире в распределительном щитке обязательно отключается вводной автомат.
  2. Затем потребуется выбрать одну из расположенных в комнате розеток и полностью разобрать ее.
  3. После этого необходимо визуально определить, подсоединен или нет к заземляющей клемме провод соответствующей расцветки.

При его наличии следует убедиться, что шина заземления подключена к защитному контуру и что оно действительно эффективно. Для этого вооружившись тестером, необходимо проделать следующие операции:

  1. Подать питание в цепь, включив «вырубленный» ранее вводный автомат на электрическом щитке.
  2. Выставить центральный переключатель прибора на нужный предел измерения напряжения (до 750 Вольт).
  3. Измерить этот показатель между фазным и нулевым проводами и зафиксировать его.
  4. Провести аналогичные измерения, но уже между фазой и предполагаемой «землей».

В том случае если в последней операции на табло мультиметра появится показание, лишь на немного отличающееся от первого результата – это означает, что заземление в розетке действительно есть и что оно работоспособно.

Но возможен и другой вариант, когда показания во втором случае вообще не появляются. При таком исходе измерений контура заземления мультиметром можно смело утверждать, что он отсутствует или по какой-либо причине не работает как положено.

Проверка с помощью контрольной лампы

В том случае когда в хозяйстве не оказалось мультиметра – проверить заземление удается посредством контрольной лампочки, собранной из оказавшихся под рукой деталей. Сделать самостоятельно это приспособление совсем несложно; для этого достаточно найти патрон от старого светильника или люстры 1, два провода 2 и надежно изолированные с одной стороны контактные разъемы 3.

После сборки такого несложного прибора для проверки заземления можно проделать все уже описанные ранее операции с помощью цифрового мультиметра.

Это необходимо сделать по той причине, что некоторые недобросовестные электрики не обращают внимания на цвет изоляции и в спешке подсоединяют синий провод к фазе, а красный или коричневый – к нулю. Посредством индикаторной отвертки можно точно установить, на каком контакте действует фаза. При касании ее концом фазного провода неоновый индикатор загорается (если одновременно большой палец расположить на контактном пятачке отвертки). Для нулевого провода та же операция не приводит к загоранию неонки.

После этого следует взять контрольную лампу и одним концом провода коснуться выявленной фазной клеммы, а вторым соответственно – нуля. При наличии напряжения в сети исправная лампочка в любом случае загорится. Затем первый из концов следует оставить на месте, а вторым прикоснуться к контактному усику заземления.

При загорании лампочки можно сделать вывод, что контур работает. Эффект тусклого свечения нити накала говорит о плохом качестве заземления или его полном отсутствии.

Обратите внимание: В том случае, если в питающую линию наряду с автоматом включено УЗО – при проверке оно может сработать и отключить цепь. Это также свидетельствует о хорошем состоянии заземляющего контура (косвенно)

Это также свидетельствует о хорошем состоянии заземляющего контура (косвенно).

Для чего проверяется заземление

Проверка состояния заземления является важным мероприятием, направленным на защиту людей от действия электрического тока. Для решения задачи, как проверить заземление в частном доме используется специальное оборудование. Полученные результаты дают возможность установить, в каком состоянии находится заземление, соответствует ли установленным нормам и способно ли выполнять свои функции. Обычно такие измерения проводятся квалифицированными специалистами из организации, обслуживающей домашнюю сеть.

Периодические проверки заземления должны обязательно проводиться, несмотря на то что вся электрика в доме монтировалась профессиональными электротехниками. Нередки случаи, когда неправильное соединение контура вызывает его преждевременный износ. В связи с этим рекомендуется в установленные сроки делать измерение и проверять, в каком состоянии находится грунт и размещенные в нем электроды, а также заземляющие проводники, шины и элементы металлосвязей.

Данная процедура, определяющая, есть ли заземление, проводится в жилых домах не реже 1 раза в 3 года, а на объектах промышленного производства – ежегодно.

В процессе замеров тестером определяется сопротивление контура, значение которого должно соответствовать установленным нормам. Если показатели получились выше нормативных, их можно снизить. Для этого нужно просто увеличить площадь взаимодействия путем добавления электродов или поднимается величина общей проводимости грунта, с помощью увеличения концентрации солей, содержащихся в почве.

Следует учитывать, что устройство обычного заземления может лишь понизить напряжение, поступающее на корпус оборудования. Сделать защиту более надежной поможет устройство защитного отключения – УЗО, устанавливаемое в одной связке с заземлением. Любые защитные средства проектируются и выбираются индивидуально, в соответствии с условиями эксплуатации. Выбор осуществляется с учетом влажности, структуры грунта и других факторов.

Необходимо помнить и о том, что многие виды современных электрических устройств оборудованы встроенным УЗО, срабатывающим лишь при включении в розетку, имеющую заземление. Поэтому их нормальная работа полностью зависит от правильного подключения защиты и дальнейших проверок ее работоспособности.

Принцип проведения измерения

Измерение сопротивления заземляющих устройств проводят с периодичностью, установленной на предприятии, но не реже одного раза в 12 лет. Для более точного измерения создают искусственную электрическую сеть.

Рядом с испытуемым контуром в грунт встраивают вспомогательное устройство, которое называют токовым электродом, и его тоже подключают к сети. А также устанавливают электрод, по которому определяют падение напряжения в сети.

Чтобы измерить и получить более достоверные данные, в момент проведения процесса должны быть оптимальные погодные условия. То есть сопротивление почвы в этот момент должно быть максимальным. При этом должны быть выполнены следующие условия:

электрод, с которого будут снимать показания, располагают строго между заземляющей конструкцией и дополнительным электродом;
расстояние между элементами должно равняться пятикратной глубине закладки заземлителя;
при замере системы заземлителей во внимание принимается диагональ с наибольшей длиной.

Кроме того, дополнительно проводят замеры сопротивления изоляции.

Периодичность проверки сопротивления защитного заземления электрооборудования

  • Объекты, которые не отнесены к категории особо опасных – согласно пункту 3.6.2 ПТЭЭП сроки проведения измерений и испытаний устанавливаются руководителем Потребителя с учетом следующих факторов: условия эксплуатации и состояние электроустановки, рекомендации изготовителя, положения Приложения 3 ПТЭЭП.
  • Наружные установки и электрооборудование в особо опасных помещениях – не реже одного раза в течение трех лет.
  • Электроустановки образовательных и здравоохранительных учреждений, предприятий торговли, общественного питания, бытового обслуживания (химчистка и стирка) – не реже одного раза в течение года или полугода, если речь идет о особо опасных помещениях. Регламентируется ведомственной нормативной документацией.

Периодичность проверки сопротивления устройств молниезащиты зданий и сооружений

  • I-II категория – требуется ежегодный контроль состояния системы перед наступлением сезона гроз;
  • III категория – не реже одного раза в течение трех лет.

ОБРАТИТЕ ВНИМАНИЕ! Приемо-сдаточные испытания устройств молниезащиты с последующим вводом в системы в эксплуатацию выполняются до перехода строительства в стадию проведения работ по отделке здания или сооружения. Если речь идет о взрывоопасной зоне, то до начала осуществления комплекса мероприятий по опробованию технологического оборудования

Порядок проведения испытаний контура заземления

  • В ходе визуального осмотра заземляющего устройства производится контроль уровня защищенности от воздействия коррозии и целостности, доступных для обзора элементов.
  • Методом простукивания проверяется механическая прочность и целостность соединений заземлителей с заземляемыми элементами.
  • Руководствуясь методикой замеров сопротивления заземления, создается искусственная цепь протекания тока через испытываемый заземлитель. С помощью калиброванного прибора M-416 измеряется удельное сопротивление грунта и заземлителя. На основании данных, полученных в ходе проверки, делается заключение о качестве технического состояния заземляющего устройства.

Методика измерений, объемы и нормы испытаний определяются согласно методическим указаниям РД 153-34.0-20.525-00 и РД 34.45-51.300-97.

Как оформляются результаты проверки контура защитного заземления
  • После осуществления всего комплекса мероприятий по контролю состояния заземляющего устройства заказчик получает технический отчет, включающий в себя протокол визуального осмотра и измерения сопротивления заземления (составляются согласно требованиям ГОСТ Р ИСО/МЭК 17025-2006), описание примененной методики, копии разрешительной документации электролаборатории.
  • Сведения о дате выполнения замеров и их результатах заносятся в журнал учета проверок заземления электрооборудования.
  • В случае выявления несоответствий заказчику даются рекомендаций по их устранению.

Протокол проверки наличия цепи между заземленными установками и элементами заземленной установки

Преимущества мобильной электролаборатории «СК «ОЛИМП»
  • Перечень видов работ, к которым допущена наша электроизмерительная лаборатория, позволяет помимо измерений сопротивления заземления и проверки устройств молниезащиты проводить комплексную диагностику соответствия электрооборудования и электроустановок напряжением до 35 кВ требованиям ПУЭ, ПТЭЭП, инструкций РД и СО.
  • Выданные протоколы измерений принимаются всеми контролирующими органами.
  • Гарантия точности и достоверности замеров сопротивления защитного заземления – своевременность поверки измерительных приборов, точное следование методике, компетентность персонала (испытания проводят сотрудники с V группой допуска по электробезопасности).
  • Каждый заказчик вносится в базу постоянных клиентов и получает скидку при следующем обращении или заказе других услуг компании «СК «ОЛИМП».

Ресурсы для тестирования сопротивления заземления

Статья

Скрытые опасности замыканий на землю в фотоэлектрических системах

Почему замыкания на землю постоянного тока в фотоэлектрических системах являются скрытыми опасностями, которые необходимо обнаруживать, пока не стало слишком поздно. Найдите слепые зоны в фотоэлектрических системах. Устранение неполадок при замыкании на землю солнечной батареи.

Статья

Измерение сопротивления заземления

Измерение сопротивления заземления

Статья

Измерение сопротивления контура заземления без стоек

Обычное измерение заземления включает отключение параллельных заземляющих стержней, «установку» нескольких дополнительных заземляющих стержней и использование тестера заземления. для расчета сопротивления электродов системы заземления.Иногда, однако, негде поставить заземляющие колья — например, внутри здания, на подстанции сотовой связи или на опорах электропередач. Что тогда?

Статья

Переоценка систем молниезащиты башни аэропорта

Переоценка систем молниезащиты башни аэропорта с контрольным списком для обеспечения надежной молниезащиты с помощью сопротивления заземления

Статья

Выборочное измерение

Выборочное испытание очень похоже на осеннее. Тестирование потенциала, обеспечивающее все те же измерения, но гораздо более безопасным и простым способом.Это связано с тем, что при выборочном тестировании интересующий заземляющий электрод не нужно отсоединять от его подключения к объекту! Техник не должен подвергать опасности себя, отключая заземление, или подвергать опасности другой персонал или электрическое оборудование внутри незаземленной конструкции.

Статья

Измерение удельного сопротивления грунта

Измерение удельного сопротивления грунта

Статья

Некоторые основания для подозрений

Определения и методы испытания земли: заземление и соединение, назначение заземления, испытание на падение потенциала, испытание земли без колышков

Артикул

Бесстоечное измерение

Тестер заземления Fluke 1625 может измерять сопротивление контура заземления для многозаземленных систем с использованием только токовых клещей.Этот метод тестирования исключает опасные и трудоемкие операции по отключению параллельных заземлений, а также процесс поиска подходящих мест.

Артикул

Заземление отдельно производных систем

Как я и обещал в моей последней колонке, эта колонка «Твердое заземление» посвящена трансформаторам и заземлению. Начнем с некоторых определений. Мнения расходятся относительно «официального» определения «распределительного трансформатора».

Статья

Проверка электрических соединений

Эксперт Чак Ньюкомб пересматривает методы 1963 года для проверки электрических соединений в системе заземления и сравнивает их с современными инструментами и методами.

Статья

Основы заземления

Основы заземления

Статья

Измерение падения потенциала

Измерение падения потенциала

Статья

Почему заземление намного важнее, чем думает большинство людей

Ошибки заземления может вызвать поражение электрическим током, возгорание, повреждение оборудования и проблемы с качеством электроэнергии, которые могут привести к неправильной работе систем, цепей и оборудования.

Статья

Испытание заземления для шахт с помощью Fluke 1625

Все шахты имеют заземленные электрические системы, чтобы в случае удара молнии, перенапряжения в электросети или замыкания на землю ток мог найти безопасный путь к земле или нейтрали трансформатора.

Артикул

Почему заземление, зачем тестировать?

Плохое заземление способствует ненужному простою, но отсутствие хорошего заземления опасно и увеличивает риск отказа оборудования. Без эффективной системы заземления вы можете подвергнуться риску поражения электрическим током, не говоря уже об ошибках приборов, проблемах гармонических искажений, проблемах с коэффициентом мощности и множестве возможных периодически возникающих дилемм. Если токи короткого замыкания не имеют пути к земле через правильно спроектированную и обслуживаемую систему заземления, они обнаружат непредусмотренные пути, которые могут затронуть людей.

Статья

Преследование «фантомных» отключений в цепях, защищенных GFCI

В этом выпуске «Solid Ground» рассказывается о прерывателях цепи замыкания на землю (GFCI), почему они необходимы и как устранять неисправности в цепях, защищенных GFCI.

Токоизмерительные клещи на землю | FLUKE 1630

Земля Измерение сопротивления контура заземления для коммерческих, промышленных и коммунальных приложений

Метод проверки заземления, используемый в Fluke 1630, упрощает тестирование контура заземления и позволяет измерять ток утечки без вмешательства пользователя.Компактная и прочная конструкция делает Fluke 1630 простым в использовании в небольших помещениях и в суровых условиях, а фиксация дисплея и проверка целостности с функцией звуковой сигнализации обеспечивают удобство использования. Новый метод означает, что тестирование контура заземления и непрерывности может быть выполнено без разрыва цепи.

Система бесконтактного тестирования В Fluke 1630 используется метод бесконтактного тестирования, который устраняет необходимость отключать параллельные заземляющие стержни и находить подходящие места для размещения дополнительных заземляющих стержней.Это экономит время и позволяет пользователям, таким как промышленные и коммунальные электрики, электрики и подрядчики, выполнять испытания контура заземления в местах, где невозможно использовать другие методы, в том числе внутри зданий или на опорах электропередач. При использовании метода бесконтактного тестирования в заземляющих кольях больше нет необходимости. Зажим заземления Fluke 1630 размещается вокруг стержня заземления или соединительного кабеля. Известное напряжение индуцируется одной половиной зажима, а ток измеряется другой половиной.Тестер автоматически определяет сопротивление контура заземления на этом заземлении.

