Проверка мощных транзисторов – Проверить транзистор мультиметром прозвонкой на исправность: биполярный, полевой, составной

Содержание

6. Испытатель транзисторов. Измерительные приборы. Радиоэлектроника, схемы радиолюбителям

Прежде чем ставить транзистор в собираемое электронное устройство, его нужно проверить и убедиться в работоспособности, а иногда и измерить оговариваемый в описании коэффициент передачи. Да и во время налаживания конструкции или ее ремонта бывает нужно проверить тот или иной транзистор, не выпаивая его выводы. Для подобных целей пользуются различными испытателями, которые могут быть собраны по простым или сложным схемам — в зависимости от назначения испытателя и его возможностей. Рассмотреть все варианты испытателей не удастся, поэтому расскажем лишь о некоторых наиболее характерных вариантах.

Простой испытатель транзисторов

Предназначен для проверки биполярных транзисторов любой структуры и мощности. Особенно полезен испытатель при проверке транзисторов непосредственно в смонтированной конструкции. Правда, если выводы транзистора зашунтированы конденсатором большой емкости, придется отпаять от монтажа хотя бы вывод базы.

Схема испытателя приведена на рис. И-23. Когда проверяемый транзистор подключен к нему, образуется блокинг-генератор коротких импульсов, следующих через сравнительно большие промежутки времени. Такие колебания получаются из-за положительной обратной связи между коллекторной и базовой цепями — она осуществляется через трансформатор Т1 и цепочку C1R1R2. Оптимальную величину обратной связи, при которой возникает генерация, подбирают переменным резистором R1. Поэтому по положению его движка нетрудно судить об усилительной способности транзистора, а при определенном навыке — и о статическом коэффициенте передачи тока.

Простой испытатель транзисторов. Принципиальная схема

Когда работает блокинг-генератор, короткие импульсы будут и на обмотке II трансформатора. Полярность их зависит от структуры проверяемого транзистора, поэтому вспыхнет тот или иной светодиод (HL1 или HL2). К примеру, при проверке транзистора структуры p-n-p полярность импульсов будет такова, что засветится светодиод HL1 (конечно, в случае определенного подключения выводов обмотки II). С транзистором структуры p-n-p полярность импульсов изменится, и начнет светиться светодиод HL2.

Переключатель позволяет подавать на блокинг-генератор напряжение соответствующей полярности в зависимости от структуры проверяемого транзистора.

Трансформатор Т1 выполнен на магнитопроводе UJ6X8 от выходного трансформатора транзисторного радиоприемника «Альпинист». Коллекторная обмотка (III) содержит 100 витков провода ПЭВ-1 0,2, базовая (I) — 200 витков ПЭВ-1 0,2, сигнальная (II) — 30 витков ПЭВ-1 0,3. Собирают пластины магнитопровода встык, устанавливая между набором Ш-образных пластин и перемычками тонкую бумажную прокладку.

Вместо АЛ310А в приборе можно установить другие светодиоды с током потребления до 20 мА. Переменный резистор — СП-I или СП2- 2-0,5, постоянный — МЛТ-0,125, конденсатор — КЛС, переключатель — тумблер ТП1-2, источник питания — батарея 3336, разъем — СГ-5 или СГ-3.

Детали испытателя размещены в корпусе (рис. И-24), который может .быть как металлический, так и из изоляционного материала. На верхней стенке корпуса размещены светодиоды (они приклеены), переключатель, переменный резистор или разъем. Остальные детали смонтированы внутри корпуса. Для замены батареи нижнюю крышку или часть ее делают съемной.

Простой испытатель транзисторов. Корпус

Выводы проверяемого транзистора вставляют в соответствующие гнезда разъема. Когда же нужно проверять транзисторы в готовой конструкции, в разъем вставляют ответную часть с тремя многожильными проводниками в изоляции и со щупами (или зажимами «крокодил») на концах — к ним подключают выводы транзистора. На щупах (или зажимах) обязательно должны быть метки «э», «б», «к».

Прежде чем пользоваться прибором, его нужно, конечно, проверить и наладить. Понадобится исправный транзистор малой мощности и структуры р-n-р. Вставив выводы транзистора в гнезда разъема и установив переключатель в показанное на схеме положение (оно соответствует структуре р-n-р), перемещают движок переменного резистора в направлении от верхнего по схеме вывода к нижнему. При определенном положении движка возникнет генерация и вспыхнет один из светодиодов. Если это HL1 — все в порядке. При зажигании же светодиода HL2 придется поменять местами подключение выводов обмотки 11 трансформатора.

Может случиться, что генерация вообще не возникнет и ни один из светодиодов не загорится. Это укажет на то, что нужно поменять местами подключение выводов либо обмотки III, либо обмотки I.

Что касается коэффициента передачи проверяемого транзистора, то он тем больше, чем ближе к верхнему по схеме выводу переменного резистора находится движок в момент вспыхивания светодиода.

Испытатель транзисторов с усилителем шумов

По сравнению с предыдущей конструкцией этот прибор рассчитан на проверку работоспособности транзисторов малой мощности обеих структур, а также для оценки собственных шумов и усилительных свойств. Кроме того, прибор позволяет сравнительно быстро определить структуру и расположение выводов на корпусе транзистора, у которого отсутствует маркировка серии.

Испытатель транзисторов с усилителем шумов. Принципиальная схема

Испытатель состоит из генератора звуковой частоты (рис. И-25), который образуется при подключении к гнездам разъема XS1 проверяемого транзистора, и усилителя шумов на транзисторе VT1. Как и в предыдущем устройстве, генерация образуется из-за положительной обратной связи между коллекторной и базовой цепями. Частота генерируемых колебаний зависит от параметров трансформатора Т1 и емкости конденсатора С1. Глубину обратной связи регулируют переменным резистором R3. Момент возникновения генерации каскада с проверяемым транзистором зависит от положения движка переменного резистора и статического коэффициента передачи тока транзистора. Чем выше по схеме движок резистора., тем при большем коэффициенте передачи транзистора будет работать генератор. Верхнее положение движка соответствует коэффициенту передачи примерно 150, нижнее — 10.

Нагрузкой генераторного каскада является резистор R5. С него сигнал звуковой частоты поступает через конденсатор С2 на усилительный каскад, нагруженный на головной телефон BF2. Он служит звуковым сигнализатором возникновения генерации. Пока же генерации нет, например при верхнем положении движка переменного резистора, в телефоне будут слышны шумы каскада, образованного проверяемым транзистором. При перемещении движка из верхнего положения в нижнее уровень шумов может возрастать и достигнет максимума на грани возбуждения генератора. Чем громче звук в телефоне, тем больше собственные шумы проверяемого транзистора.

Если выводы проверяемого транзистора известны, их вставляют в соответствующие гнезда разъема XS1, переключатель SA1 ставят в положение, соответствующее структуре проверяемого транзистора, а выключателем БА3 подают питание.

Когда же цоколевка транзистора неизвестна, его выводы вставляют в гнезда разъема XS2 в произвольном порядке. Затем переключатель SA1 ставят сначала, например, в положение «р-n-р», а движок переменного резистора — в нижнее по схеме положение. Перемещая подвижные контакты переключателя SA2 из первого положения в шестое, прослушивают телефон. Если звука нет, устанавливают переключатель SA1 в положение «n-р-n» и вновь проходят подвижными контактами переключателя SA2 все положения. Как только в телефоне появится звук, можно определить структуру транзистора и его цоколевку.

Структуру, естественно, определяют по положению ручки переключателя SA1, а расположение выводов — по положению ручки переключателя SA2. К примеру, генерация возникла в первом положении ручки. Значит, в гнезда «1», «2», «3» разъема XS2 вставлены соответственно выводы коллектора, базы и эмиттера. Второе положение ручки переключателя соответствует выводам базы, коллектора и эмиттера, вставленным в указанные гнезда, третье — выводам коллектора, эмиттера, базы, четвертое — выводам базы, эмиттера, коллектора, пятое — эмиттера, коллектора, базы, шестое — эмиттера, базы, коллектора.

О деталях испытателя. Транзистор усилительного каскада может быть МП39—МП42 с любым буквенным индексом и коэффициентом передачи тока не менее 30. Постоянные резисторы — МЛТ-0,125, переменный — любого типа, но желательно с линейной характеристикой (функциональная зависимость А) — тогда легче будет градуировать шкалу резистора. Конденсаторы — МБМ. Головной телефон — малогабаритный ТМ-2А. Подойдет и капсюль ДЭМШ сопротивлением 65 Ом, а также головные телефоны с двумя капсюлями, соединенными так, чтобы общее сопротивление составляло 65…200 Ом. Можно применить и малогабаритную динамическую головку — тогда прибором будет удобнее пользоваться. Но включать ее в коллекторную цепь транзистора VT1 придется через выходной трансформатор от радиоприемников «Сокол», «Альпинист» или аналогичных.

Трансформатор Т1 — согласующий от малогабаритного транзисторного радиоприемника. Используется лишь половина вторичной обмотки.

Переключатели, выключатель и разъемы могут быть любой конструкции, источник питания — батарея 3336. Конструктивное оформление прибора — дело вкуса радиолюбителя. Взаимное расположение деталей не имеет ограничений и не влияет на работоспособность прибора. Важно лишь выполнить монтаж без ошибок.

Включив прибор и вставив в разъем XS1 исправный транзистор, проверяют правильность подключения выводов трансформатора. Если генерация не появляется даже при нижнем положении движка переменного резистора, следует поменять местами подключение выводов обмотки I или II трансформатора. Подбором резистора R7 добиваются наибольшей громкости звука в головных телефонах или в динамической головке.

Отградуировать шкалу переменного резистора несложно. Для этого нужно запастись несколькими транзисторами с измеренным на промышленном приборе коэффициентом передачи тока и, вставляя их выводы в разъем, отмечать на шкале риском момент возникновения генерации и значение коэффициента передачи.

Испытатель с образцовыми транзисторами

Пригоден для проверки маломощных биполярных транзисторов различной структуры даже без отпайки их выводов от монтажа. Но прежде чем перейти к рассказу об испытателе, познакомимся с принципом его работы (рис. И-26).

Испытатель с образцовыми транзисторами. Принцип работы

Проверяемый транзистор VT1, подключенный выводами к гнездам XS1—XS3, совместно с образцовым транзистором испытателя VT2 такой же структуры образует генератор, нагрузкой которого является катушка индуктивности L1. В случае исправности транзистора VT1 генератор будет работать и на нагрузке выделятся электрические колебания, частота и форма которых зависят от параметров катушки. Далее эти колебания подаются на усилитель, где детектируются и поступают на устройство индикации со светодиодом HL1 на выходе. Если транзистор исправен, светодиод горит.

А теперь рассмотрим принципиальную схему испытателя (рис. И-27). Выводы проверяемого транзистора подключают к гнездам XS1—XS3 с помощью вставляемых в них многожильных монтажных проводников с зажимами «крокодил» на конце. В соответствии со структурой (р-n-р или n-р-n) проверяемого транзистора и материала (германий или кремний), который в нем использован, в генератор испытателя включают переключателями SB1 и SB2 один из образцовых транзисторов VT1—VT4.

Испытатель с образцовыми транзисторами. Принципиальная схема

Если проверяемый транзистор работоспособен, выделяющиеся на катушке L1 электрические колебания поступают через конденсатор С2 на усилительный каскад, собранный на транзисторе VT5. С нагрузки каскада (резистор R3) сигнал подается на детектор, выполненный на диодах VD1 и VD2 по схеме удвоения напряжения. Нагрузкой детектора по постоянному току является резистор R5 и эмиттерный переход транзистора VT6, соединенные последовательно. Протекающий в этой цепи ток открывает транзистор, и светодиод HL1 в его коллекторной цепи начинает светиться.

Питается испытатель от источника GB1 напряжением 5…10 В и потребляет соответственно ток 8…15 мА.

На место VT1—VT4 можно установить, кроме указанных на схеме, другие кремниевые (VT1 и VT3) и германиевые (VT2 и VT4) маломощные высокочастотные транзисторы соответствующей структуры. Вместо транзистора КП103А можно использовать другой транзистор этой серии, вместо МП42Б — любой транзистор серий МП39—МП42, вместо светодиода АЛ102Б — другой, например серии АЛ102 или АЛ307. Яркость свечения светодиода устанавливают резистором R6. При необходимости светодиод может быть заменен стрелочным индикатором с током полного отклонения стрелки до 10 мА.

Резисторы — МЛТ-0,125; конденсаторы С1, С3, С5 — К50-6 или К50-12; С2, С4 —МБМ, КЛС или КМ. Переключатели SB1 и SB2 — П2К с независимой фиксацией, выключатель SA1 —любой конструкции. Катушка L1 может быть индуктивностью 4…6 мГн. Ее нетрудно выполнить, например, на кольце типоразмера K12X6X4,5 из феррита 600НН, намотав 120 витков провода ПЭВ-2 0,12.

В заключение следует заметить, что этим испытателем можно проверять некоторые транзисторы средней мощности, например ГТ402, КТ502, КТ503, КТ603, КТ608. Кроме того, испытатель не боится короткого замыкания между входными гнездами, а при соединении их с транзистором не имеет значения порядок подключения выводов транзистора.

Испытатель транзисторов на микросхемах

Для быстрой проверки работоспособности маломощных биполярных транзисторов можно воспользоваться испытателем, собранным по приведенной на рис. И-28 схеме. Основу испытателя составляют два генератора. Один из них (на элементах DD1.1—DD1.3) генерирует колебания сравнительно низкой частоты (единицы герц), на выходе другого (на элементах DD2.1—DD2.3) частота сигнала составляет 5 кГц. Элементы DD1.4 и DD2.4, включенные инверторами, позволяют согласовать выходные сопротивления генераторов с сопротивлениями цепей нагрузок, а также получить нужные полярности напряжения питания проверяемых транзисторов обеих структур.

Испытатель транзисторов на микросхемах. Принципиальная схема

Когда проверяемый транзистор вставлен своими выводами в гнезда XS1—XS3, к выводам его эмиттера и коллектора попеременно прикладывается то низкий, то высокий уровень напряжения, что эквивалентно изменению полярности напряжения питания. В зависимости от структуры транзистора будет вспыхивать либо светодиод HL1, либо HL2. Если, к примеру, проверяемый транзистор структуры р-n-р, то будет вспыхивать светодиод HL2 в те моменты, когда на входе элемента DD1.4 высокий уровень напряжения (уровень логической 1), а значит, на выходе этого элемента низкий уровень напряжения (уровень логического 0). Иначе говоря, в этот момент на эмиттере транзистора плюсовое напряжение по отношению к коллектору.

Одновременно с подачей напряжения на эмиттер и коллектор транзистора на его базу поступает сигнал со второго генератора. Если транзистор исправен, этот сигнал усиливается и подается через конденсатор С3 на диод VD1. Выпрямленное им напряжение открывает транзистор VT1, и светодиод HL3, включенный в коллекторную цепь транзистора, начинает светиться.

Кроме указанных на схеме, в испытателе можно применить другие микросхемы серии К155, содержащие элементы И-НЕ, например К155ЛА1, К155ЛА4. Первая из них состоит из двух элементов 4И-НЕ, поэтому понадобится четыре микросхемы, вторая же содержит три элемента 3И-НЕ, и в приборе придется установить три такие микросхемы. В любом варианте входные выводы каждого элемента соединяют вместе.

Вместо транзистора КТ315Б подойдет другой транзистор этой серии или любой маломощный транзистор структуры n-р-n со статическим коэффициентом передачи тока не менее 50. В выпрямителе может работать любой диод серии Д9. Светодиоды АЛ102Б с красным свечением заменимы на АЛ102В с зеленым свечением, правда, яркость их несколько меньше.

Конденсатор С1 — К50-6, С2 и С3 — малогабаритные (КМ-6, KЛC и аналогичные), резисторы — МЛТ- 0,125.

Большинство деталей монтируют на плате (рис. И-29) из изоляционного материала, которую затем размещают в подходящем корпусе. Питают испытатель от источника постоянного тока, например выпрямителя напряжением 5 В. Допустимо также использовать батарею 3336.

Испытатель транзисторов на микросхемах. Печатная плата

Испытатель транзисторов со стрелочным индикатором

Позволяет измерить один из важных параметров транзистора — коэффициент передачи, но пригоден и для контроля начального тока коллектора (хотя этот параметр оговаривается в описаниях весьма редко).

Как можно судить о коэффициенте передачи? Посмотрите на рис. И-30. Транзистор подключен к источнику питания GB1, и в цепи его базы протекает ток, сила которого зависит от сопротивления резистора R1. Этот ток транзистор усиливает.

Транзистор подключен к источнику питания

Значение усиленного тока показывает стрелка миллиамперметра, включенного в цепи коллектора. Достаточно разделить значение тока коллектора на значение тока в цепи базы, чтобы узнать статический коэффициент передачи тока h31э (или просто коэффициент передачи).

Коэффициент передачи во многом зависит от тока коллектора. В некоторых измерительных приборах, схемы которых были опубликованы в популярной радиотехнической литературе прошлых лет, коэффициент передачи измерялся при токе коллектора 20 и даже 30 мА. Это ошибочно. При таком токе усиление транзистора падает, и прибор показывает заниженное значение коэффициента передачи тока. Вот почему иногда приходится слышать, что одни и те же транзисторы при проверке на разных приборах показывают коэффициенты передачи, отличающиеся вдвое и даже втрое. Показания любого испытателя будут правильными лишь в том случае, если максимальный ток коллектора при измерениях не превышает 5 мА.

Простейшая схема практического прибора для проверки транзисторов структуры р-n-р

На рис. И-31 приведена простейшая схема практического прибора для проверки транзисторов структуры р-n-р. Работает прибор так. К зажимам (или гнездам) «э», «б», «к» подключают выводы транзистора (соответственно эмиттер, базу, коллектор). При нажатой кнопке SB1 на выводы транзистора подается питающее напряжение от батареи GB1. В цепи базы транзистора при этом начинает протекать небольшой ток, значение которого определяется в основном сопротивлением резистора R1 (поскольку сопротивление эмиттерного перехода транзистора ничтожно мало по сравнению с сопротивлением резистора). Независимо от качества проверяемого транзистора значение тока базы постоянно и в данном случае выбрано равным 0,03 мА (30 мкА). Усиленный транзистором ток регистрирует миллиамперметр РА1 в цепи коллектора. Шкалу миллиамперметра можно отградуировать непосредственно в значениях h31э. Если у Вас есть миллиамперметр, рассчитанный на измерение тока силой до 3 мА, тогда отклонение стрелки на конечное деление шкалы будет соответствовать коэффициенту передачи 100. Для миллиамперметров с другими токами отклонения стрелки на конечное деление шкалы это значение будет иным. Так, для миллиамперметра со шкалой на 5 мА предельное значение коэффициента передачи при указанном выше токе базы будет около 166. Но поскольку использовать в конструкциях транзисторы с коэффициентом передачи тока свыше 100 (это относится в основном к германиевым транзисторам) не рекомендуется (из-за неустойчивой работы конструкций и необходимости более тщательного налаживания их), то для такого миллиамперметра желательно уменьшить сопротивление резистора R1 до 91 кОм, и тогда шкала прибора будет рассчитана на максимальный коэффициент передачи, равный 100.

Детали прибора совсем не обязательно располагать в подходящем футляре. Их можно быстро соединить друг с другом и проверить партию имеющихся у Вас транзисторов. Резистор R2 предназначен для ограничения тока через миллиамперметр, если случайно попадется транзистор с пробитым переходом эмиттер-коллектор.

А как быть, если надо проверить транзисторы другой структуры — n-p-n? Тогда придется поменять местами выводы батареи питания и миллиамперметра.

Схема более универсального прибора для проверки транзисторов

Схема более универсального прибора приведена на рис. И-32. В нем два предела измерения h31э = 50 и 100), что намного удобнее, поскольку радиолюбителю приходится иметь дело не только с транзисторами, обладающими коэффициентом передачи тока 60…100, но и с транзисторами, у которых h31э = 15…20. Для получения двух пределов достаточно установить два различных тока базы. Это делается с помощью переключателя SA1. В первом его положении секцией SA1.1 в цепь базы включается резистор R1 сопротивлением 45 кОм (его можно отобрать из группы резисторов сопротивлением 43 или 47 кОм или составить из двух резисторов), который задает ток базы около 0,1 мА. Максимальный коэффициент передачи, измеряемый в этом положении переключателя, равен 50.

При установке переключателя во второе положение в цепь базы включается резистор R2, и сила тока ограничивается до 0,05 мА, а максимальный измеряемый коэффициент передачи равен 100.

В цепи коллектора стоит стрелочный индикатор РА1 типа ПМ-70 с током полного отклонения стрелки 5 мА и сопротивлением рамки около 15 Ом.

Этот прибор позволяет проверять и мощные транзисторы (например, П201—П203, П213—П217, П601 и другие). Проверка их несколько отличается от проверки маломощных транзисторов. Ток базы здесь достигает уже единиц миллиампер, в связи с чем в цепи коллектора должен стоять стрелочный индикатор, рассчитанный на ток в десятки миллиампер. В нашем приборе сила тока базы выбрана равной 1 мА, максимальный измеряемый коэффициент передачи тока — 50, значит, стрелочный индикатор должен быть рассчитан на максимальный ток полного отклонения стрелки до 50 мА. Шунтирование стрелочного индикатора РА1 до такого тока производится секцией SA1.2, которая в третьем положении переключателя подключает параллельно индикатору резистор R6 сопротивлением 1,7 Ом. Резистор с таким сопротивлением придется изготовить самим из провода с высоким удельным сопротивлением (нихром, константан, манганин).

Остальные резисторы можно взять любого типа мощностью не менее 0,25 Вт. Переключатель SA1 — галетный, с двумя платами на три положения (например, ЗПЗН). Переключатель SA2 — тумблер с двумя секциями. Он используется для изменения полярности подключения стрелочного индикатора и батареи питания при проверке транзисторов различной структуры. Если у Вас окажутся два односекционных тумблера, их тоже можно использовать в приборе, установив между ручками тумблеров жесткую перемычку. Выключатель SA3 — любого типа.

Корпус прибора и расположение деталей на его верхней панели могут быть такими, как показано на рис. И-33.

Корпус прибора для проверки транзисторов

Прежде чем приступить к измерению коэффициента передачи тока, найдите в справочнике цоколевку транзистора и только после этого подключайте его выводы к зажимам (или гнездам) прибора. Помните, что даже небольшая ошибка при подключении может стать роковой для «здоровья» транзистора.

Помимо коэффициента передачи желательно проверить и начальный ток коллектора. В этом случае выводы эмиттера и коллектора остаются подключенными к зажимам прибора, а вывод базы соединяют с выводом эмиттера. По значению начального тока коллектора можно судить о качестве транзистора. У любого транзистора, используемого, например, в транзисторном приемнике, начальный ток коллектора не должен превышать 30 мкА. Транзистор с большим начальным током может стать причиной нестабильной работы конструкции.

Бывает, что начальный ток нормальный, но на глазах изменяется — «плывет». Ставить такой транзистор в конструкцию нельзя.

Конечно, точно измерить значение начального тока по шкале наших приборов трудно — отклонение стрелки будет едва заметно. Но и этого во многих случаях бывает достаточно, чтобы выявить плохой транзистор.

Прибор для проверки коэффициента усиления мощных и маломощных транзисторов своими руками

Прибор для проверки коэффициента усиления мощных и маломощных транзисторов своими руками

Хотя сейчас много в продаже различных приборов и мультиметров, измеряющих коэффициент усиления транзисторов, но любителям что-нибудь мастерить и паять можно порекомендовать несколько несложных схем и доработку.

Данный прибор для проверки транзисторов позволяет точно замерять ряд следующих параметров…

  • Коэффициент усиления h31э маломощных транзисторов.
  • Коэффициент усиления h31э мощных транзисторов.
  • Минимальное напряжение питания коллекторной цепи, при котором сохраняется линейный динамический режим работы маломощных транзисторов.
  • Минимальное напряжение питания коллекторной цепи, при котором сохраняется линейный динамический режим работы мощных транзисторов.
  • Полярность и соответствие выводов маломощных транзисторов.
  • Полярность и соответствие выводов мощных транзисторов.

Принципиальная схема прибора

Работа схемы в режиме измерения коэффициента транзисторов

Эта схема стабилизирует в проверяемом транзисторе ток Б/Э, при этом транзистор открывается и начинает течь ток К/Э, который вызывает падение напряжения на нагрузочных резисторах 36 и 360 ом, для мощных и маломощных транзисторов соответственно. Миллиамперметр при этом измеряет ток или напряжение базы транзистора.

h31э = Iэ/Iб, у нас ток эмиттера стабилизирован, при таком режиме измеряя базовый ток можно легко высчитать h31э и сразу отградуировать шкалу миллиамперметра в единицы коэффициента усиления транзистора.

В режиме вольтметра в цепи базы можно находить минимальное напряжение, при котором базовые и эмиттерные токи проверяемого транзистора перестают зависеть от коллекторного напряжения. Этот параметр важен для оптимизации питающих напряжений усилителей НЧ, транзисторных каскадов отвечающих за линейность преобразуемых сигналов, полу мостовых и мостовых инверторов, и т. д.

Преобразователь напряжения выполнен на двухтактном микроконтроллере электронных пускорегулирующих аппаратов ЭПРА 1211ЕУ1, по типовой схеме включения. Микросхема представляет специализированный микроконтроллер с питанием от 3 до 24 Вольт, с малой потребляемой мощностью, выполненного на полевых транзисторах. Данный контроллер имеет двухтактный выходной каскад с защитным интервалом, содержит малое количество навесных элементов, имеет два вывода для защиты по питанию, вывод для выбора рабочей частоты, максимальный выходной ток 250 мА.

Преобразователь вырабатывает постоянное напряжение 25-30 Вольт для обеспечения режима измерения минимального напряжения, при котором базовые и эмиттерные токи проверяемого транзистора перестают зависеть от коллекторного напряжения.

Обозначение и краткое описание параметров и режимов транзисторов

Для понимания процесса измерения параметров транзисторов, необходимо знать по каким критериям оцениваются измеряемые параметры.

Параметры четырехполюсника взаимосвязаны по определенным системам уравнений, описывающих происходящие процессы.

Если в данное время чаще пользуются одна система, это не значит, что других систем не существует.

Виды систем параметров транзисторов

Существует несколько признанных систем параметров транзисторов.

1. Когда в базовых переменных взяты токи, такая система будет называться, система z — параметров.

Z-система применяется для области низких частот, потому что в ней не учтены реактивные элементы.

По ней измеряются характеристические сопротивления в режиме холостого хода по переменному току, поэтому она вошла в историю как система параметров холостого хода.

В z-системе значения параметров обозначаются буквами r и z.

2. Если в базовых переменных взяты напряжения, такая система будет называться — система y — параметров.

Здесь параметры выражаются в виде полных проводимостей и определяются в режиме короткого замыкания. В y-системе для низких частот параметры определяются активной составляющей проводимости.

В y-системе значения параметров обозначаются буквами g.

Систему y-параметров удобно применять для характеристики параметров плоскостных транзисторов, так как при этом не нужно создавать режима холостого хода. Режим короткого замыкания по переменному току в этой системе создается шунтированием выхода конденсатором.

В этой системе возникают трудности при измерении проводимости обратной связи g12, Потому что для этого измерения необходимо создать режим короткого замыкания на входе транзистора.

Y-систему удобно применять для расчетов, особенно если есть необходимость сравнить транзисторный каскад с ламповым. Параметры этой системы наиболее близки к параметрам электронных ламп.

Эту систему можно назвать системой режима короткого замыкания.

3. Если в базовых переменных взяты входные токи и выходные напряжения, такая система будет называться — система h — параметров. Она же смешанная система.

Смешанная система является наиболее удобной для определения параметров транзисторов.

В h-системе значения параметров обозначаются буквами hб, hэ, hк, для базовых, эмиттерных и коллекторных цепей соответственно.

Коэффициент передачи тока или коэффициент усиления по току.

Коэффициентом передачи тока называют отношение тока коллектора к вызвавшему его току базы.

Коэффициент передачи тока h31 в системе h параметров имеет следующие обозначения:

· h31б коэффициент передачи тока в схемах с общей базой, это hб параметры.

· h31э коэффициент передачи тока в схемах с общим эмиттером, это hэ параметры.

· h31к коэффициент передачи тока в схемах с общим коллектором, это hк параметры.

Но для коэффициента передачи тока есть общее обозначение, применяемое во всех трех приведенных системах параметров, обозначаемое греческими буквами Альфа и Бэта, которое имеет следующий вид.

· Греческой буквой Альфа, обозначается коэффициент усиления по току для транзисторов, включенных по схеме с общей базой — ОБ. Он же обозначается как -h31б. Альфа = — h31б.

· Греческой буквой Бэта, обозначается коэффициент усиления по току для транзисторов, включенных по схеме с общим эмиттером — ОЭ. Он же обозначается как -h31б. Вэта = h31э.

Справка

Транзисторы, у которых между коллектором и эмиттером включен диод, защищающий транзистор от инверсных (обратных) токов, возникающих в результате переходного процесса при работе на индуктивную нагрузку и при возникающем изменении полярности питающего напряжения. Такие транзисторы не пригодны для использования в инверторных мостовых схемах.

Испытатель для транзисторов

Данный прибор работает без единой поломки с 1981 года, за период эксплуатации не было ни одного экземпляра транзистора, которого этот прибор не смог проверить.

    Предлагаемый испытатель транзисторов может с достаточной для схем точностью определять величину усиления транзисторов до 1000 единиц. Это позволяет определять коэффициент усиления составных транзисторов. Прибор точно проверяет усиление транзисторов любой мощности без дополнительных коммутаций.

    Прибор позволяет очень быстро проводить следующие измерения:

  •   Проверку работоспособности транзистора.
  •   Определения коэффициента усиления одиночных транзисторов.
  •   Определения коэффициента усиления составных транзисторов.
  •   Определения проводимости транзистора.
  •   Определения соответствия выводов транзистора.
  •   Подбор транзисторов с одинаковым коэффициентом усиления.

    Принцип действия прибора основан на том, что испытываемый транзистор V1 вместе с транзистором V2 образуют несимметричный мультивибратор.

    Параметры мультивибратора подобраны таким образом, что генерация импульсов возможна только тогда, когда суммарное сопротивление резисторов, включенных в цепь базы испытуемого транзистора, численно равно или чуть меньше значения его коэффициента h31э. Если сопротивление в цепи базы транзистора V1 больше его коэффициента передачи по току, генерация не возникает, и звука нет.

    Структуру проверяемых транзисторов устанавливают переключателем S1.

    Переменный резистор R3, должен быть группы «А», с линейной зависимостью характеристики.

    В приборе примененные транзисторы можно заменить на следующие.

    V2 — КТ315, V3 — ГТ404, V4 — ГТ402 или их импортные аналоги.

    Чем больше усиление транзистора, тем дольше будет слышен звук в динамике.

Схема была опубликована в журнале «Radioamatater» Югославия и в журнале «Радио» №10, за 1981 год.

Спасибо за внимание. Удачи!

Автор:Белецкий А. И.

Доработка испытателя транзисторов

Для данного испытателя транзисторов можно сделать две доработки (сайт:domcxem.ru).

Введена проверка полевых транзисторов и унифицированный звуковой сигнализатор.

Доработанная схема испытателя транзисторов.

1) Отдельная фиксируемая кнопка включает в «базу» проверяемого транзистора резистор, сопротивлением 100 КОм, заземленный с другой стороны. Так измеритель может проверять полевые транзисторы с p-n переходом и p или n каналом (КП103 КП303 и им подобные). Также, без переделки, в этом режиме можно проверять МОП транзисторы с изолированным затвором n- и p- типа (IRF540, IRF9540 и т.п.)

2) В коллектор второго транзистора измерительного мультивибратора (выход НЧ сигнала) я включил детектор с удвоением, по обычной схеме нагруженный на базу КТ 315-го. Таким образом, К- Э переход этого ключевого транзистора замыкается, когда в измерительном мультивибраторе возникает генерация (определён коэффициент передачи). Ключевой транзистор, открываясь, заземляет эмиттер ещё одного транзистора, на котором собран простейший генератор с резонатором на трёхвыводном пьезоэлементе – типовая схема генератора вызывного сигнала «китайского» телефона. Фрагмент схемы мультиметра – узел проверки транзисторов – приведён на рисунке, выше.

Такое схемное нагромождение было вызвано желанием использовать тот же вызывной генератор в узле сигнализации перегрузки по току лабораторного блока питания, так как первый, собранный мной, по упомянутой схеме, испытатель параметров транзисторов, был встроен в ЛБП.

Второй измеритель был встроен самодельный в многофункциональный стрелочный мультиметр, где один трёхвыводной пьезоизлучатель использовался как сигнализатор в режиме «пробник» (звуковая проверка короткого замыкания) и испытатель транзисторов.

Теоретически (я не пробовал), этот испытатель можно переделать для проверки мощных транзисторов, уменьшив, например, на порядок сопротивления резисторов в обвязке проверяемого транзистора.

Так же, возможно зафиксировать резистор в базовой цепи (1 или 10 кОм) и изменять сопротивление в коллекторной цепи (для мощных транзисторов).

P.S. Смотрите также: прибор для проверки величин допустимых напряжений и напряжений утечек транзисторов, диодов, конденсаторов и других радиодеталей.



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:

  • Простое самодельное переговорное устройство по одно- или двухпроводной линии
  • Как обеспечить громкоговорящей связью, скажем, два пункта, удален­ных друг от друга на значительное расстояние? Подобная задача возникает в школе, пионерском лагере, в небольшом поселке или далеко удаленных комнатах дома. И во всех подобных случаях приходит на помощь переговорное устройство.

    Подробнее…

  • Аварийная сигнализация морозильной камеры
  • Бывают случаи, когда морозильная камера сломалась, температура поднимается выше положенного, а мы об этом и знать не знаем. В неё не так часто мы заглядываем, как в холодильник, поэтому и не замечаем, как пропадают продукты.

    Далеко не все морозильные камеры имеют звуковую аварийную сигнализацию.

    Предлагаемая ниже простая схема поможет решить эту проблему.

    Подробнее…

  • Мультиприбор — GM328 для проверки радиоэлементов
  • Мультиметр-Частотомер-Генератор GM328 для проверки транзисторов, диодов, конденсаторов, индуктивности, сопротивлений…, а также для генерирования,  измерения частоты сигнала…

    В этой статье рассмотрим многофункциональный автоматический прибор — незаменимый помощник радиолюбителя. Его можно купить в Китае на всем известных сайтах или по ссылке в конце статьи.

    Кроме функций мультиметра Mega328 автоматически определять практически любой  подключаемый радиоэлемент, измерять его характеристики он также способен генерировать и измерять частоту сигнала.

    Все отображается на цветном 160 х 128 ЖК-дисплее.

    Подробнее…


Популярность: 2 783 просм.

СХЕМА ДЛЯ ПРОВЕРКИ ТРАНЗИСТОРОВ

Всем доброго времени суток, хочу представить вот такой пробник для транзисторов, который точно покажет рабочий он или нет, ведь это надёжнее, чем просто прозванивать его выводы омметром как диоды. Сама схема показана дальше.

Схема пробника

Схема для проверки транзисторов

Как мы видим, эта обыкновенный блокинг-генератор. Запускается он легко — деталей очень мало и перепутать что-либо при сборке сложно. Что нам нужно для сборки схемы:

  1. Макетная плата 
  2. Светодиод любого цвета
  3. Кнопка без фиксации
  4. Резистор номиналом в 1К
  5. Ферритовое кольцо 
  6. Проволока лакированная 
  7. Панелька для микросхем

Детали для сборки

 Детали тестера для проверки транзисторов

Давайте подумаем, что откуда можно наковырять. Такую макетную плату можно сделать самому или купить, самый простой способ собрать навесом или на картонке. Светодиод можно выковырять из зажигалки или из китайской игрушки. Кнопку без фиксации можно ковырнуть с той-же китайской игрушки, либо от любого сгоревшего бытового устройства с подобным управлением.

Пробник для проверки транзисторов 2

Резистор не обязательно номиналом 1К — он может отклоняться от заданного номинала в пределах 100R до 10К. Ферритовое кольцо можно достать из энергосберегающей лампы, и не обязательно кольцо — можно использовать также Ш ферритовые трансформаторы и ферритовые стержни, количество витков от 10 до 50 витков.

Устройство для проверки транзисторов

Проволока лакированная, диаметр допустимо брать практически любой от 0.5 до 0.9 мм, количество витков одинаковое. Способ соединения обмоток для правильной роботы узнаете в процессе испытаний — если не заработает, то просто поменяете местами концы выводов. Вот и все, а теперь небольшое видео работы.

 для проверки транзисторов прибор самодельный

Видео работы испытателя

Панельку для микросхемы разрезал по три контакта — так получилось гнездо под проверяемые транзисторы. Другой вариант схемы пробника смотрите тут. Всем спасибо, с вами был KALYAN.SUPER.BOS

   Форум по тестерам

   Обсудить статью СХЕМА ДЛЯ ПРОВЕРКИ ТРАНЗИСТОРОВ


ПРОВЕРКА ТРАНЗИСТОРОВ

   Транзисторы — полупроводниковые приборы, без которых в радиолюбительском деле почти никак не обойтись. Они стали незаменимой деталью в любом радиоэлектронном устройстве. Транзисторы бывают разными, разной формы, размеров и мощности, но все они выполняют одну и ту же функцию. Транзистор — полупроводниковый ключ, который предназначен для управления более мощной нагрузкой. Транзистор может также играть роль усилителя, но сегодня мы не будем рассматривать принцип работы транзисторов, а соберём схемку для гарантированной проверки их работоспособности. Признавайтесь, сколько транзисторов спалили вы за свою практику? Транзисторы выходят из строя по самым разным причинам — повышение допустимых напряжений и тока, перегрев, всевозможные замыкания цепи нагрузки и так далее. 

куча паленых транзисторов

   У меня, как и у любого другого радиолюбителя, есть целая куча паленых транзисторов, которые все-таки жалко выбрасывать. На днях решил еще раз проверить их на работоспособность и был приятно удивлён… Мультиметр для проверки транзисторов использую редко, предпочитаю увидеть наглядно работу транзистора, чем прозванивать его, ориентируясь на малозначимые цифры коефициента усиления. Цифровым мультиметром, биполярные транзисторы можно с хорошей достоверностью проверять, но вот с полевыми могут возникнуть некоторые трудности. Во избежания всех этих затруднений, уже давно использую 100% верный метод проверки любых транзисторов. Такой метод позволяет с высокой точностью проверить все транзисторы, независимо от типа, мощности и проводимости.

СХЕМА ДЛЯ ПРОВЕРКИ ТРАНЗИСТОРОВ

   Устройство очень простое, состоит из неоновой лампочки (из токоискателя), сетевого трансформатора и резистора. Для проверки транзистора, его подключают по схем блокинг-генератора. Трансформатор должен иметь две вторичные обмотки с расчетным напряжением 3-24 вольт. В моем случае применен трансформатор от сабвуфера, сетевая обмотка на 220 вольт и две идентичные обмотки на 12 вольт каждая. 

ТРАНСФОРМАТОР В СХЕМУ ПРОВЕРКИ ТРАНЗИСТОРОВ

   Номинал резистора может быть в пределах 68…560 ом. К сетевой обмотке трансформатора подключается неоновая лампочка, далее транзистор подключают в схему и подают питания.

ПРОВЕРКА ТРАНЗИСТОРОВ НЕОНКОЙ

   В качестве источника питания можно использовать одну пальчиковую батарейку с напряжением 1,5 вольт, при проверке более мощных транзисторов (или полевых) следует использовать 3-4 последовательно соединенных батареек. 

ПРОВЕРКА ТРАНЗИСТОРОВ

   Для проверки транзисторов прямой проводимости, минус питания подключается на эмиттер транзистора, в случае прямых транзисторов меняем полярность питания и по зажёгшейся неонке делаем вывод о его исправности. АКА КАСЬЯН.

   Форум по радиодеталям

   Обсудить статью ПРОВЕРКА ТРАНЗИСТОРОВ


Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *