Измерение сопротивления в электродвигателе
Важной частью испытаний электродвигателя после ремонта или складского хранения являются измерение сопротивления изоляции и сопротивление обмоток постоянному току. Сопротивление изоляции производится для проверки отсутствия короткого замыкания и возможности подключения машины к сети. Сопротивление обмоток измеряется для проверки правильности намотки, отсутствия виткового замыкания и надёжности соединений.
Методы проверки изоляции
Перед подачей напряжения для предотвращения короткого замыкания необходимо проверить изоляцию между токоведущими частями и корпусом электромашины. В трёхфазных электродвигателях обмотки соединены между собой. Для проверки отсутствия замыкания между ними, при наличии возможности следует отключить обмотки друг от друга. Изоляция каждой из них проверяется относительно остальных катушек и корпуса машины. Проверка изоляции производится мегомметром. Для этого вывода к прибору подключаются на положение «мегаомы». Концы прикладываются к выводам и части корпуса, зачищенному от краски.
Информация! Вместо корпуса вывод можно приложить к валу электромашины.
Измерение производится вдвоём — один человек прикладывает вывода прибора к измеряемым элементам, а второй крутит ручку устройства в течение минуты, затем, не прекращая вращения, снимаются показания. При сомнительном результате измерения следует повторить. Провода и обмотки обладают электрической ёмкостью и во время измерения заряжаются от мегомметра, поэтому после завершения испытаний или перед повторной проверкой вывода прибора и измеряемые детали необходимо разрядить закорачиванием.
Измерение сопротивления обмоток
Измерение сопротивления обмоток производится постоянным током. Этот вид измерений производится для проверки правильности намотки и качества соединений.
Информация! Величина сопротивлений, за исключением обмоток параллельного возбуждения двигателей постоянного тока, составляет несколько Ом, а в электромашинах большой мощности менее 1 Ом
Измерения производятся измерительным мостом или цифровым омметром. При проведении измерений важно обеспечить надёжный контакт выводов прибора с клеммами электромашины. Перед началом измерений вывода измерительного прибора замыкаются между собой, и производится установка «0». В трехфазных машинах обмотки следует отключить друг от друга. При невозможности это сделать они измеряются попарно, через клеммы подключения. В коллекторных электродвигателях и машинах постоянного тока обмотки возбуждения разделены на две части и находятся по обе стороны ротора. Для проверки сопротивления их рассоединяют и измеряют по отдельности.
Температура электродвигателя
При изменении температуры сопротивление обмоток меняется, поэтому температура двигателя при измерении должна быть 20°С или сопротивление необходимо пересчитывать по специальным таблицам. Для измерения температуры используются встроенные или дополнительно устанавливаемые внутренние температурные датчики. Их количество зависит от мощности электромашины:
- до 10кВт — 1шт;
- 10-100кВт — 2шт;
- 100кВт-1мВт — 3шт;
- более 1мВт — 4шт.
Температурой аппарата считается среднее значение показаний. При измерении сопротивления двигателя, не работавшего длительное время, его температурой считается температура окружающей среды. При этом она не должна меняться в течение нескольких дней перед началом измерений больше, чем на 5°С. Измерения производят несколько раз с перерывом не менее 2 часов. Если результат меняется, то следует подождать до приобретения электромашиной температуры окружающей среды.
Измерения с помощью амперметра и вольтметра
Если измерительный мост или омметр отсутствуют, то допускается определить сопротивление обмоток методом измерения тока и напряжения:
- подключить параллельно обмотке вольтметр, а последовательно амперметр;
- подать в схему =5В;
- измерить ток и напряжение;
- по формуле R=U/I рассчитать сопротивление;
- повторить ещё два раза, меняя величину напряжения;
- рассчитать среднеарифметическое значение.
Важно! Если вместо постоянного использовать переменное напряжение, то можно обнаружить витковое замыкание между рядом расположенными витками.
Проверка целостности коллекторных электрических машин
Измерением сопротивления проверяется также исправность коллекторных машин переменного и постоянного тока. Делать это целесообразно стрелочным или цифровым омметром. Во время проверки показания прибора не должны меняться более чем на 10-15%. Измерения производятся между рядом расположенными пластинами коллектора или через щётки. Если при измерениях через щётки показания меняются, необходимо их снять и произвести измерения непосредственно на коллекторе.
Необходимая точность и результаты измерений
Точность и необходимый результат измерений определяется нормативными документами, такими, как ПУЭ, ПТЭЭР и другими, а также документацией к электродвигателю.
Необходимая точность при измерении сопротивления обмоток
Проводить измерения следует при температуре электромашины, равной температуре окружающей среде, до включения в работу. Разница между показаниями не должна превышать 2%, поэтому приборы, используемые для проверки должны обеспечивать необходимую точность:
- до 1 Ом применяется двойной измерительный мост;
- свыше 1 Ом — одинарный;
- цифровой омметр необходимо переключить на соответствующий предел измерений.
Измерение изоляции
При проверке сопротивления изоляции температура значения не имеет, но мегомметр следует проверить до начала испытаний и после. Величина сопротивления зависит от мощности электромашины и определяется по формуле Rиз=Uном/(1000+0,1Рном), где:
- Uном — напряжение сети;
- Рном — мощность двигателя. На практике считается, что сопротивление изоляции статора должно быть не менее 1мОм, а в обмотках фазного ротора не должно быть короткого замыкания. При показаниях мегомметра ниже требуемых:
- после перегрева электромашины она отправляется на ремонт;
- после хранения или намокания аппарат разбирается и сушится, после чего производится повторная проверка. Инструменты, используемые для измерения сопротивления Для проведения измерений применяются различные приборы.
Мегомметр
Служит для измерения сопротивления изоляции. Электродвигатели с номинальным напряжением до 1кВт используются мегомметры 0,5 и 1кВт, высоковольтные аппараты проверяются мегомметрами 2,5кВт или специальными устройствами. Вывода плотно прижимаются к измеряемому объекту, и ручка прибора вращается равномерно, со скоростью 1,5-2 об/мин до тех пор, пока стрелка не остановится.
Внимание! На выводах мегомметра присутствует высокое напряжение — до 2,5кВт, в зависимости от конструкции, но очень маленький ток. Поэтому прикосновения к ним болезненные, но не опасные для жизни.
Измерительный мост и цифровой омметр
При измерении сопротивления обмоток используются измерительный мост или цифровой омметр. Измеряемые величины составляют несколько Ом, поэтому важно обеспечить надёжный контакт прибора и клемм электромашины.
Мультиметр
Для приблизительной оценки состояния электродвигателя можно использовать мультиметр. Он не обладает необходимой точностью измерений, но позволяет проверить целостность обмоток и отсутствие короткого замыкания.
Тщательная проверка сопротивлений обмоток и изоляции электродвигателей необходима после ремонта, длительного периода хранения и оценки возможности дальнейшей эксплуатации при перегреве.
Измерение сопротивления изоляции обмоток
- Подробности
- Категория: Электрические машины
Для измерения сопротивления изоляции применяют мегаомметры логометрической системы с источником постоянного напряжения на 250, 500, 1000 и 2500 В. Измерение сопротивления изоляции вспомогательных измерительных цепей, электрически не соединенных с рабочими цепями объекта измерения, заложенных и встроенных температурных индикаторов, термометров сопротивления, термопар и т. п. производят мегаомметром на 250 В. Мегаомметры напряжением 500 В применяют при измерении сопротивления изоляции обмоток с номинальным напряжением до 500 В включительно; мегаомметры напряжением 1000 В — для обмоток выше 500 В. Мегаомметры напряжением 2500 В применяют для измерения сопротивления изоляции обмоток статоров крупных машин переменного тока с напряжением 6000 В и выше. При измерении сопротивления изоляции крупных машин рекомендуется применять мегаомметр с электроприводом. Измерение сопротивления изоляции производят при отсутствии электрического напряжения по методике, изложенной в разд. 3 справочника.
Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производят поочередно для каждой электрически независимой цепи при соединении всех прочих цепей с корпусом машины
Рис. 1. Зависимость сопротивления изоляции Rn обмотки относительно корпуса от .времени приложения напряжения мегаомметра.
1 — при сухой изоляции; 2 — при увлажненной изоляции.
.
Показания мегаомметра зависят от времени приложения напряжения к проверяемой обмотке. Чем больше время, прошедшее от момента приложения напряжения к изоляции до момента отсчета (15 и 60 с), тем больше получается измеренное значение сопротивления изоляции (рис. 1).
При измерении сопротивления изоляции необходимо измерять и температуру обмотки. С повышением температуры сопротивление изоляции уменьшается. Измерение сопротивления изоляции следует выполнять при температуре обмотки, соответствующей номинальному режиму работы машины или приведенной к температуре 75 °С. Температура обмотки в холодном состоянии не должна быть ниже 10 °С. Если температура ниже указанной, то обмотку перед измерением необходимо подогреть. Наименьшие допустимые значения сопротивления изоляции электрических машин относительно корпуса и между обмотками при рабочей температуре и через 60 с после приложения напряжения определяются
(1)
где Uя — номинальное напряжение обмотки, В; Ря — номинальная мощность машины: постоянного тока, кВт, переменного тока, кВ-А.
Допустимое значение сопротивления изоляции, подсчитанное по (1), должно быть не меньше 0,5 МОм. В случае измерения сопротивления изоляции при температуре ниже рабочей, полученное по (1) сопротивление изоляции следует удваивать на каждые 20 °С (полные и неполные) разности между рабочей
температурой и той температурой, при которой выполнено измерение.
Наименьшее допустимое значение сопротивления изоляции Re о для машин постоянного тока приведены в табл. 1, для машин переменного тока напряжением выше 1000 В — в табл. 2.
Таблица 1
Допустимые сопротивления изоляции R60 машин постоянного тока
Таблица 2
Допустимые сопротивления изоляции R60 машин переменного тока напряжением выше 1000 В
Для машин переменного тока напряжением ниже 1000 В сопротивление изоляции обмотки статора 0,5 МОм при температуре 10— 30 °С; обмотки ротора 0,2 МОм.
О степени влажности изоляции судят по так называемому коэффициенту абсорбции 6а, который представляет собой отношение показаний мегаомметра после приложения напряжения через 15 и 60 с·
Рис. 2. Зависимость коэффициента абсорбции от температуры машины.
1 — для крупных машин при сухой изоляции; V — для крупных машин при увлажненной изоляции; 2, 2* — для машин средней и малой мощности при сухой и увлажненной изоляции, соответственно.
Следует учесть, что значение кя даже при хорошем состоянии изоляции в значительной степени зависит от температуры машины и вида применяемых изоляционных материалов. С повышением температуры коэффициент абсорбции для машин, имеющих неувлажненную изоляцию, уменьшается (рис. 2).
Для неувлажненной обмотки при температуре 10—30 °С ha = 1,34-2,0; для увлажненной обмотки коэффициент абсорбции близок к единице.
Измерение сопротивления и контроль изоляции обмоток
Страница 7 из 31
Величина сопротивления изоляции обмоток машин является одним из основных показателей, определяющих допустимость их включения на рабочее напряжение. Изоляция обмоток измеряется перед пробным пуском машины, а затем периодически в ходе нормальной эксплуатации; кроме того, изоляция должна контролироваться после длительных остановок и при каждом аварийном отключении привода.
Во время первоначальной наладки машин постоянного тока желательно в отдельности проверить изоляцию якоря, дополнительных полюсов и обмоток возбуждения; у машин переменного тока измеряется изоляция обмоток каждой фазы по отношению к заземленному корпусу и соединенным с ним обмоткам других фаз. В последующем изоляция может проверяться без отключения обмоток друг от друга совместно с подводящими.
Проводами; обмотки отключаются от схемы только при необходимости отыскания мест с пониженной изоляцией.
Для измерения изоляции применяются мегомметры различных напряжений [Л. 26] на 250, 500, 1 000 и 2 500 в. Процесс измерения состоит в следующем.
Зажим экрана мегомметра присоединяется к корпусу машины; от второго зажима гибкий провод с надежной изоляцией (типа «магнето») подводится к выводу обмотки, коллектору или иному испытуемому элементу машины. Желательно на свободных концах проводов от мегомметра иметь ручки из изоляционного материала со встроенными медными штырями или зажимами. Ручку мегомметра следует вращать со скоростью примерно 120 об/мин. При испытании небольших машин, имеющих незначительную емкость, стрелка прибора быстро устанавливается в положение, соответствующее сопротивлению изоляции, и отсчет можно производить уже через несколько секунд с начала вращения индуктора. При измерении изоляции крупных машин показания мегомметра постепенно увеличиваются и их принято отмечать через 15 и 60 сек (см. ниже) с начала вращения рукоятки. После окончания испытаний сохранившийся на обмотке потенциал высокого напряжения следует снять путем ее заземления на 1—2 мин. Заземляющий проводник сначала надежно присоединяется к корпусу машины, а затем другим концом подводится к выводу обмотки.
При пользовании мегомметром необходимо соблюдать установленные правила техники безопасности [Л. 19, 26]; особую осторожность следует проявлять при испытании изоляции обмоток без отсоединения подводящих проводов, ибо в этом случае возможно возникновение напряжения на удаленных участках, где работают люди.
Измерение изоляции обмоток мегомметром считается одним из основных контрольных испытаний. Однако для наиболее распространенных машин переменного тока напряжением до 380 в и постоянного тока напряжением 220 в Правилах устройства электроустановок (ПУЭ) и в Правилах технической эксплуатации (ПТЭ) отсутствуют четкие нормы, по которым можно было бы судить о том, что полученная величина сопротивления изоляции является допустимой.
В ГОСТ 183-66 указано, что сопротивление изоляции машин всех типов должно быть не менее 1 МОм на 1 кВ номинального напряжения машины.
Во время наладки нормы контроля изоляции должны согласовываться с последними инструкциями и действующими правилами [Л. 9, 19, 25, 26]. При испытании больших (более 150 кВт) и высоковольтных машин желательно получить рекомендации от заводов-изготовителей.
Таблица 1-5
Допустимые сопротивления изоляции высоковольтных машин переменного тока, МОм
Величину сопротивления изоляции желательно измерять при нагретых машинах; следует иметь в виду, что замеры, выполненные при температуре ниже 10° С, совершенно не показательны.
Таблица 1-6
Допустимые сопротивления изоляции R,e машин постоянного тока, МОм
Сопротивление изоляции машины резко снижается по мере ее нагревания; степень снижения зависит от сорта изоляционных материалов, сорта применяемого при пропитке обмоток компаунда и конструктивных особенностей.
В некоторых справочниках для сравнения с нормами полученные значения сопротивления изоляции рекомендуется делить на два на каждые 20° С, недостающие до максимальной рабочей температуры.
Наименьшие допустимые (нормируемые) величины сопротивлений изоляции (R-60) высоковольтных машин переменного тока приведены в табл. 1-5, машин постоянного тока — в табл. 1-6.
Во время наладочных работ были собраны опытные данные, по которым сопротивление изоляции зависит от температуры в еще большей степени, чем указано в табл. 1-5 и 1-6.
В ответственных случаях следует произвести в порядке контроля нагревание машины до рабочей температуры и измерить сопротивление изоляции [Л. 9, 14, 27].
По опыту наладки нового, вводимого в эксплуатацию оборудования сопротивление изоляции машин, измеренное при температуре около 20° С, как правило, значительно превышает 1 МОм и лежит в пределах от 5 до 100 МОм.
Падение сопротивления изоляции обмоток ниже указанных значений вызывается разными причинами: проникновением в толщу изоляции влаги, поверхностной влажностью или оседанием токопроводящей пыли на выводах, обмотках и коллекторе машины.
В этих случаях рекомендуется произвести следующее:
а) продуть машину и почистить салфетками выводы обмоток, торец коллектора, изоляционные детали щеткодержателей; произвести повторное измерение изоляции;
б) если окажется, что очистка деталей не помогла, произвести поверхностную сушку обмоток и их выводов с помощью воздуходувки, а затем провести контрольное измерение изоляции.
У машин, находившихся в длительной эксплуатации, причиной низкой величины сопротивления изоляции может явиться попадание токопроводящей пыли вместе с маслом в обмотку или изоляционные детали, что не удается выправить продувкой и протиркой.
Для того чтобы отличить такое повреждение изоляции от общей увлажненности обмотки, следует произвести измерение сопротивления изоляции мостиком Уитстона при двух направлениях тока в контролируемой цепи. Если низкое сопротивление изоляции вызывается токопроводящей пылью, то мостик при обоих измерениях покажет одинаковые результаты. При неодинаковых показаниях наиболее вероятной причиной можно считать проникновение в обмотку влаги и образование гальванической э. д. с., которая и создает разные показания при измерении мостиком. Для повышения сопротивления изоляции необходимо удалить попавшую в машину вместе с маслом пыль путем промывки изоляции ксилолом, толуолом или иным сильным растворителем. Данная операция должна выполняться квалифицированным персоналом и, как правило, требует полной разборки машины [Л. 11, 14].
Как правило, электрические машины мощностью до 100 кВт и напряжением до 380 в включаются без сушки, даже в тех случаях, когда их сопротивление изоляции менее 1 МОм. Из практики наладки и эксплуатации известно, что асинхронные двигатели вспомогательных приводов, включающиеся иногда при изоляции 100 ком и ниже, в ходе работы постепенно подсушивались и затем служили много лет безотказно. Однако включение при пониженной величине сопротивления изоляции машин, не прошедших испытания повышенным напряжением, допустимо только в тех случаях, когда имеются запасные машины и стоимость подвергаемой риску машины несравненно ниже технико-экономических потерь из-за простоев оборудования.
Показания мегомметра зависят от длительности приложения напряжения к обмоткам. В упрощенной форме это явление можно объяснить следующим образом: при неувлажненной изоляции во время подачи напряжения емкость машины постепенно заряжается, ток зарядки (ток утечки) снижается и мегомметр показывает увеличение сопротивления изоляции (рис. 1-23,а). В случае увлажненной изоляции и при наличии каких-либо токопроводящих дорожек (например, по слою пыли или по каналу пробоя) показания мегомметра быстро устанавливаются и перестают возрастать.
Отношение показаний мегомметра после 60-секундного приложения напряжения к показаниям 15-секундного замера называется коэффициентом абсорбции Ка=R60/R15. Эта величина позволяет более полно оценить фактическое состояние изоляции и нормируется в пределах 1,1 1,3.
Рис. 1-23. Показания мегомметра и данные испытаний изоляции повышенным напряжением.
а—зависимость сопротивления изоляции RB3 от времени ( приложения напряжения мегомметра; б — зависимость коэффициента абсорбции Ка от температуры испытуемой машины; в — примерные кривые зависимости токов утечки /у я сопротивления изоляции /?из электрических машин от приложенного выпрямленного напряжения £/и/Г/н; 1с — характеристики высоковольтных крупных машин при сухой (неувлажпенной) изоляции; 1е — то же, что /с, ио при влажной изоляции; 2с, 2в — характеристики крупных машин напряжением до 800 в; Зс, Зв — характеристики машин средней и малой мощности напряжением 380 в ,(при переменном токе) и 220 в (при постоянном токе).
Вместе с тем следует учесть, что величина Ка даже при хорошем состоянии изоляции в значительной степени зависит от температуры машин и вида примененных изоляционных материалов. Пользуясь материалами некоторых справочников и обобщая опыт многочисленных замеров, зависимость Ка=f(τoС) можно характеризовать кривыми, приведенными на рис. 1-23,б.
В том случае, когда при проверке машины высокого напряжения мегомметр показывает пониженное сопротивление изоляции (менее 1 МОм на 1 кВ) и коэффициент абсорбции ниже 1,2, перед наладчиком возникает ответственная задача: допустимо ли подвергнуть машину испытанию повышенным напряжением, можно ли разрешить ее включение на рабочее напряжение или сначала необходимо произвести тщательную сушку обмоток.
В подобных затруднительных случаях оценку состояния изоляции можно провести по характеру роста тока утечки при постепенном увеличении испытательного выпрямленного напряжения. Для этой цели можно использовать кенотронный аппарат, присоединяя его попеременно к каждой испытуемой обмотке и определяя токи утечки при подъеме испытательного напряжения по ступеням (0,5—1—1,5—2—2,5 )Uн. На каждой ступени напряжения необходимо делать выдержку в течение 1 мин и, записав величину тока утечки (в конце выдержки), отключить обмотку от трансформатора. Затем следует произвести разрядку испытуемой обмотки на корпус, сделать выдержку около 2 мин и испытуемое напряжение повысить вновь, но уже до более высокой ступени.
В процессе испытания следует составить график зависимости токов утечки и сопротивления изоляции от испытательного напряжения. Последнее определяется из отношения Rиз=Uн/Iу в/мка. Если на какой-либо ступени сопротивление изоляции снизится по сравнению с результатом предыдущего измерения более чем на 30%, дальнейшее повышение напряжения следует производить более плавно (например, по 0,25Uн). В тех случаях, когда при дальнейшем испытании величина сопротивления изоляции снизится в 3—4 раза по сравнению с величиной, полученной при 0,5 Uн, изоляцию надо считать недопустимо влажной. Такая машина должна быть подвергнута сушке. На рис. 1-23,в в качестве примера представлены экспериментальные кривые токов утечки Iу и характеристики сопротивления изоляции Rиз, полученные при испытании пяти крупных электрических машин. Машины с соответствующими кривыми I, II и III можно считать выдержавшими испытание; машины с кривыми IV и V нуждаются в сушке.
Сушка машин производится различными методами, описанными в пособиях по монтажу [Л. 11, 13 и др.]. Наиболее часто монтажные организации сушат машины методом наружного обогрева с помощью воздуходувок или грелок. При этом ближайшие к источнику тепла части машины не должны нагреваться более 80— 100° С. Однако такой способ сушки мало экономичен и не всегда дает результаты, так как машина нагревается неравномерно и в отдельных частях обмотки влага остается «закупоренной».
Широко применяется индуктивный метод сушки, не связанный с прохождением токов в обмотках; под действием вихревых токов тепло выделяется в корпусе, на валу и в остальных массивных частях машины. Во время нагревания машины сопротивление изоляции сначала снижается, а затем по мере удаления влаги постепенно повышается и, наконец, устанавливается примерно постоянным.
При прогревании до температуры 75—небольшие машины высушиваются обычно за 15—20 ч, средние— за двое суток, а крупные —за пять-шесть суток. Однако наблюдались случаи, когда сушка крупных машин высокого напряжения в течение 10—12 суток при 80° С не давала результатов. Причиной этого являлась закупорка влаги между слоями пропитанной изоляции и токоведущими частями обмоток. Опыт показал, что последующий подъем температуры при прогревании до 95—100° С позволил удалить оставшуюся влагу за 10— 15 ч.
У машин мощностью до 100 кВт сушку, как правило, можно прекращать, когда сопротивление изоляции обмоток, нагретых до 60—70° С, достигает 0,2—0,5 МОм и держится примерно неизменным 1—2 ч.
ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ОБМОТОК ЭЛЕКТРОДВИГАТЕЛЯ — ИСПЫТАНИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ —
Если электродвигатель не будет пущен в эксплуатацию сразу же после поставки, необходимо организовать его защиту от воздействия внешних факторов, таких как влажность, температура и загрязнения, чтобы не допустить повреждения изоляции. Прежде чем включить электродвигатель после длительного хранения, следует измерить сопротивление изоляции.
Если электродвигатель хранится в условиях высокой влажности, должны проводиться регулярные измерения. Практически невозможно сформулировать какие-либо стандарты для минимального фактического сопротивления изоляции электродвигателя, так как сопротивление зависит от конструктивных особенностей электродвигателя, используемого изоляционного материала и номинального напряжения. Исходя из опыта эксплуатации, минимальное сопротивление изоляции можно принять равным 10 МОм.
Измерение сопротивления изоляции выполняется с помощью мегаомметра – омметра с диапазоном высокого сопротивления. Измерение сопротивления производится: между обмотками и «землёй» электродвигателя на которые подаётся постоянное напряжение в 500 или 1000 В. В ходе измерения и сразу же после него на клеммах может присутствовать опасное напряжение, к ним НЕЛЬЗЯ ПРИКАСАТЬСЯ !!!
Сопротивление изоляции:
Минимальное сопротивление изоляции новых обмоток или обмоток после чистки или ремонта относительно «земли» составляет 10 МОм или более.
Минимальное сопротивление изоляции, R, вычисляется умножением номинального напряжения, Un, на постоянный множитель 0,5 МОм / кВ. Например: если номинальное напряжение составляет 690 В = 0,69 кВ, минимальное сопротивление изоляции: 0,69 кВ ½ 0,5 мегом / кВ = 0,35 мегом
Измерение сопротивления изоляции электродвигателя:
Минимальное сопротивление изоляции обмоток относительно земли измеряется с 500 В постоянного тока. Температура обмоток должна быть 25°C +/– 15°C.
Максимальное сопротивление изоляции должно измеряться с 500 В постоянного тока при рабочей температуре обмоток 80 -120°C в зависимости от типа электродвигателя и КПД.
Проверка сопротивления изоляции обмоток электродвигателя:
Если сопротивление изоляции нового электродвигателя, электродвигателя после чистки или ремонта, который не которое время не эксплуатировался, составляет меньше 10 МОм, это можно объяснить тем, что в обмотки попала влага и их необходимо просушить.
Если электродвигатель эксплуатируется в течение долгого промежутка времени, минимальное сопротивление изоляции может упасть до критического уровня. Двигатель сохраняет работоспособность, если сопротивление его изоляции упало до минимального расчетного значения. Однако, если зарегистрировано такое падение сопротивления, электродвигатель необходимо остановить, чтобы исключить вероятность поражения обслуживающего персонала блуждающими токами.
Источник:
Испытание электрических машин постоянного тока
Согласно требованиям СНиП, ПУЭ все электрические машины перед вводом в эксплуатацию должны пройти проверку на соответствие техническим условиям. Объем работ отличается в зависимости от характеристик оборудования: мощности, напряжения, состояния и назначения. Крупные машины испытываются в два этапа.
Во время испытания измеряется сопротивление изоляции обмоток, сопротивление обмоток постоянному току, обмотки испытываются повышенным напряжением промышленной частоты, проверяются системы охлаждения и смазки.
Обмотки проверяются на отсутствие обрыва, щетки на нейтрали и правильность чередования полюсов, измеряются воздушные зазоры.
Определение возможности включения без сушки машин постоянного тока
Возможность включения машины без сушки производится в соответствии с указаниями завода-изготовителя.
Измерение сопротивления изоляции
При измерении сопротивления мегаомметром значения должны соответствовать нормам и должны быть не менее 1 МОмкВ, но не менее 0,5 МОмкВ. Проверяется сопротивление изоляции каждой обмотки по отношению к заземленному корпусу и между отдельными обмотками.
Сопротивление изоляции бандажей
Измерение производится относительно корпуса и удерживаемых ими обмоток. Измеренное значение сопротивления изоляции должно быть не менее 0,5 Мом.
Испытание изоляции повышенным напряжением промышленной частоты
В соответствии с ПУЭ измерение сопротивления обмоток статора и ротора постоянному току у электродвигателей переменного тока производят в машинах на напряжение 2 кВ и выше и в машинах 300 кВт и более на все напряжения. В электродвигателях переменного тока мощностью 300 кВт и более проверяют сопротивление обмоток статора и ротора. У машин постоянного тока мощностью 200 кВт и возбудителях синхронных генераторов и компенсаторов проверяют сопротивление обмотки возбуждения и обмотки якоря. Измерения выполняют одинарным или двойным мостом постоянного тока или методом амперметра — вольтметра.
Измерение сопротивления постоянному току:
- обмоток возбуждения. Значения сопротивления постоянному току по отдельным фазам не должны отличаться друг от друга и заводских данных более чем на ±2 %, а по отдельным параллельным ветвям — более чем на 5 %. Испытание обмоток повышенным напряжением промышленной частоты производят для проверки электрической прочности изоляции и приведены в ПУЭ.
- обмотки якоря. Сопротивления должны отличаться не более чем на 10% за исключением случаев, когда колебания обусловлены схемой соединения обмоток;
- реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление, проверяется целость отпаек. Допускается отличие от данных завода-изготовителя не более чем на 10%.
Проверке подвергаются машины собранные и просушенные на месте установки, находящиеся в неподвижном положении в отключенном состоянии. Перед испытанием проверяют сопротивление изоляции, уточняя коэффициент абсорбции. Затем машину очищают и продувают сухим и чистым сжатым воздухом.
Когда испытания повышенным напряжением закончены обмотку следует разрядить, соединив ее с корпусом машины, и проверить сопротивление мегаомметром.
Машина проходит испытание, если за 1 минуту не произойдет пробоя или частичного нарушения изоляции. Результаты испытаний и измерений машин перед пуском оформляют, согласно СНиП, соответствующими протоколами и актами.
Снятие характеристики холостого хода и испытание витковой изоляции
Подъем напряжения производится:
- для генераторов постоянного тока до 130% номинального напряжения;
- для возбудителей — до наибольшего (потолочного) или установленного заводом-изготовителем напряжения.
Напряжение между соседними коллекторными пластинами должно быть не выше 24 В. Продолжительность испытания — 3 мин. Допускается отклонение в пределах погрешности.
Снятие нагрузочной характеристики
Производится для возбудителей при нагрузке до значения не ниже номинального тока возбуждения генератора. Отклонение от заводской характеристики не нормируется.
Измерение воздушных зазоров между полюсами
Машины мощностью 200 кВт и более могут иметь зазор не более 10% среднего размера зазора, при измерении диаметрально противоположных точках. Не более 5% для возбудителей турбогенераторов.
Испытание на холостом ходу и под нагрузкой
Определяется предел регулирования частоты вращения или напряжения, который должен соответствовать заводским и проектным данным.
Методика измерения и испытания сопротивления изоляции кабелей, обмоток электродвигателей, аппаратов, вторичных цепей и электропроводок, и электрооборудования напряжением до 1 кВ
1. Цель проведения измерения.
Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.
2. Меры безопасности.
2.1 Технические мероприятия.
До начала и в процессе измерений необходимо выполнять технические мероприятия согласно “Правилам техники безопасности” (ПТБ). При работе с мегомметром необходимо руководствоваться пунктами Б 3.7.17-Б 3.7.22 ПТБ.
2.2 Организационные мероприятия.
Измерения мегаомметром разрешается выполнять в установках напряжением выше 1000В двум лицам, одно которых должно иметь группу по электробезопасности не ниже IV. Работы выполняются по наряду. В установках напряжением до 1000В измерения выполняют два лица, одно из которых должно иметь группу не ниже III. Работы выполняются, в порядке текущей эксплуатации с последующей записью в оперативный журнал.
3. Нормируемые величины.
Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов “Правил технической эксплуатации электроустановок потребителей”. Как правило, сопротивление изоляции систем БССН и ФССН измеренное мегаомметром на 250 В должно быть не менее 0,25 Мом, силовых цепей до 500 В (кроме систем БССН и ФССН) измеренное мегаомметром на 500 В должно быть не менее 0,5 МОм, а вторичных цепей — не менее 1МОм. Сопротивление изоляции силовых цепей выше 500 В измеренное мегаомметром на 1000 В должно быть не менее 1.0 МОм, (ГОСТ Р50571.16-99). Сопротивление изоляции электропроводок, в том числе и осветительных сетей измеренное мегаомметром на 1000 В должно быть не менее 0.5 МОм, (ПТЭЭП п. 28.1)
4.
Применяемые приборы.
Для измерения сопротивления изоляции применяются мегаомметры типов: MI 3102H (на напряжение 100 В, 250 В, 500 В 1000 В и 2500 В) и , Е6-24 (на напряжение 500 В 1000 В и 2500 В). Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах и гигаомах.
5. Измерение сопротивления изоляции электрооборудования.
5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок
При измерении сопротивления изоляции необходимо учитывать следующее:
— измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм2 производится мегаомметром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.
При этом необходимо производить следующие замеры:
— на 2 — и 3-проводных линиях — три замера: L-N, N-РЕ, L-РЕ;
— на 4-проводных линиях — 4 замера: L1-L2L3РЕN, L2 — LЗL1РЕN, LЗ-L1L2РЕN, РЕN-L1L2L3, или 6 замеров: L1-L2, L2-L3,
L1-L3, L1-РЕN, L2-РЕN, LЗ-РЕN— на 5-проводных линиях — 5 замеров: L1—L2L3 NРЕ, L2-L1L3NРЕ, LЗ-L1L2РЕ, N-L1L2L3РЕ, РЕ-NL1L2L3, или
10 замеров: L1-L2, L2-L3, L1-L3,L1-N, L2-N, L3-N, L1-РЕ, L2-РЕ, LЗ-РЕ, N-РЕ.
Допускается не проводить измерения сопротивления изоляции в осветительных сетях, находящихся в эксплуатации, если это требует значительных работ по демонтажу схемы, в этом случае, не реже 1 раза в год, требуется выполнять визуальный контроль совместно с проверкой надежности срабатывания средств защиты от сверхтоков (определение токов однофазных замыканий в соответствии с п. 1.7.79 ПУЭ).
Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 0,5 МОм, то заключение об их пригодности делается после испытания их переменным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.
5.2. Измерение сопротивления изоляции силового элекрооборудования
Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от температуры. Замеры следует производить при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обусловленных разностью температур, при которых проводились измерения, следует откорректировать эти результаты по указаниям изготовителя.
Степень увлажненности изоляции характеризуется коэффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложения напряжение мегаомметра (R60) к измереннму сопротивлению изоляции через 15 секунд (R15),
Кабс = R60/R15
При измерении сопротивления изоляции силовых трансформаторов используются мегаомметры с выходным напряжением 2500 В.
Измерения проводятся между каждой обмоткой и корпусом и между обмотками трансформатора.
При этом R60, должно быть приведено к результатам заводских испытаний в зависимости от разности температур, при которых проводились испытания.
Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его величина должна быть не ниже 1,3 при температуре 10—30°С. При невыполнении этих условий трансформатор подлежит сушке.
Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в приложении 3 ПТЭЭП, таблица 9 а для установок, вводимых в эксплуатацию, — в гл. 1.8. ПУЭ, таблица 8. Сопротивление изоляции ручных электрических машин измеряется относительно корпуса и наружных металлических частей при включенном выключателе.
Корпус электроинструмента и соединенные с ним детали, выполненные из диэлектрического материала, на время испытания должны быть обернуты металлической фольгой, соединенной с контуром заземления.
Если сопротивление изоляции при этом будет не менее 10 МОм, то испытание изоляции повышенным напряжением может быть заменено измерением ее сопротивления мегаомметром с выходным напряжением 2500 В в течение 1 минуты.
У переносных трансформаторов измеряется сопротивление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях сопротивления изоляции первичной обмотки, вторичная должна быть замкнута и соединена с корпусом.
Сопротивление изоляции автоматических выключателей и УЗО производятся:
1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.
2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО.
3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.
При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р50345-99) и УЗО при измерениях по п.п. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 — не менее 5 Мом.
Для остальных автоматических выключателей (ГОСТ Р50030.2-99) во всех случаях сопротивление изоляции должно быть не менее 0,5 МОм.
Измерение сопротивления изоляции асинхронных двигателей
Материалы, применяемые при изоляции обмоток электродвигателей, не являются идеальными диэлектриками и в зависимости от своих физико-химических свойств являются в большей или меньшей степени токопроводящими. Сопротивление изоляции обмоток помимо конструкции самой изоляции и примененных материалов в значительной степени зависит также от влажности изоляции, механических повреждений и загрязнения поверхности.
О сопротивлении изоляции судят по значению проходящего через нее тока при приложении постоянного напряжения. Сопротивление изоляции измеряют мегаомметром с ручным или электрическим приводом либо сетевым мегаомметром, а также методом вольтметра.
Как известно, сопротивление изоляции измеряется в Омах, но так как в обмотках двигателей оно обычно 20 очень велико, то принято его выражать в миллионах ом (мегаомах), откуда и происходит название прибора. Мегаомметр (рис.1) представляет собой генератор постоянного тока, к выводам которого подсоединяется измеряемое сопротивление. Мегаомметр по существу фиксирует ток, проходящий через измеряемое сопротивление, но для удобства пользования шкала его измерительного прибора отградуирована непосредственно в мегаомах.
Рис. 1. Принципиальная схема мегаомметра.
Г — генератор постоянного тока; 1 — последовательная обмотка мегаомметра; 2 — параллельная обмотка мегаомметра; г1, г2 — ограничивающие сопротивления; Л — линейный зажим; 3 — зажим для присоединения заземления; К — кнопка включения; Э — корпус электродвигателя; О — обмотка электродвигателя.
В качестве измерительного прибора в мегаомметре применяется логометр, в котором взаимодействуют две обмотки — обмотка 1, соединенная последовательно с измеряемым сопротивлением, и обмотка 2, подключенная параллельно выводам генератора. Перед измерением производится упрощенная проверка мегаомметра: при вращении ручки и замкнутых накоротко зажимах мегаомметра показание прибора должно быть равно нулю, при разомкнутых — бесконечности. Обмотку перед измерением сопротивления ее изоляции на 1—2 мин заземляют для того, чтобы могущие быть в ее изоляции остаточные заряды стекли в землю и не повлияли на результаты испытания.
Провода, соединяющие мегаомметр с испытуемой обмоткой, а также с корпусом электродвигателя, должны иметь усиленную и надежную изоляцию. Ручку мегаом-
метра следует вращать по возможности равномерно, частота вращения должна быть около 150 об/мин. После разворота ручки мегаомметра до указанной частоты вращения включают кнопку К и тем самым испытуемая обмотка подключается к генератору мегаомметра. В мегаомметрах, у которых кнопки нет, после разворота ручки провод от зажима Л подключают к обмотке электродвигателя щупом (стальная острозаточенная игла с изолированной ручкой из текстолита или эбонита).
В начале замеров стрелка прибора делает бросок к началу шкалы, затем показание прибора медленно начинает увеличиваться и через некоторое время (15—60 с) стрелка устанавливается в некотором положении. Первоначальный бросок стрелки, соответствующий повышенному току генератора мегаомметра, вызывается зарядным током, определяемым емкостью изоляции, который быстро затухает. Относительно медленное движение стрелки после спада емкостного тока определяется токами абсорбции.
Изоляция не является монолитной, ее можно рассматривать состоящей из ряда слоев, т. е. последовательно соединенных емкостей. При приложении напряжения внутренние емкости в этой цепочке заряжаются через сопротивление предшествующих. При хорошей, сухой изоляции сопротивление каждого слоя велико и зарядный ток мал. Поэтому процесс заряда происходит медленно. При сырой изоляции процесс протекает быстро и также быстро стрелка прибора достигает своего максимального значения.
Установившееся показание прибора свидетельствует об окончании зарядки внутренних слоев изоляции (при этом ток абсорбции равен нулю). Это показание определяется только так называемым током сквозной проводимости, т. е. током, проходящим внутри изоляции по капиллярам, заполненным влагой, и током, проходящим по наружной поверхности изоляции, которая всегда в некоторой степени загрязнена и увлажнена.
Таким образом, судить о состоянии изоляции следует по значению тока сквозной проводимости и по скорости спадания тока абсорбции, которая определяется коэффициентом абсорбции
где R15 и R60 — сопротивления изоляции, отсчитанные соответственно через 15 и 60 с после достижения мегаомметром полной частоты вращения.
При хорошей, сухой изоляции коэффициент абсорбции составляет 1,5—2,0, а для увлажненной приближается к единице. Минимальной нормой следует считать &абс=1,3.
Сопротивление изоляции электрической машины относительно ее корпуса и сопротивление изоляции между обмотками при рабочей температуре должно быть не менее значения, получаемого по формуле, но не менее 0,5 МОм:
где U — номинальное напряжение машины, В; Р — номинальная мощность машины, кВт.
Сопротивление изоляции сильно зависит от температуры; с увеличением температуры оно снижается, а при уменьшении температуры повышается. Поэтому, если измерение сопротивления изоляции производится при температуре ниже рабочей, полученное по приведенной формуле сопротивление изоляции следует удваивать на каждые 20°С (полные или неполные) разности между рабочей температурой и той температурой, при которой выполнено измерение. Практически у электродвигателей с высушенной и неповрежденной изоляцией обмотки значение сопротивления изоляции всегда бывает выше нормируемого.
Примененное выше выражение «рабочая температура машины» нуждается в разъяснении.
Рабочей температурой любой части машины называют практически установившуюся температуру этой части, соответствующую номинальному режиму работы машины при неизменной температуре окружающей среды. Очевидно, что каждый тип и типоисполнение электродвигателя имеют свою рабочую температуру; она зависит от конструкции двигателя и его вентиляции, расчетных нагрузок и расчетной температуры охлаждающей среды и может быть приближенно определена тепловым расчетом, выполняемым при проектировании электродвигателя (или серии электродвигателей).
Определенная расчетом рабочая температура позволяет выбрать конструкцию изоляции двигателя и класс ее нагревостойкости таким образом, чтобы была обеспечена длительная работа электродвигателя при номинальном режиме. Поэтому по классу нагревостойкости изоляции, примененной в исполнении завода-изготовителя, можно судить о рабочей температуре электродвигателя. Эти сведения приведены ниже.
Класс нагревостойкости изоляции . | А | Е | В | F | Н |
Принимаемая раиочая температура |
|
|
|
|
|
электродвигателя, *С | 100 | 110 | 120 | 140 | 165 |
ГОСТ 1628-75 предписывает применять при измерении сопротивления изоляции обмоток электродвигателей с номинальным напряжением до 50U Б включительно мегаоммегр на 5ои Б и для электродвигателей напряжением выше 5UU Б — мегаомметр на 1000 Б. Рекомендуется применять мегаомметры, которые приводятся во вращение не вручную, а приводным электродвигателем. Помимо облегчения проведения испытаний это значительно повышает точность результатов.
Для электродвигателей, у которых выведены концы и начала всех фаз, измерение сопротивления изоляции производят между каждой фазой и корпусом. В этом случае допустимое минимальное сопротивление изоляции фазы должно быть повышено в 3 раза.
При измерении сопротивления изоляции каждой из электрических цепей все прочие цепи соединяют с корпусом машины. По окончании измерения сопротивления изоляции каждой электрически независимой цепи следует разрядить ее на заземленный корпус двигателя. Для обмоток на номинальные напряжения 3000 В и выше продолжительность разрядки для двигателей до 1000 кВт не менее 15 с и для электродвигателей мощностью более 1000 кВт — не менее 1 мин.
Рис. 2. Схема сетевого мегаомметра с полупроводниковыми диодами.
На рис. 2 представлена другая схема сетевого мегаомметра, где вместо кенотрона применены полупрородниковые диоды. Это делает сетевой мегаомметр более компактным, легким и более надежным в эксплуатации.
Схема соединения при измерении сопротивления изоляции методом вольтметра при питании от сети постоянного тока приведена на рис. 3.
Рис. 3. Измерение сопротивления изоляции вольтметром при питании от сети постоянного тока.
При измерении предварительно фиксируют напряжение питающей сети U1, для чего переключатель ставят в положение 1. Затем переключатель переводят в положение 2 и замеряют показание вольтметра U2. Так как при этом положении рубильника сопротивление вольтметра Яв (указанное на шкале вольтметра или приведенное в его паспорте) и измеряемое сопротивление R соединены последовательно, то падение напряжения в них будет распределяться прямо пропорционально значениям их сопротивлений.
Падение напряжения в вольтметре составит U2, В, а в изоляции U1—U2, В. Таким образом,
Для получения большей точности измерений вольтметр выбирают с большим собственным сопротивлением. Измерения можно производить не только от стационарной сети постоянного тока, но и от аккумуляторной батареи.
При измерении от электросети, один полюс которой может быть заземлен (на рис. 3 обозначено пунктиром), во избежание короткого замыкания следует подключать заземленный корпус электродвигателя 3 таким образом, чтобы он оказался соединенным с заземленным полюсом сети.
Наряду с питанием от источника постоянного тока можно применить для измерения также выпрямленный ток. На рис. 4 представлена схема измерения сопротивления изоляции при питании от сети переменного тока. Эта схема отличается от приведенной на рис. 3 наличием трансформатора 3 и выпрямителя 4. При питании выпрямленным током, если выпрямитель включен в сеть не непосредственно, а через трансформатор, отделяющий сеть переменного тока от цепи выпрямленного напряжения (как это указано на рис. 4), заземленный корпус электродвигателя может быть присоединен к любому из зажимов выпрямителя.
При ремонтах электродвигателей, связанных с переизолировкой активной стали, возникает необходимость проверить качество лаковой пленки после нанесения лака на листы и его запечки. Одним из показателей служит сопротивление постоянному току изоляции из отлакированных листов стали. В этом случае измерение сопротивления производят на приспособлении, изображенном на рис. 5.
Рис. 4. Измерение сопротивления изоляции вольтметром при питании от сети переменного тока.
Рис. 5. Приспособление для измерения сопротивления изоляции листов активной стали.
Пачку из 20 отлакированных листов 1 сжимают между электродами 2 и 3. Площадь каждого электрода составляет 1 дм2. Под электродом 3 устанавливают изолирующую подкладку 4. Листы сжимают рычагом с подвешенным на его конце грузом 5, который подбирается таким образом, чтобы давление, оказываемое на пачку листов, составляло 6000 Н (удельное давление 0,6 МПа). При указанных условиях сопротивление изоляции должно быть не менее 50 Ом.
Источником питания могут являться аккумуляторная батарея или выпрямитель напряжением 10—15 В. Потенциометром 6 устанавливают ток 0,1 А, при этом показание вольтметра должно быть не менее 5 В. Для предохранения амперметра от повреждения в цепь включают защитное сопротивление 7. Значение защитного сопротивления R, Ом, выбирают таким образом, чтобы при случайном коротком замыкании электродов 2 и 3 ток, проходящий через амперметр, не превосходил предельного значения, на которое рассчитан амперметр, т. е.
где U — напряжение источника питания, В; /амп — предельный ток амперметра, А.
При эксплуатации крупных электродвигателей под влиянием магнитной асимметрии или по некоторым другим причинам в замкнутом контуре (подшипники, вал, фундаментная плита), указанном на рис. 6, может возникнуть электрический ток. Этот ток разъедает шейки вала и вкладыши подшипников, из-за чего работа подшипников ухудшается и они быстро выходят из строя.
Рис. 6. Контур подшипниковых токов.
Для предотвращения возникновения этих токов указанный замкнутый контур разрывают установкой изолирующей текстолитовой или гетинаксовой прокладки между фундаментной плитой и подшипниковой стойкой. Болты, крепящие стойку к плите, изолируют изоляционными втулками и шайбами. При принудительной смазке подшипников во фланцах маслопровода устанавливают изоляционные прокладки и втулки.
В процессе эксплуатации и при ремонте установленную изоляцию необходимо периодически проверять — измерять сопротивления изоляции между подшипниковой стойкой и фундаментной плитой при полностью собранном маслопроводе мегаомметром на 500—1000 В.
Как видно на рис. 6, сопротивление изоляции не может быть проверено в собранном электродвигателе, так как изолированному подшипнику параллельна цепь, составленная валом, другим неизолированным подшипником и фундаментной плитой. Для измерения необходимо приподнять вал и заложить прокладку из электрокартона между шейкой вала и вкладышем неизолированного подшипника. Значение сопротивления не является нормируемым, но должно находиться на достаточно высоком уровне — не ниже 1 МОм, так как оно очень быстро и значительно снижается при загрязнении прокладок.
При ремонте, а также при эксплуатации крупных двигателей, температуру нагрева которых измеряют заложенными в обмотку термодетекторами, необходимо периодически измерять сопротивление изоляции этих термодетекторов, так как нарушение ее может представить серьезную опасность для обслуживающего персонала. Проверку производят мегаомметром на 250 В. Значение сопротивления не является нормируемым; показательным является его сравнение с результатами предыдущих измерений.