Характеристики

  • Широкий диапазон сопротивления контура заземления от 0,025 Ом до 1500 Ом для удовлетворения всех требований
  • Большое отверстие губок 35 мм (1,38 дюйма) для испытаний заземляющих проводов и / или шин уравнивания потенциалов
  • Измерение тока утечки на землю от 0,2 мА до 1000 мА без необходимости отключения — идеально для поиска и устранения неисправностей системы
  • Широкий диапазон измерения переменного тока от 0.От 2 до 30 А позволяет использовать один прибор для нескольких приложений
  • Определяемые пользователем пределы сигналов тревоги HI / LO для быстрой оценки результатов измерений
  • Удобная кнопка удержания дисплея для регистрации показаний в труднодоступных местах
  • Функция экономии времени автоматически записывает и сохраняет измеренные значения
  • Автоматическая самокалибровка обеспечивает правильное измерение каждый раз
  • Защита от перегрузки: 200 A
  • Сумка для переноски и цепь проверки сопротивления включены
  • Срок службы батареи 8 часов (непрерывная работа)
Общие технические характеристики
Ошибка эксплуатации
Относится к диапазону рабочих температур и имеет гарантию 2 года
Температура хранения.диапазон
от -20 ° C до 60 ° C (от -4 ° F до 140 ° F)
Эталонная темп. диапазон
23 ° C ± 5 ° C (73 ° F ± 9 ° F)
Влажность при хранении
Рабочая влажность
999 цифровой ЖК-дисплей со специальными символами
Защита
IP30 в соответствии с IEC 52914 9014 9014 9014 9014 9014 9014 9014 9014
300 В, CAT III степень загрязнения 2 IEC 61010-1 и IEC 61010-2-032
Вес
Размер проводника14
35 мм (1.38 дюймов) приблизительно
Размеры (длина x ширина x глубина)
276 мм x 100 мм x 47 мм (10,8 дюйма x 3,9 дюйма x 1,9 дюйма)
Излучение
IEC 1000 4-2, IEC 61326-I класс B
Устойчивость40
IEC критерии кВ (воздух) A
IEC 61000-4-3, критерии эффективности 3 В / м A
Выбор диапазона
Индикатор перегрузки Время измерения
Частота измерения
Тип батареи
, щелочной, 9 В (тип IEC 6 LR 61)
Срок службы батареи
? 8 часов (непрерывная работа)
Потребляемая мощность
Индикация низкого заряда батареи
Сопротивление контура заземления (Autorange)
Точность
(±% от показания?)
0.025 — 0,250 Ом
± 1,5% от показания ± 0,02 Ом
0,250 — 9,999 Ом
9014 ± 1,5%
9014 ± 0,02
10,00 — 99,99 Ом
± 2,0% показания ± 0,3 Ом
100.0 — 199,9 Ом
± 3,0% показания ± 1,0 Ом
200,0 — 400,0 Ом
%
400,0 — 600,0 Ом
± 10% показаний ± 10 Ом
600.0-1500 Ом
Примечание:
Сопротивление контура без индуктивности, внешнее магнитное поле <50 А / м, внешнее электрическое поле <1 В / м, проводник центрирован.

Посмотреть руководство пользователя

Тестирование заземления / заземления без разбивки от Masterflex

Перепечатано с разрешения Megger Limited.

  • Что такое тестирование без ставок?
  • Как работает без ставки?
  • Где и как его использовать?
  • Каковы потенциальные источники ошибок?
  • Каковы преимущества тестирования без ставок?

Что такое тестирование без ставок?

Бесстоечное тестирование — один из многих методов измерения сопротивления заземляющего электрода.Однако то, что отличает этот метод от всех других методов испытания заземляющих электродов, заключается в том, что это единственный метод, который не требует использования вспомогательных испытательных электродов или измерительных проводов. Поскольку многие заземляющие электроды расположены в местах, окруженных бетоном или асфальтом, это действительно полезно. Метод ленивых шипов (установка вспомогательного испытательного электрода на бетонную поверхность, иногда в соленой воде) работает хорошо, но на него легко повлиять стальная арматура или заглубленные металлические трубы.

Как работает тестирование без ставок?

На рис. 1 (вверху) показана типичная система заземляющих электродов.(Это сделано для примера, в некоторых странах подключение металлической водопроводной трубы к электродной системе запрещено.) В этом случае вы можете проверить электрод справа, окрашенный в зеленый цвет. Обычно это делается путем отсоединения электрода и применения 3-полюсного метода испытания, такого как испытание на падение потенциала. Испытание потребует использования вспомогательных тестовых штырей, что в конкретных местах не всегда практично.

Решением является использование тестера заземления.Просто обхватите электрод и произведите измерение. Однако важно, чтобы пользователь понимал, как измерение соотносится с фактическим сопротивлением заземления электрода.

Рисунок 2 (ниже) показывает эквивалентную схему для сценария на рисунке 1. Каждый элемент в цепи; Водопроводная труба, заземление системы и другие электроды имеют сопротивление относительно земли. Зажим заземления рассматривает эти элементы как включенные параллельно и последовательно с проверяемым электродом. Таким образом, прибор будет измерять сопротивление всего контура, а не только проверяемого электрода.В этом случае прибор показал 12,99 Ом на электроде с сопротивлением заземления 10 Ом.

Так почему? Давайте посмотрим, как работает инструмент. Внутри зажимной головки на самом деле два сердечника, а не один.

На рис. 3 (вверху) показаны основные операции двух зажимов внутри головки.

Одна жила индуцирует испытательный ток, а другая измеряет, сколько наведено. Входное или первичное напряжение сердечника, индуцирующего испытательный ток, поддерживается постоянным, поэтому ток, фактически индуцируемый в испытательной цепи, прямо пропорционален сопротивлению контура.

Важно помнить, что зажимы заземления эффективно измеряют сопротивление контура. Измерения без ставок — это петлевые измерения.

Это приводит нас к двум ключевым правилам при использовании тестера без ставок :

  1. Необходимо измерить сопротивление контура.
  • Должен быть последовательно-параллельный путь сопротивления, и чем ниже, тем лучше! Чем больше электродов или путей заземления в системе, тем ближе измерение к действительному проверяемому истинному сопротивлению заземления.
  • Если нет петли для измерения, вы можете создать ее с помощью временной перемычки.
  • 2. Заземляющий путь должен входить в цепь для измерения сопротивления заземления.
    • Звучит очевидно, но если у вас задействованы металлические конструкции, связь может быть через них, а не через массу земли.
    • Конечно, вы можете захотеть проверить соединение, это нормально, но убедитесь, что вы тестируете то, что, по вашему мнению, тестируете.

    Чем больше количество параллельных путей, тем ближе измеренное значение к фактическому сопротивлению заземления проверяемого электрода. Рисунок 4 (ниже) демонстрирует это.

    Кроме того, тестер без стоек может легко определить неисправный электрод в сценариях тестирования нескольких путей заземления. См. , рис. 5 (ниже) :

    Тестер без стоек может легко указать на неисправный электрод, есть ли несколько параллельных путей, последовательно соединенных с измеренным значением, или много параллельных путей.

    Где и как его использовать?

    Бесстержневые тестеры заземления находят множество применений.Вот несколько примеров. (Все примеры являются репрезентативными; например, в некоторых странах подключение металлической водопроводной трубы к электродной системе запрещено):

    Рисунок 6 (вверху) будет выглядеть знакомым по предыдущей странице и описывает типичный заявление. Заземление системы может быть заземлением здания или заземлением, защищающим оборудование от статических зарядов.

    Итак, давайте начнем с общего вопроса: «Можно ли протестировать один только что установленный электрод?» Первое золотое правило гласит: : «Необходимо измерить сопротивление контура», , поэтому обычно дается ответ «нет».


    Однако ничто не мешает пользователю подключить временный канал к заведомо исправному заземлению для создания петли. Мы не знаем, какая часть сопротивления принадлежит какой земле? Но если требуется, чтобы сопротивление электрода было ниже 25 Ом, а измеренное значение равно, то мы должны быть в пределах наших пределов. Однако есть одно предупреждение: как и в случае использования двухполюсного метода, если электрод и заземление расположены слишком близко друг к другу, они могут оказаться в сфере влияния друг друга.

    Помните, что чем больше параллельных заземлений последовательно с тестируемым электродом, тем ближе результаты измерения к фактическому значению сопротивления заземления. Рисунок 7 (ниже) показывает идеальное приложение для метода без ставок.

    Системы заземления на опорах электросети и распределительных трансформаторах , устанавливаемых на опорах, будут иметь множество параллельных соединений заземления, что делает это место идеальным для использования метода без стоек. Каждый полюс имеет электрод для защиты от короткого замыкания и молнии, а трансформаторы на полюсах будут иметь два электрода в системах с конфигурацией звездой.

    Важно, чтобы эти электроды были проверены. Общее сопротивление заземления таких систем обычно должно быть менее 0,3–0,5 Ом, в то время как каждый электрод обычно должен быть менее 10–20 Ом, чтобы быть эффективным.

    Еще одно связанное с этим приложение — проверка сопротивления электродов на служебном входе или измерителе (см. Рисунок 8 ниже). Здесь существует возможность наличия нескольких путей заземления, двух электродов или, возможно, подключения к водопроводу, поэтому постарайтесь определить наилучшие положения для проведения измерения.Иногда лучше зажать сам электрод ниже места заземления.

    Помните, первое из двух золотых правил тестирования без ставок: «необходимо измерить сопротивление контура». Бывают случаи, когда на опорах электросети этот контур не существует, ну, в любом случае, не там, где вы хотите. На рисунке 9 (ниже) вы можете увидеть систему с трансформатором звезда-треугольник, установленным на опоре с двумя наборами электродов.

    Ни один из комплектов электродов не подключается к воздушному заземляющему кабелю: один подключается к металлическому корпусу трансформатора, а другой — к нейтрали вторичной обмотки низкого напряжения.Опасность здесь заключается в том, что измеряемая петля может быть между двумя наборами электродов, при этом часть петли представляет собой сопротивление деревянного столба, в результате чего измерение будет высоким. Это может ввести пользователя в заблуждение, полагая, что проблема существует, хотя на самом деле ее нет.

    Электроды для опорных столбов используются в уличном освещении. Кабель, идущий к каждому электроду уличного фонаря, может быть зажат, но не забудьте зажать правильную сторону заземляющего провода, как показано на Рис. 10 (ниже).

    Идеальным вариантом применения метода бесстержневой проверки является проверка заземляющих электродов на молниезащите . Молниезащита любого здания настолько эффективна, насколько качественно его заземление.

    Электроды обычно размещаются в каждом углу здания с дополнительными электродами между ними в больших зданиях. Используемые проводники обычно представляют собой медные ленты шириной до 50 мм.

    На рис. 11 (вверху) измеритель показан зажатым вокруг электрода.Во многих случаях это сложно, потому что электрод закопан в небольшой яме. Кроме того, многие молниезащитные ленты оснащены съемными перемычками, что позволяет проводить двухпроводную проверку целостности. Эти съемные звенья, часто называемые «ручками кувшинов», требуют много времени для удаления, но представляют собой идеальные места для использования тестера зажимов без стоек. Тестер клещей измеряет всю петлю, включая все соединения и ленточные соединения, точно так же, как двухпроводной тест.

    Однако стоит отметить, что из-за разницы в частоте испытаний показания могут не совпадать, особенно на высоких зданиях.Оба метода являются допустимым методом тестирования в этих приложениях.

    Еще одно, возможно, неожиданное преимущество безстержневого тестирования по сравнению с двухполюсным методом при тестировании молниезащиты — это гигиена. Многие ссылки расположены довольно низко и в местах, где скапливаются отходы и мусор, и, возможно, на них даже мочились.

    Многие системы молниезащиты на заводских зданиях, особенно в европейских странах, используют молниеприемники, установленные через равные промежутки времени на крыше.Все эти рецепторы связаны между собой, как показано на Рис. 12 (ниже) . Это дополнительно снижает последовательное сопротивление параллельного пути заземления, что означает, что измеренное значение даже ближе к истинному сопротивлению заземления тестируемого электрода.

    Некоторые подсказки и подсказки при тестировании молниезащиты

    Помните, что могут быть и другие подключения к системе молниезащиты. Пользователь должен не забыть зажать ленту под всеми соединениями, в противном случае электрод будет проверяться параллельно любым другим путям к земле.


    Помните, что есть соединения с внешними металлическими конструкциями, такими как металлические балконы и поручни. Они также должны быть выше, где ограничено тестирование без ставок, и есть другие соображения. См. Изображения ниже.


    Другое приложение — проверка заземляющего электрода, установленного внутри первичных точек перекрестного соединения, иногда называемых уличным шкафом / точками гибкости ( Рис. 13, ниже ). Эти электроды обычно должны иметь сопротивление ниже 25 Ом для обеспечения надежности.В этом приложении не может быть более двух параллельных заземляющих путей, соединенных последовательно с электродом. Однако метод без ставок обеспечивает измерение ниже 25 Ом, тогда электрод обязательно должен быть ниже 25 Ом.

    F На рисунке 14 (ниже) показан тест без ставок, используемый на удаленном коммутаторе . Это приложение не предназначено для проверки сопротивления заземления, но используется для проверки заземляющих соединений. Отмечая эти результаты испытаний и отслеживая тенденции во времени, можно определить начало таких проблем, как коррозия.

    Сотовые узлы / микроволновые и радиовышки — еще одно хорошее приложение. Рисунок 15 (внизу) показывает типичную четырехопорную башню. Каждая нога была индивидуально заземлена и подключена к скрытому медному кольцу. Как и в случае удаленной коммутационной станции, этот тест используется для проверки электрического соединения и не является методом истинного сопротивления заземления.

    Электроды подставки для телефона могут быть испытаны с использованием бесстержневого метода. Все оболочки кабеля подключены к шине заземления, которая, в свою очередь, соединена с заземляющим электродом.Зажим может быть помещен вокруг кабеля, соединяющего шину заземления с электродом, для выполнения теста. Если доступ затруднен, можно установить временный удлинитель, чтобы облегчить установку на зажим.

    Заземление подстанции и подстанции — еще одно хорошее приложение для тестирования без ставок. Этот метод идеален для проверки соединений с заземляющими матами. Единственная проблема может заключаться в помехах от наведенного тока заземления.

    Металлическое ограждение подстанции / распределительного устройства. Соединения с заземляющими матами можно легко проверить на целостность с помощью метода без опор.

    Существует множество применений метода без ставок, слишком много, чтобы описать его в краткой заметке по применению, но это приложение было бы очень полезно для инженеров по испытанию трансформаторов. Трансформатор, устанавливаемый на площадку заземление можно проверить с помощью зажима. Однако иногда к одному и тому же электроду подсоединяется несколько соединений, поэтому вам, возможно, придется зажать сам электрод под соединениями. Если бы все эти соединения были связаны с большим заземляющим ковриком, эти измерения стали бы измерением целостности, потому что испытательный контур не будет включать заземляющий тракт.

    Каковы потенциальные источники ошибок?

    При правильном использовании тест без ставок даст надежные измерения, если вы используете инструмент хорошего качества. Чтобы выделить и предупредить пользователей, вот несколько потенциальных источников ошибок:

    • Пользователь может не понимать тестируемую цепь. Помните два правила бесстекового тестирования:
    1. Необходимо измерить сопротивление контура.
    2. Заземляющий путь должен входить в цепь для измерения сопротивления заземления.
    • o Если, конечно, вы не хотите проверить соединение
    • o Не забывайте ситуации, как в случае Рисунок 9 — Трансформаторы на столбах
  • Грязь попала в головку зажима.
    • Грязь, застрявшая между замыкающим зазором в головке, изменит магнитную цепь. Магнитный поток будет перетекать между индуктивным сердечником и измерительным сердечником. Результатом будет ложно низкое показание, которое в некоторых случаях может привести к тому, что плохой электрод будет считаться хорошим.
    • Во многих инструментах используются сцепляющиеся пластинки или зубцы, как их иногда называют. Они могут задерживать грязь, их трудно чистить, они также легко повреждаются. Поврежденные зубы либо приведут к неточным измерениям, либо сделают инструмент бесполезным.
    • Новые DET14C и DET24C имеют легко очищаемые и надежные гладкие сопрягаемые поверхности губок.
  • Шумовой ток, влияющий на измерение.
    • Тестирование в шумной среде может привести к высокому уровню шумового тока, протекающего по тестируемому электроду.Это может привести к изменению показаний, что затруднит их чтение, или, если слишком высокий ток сделает измерение невозможным. DET14C и DET24C обладают самой высокой устойчивостью к току шума.
  • Каковы преимущества бесстержневого испытания сопротивления заземления?
  • Нет необходимости использовать вспомогательные тестовые штыри для проверки
  • Позволяет проводить испытания в местах с бетонным или твердым грунтом
  • Меньше времени, чем отключение измерительных проводов
  • Может использоваться для измерения тока заземления, так как это токоизмерительные клещи
  • Если электрод должен быть отключен, прибор покажет, течет ли ток, чтобы указать, безопасно ли продолжать.
  • Важно помнить два ключевых правила, упомянутых ранее. Измерение без ставок редко будет таким же, как при трехполюсном измерении, поскольку испытание технически представляет собой измерение сопротивления контура. В приложениях с одним или небольшим количеством обратных цепей заземления результат измерения может быть выше ожидаемого предела сопротивления электрода. В этом случае метод без ставки по-прежнему часто является бесценным инструментом для выявления изменений с течением времени.

    AEMC 6417 Измеритель сопротивления заземляющего зажима с Bluetooth, 1500 Ом

    AEMC 6417 Предложения

    Измеритель сопротивления заземления модели 6417 AEMC измеряет сопротивление и импеданс заземляющего стержня и сети без использования вспомогательных стержней.При использовании метода бесконтактного тестирования в заземляющих кольях больше нет необходимости. Зажим заземления 6417 помещается вокруг стержня заземления или соединительного кабеля, и известное напряжение создается одной половиной зажима, а ток измеряется другой половиной. Тестер автоматически определяет сопротивление контура заземления на этом заземлении.

    Метод бесконтактного тестирования избавляет от необходимости отключать параллельные заземляющие стержни и находить подходящие места для размещения вспомогательных заземляющих стержней.Это экономит время и позволяет пользователям, таким как промышленные и коммунальные электрики, электрики и подрядчики, выполнять испытания контура заземления в местах, где невозможно использовать другие методы, в том числе внутри зданий или на опорах электропередач.

    Новая функция индикации контактного напряжения, которая предупреждает, когда напряжение, полученное из измерений тока и сопротивления, обнаруживает потенциально опасное состояние прикосновения, а также функция выбора частоты тестирования, которая обеспечивает более точные результаты в индуктивных средах, были включены в 6417 для того, чтобы повысить его универсальность и безопасность.Возможности связи Bluetooth и программное обеспечение DataView® также включены для хранения данных, отображения в реальном времени, анализа, создания отчетов и настройки системы.

    Характеристики

    • Функция высокочувствительного измерения тока утечки, протекающего на землю или циркулирующего в контурах заземления от 0,2 мА до 40 А
    • Измерение сопротивления от 0,01 до 1500 Ом
    • Индикация напряжения прикосновения предупреждает о небезопасных условиях
    • Выбираемая частота тестирования повышает точность в индуктивных средах
    • Значок шума и зуммер предупреждают пользователя о наличии опасных уровней напряжения и тока
    • Аварийная функция с регулируемой уставкой
    • Многофункциональный ярко-желтый органический дисплей (OLED)
    • Функция хранения данных с отметкой времени (сохраняется до 2000 измерений)
    • Отображение сохраненных измерений на дисплее или через Bluetooth на ПК или в мобильном приложении на базе Android
    • Сконфигурируйте, загрузите, распечатайте и отправьте по электронной почте результаты теста со своего планшета или смартфона
    • Возможность GPS в вашем устройстве позволяет легко найти место, связанное с измерениями
    • Информация о сроке службы батареи при включении и автоматическом отключении питания
    • Большое отверстие губки 35 мм
    • Прочная конструкция головки и корпуса из материала Lexan®, стойкая к поломке
    • Соответствует EN61010-1, 600 В кат.IV нормы безопасности
    • Включает жесткий футляр для переноски, калибровочную петлю, батареи, USB-накопитель и руководство пользователя

    Приложения

    • Сопротивление системы заземляющих электродов
    • Проверка соединения / целостности
    • Проверка заземления вышек сотовой связи
    • Наземные измерения в системах железнодорожной сигнализации

    Контуры заземления в системах испытаний на вибрацию

    Вернуться к: Системный шум и контуры заземления

    Как обсуждалось в предыдущем уроке, электронное заземление может быть ссылкой на 0 вольт.Это опорное напряжение 0 В используется в качестве основы для других напряжений, генерируемых в системе тестирования. Это основная точка отсчета, и ее необходимо поддерживать в надлежащем состоянии.

    Общие сведения о контурах заземления

    Контур заземления возникает, когда несколько компонентов, у которых есть заземление к цепи электропитания здания, подключены друг к другу с помощью кабеля с заземлением 0 В. Это соединение создает несколько путей к заземлению через несколько компонентов системы.

    Опорное напряжение 0 В, на которое воздействуют контуры заземления, больше не равно 0 В, поскольку теперь присутствует дополнительное напряжение.Это изменение может вызвать ошибки в измерениях, которые использует система тестирования.

    Системы управления

    Системы контроля вибрации имеют полное заземление через набор соединительных кабелей, идущих от:

    1. Контроллер выхода на усилитель
    2. Усилитель к шейкеру
    3. Шейкер к контрольному датчику
    4. Датчик контроля на входе контроллера

    В дополнение к этому полному контуру одноточечных заземляющих опор, контроллер, усилитель и шейкер имеют заземляющие опоры для заземления.

    Множественные ссылки на землю и соединенные кабели имеют чрезвычайно высокий потенциал для создания контуров заземления, особенно когда различные компоненты требуют разных типов питания (120 В — однофазное, 480 В — 3 фазы и т. Д.). См. Рисунок 1.3 ниже.

    Рисунок 1.3. Соединения и потенциальные контуры заземления в системе контроля вибрации. Обратите внимание, что заземления всех трех устройств подключены через цепь электропитания.

    Сопротивление и напряжение

    Электричество ищет баланс; Таким образом, два провода цепи должны содержать равное количество напряжения или тока.Любой дисбаланс передается на землю.

    В зависимости от сопротивления несимметричных проводов генерируются разные напряжения. Согласно закону Ома, напряжение равно току, умноженному на сопротивление (V = I * R). По мере увеличения сопротивления общее напряжение увеличивается, даже если ток остается прежним.

    Провода и цепи с высоким сопротивлением приведут к тому, что сигнал более высокого напряжения будет передаваться по заземленной стороне кабелей. В некоторых случаях эта разница напряжений может вызвать фактическое движение вибростенда; в других случаях разница может быть измерена только контроллером вибрации.

    Обнаружение шума контура заземления

    Есть два признака того, что ваша система контроля вибрации испытывает шум контура заземления:

    1. Встряхивающая головка движется, когда система включена, но тест не выполняется.
    2. На графиках показаны скачки амплитуды при тактовой частоте источника питания (60 Гц в Северной Америке, 50 Гц в Европе).

    Если вы подозреваете, что шум влияет на вашу систему контроля вибрации, следующие уроки проведут вас через шаги по устранению неполадок.

    Что такое проверка сопротивления контура?

    Тестер сопротивления контура — это портативный электронный прибор для измерения сопротивления экрана электронного кабеля, установленного в самолетах, без необходимости отсоединения кабелей. Он состоит из трех элементов: соединителей, соединительных щупов и приборного блока.

    Нажмите, чтобы увидеть полный ответ


    Аналогично можно спросить, как найти сопротивление петли?

    Чтобы вычислить общее сопротивление в последовательных цепях, ищите одну петлю без разветвлений.Сложите все сопротивления в цепи вместе, чтобы получить , чтобы получить , чтобы получить общее сопротивление . Если вы не знаете отдельные значения, используйте уравнение закона Ома , где сопротивление = напряжение, деленное на ток.

    Аналогично, какое сопротивление линии передачи постоянному и переменному току? Ответ: Сопротивление , предлагаемое проводником для AC и DC , отличается, сопротивление , предлагаемое 2 DC проводником, известно как сопротивление DC , тогда как сопротивление предлагается для AC называется сопротивлением переменному току или эффективным сопротивлением .Для данного проводника сопротивление переменному току больше, чем его сопротивление постоянному току .

    Более того, что такое петлевой тест?

    Проверка контура — это быстрый, удобный и высокоспецифичный метод оценки электрической цепи на ее способность задействовать защитные устройства (автоматические выключатели, предохранители, GFCI). Это было санкционировано в Европе, но игнорируется в Соединенных Штатах, потому что это не требуется.

    Что произойдет, если сопротивление контура замыкания на землю будет слишком высоким?

    Если сопротивление в цепи заземления возврат слишком велико , ток сбоя может быть слишком низок , чтобы его можно было обнаружить, и ток сбоя будет продолжать двигаться вокруг основной цепь — вызывает короткое замыкание цепь .Схема , защита обнаруживает активность вдоль проводки заземления и срабатывает в , когда обнаруживается ток.

    Как проверить сопротивление заземления?


    Введение

    Сопротивление заземления — это сопротивление, при котором ток протекает в землю от заземляющего устройства, а затем течет через землю к другому заземляющему телу или распространяется далеко. Значение сопротивления заземления отражает хорошую степень контакта между электрическим устройством и землей и отражает масштаб сети заземления.

    В этой статье в основном рассказывается, как проверить сопротивление заземления с помощью тестера сопротивления заземления. С одной стороны, он кратко вводит понятие сопротивления заземления; с другой стороны, в нем в основном рассказывается о том, как проверить сопротивление заземления с помощью тестера сопротивления заземления с нескольких точек зрения.


    Каталог

    3

    2

    II Принцип измерения сопротивления заземления проверки сопротивления заземления

    Введение

    ⅠПонятие сопротивления заземления

    3.1 Двухточечный метод

    3.2 Трехточечный метод

    3.3 Четырехточечный метод

    3.4 Метод зажима

    IV Как проверить сопротивление заземления Тестер сопротивления заземления

    4.1 Инструмент для тестирования — Тестер сопротивления заземления

    4.2 Подготовка перед тестированием

    4.3 Как использовать тестер сопротивления заземления

    4.4 Примечания по использованию тестера сопротивления заземления

    4.5 Технические требования к настройке тестера сопротивления заземления

    4.6 Функции сопротивления заземления Тестер

    4.7 Технические характеристики тестера сопротивления заземления

    4.8 Общие неисправности тестера сопротивления заземления и соответствующих решений


    Сопротивление заземления

    Во многих бытовых приборах, особенно крупных электроприборах, таких как холодильники, стиральные машины и кондиционеры, используются трехжильные кабели питания.Фактически, электроприборы, которые используют общую сетевую мощность, могут работать нормально, если есть два нулевых провода и два пожарных провода. Дополнительная линия — это провод заземления, а это означает, что эти приборы должны быть заземлены.

    Технология заземления была первоначально разработана для предотвращения ударов молнии по оборудованию, например, электричеству или электронике. Цель состоит в том, чтобы ввести ток удара молнии, генерируемый молнией, в землю через громоотвод, чтобы защитить здания.В то же время заземление также является эффективным средством защиты личной безопасности. Когда фазовая линия по какой-либо причине (например, плохая изоляция проводов, старение линии и т. Д.) Соприкасается с корпусом оборудования, на корпусе оборудования будет находиться опасное напряжение. Генерируемый ток будет защищен от земли через защитное заземление, таким образом играя роль личной безопасности.

    Трехжильные кабели питания

    Сопротивление заземления — важный параметр, используемый для измерения хорошего состояния заземления.Это сопротивление, при котором ток течет от заземляющего устройства в землю, а затем течет через землю к другому заземляющему телу или распространяется в отдаленное место. В него входит заземляющий провод и сам корпус заземления. Сопротивление контакта между резистором, заземляющим телом и сопротивлением земли, а также сопротивление земли между двумя заземляющими телами или сопротивление заземления заземляющего тела до бесконечности. Величина сопротивления заземления напрямую отражает степень контакта между электрическим устройством и «землей», а также отражает масштаб сети заземления.Концепция сопротивления заземления применима только к небольшим заземляющим сетям; по мере того, как площадь основания заземляющей сетки увеличивается, а удельное сопротивление почвы уменьшается, индуктивная составляющая полного сопротивления заземления становится все более и более важной. Большая сеть заземления должна быть спроектирована с полным сопротивлением заземления.

    Для подстанций высокого и сверхвысокого напряжения следует использовать понятие «сопротивление заземления» вместо «сопротивления заземления». Также рекомендуется использовать контактное напряжение и ступенчатое напряжение в качестве критериев безопасности.Также следует использовать портативную и точную систему межчастотного измерения. Система получает правильный результат импеданса заземления для обеспечения безопасности человека и оборудования и способствует безопасной эксплуатации энергосистемы.


    II Принцип измерения s из Сопротивление заземления

    2,1 На сопротивление заземления влияет множество факторов, таких как размер (длина, толщина), форма, количество, глубина заглубления , окружающая географическая среда (например, равнина, канавы, склоны разные), влажность почвы, текстура и т. д., может повлиять на сопротивление заземления.

    2.2 Тестер сопротивления заземления, который мы используем, является относительно традиционным измерительным прибором. Его основной принцип — использовать метод трехточечного падения напряжения. Метод измерения состоит в том, чтобы вставить две вспомогательные испытательные сваи с одной стороны заземляющей сваи (называемой X), при этом две испытательные сваи должны быть расположены на одной стороне испытанной сваи, а три сваи в основном по прямой. Расстояние от вспомогательной испытательной сваи (называемой Y) составляет около 20 метров от испытанной сваи, а расстояние от испытанной сваи составляет около 40 метров от вспомогательной испытательной сваи (называемой Z).


    III Общие способы проверки сопротивления заземления

    3,1 Двухточечный метод

    С помощью этого метода сопротивление серии двух электродов измеряется путем подключения клемм P1 и C1 к заземляющий электрод, подлежащий испытанию. P2 и C2 подключаются к отдельным цельнометаллическим точкам заземления (например, водопроводным трубам или строительной стали).

    Двухточечный метод — это самый простой способ получить показания сопротивления заземления, но он не так точен, как трехточечный метод, и его можно использовать только в крайнем случае.Он наиболее эффективен для быстрой проверки соединений и проводов между точками соединения.

    Примечание: измеряемый заземляющий электрод должен располагаться на достаточном расстоянии от вспомогательного контакта, чтобы выйти за пределы его диапазона воздействия.

    3,2 T hree-point M ethod

    Трехточечный метод является наиболее тщательным и надежным методом испытаний; он используется для измерения сопротивления заземления заземленного электрода. Используя четырехконтактный тестер, клеммы P1 и C1 на приборе соединяются перемычками и подключаются к проверяемому заземляющему электроду, в то время как эталонный стержень C2 отводится прямо в землю как можно дальше от проверяемого электрода.Затем опорная точка P2 вгоняется в землю определенным количеством точек примерно по прямой линии между C1 и C2. Запишите показания сопротивления для каждой точки P2.

    Методы испытания потенциала

    Измеренное значение наносится на кривую сопротивления и расстояния. Определите правильное сопротивление заземления по кривой, что составляет примерно 62% от общего расстояния между C1 и C2. Существует три основных типа методов потенциального снижения:

    (1) Полное падение потенциала: многие тесты представляют собой разные области P и строят полную кривую сопротивления.

    (2) Упрощенное падение потенциала: выполняются три измерения на определенном расстоянии P, и математические вычисления используются для определения сопротивления.

    (3) 61.8 Правило: используйте P для одного измерения с расстоянием 61,8% (62%) расстояния между C1 и C2.

    3.3 F our-point M ethod

    Этот метод является наиболее часто используемым методом измерения удельного сопротивления почвы, что важно при проектировании систем электрического заземления.В этом методе четыре электрода небольшого размера вбиваются в землю на одинаковой глубине и на одинаковом расстоянии (прямая линия) и измеряются.

    Влага и содержание солей в почве существенно влияют на ее удельное электрическое сопротивление. На измерения удельного сопротивления почвы также влияют существующие заземляющие электроды. Если закопанный проводящий объект, контактирующий с почвой, находится достаточно близко, чтобы изменить режим испытательного тока, показание будет недействительным. Это особенно актуально для больших или длинных предметов.

    Как показано на рисунке выше, метод с четырьмя иглами является наиболее часто используемым методом измерения удельного сопротивления почвы.

    3,4 Зажим M ethod

    Метод зажима уникален тем, что он измеряет сопротивление без отключения системы заземления. Это быстро и легко, а также включает в себя заземление и общее сопротивление заземляющего соединения.

    «Прижимая» тестер к измеряемому заземляющему электроду, он аналогичен методу измерения тока с помощью токовых клещей мультиметра.Тестер подает известное напряжение через передающую катушку без необходимости прямого электрического подключения и измеряет ток через приемную катушку. Этот тест проводится на высокой частоте, чтобы трансформатор был как можно меньше и практичен.

    Некоторые ограничения метода зажима

    (1) Действительно только при наличии нескольких параллельных соединений.

    (2) Не может использоваться на изолированной земле, не подходит для проверки установки или отладки новых объектов.

    (3) Если есть альтернативный контур с низким сопротивлением, не связанный с почвой, например вышка сотовой связи или подстанция, этот метод использовать нельзя.


    IV H Как проверить сопротивление заземления с помощью тестера сопротивления заземления

    4.1 Инструмент для тестирования — тестер сопротивления заземления

    Тестер сопротивления заземления является обычным инструментом для проверки и измерения сопротивления заземления. Это также незаменимый инструмент для проверки электробезопасности и принятия завершения проекта заземления.В последние годы, в связи с быстрым развитием компьютерных технологий, тестеры сопротивления заземления также внедрили большое количество микропроцессорных технологий. Его функция измерения, содержание и точность лучше, чем у обычного прибора. В настоящее время тестер сопротивления заземления может удовлетворить все требования измерения заземления. Благодаря новому методу Champ не требуется прямое измерение в режиме онлайн для укладки и выкладки. Мощный тестер сопротивления заземления управляется микропроцессором, который может автоматически определять состояние подключения каждого интерфейса, а также напряжение и частоту помех в сети заземления.Он также имеет уникальные функции, такие как сохранение числовых значений и интеллектуальные подсказки.

    Измеритель сопротивления заземления с зажимом — это крупный прорыв в традиционной технологии измерения сопротивления заземления, широко используемой для измерения сопротивления заземления в электроэнергетике, телекоммуникациях, метеорологии, нефтепромысловом, строительном и промышленном электрооборудовании. При измерении системы заземления с помощью петли отключение заземляющего токоотвода не требуется. Это безопасно, быстро и просто в использовании.Он может измерять замыкание на землю, которое невозможно измерить обычным методом, и может применяться в случае, когда обычный метод не может быть измерен, потому что он измеряет комбинированное значение сопротивления заземляющего тела и сопротивления заземляющего провода. Ее можно разделить на длинную и круглую челюсти. Длинные губки особенно подходят для заземления плоского стального листа.

    4.2 Подготовка к тестированию

    (1) Прочтите инструкции к тестеру сопротивления заземления, чтобы полностью понять структуру, характеристики и использование тестера.

    (2) Подготовьте необходимые инструменты и все принадлежности для измерений и аккуратно протрите тестер и заземляющий зонд. Особенно необходимо очистить заземляющий зонд, грязь и ржавчину, влияющие на проводимость поверхности.

    (3) Отсоедините заземляющую магистраль от точки подключения заземляющего корпуса или от точек подключения всех заземляющих ответвлений, чтобы заземляющий корпус был отделен от любого соединения и стал независимым.

    4.3 Как использовать тестер сопротивления заземления

    (1) Подключите тестовую линию: подключите тестовую линию, как показано на рисунке ниже (толстая линия подключена к текущему выходному порту, а тонкая линия подключен к порту определения сопротивления).

    (2) Включите тестер, нажмите выключатель питания и прогрейте в течение 5 минут.

    (3) При необходимости выберите переключатель диапазона измерения, обычно выбирайте файл 600 мОм.

    (4) Поверните ручку тока против часовой стрелки в нулевое положение, а затем замкните накоротко две группы тестовых зажимов.

    (5) Выберите ручной тест или временной тест в зависимости от необходимости (переключатель времени находится в положении «выключено» для ручного теста и «включено» для автоматического теста времени).

    (6) После того, как условие установлено правильно, нажмите кнопку «Пуск», проверьте свет и отрегулируйте ручку «Регулировка тока» на выбранное значение тока (обычно 12А).

    (7) Установите переключатель «Preset / Test» в «Preset» и отрегулируйте потенциометр «Alarm Resistance Adjustment». Предустановленное значение аварийного сопротивления составляет 500 мОм.(Значение аварийного сопротивления может быть установлено только при наличии токового выхода).

    (8) После регулировки предварительно установленного сопротивления сигнала тревоги нажмите кнопку «Сброс», чтобы отключить выходной ток, и одновременно поверните ручку «Регулировка тока» на минимум, чтобы разъединить закороченные тестовые зажимы.

    (9) Выборочная проверка перед тестом: замкните накоротко тестовый зажим, отрегулируйте ручку тока на значение тока 5А, отключите тестовый зажим, тестер выдаст сигнал тревоги, и выборочная проверка будет квалифицирована, в противном случае она не квалифицирована.

    После того, как тестер пройдет точечную проверку, войдите в тест: сначала подключите тестовый зажим к металлической части корпуса лампы и точке подключения заземляющего провода, затем нажмите кнопку «Пуск», загорится индикатор «Тест». на, и отрегулируйте ручку регулировки тока до необходимого значения тока. Считайте значения сопротивления на экране дисплея. Во время теста, когда сопротивление заземления тестируемого объекта превышает значение установленной сигнализации (500 мОм), тестер подает прерывистый звуковой и световой сигнал тревоги.В это время определяется, что сопротивление заземления испытуемой лампы неквалифицировано. Если вам нужно остановить тест, нажмите кнопку «Сброс» (тестер автоматически отключает питание, когда он находится в режиме временного теста). Когда индикатор «Тест» погаснет, ток в цепи будет отключен. Затем снимите тестовый зажим с тестируемого объекта для следующего измерения.

    (10) Если вам нужно продолжить измерение того же продукта, повторите шаг 9. Если вам нужно протестировать другие продукты, повторите шаги с 3 по 9. Выключите тестер, если измерения не выполняются.

    4.4 Примечания по использованию тестера сопротивления заземления

    (1) Линия заземления должна быть отключена от защищаемого устройства для обеспечения точности результатов измерения.

    (2) Вблизи измеряемого полюса не должно быть блуждающих токов и поляризованного грунта.

    (3) Его невозможно измерить, если почва впитывает слишком много воды после дождя, а также когда климат, температура и давление резко меняются.

    (4) Зонд должен располагаться вдали от крупных металлических предметов, таких как подземные трубы, кабели, железные дороги и т. Д.Полюс тока должен находиться на расстоянии не более 10 метров, а полюс напряжения — на расстоянии более 50 метров. Если металлические корпуса не подключены к сети заземления, расстояние можно сократить на 1/2 ~ 1. / 3.

    (5) Для подключения используйте хорошо изолированный провод, чтобы избежать утечки.

    (6) Обратите внимание на то, чтобы токовый полюс был вставлен в почву так, чтобы заземляющий стержень находился в состоянии нулевого потенциала.

    (7) Испытание следует проводить при высоком удельном сопротивлении грунта, например, в начале зимы или в сухой летний сезон.

    (8) На полигоне не должно быть электролитов и разлагающихся трупов, чтобы избежать иллюзий.

    (9) Когда чувствительность гальванометра слишком высока, полюс напряжения зонда потенциала можно вставить в более мелкую почву. Когда чувствительности гальванометра недостаточно, можно ввести воду вдоль зонда, чтобы он стал влажным.

    (10) Проверьте точность тестера в любое время.

    (11) При использовании, хранении и хранении тестера следует избегать сильной вибрации.

    4.5 Технические требования к установке тестера сопротивления заземления

    (1) Тестер сопротивления заземления должен быть размещен на расстоянии 1-3 м от точки тестирования, должен быть устойчивым и простым в эксплуатации.

    (2) Каждый вывод должен иметь хороший контакт и надежно подключаться.

    (3) Два заземляющих контакта должны быть размещены на расстоянии 20 м и 40 м от левой и правой сторон заземляющего корпуса, подлежащего проверке. Если два контакта соединены прямой линией, проверяемый заземляющий корпус должен находиться в основном на этой линии.

    (4) Другие проводники не должны использоваться для замены проводов из чистой меди длиной 5, 20 и 40 м, оборудованных приборами.

    (5) Если измеритель сопротивления заземления отцентрирован, угол между двумя контактами и тестером должен быть не менее 120 °, и он не должен быть установлен в одном направлении.

    (6) Два штифта должны быть помещены в твердую почву и не могут быть помещены в грязь, засыпку, корни веток, траву и т. Д.

    (7) Испытание нельзя проводить до семи последовательных солнечных дней после дождя. .

    (8) Проверяемый заземляющий корпус сначала должен заржаветь, чтобы обеспечить надежное электрическое соединение.

    4.6 Функции тестера сопротивления заземления

    (1) Точно измерьте полное сопротивление заземления, сопротивление заземления и реактивное сопротивление заземления большой сети заземления.

    (2) Точно измерьте градиент поверхностного потенциала большой площади заземляющей сетки.

    (3) Точно измерьте контактную разность потенциалов, контактное напряжение, ступенчатую разность потенциалов и ступенчатое напряжение большой заземляющей сети

    (4) Точно измерьте передаточный потенциал большой заземляющей сети;

    (5) Измерьте удельное сопротивление почвы.

    4.7 Технические характеристики тестера сопротивления заземления

    (1) Условия

    ● Температура окружающей среды: 0 ℃ 45 ℃

    ● Относительная влажность: ≤85% RH

    (2) Диапазон измерения и постоянный ток Значение (RMS)

    ● Значение сопротивления: 0 2 Ом (10 мА) , 2 ~ 20 Ом (10 мА) , 20 200 Ом (1 мА)

    ● Напряжение: 0 20 В переменного тока

    (3) Точность измерения и разрешение

    ● Точность: 0 0,2Ω≤ ± 3% ± 1d , 0,2Ω ~ 200Ω≤ ± 1.5% ± 1d , 1 ~ 20V≤ ± 3% ± 1d

    ● Разрешение: 0,001Ω 、 0,01Ω 、 0,1Ω 、 0,01V

    (4) Источник питания и потребляемая мощность

    ● Максимальная потеря мощности: ≤ 2 Вт

    ● Постоянный ток: 8 × 1,5 В (AA , R6) батарея

    ● Переменный ток: 220 В / 50 Гц

    (5) Объем и вес

    ● Объем и вес

    ● Вес: ≤ 1,4 кг

    4.8 Общие неисправности измерителя сопротивления заземления и соответствующих решений

    Общая неисправность 1: , когда напряжение батареи нормальное и сопротивление заземления измерено, измеренные данные неточны и ошибка велика.

    Причина: эта неисправность обычно вызвана неисправностью схемы фильтрации и модуляции сигнала обнаружения. Частая причина — повреждение индуктивности фильтра Т1.

    Решение: заменить индуктивность фильтра T1.

    Common Fault 2: Было обнаружено, что напряжение батареи в норме, но сопротивление заземления не может быть измерено.

    Причина: эта неисправность обычно вызвана неисправностями импульсного источника питания, преобразования переменного / постоянного тока силового динамометра и выходной части постоянного тока.

    Решение: измерьте порт C с помощью частотомера. Если нет выхода переменного тока 820 Гц, постепенно проверьте часть цепи, найдите неисправную часть в выходном трансформаторе, лампе переключателя, колебательном контуре и т. Д., А затем замените новые детали для ремонта.

    Handy Power Dynamometer

    Common Fault 3: указатель головки измерителя сопротивления заземления не двигается, или указатель головки прибора для измерения напряжения аккумулятора и сопротивления заземления не перемещается во время измерения.

    Причина: это может быть вызвано перегоранием счетчика или разрывом соединения между счетчиком и печатной платой. Это также связано с чрезмерной вибрацией измерителя сопротивления заземления во время использования или транспортировки.

    Решение: сначала откройте панель головы и переместите указатель вручную. Если указатель не может вернуться к нулю автоматически, это означает, что счетчик поврежден. В противном случае следует приварить головку и измерить сопротивление мультиметром.Если цепь разомкнута, значит счетчик перегорел. Затем используйте файл мультиметра для измерения тока и напряжения, чтобы измерить исходный соединительный разъем, нажмите измеритель сопротивления заземления, чтобы проверить кнопку напряжения. Если на мультиметре есть индикация напряжения, это означает, что неисправность тестера сопротивления заземления вызвана повреждением измерителя. После замены нового счетчика его можно отремонтировать. Если головка счетчика в хорошем состоянии, откройте корпус измерителя сопротивления заземления и проверьте соединение головки счетчика.Если он отключен, можно будет снова подключить его.


    Вам также может понравиться:

    Как проверить различные типы резисторов с помощью стрелочного мультиметра

    Каковы функции и применение варистора?

    Что такое гигантское магнитосопротивление (ГМС)?

    Подтягивающий резистор и понижающий резистор

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *