Принцип работы магнетрона микроволновой печи: Магнетроны. Устройство и работа. Виды и применение. Как выбрать

Содержание

Магнетроны. Устройство и работа. Виды и применение. Как выбрать

Магнетроны называют электронные приборы, в которых образуются колебания сверхвысокой частоты при помощи модуляции потока электронов. Магнитные и электрические поля в нем действуют с большой силой. Наиболее распространенная модификация магнетрона – это многорезонаторный.

Впервые магнетрон был создан в Америке в 1921 году. С течением времени эксперименты с ним продолжались. В результате появилось множество видов магнетронов, использующихся в радиоэлектронике. В 1960 году приборы стали использоваться в печах сверхвысокой частоты для домашнего применения. Менее распространены клистроны, платинотроны, которые основаны на этом же принципе действия.

Устройство и принцип работы

 

1 — Анод
2 — Катод
3 — Накал
4 — Резонансная полость
5 — Антенна

Магнетроны резонансного типа состоят из:

  • Анодный блок. Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.
  • Катод. Он имеет цилиндрическую форму. Внутри него размещен подогреватель.
  • Внешние электромагниты или постоянные магниты. Они создают магнитное поле, которое параллельно оси прибора.
  • Проволочная петля. Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.

Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.

Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов.

Магнетроны разделяют по виду резонаторов:
  • Лопаточные.
  • Щель-отверстие.
  • Щелевые.

В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.

Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.

Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем.

Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.

Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов.

Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.

Основные виды магнетронов
  • Многорезонаторные устройства. Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.
  • Обращенные устройства. Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.
Сфера использования магнетронов
  • В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.
  • В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.

1 — Магнетрон
2 — Высоковольтный конденсатор
3 — Высоковольтный диод
4 — Защита
5 — Высоковольтный трансформатор

  • В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.
Выбор и приобретение магнетрона

Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры.

Наиболее малую мощность имеет магнетрон 2М 213. Его мощность составляет 700 ватт при нагрузке и 600 ватт номинальная.

Приборы средней мощности в основном изготавливают на 1000 ватт. Марка такого магнетрона – 2М 214.

Наибольшая мощность магнетрона у модели 2М 246.

Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.

Можно ли магнетрон заменить самостоятельно

Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства.

Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.

Работа микроволновки

Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.

Похожие темы:

Принцип работы микроволновой печи: схемы, частота и видео

Как именно работает микроволновая печь? Что заставляет нагреваться еду, воду и другие вещества, в то время как воздух или стекло в микроволновке почти не нагреваются? Как правильно обращаться с микроволновкой, чтобы не испортить ее саму и приготавливаемое блюдо? Ответы на эти вопросы вы найдете в нашей статье!

Принцип работы микроволновки

Правильное полное название микроволновки – печь с токами сверхвысокой частоты (СВЧ). Внутри нее (за приборной панелью) есть специальное устройство для излучения радиоволн – магнетрон, что можно увидеть из схемы:

Когда работает магнетрон, выделяемые им электромагнитные колебания определенной частоты заставляют дипольные молекулы внутри печи колебаться с той же частотой. Самой распространенной в природе дипольной молекулой является молекула воды (в продуктах – еще жиры и сахара). На молекулярном уровне высокая частота колебаний превращается в повышение температуры, поэтому любые продукты с высоким содержанием воды быстро разогреваются. Если же молекул воды внутри продуктов (или материалов) очень мало или нет совсем, нагрев почти не происходит.

Глубина проникновения микроволн небольшая – 2-3 сантиметра, однако поверхность приготовляемого блюда СВЧ-волны пронзают легко, а в глубине они встречают сопротивление молекул воды, поэтому продукт фактически прогревается изнутри.

Любые токопроводящие материалы внутри микроволновки нагреваются. Разная способность проводить ток в нашем случае обозначает разную скорость нагревания.

Чтобы нагрев продуктов происходил равномерно, используется несколько подходов:

  • Диск из жаропрочного стекла в нижней части СВЧ-печи. Он вращается вместе с блюдом, подставляя под излучение магнетрона все его стороны.
  • Микроволны. Они подаются по специальному волноводу (широкой трубке) от магнетрона на вращающийся отражатель, расположенный обычно в верхней части СВЧ-печи. В таких микроволновках можно разогревать неподвижные блюда большого размера и веса.

Еще бывают так называемые инверторные СВЧ-печи. Они отличаются от обычных моделей тем, что магнетрон работает непрерывно, но со снижением потребляемой мощности. Это достигается за счет использования в печи так называемого инвертора (преобразователя постоянного тока в переменный) вместо традиционного трансформатора.

В инверторных печах лучше сохраняются витамины, и меньше разрушается структура поверхности блюда, но принципиальной разницы нет.

Во многих моделях микроволновок магнетрон закрыт специальной полупрозрачной пластинкой. Она прозрачна для СВЧ-лучей, но не позволяет пару, брызгам жира и прочим посторонним веществам попадать внутрь микроволновки через отверстие в экранировании. Не вынимайте эту пластину, а если это требуется для чистки от жира, то после полного высыхания обязательно верните на место.

Всё о чистке микроволновой печи ищите в этой статье: https://sovetexpert.ru/chistka-mikrovolnovoj-pechi.html.

Несмотря на распространенное мнение, СВЧ-излучение не убивает микробы. По крайней мере, научно это не доказано. С другой стороны, комплексное воздействие высокой температуры и микроволн на молекулы воды внутри бактерий и вирусов в течение нескольких минут уменьшает их количество многократно, а с теми, что остались, ваша иммунная система справляется самостоятельно.

Частота работы микроволновки

Большинство магнетронов излучает волны на частоте 2450 МГц (мегагерц, или миллионов колебаний в секунду). Это волны дециметровой длины (длиной в 12,25 см). Некоторые промышленные установки, например в США, работают с частотой 915 МГц. Вынужденные колебания молекул воды не являются резонансными колебаниями, так как для них резонансная частота на порядок выше – 22,24 ГГц (гигагерц, или миллиардов колебаний в секунду).

Бояться вредного излучения от микроволновки не надо. Первый массовый выпуск микроволновок был произведен в Японии фирмой «Sharp» в 1962 г. С тех пор прошло очень много лет, десятки миллионов японцев десятилетиями разогревают еду в СВЧ-печах и при этом средняя продолжительность жизни японцев является предметов зависти всего мира.

На дистанции в полметра от СВЧ-печи воздействие микроволн ослабевает в 100 раз, поэтому при опасении получить облучение достаточно держаться от микроволновки на расстоянии вытянутой руки.

Больше информации о влиянии микроволновой печи на человека вы можете найти тут. Только научные факты!

Как работает гриль в микроволновке?

Гриль позволяет вам жарить продукты в СВЧ-печи с помощью обычного жара, а не микроволн. Именно она делает на блюдах аппетитную корочку, которая при обычной СВЧ-обработке не появляется.

Спираль гриля находится в верхней части печи и бывают двух видов:

  • ТЭНы (теплоэлектронагреватели). ТЭН – это металлическая трубка, внутри которой находится тонкая спираль из сплава никеля и хрома. Через спираль проходит ток, и она нагревается.
  • Кварцевые. Кварцевый гриль – это тоже ТЭН, только вместо металлической трубки – стеклянная оболочка, между спиралью и трубкой – изолирующий кварцевый песок.

Обычные металлические ТЭНы часто можно регулировать – перемещать к задней стенке или опускать, зато стеклянную поверхность кварцевого гриля легче чистить (жир и нагар не въедается в стекло так, как в металл).

Бывают конструкции СВЧ-печей с грилем и конвекцией. Конвекция – это просто обдув горячим воздухом вашего блюда во время приготовления. Для такого обдува в микроволновке устанавливают вентилятор, сдувающий разогретый воздух от спирали гриля в сторону блюда.

Большинство моделей микроволновок позволяют одновременно использовать и ТЭН, и СВЧ. Однако имейте в виду, что такая комбинация может сильно нагревать розетку и провода в вашем помещении.

Читайте в следующей статье о принципах выбора микроволновой печи под свои запросы: https://sovetexpert.ru/kakuyu-kupit-mikrovolnovku.html.

Инструкция по работе с микроволновой печью

Чтобы правильно обращаться со своей микроволновой, нужно внимательно подходить ко всем пунктам – начиная с выбора посуды и заканчивая правильным выключением после применения.

Какую посуду использовать?

Лучший материал для разогрева в микроволновке – жаропрочная стеклянная посуда. Также хорошо подходят фарфор и другие керамические изделия, бумага (картон). Сквозь них микроволны проходят очень легко и почти не нагревают их. А вот от посуды из следующих материалов надо отказаться:

  • Пластика. Хорошо пропускает СВЧ-излучение, но из-за токсичных компонентов при изготовлении (например, пенополистирол) может представлять опасность для вашего здоровья.
  • Металла. Они проводят электрический ток, не пропуская микроволны. Так что приготовить или просто разогреть блюдо в алюминиевой кастрюле или чугунном горшке не получится. Металл просто не пропустит электромагнитные волны к продуктам, и они останутся холодными. Сам металл при этом, конечно, нагреется, и от его тепла могут нагреться и продукты. Но это может привести к поломке СВЧ-печи, да и ждать приготовления блюда придется долго. Инструкцию по ремонту микроволновых печей читайте тут.

Некоторые материалы могут содержать металлы, и об этом заранее бывает трудно догадаться. Например, это хрусталь. Так стоит внимательно на ярлыке прочитать, какие материалы использовались при производстве конкретной посуды.

  • Меламина. Это легкий и красивый материал для посуды, похожий на фарфор, но его нельзя ставить в СВЧ-печь. Дело в том, что при нагреве он выделяет токсины, опасные для вашего здоровья.

Что касается формы посуды, то она может быть любой, но не с узким горлом, поскольку при использовании для разогрева в микроволновке она может быть опасной. Дело в том, что некоторые жидкости нагреваются до температуры кипения, но бурного перемешивания внутри объема при этом не происходит. А вот когда вы достанете такой кувшин или колбу из СВЧ-печи, жидкость мгновенно взбурлит, кипящая пена выльется из емкости, и можно получить ожог. Например, так ведут себя при некоторых условиях дистиллированная вода и некоторые очищенные масла растительного происхождения.

Рекомендуем прочесть статью о том, какая посуда подойдет для микроволновки.

Правильное обращение с продуктами

Изначально стоит точно определить, что нельзя размораживать в микроволновке:

  • Сливочное масло. Если его положить в микроволновку и оставить надолго, оно не просто растает, а еще и вскипит, испачкав всю печь изнутри. Так происходит потому, что внутри масла есть не только собственно масло, но и вода. Она вскипает при 100 градусах, а масло примерно при 120. Так что вода может перейти в пар еще до таяния масла, и водяной пар разнесет масло по всей печке.

Примерно то же самое может происходить с другими продуктами, которые иногда нужно растопить, например, с шоколадом, поэтому это лучше делать не в микроволновке, а на пару.

  • Продукты с плотной оболочкой. Например, это яйца, помидоры, цельная печень птицы. При нагреве некоторая часть воды не просто постепенно нагревается, а сразу превращается в пар. Если греть продукты долго, то еще больше пара образуется от прямого нагрева. Этому пару некуда выйти, поэтому давление внутри емкости растет и приводит к взрыву.
  • Герметично закрытую посуду. Например, консервы и бутылки. Причина та же, что и в предыдущих пунктах – высока вероятность взрыва.

Далее во внимание стоит принять советы, как правильно обращаться с продуктами при разогреве или готовке в микроволновке:

  • Сосиски, плотно упакованные в оболочку, перед СВЧ-разогревом обязательно нужно проткнуть вилкой, чтобы создать отверстия для выхода пара, иначе он разворотит сосиски изнутри.
  • В яйцах и другие продуктах нужно разрушить все внешние и внутренние оболочки, например, сделать омлет или разрезать печень.
  • Для варки яиц и других продуктов в микроволновке используются специальные кастрюльки с экранированием. В нее наливается вода, она-то и греется от СВЧ-волн, а до яиц электромагнитное излучение не доходит – их закрывает экран.
  • Если в микроволновку ставится небольшое по объему блюдо, следует добавить к нему обычный стакан с водой. Так вы избежите перегрева магнетрона.
  • Любые жидкие блюда в микроволновке лучше посолить заранее, а не после приготовления. Так вы сэкономите время и электроэнергию. Дело в том, что дистиллированная (несоленая) вода в микроволновке греется и закипает, но дольше, чем обычная вода.
  • Очень сильно замороженный продукт (мясо, например) будет размораживаться в микроволновке довольно долго, и включать СВЧ-печь при этом нужно на минимальную мощность. Причина в том, что молекулы льда – не молекулы воды, СВЧ-волны не расшатывают их так интенсивно. Кроме того, молекулы льда образуют достаточно жесткую структуру и их не так легко «раскачать», как молекулы воды.

Сухой хлеб часто рекомендуют «размягчить» в микроволновке, но он может загореться при длительном воздействии и максимальной мощности СВЧ-излучения. Это же может произойти даже с попкорном, рассчитанным на приготовление именно в микроволновке. Следовательно, когда в микроволновую печь помещаются такие продукты, нужно быть бдительным.

Правила включения/выключения

Нельзя включать пустую микроволновку, тем более на полную мощность:

  1. Внутри печи все стенки (и даже дверца) являются специальным металлизированным экраном, отражающим микроволны обратно внутрь микроволновки. Единственное место, где нет экрана – отверстие для выхода электромагнитных волн из магнетрона.
  2. Когда на поддоне находятся продукты, микроволны расходуют свою энергию на нагрев этих продуктов. Если же энергию впитывать нечему, СВЧ-излучение отражается от стенок экранирующих поверхностей, при этом плотность волн возрастает все больше.
  3. СВЧ-излучение попадает обратно в магнетрон, и если он состоит из металла, то просто перегреется и может выйти из строя.

Считается, что после разогрева блюда в СВЧ-печи лучше дать ему постоять 3-5 минут. Тогда успевают нейтрализоваться так называемые «свободные радикалы», то есть части молекул, распавшихся на части под воздействием микроволн.

Видео: Как работает микроволновка?

Все вышесказанное о принципе работы устройства хорошо иллюстрируется в следующем видео:

После прочтения нашей статьи вы стали намного лучше разбираться в принципе работы СВЧ-печи. Теперь вы знаете, что она может делать лучше обычной духовки и электроплитки, а что не может, и какие действия вообще недопустимы при работе с микроволновкой.

Что такое магнетрон, принцип его работы

Микроволновую печь в наше время можно встретить практически на каждой кухне. Однако не многие знают, как она работает, и что такое магнетрон. Чтобы понять, что представляют собой микроволны и как они образуются, необходимо разобраться с устройством этого прибора.

Как выглядит магнетрон

Назначение и принцип работы магнетрона

Магнетроном называют электронное устройство большой мощности, которое с помощью изменения потока электронов генерирует высокочастотные микроволны. Молекулы воды, которые обязательно присутствуют в продуктах, имеют хорошую электропроводность. Под действием сверхвысокочастотных магнитных колебаний, создаваемых магнетроном, они начинают двигаться с высокой скоростью, нагревая при этом пищу.

В бытовых приборах используется многорезонаторная разновидность магнетрона, в которой на электроны одновременно воздействуют три поля:

  1. сверхвысокочастотное;
  2. электрическое;
  3. магнитное.

Видео: что такое магнетрон

Магнетрон генерирует СВЧ колебания, обеспечивая высокую мощность на выходе, не смотря на небольшой вес и компактные габариты. В непрерывном режиме мощность устройства может достигать десятков киловатт. Максимальная мощность при импульсном режиме работы составляет – 5МВт. Мощность магнетронов, установленных в большинстве микроволновых печей, составляет 650-850 Вт.

Питание маломощных магнетронов осуществляется переменным током. Для более мощных устройств необходим выпрямленный оперативный ток. Магнетроны работают на различных частотах в диапазоне 0,5 – 100 ГГц.

Упрощенная схема работы магнетрона

Из чего состоит магнетрон

Все приборы, генерирующие СВЧ волны, независимо от их выходных характеристик, имеют идентичную конструкцию. Схема магнетрона состоит из следующих частей:

  • анодного блока, представляющего собой толстостенный цилиндр из металла, в стенках которого имеются отверстия (резонаторы), необходимые для образования кольцевой колебательной системы;
  • цилиндрического катода, во внутренней полости которого встроен подогреватель;
  • электромагнита или внешнего магнита, создающего магнитное поле;
  • проволочной петли, которая крепится к резонатору и служит для вывода энергии.

Резонаторы устройства выполняют замедляющую функцию. В них происходит столкновение электромагнитных волн с пучком электронов. В результате этого взаимодействия высокочастотное поле получает от электронов часть их энергии, вывод которой осуществляется посредством петли связи, закрепленной на анодном блоке.

Устройство будет работать бесперебойно только при условии, что разница между рабочей и резонансной частотами составит как минимум 10%. При небольшой разнице частот применяется разнорезонаторная колебательная система, в которой четные и нечетные резонаторы различаются по размеру.

Сферы применения магнетронов

Помимо обычных микроволновых печей магнетроны применяются в различных областях промышленности, а также при производстве радиолокационных систем. В зависимости от сферы применения магнетроны имеют определенные особенности:

  • Для работы в радарных установках устройство прикрепляется к антенне конической формы с параболическим отражателем. Управление осуществляется с помощью коротких импульсов высокой интенсивности. Излучаемая микроволновая энергия улавливается чувствительным приемником. Отображение обработанного сигнала происходит на электронно-лучевой трубке.
  • Для функционирования радиолокационных станций применяются коаксиальные магнетроны, характеризующиеся быстрым изменением частот. Их целесообразно использовать для расширения тактико-технических качеств локаторов.
  • В магнетронах, установленных в бытовых микроволновых печах, имеется прозрачное отверстие, которое выходит в рабочую камеру прибора. Использование пустой печи может способствовать поломке прибора, так как микроволны будут не отражаться, а поглощаться волноводом.

В промышленности магнетроны применяются для обеззараживания, сушки зерновых культур. СВЧ-технологии используются при пастеризации и стерилизации молока и других жидких продуктов. Они эффективны для поддержания технологического режима при сушке лекарственных трав или древесины. В химической промышленности магнетроны применяются при получении различных кислот и разложении нитратов.

Видео: как работает магнетрон

Основные преимущества магнетронов

Поскольку рабочие частоты микроволновых излучателей на несколько порядков ниже инфракрасных или световых источников, глубина проникновения излучаемых ими волн существенно выше. При высоких значениях частот объект, подвергающийся обработке, нагревается только снаружи, а остальной объем прогревается за счет процесса теплопроводности, что ведет к ухудшению качественных характеристик.

Использование микроволн предпочтительнее теплового излучения, когда требуется быстрый разогрев, варка или сушка продуктов. Использование магнетрона не влияет на их вкусовые характеристики и внешний вид, а содержание витаминов и других полезных веществ практически не изменяется.

Применение микроволновых печей помогает снизить затраты на электроэнергию. Это объясняется следующими преимуществами СВЧ-технологий:

  • точная регулировка температуры;
  • высокая плотность энергии и мощности;
  • хорошая фокусировка;
  • мгновенное отключение и включение.

Магнетрон

Возможные неисправности магнетрона и его замена

Поскольку магнетрон является основной деталью СВЧ-печи, необходимо знать основные причины его выхода из строя. Существует несколько видов поломок излучателя, после которых он не подлежит восстановлению:

  • короткое замыкание;
  • повреждение нити накаливания;
  • нарушение герметичности;
  • отсутствие генерации колебаний.

В некоторых случаях магнетрон можно вернуть в рабочее состояние. Например, можно устранить пробой конденсаторов на участке между корпусом и магнитным излучателем. Такое может произойти во время перепадов напряжения в сети. Для диагностики прибора необходимо отключить прибор от сети и провести проверку с помощью специального тестера.

Если СВЧ-печь долгое время работала без продуктов, ее мощность может значительно снизиться. Для ее восстановления можно добавить напряжение на накал. Однако конструкция некоторых микроволновых печей не позволяет этого сделать.

При возникновении СВЧ-разряда между корпусом микроволновой печи и излучателем, необходима срочная замена колпачка. Новая деталь должна быть абсолютно идентична сгоревшей.

Если восстановить вышедший из строя магнетрон не удалось, то его можно заменить. Перед покупкой нового излучателя необходимо внимательно изучить маркировку и технические характеристики устройства.

Видео: устройство и принцип работы микроволновой печи

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 14 чел.
Средний рейтинг: 4.6 из 5.

Магнетрон устройство и принцип работы

Как работает микроволновка — принцип работы СВЧ и магнетрона

Микроволновая печь, более известная как микроволновка – полезный кухонный прибор, который в разы упрощает повседневную жизнь. Имея ее в своем арсенале, не придется подолгу возиться на кухне, подогревая пищу. Микроволновую печь еще называют СВЧ-печью.

Задача этого бытового электроприбора – быстрое приготовление или быстрый подогрев приготовленной пищи, размораживание продуктов. Если сравнивать с классической печью, например, духовкой, микроволновка разогревает продукты не с поверхности, а по всему объему.

Микроволны, глубоко проникая практически в любую пищу, в разы сокращают время разогрева. В статье пойдет речь о принципе работы и устройстве этой техники, незаменимой на кухне.

Принцип работы микроволновой печи

Чтобы разобраться с этим, необходимо немного вводных данных. Большинство продуктов питания в своем составе содержат следующие вещества: соли, жиры, сахар, воду. Чтобы микроволны «работали», то есть грели пищу, в продуктах должны быть дипольные молекулы.

С одной стороны у них положительный электрический заряд, с другой – отрицательный. В пище этих молекул достаточно – это жиры и сахар, но главный диполь – молекула воды.

В овощах, мясе, фруктах и рыбе содержится большое число дипольных молекул, количество которых достигает миллионов. Если электрического поля нет, молекулы располагаются в хаотическом порядке.

При наличии электромагнитного поля, они начинают «выстраиваться»: «плюс» направлен в одну сторону, «минус» в другую. Когда поле меняет полярность, молекулы «разворачиваются» на 180 градусов.

В СВЧ-печах микроволны имеют частоту 2450 Мгц. 1 герц = 1 колебанию за секунду. Мегагерц – миллион колебаний. Полярность меняется дважды за один период волны.

Когда на продукты воздействует микроволновое излучение, молекулы в них начинают вращаться чаще, буквально стираясь друг о друга. При этом выделяется тепло, которое и служит источником нагрева продуктов.

Но, тепло «идет» дальше – включается физика теплопроводности. Отсюда же следует совет: если нужно разогреть большой кусок мяса, лучше выставить микроволновую печь на среднюю мощность. Так он прогреется лучше, хоть на это и уйдет больше времени. Тепло из наружных слоев начнет проникать внутрь.

Аналогично дела обстоят и с супами: их лучше периодически вынимать из печи и перемешивать, помогая теплу пробиться внутрь.

В выпускаемых сейчас моделях печей может быть функция «Двойного излучения» — это говорит о раздвоенном источнике излучения. Благодаря этому разделению продукты прогреваются равномернее, а СВЧ-печь имеет повышенный КПД.

Схема СВЧ печи

Наглядным примером послужит модель микроволновки Samsung RE290D. Принципиальная электрическая схема поможет понять, как работают печи от любых производителей. Отличаться они могут разве что специфическими модификациями. Сама схема представлена на фото.

В левой части заметно, что заземляющий контакт вилки соединяется с корпусом, а тот подключен от средней точки конденсаторной развязки фильтра, снижающего помехи высокочастотного излучения.

В области входа питания находится предохранитель плавного типа – FU1. Для проверки его состояния пользуются электрическими методами – прозванивают цепь мультиметром, работающим в режиме омметра.

Чтобы магнетрон – источник излучения, начал «работать», контакты исправности дверцы размыкаются, а все остальные – замыкаются. Если их отключить, причем любой, то с высоковольтного трансформатора снимется питающее напряжение.

В схеме есть термические предохранители-датчики (2 шт.), которые, в зависимости от температуры корпуса магнетрона и рабочей камеры, размыкаются и замыкаются. У первого – периодическая работа. Он защищает магнетрон от перегрева. Второй срабатывает, если неисправен вентилятор или засорились вентиляционные отверстия.

Контакт страхующего реле обеспечивает подключение электродвигателей таймера и охлаждающего вентилятора. Если предохранитель «Monitor Fuse» перегорит, обмотка реле выходит из строя.

Переключатель, отвечающий за выбор мощности, находится на таймере. Он, следуя алгоритмам, снимает напряжение со схемы магнетрона.

Его задача – ограничение импульса, вызванного разрядом конденсатора (он может получить заряд до того, как включится). Это обеспечивает плавный запуск микроволновой печи.

Силовая схема этой печи от Самсунг проста для тех, кто в этом разбирается. Главное различие в СВЧ-печах – электронные блоки, с разной конструкцией и функциональными возможностями.

Устройство микроволновки

Внутри микроволновки есть несколько обязательных деталей, поэтому не лишним будет знать, какова их роль. Внутреннее строение имеет следующую конструкцию: металлическая камера, в которой происходит нагрев пищи и дверца, предотвращающая выход излучения наружу.

Чтобы продукты питания разогревались равномернее, для этого в камере предусмотрен вращающийся столик, работающий от мото-редуктора (мотора). Но есть и другие ответственные детали.

Блок управления

Панель управления бывает:

Блок управления поддерживает заданную мощность и выключает устройство по истечении заданного времени.

Внутри электронного блока – микроЭВМ с богатым потенциалом, поэтому в ходе производства печей ему находят другое применение. Например, встраивают часы или отрывки мелодий, которые сигнализируют об окончании работы.

Сама схема устроена по-разному. Простейшая представляет собой круговые регуляторы, один из которых – таймер. Бывает и гибридная система – с кнопками. Она, по сравнению с «механикой» более функциональна.

Все чаще встречается блок управления в виде сенсорной панели. Принципом работы она аналогична механическим кнопкам, только надежнее. Продвинутые схемы поддерживают «программирование» — настраивается мощность и время выдачи излучения.

Блок генерации СВЧ излучения

Это «сердце» микроволновой печи. Выглядит элемент как вакуумная лампа, которую можно было встретить в старых кинескопных телевизорах.

Блок генерации включает не единственный СВЧ-источник. Чтобы волны поступали в рабочую зону печи, в ней предусмотрены волноводы. Расположены они за слюдяной пластиной, которая «прячется» за боковой стенкой.

Системы основной и вторичной защиты

Контрольные датчики следят за тем, чтобы ключевые электронные и аппаратные части работали исправно, а не в аварийном режиме. Их функция – обеспечение безаварийной работы микроволновой печи и предотвращение опасных сбоев.

Чтобы защитить человека от воздействия микроволн, в СВЧ-печах есть запорный механизм, состоящих из нескольких выключателей:

  • Primary Switch;
  • Secondary Switch;
  • Door Switch;
  • Monitor Switch.

Задача дверного (door) выключателя – блокировать работу реле регулировки мощности. Устанавливается он преимущественно в технике с электронным блоком управления.

Функции микроволновки

Микроволновую печь большинство используют просто для нагрева пищи. Но эта техника способна на большее. С ее помощью можно даже готовить шашлык, курицу-гриль, выпекать картошку и так далее.

Единственное, режим «гриль» требует мощности в 1500 Вт, значит света «тянуть» печь будет немало. Да и магнетрон – блок, генерирующий излучение, не вечен.

Поэтому, чем реже пользоваться печью, тем дольше она прослужит. Сейчас редко кто полностью отказывается от традиционных плит в пользу микроволновок.

Перечь функций, доступных в СВЧ-печах и их назначение:

  • подвижный гриль. Позволяет менять угол наклона. Те, кто предпочитает курицу-гриль, выбирают печи с этой функцией;
  • конвекция. Обдув продуктов питания горячим воздухом. Как заявляют производители, эта функция предназначена для выпекания. Правда, модели печей с нею дорогие, тяжелые и громоздкие. Неудивительно, так как сзади техники ставится немаленький вентилятор, нагнетающий воздух;
  • биопокрытие. Иначе – керамическое покрытие, хотя производители именуют их по-разному. Его преимущества: стойкость, прочность, биологическая инертность (микробы не будут размножаться внутри печи, даже если долго ее не мыть). Чем дороже модель микроволновки, тем «навороченней» в ней покрытие;
  • автоприготовление. Это функция, встречающаяся в технике компании LG. Есть программы, полностью автоматизированные, предназначенные для готовки определенного блюда. К примеру, готовится каша. С этим режимом остается только выбрать вес продукта, а мощность и время зададутся автоматически;
  • размораживание. Все просто – печь работает на минимальной мощности, необходимой для разморозки продуктов;
  • Intellowave. Система, позволяющая равномерно прогреть еду, например, большой кусок мяса. Встроенные датчики «наблюдают» за отдельными участками продукта, определяя температуру поверхности и регулируя мощность;
  • подача пара. Дополнительная возможность, предотвращающая пересушивание пищи в ходе приготовления;
  • проветривание рабочей камеры. Полезно, если хочется, чтобы новое блюдо не пропиталось оставшимися запахами.

Что такое магнетрон

Магнетрон в микроволновке – это элемент, генерирующий высокочастотное излучение в рабочей камере. Излучаемые электромагнитные волны воздействуют на молекулы, содержащиеся в пище, из-за чего она разогревается. То есть для подогрева не требуется внешнее тепловое воздействие.

Именно по этой причине температура в микроволновках не превышает отметку в +100 градусов Цельсия. Магнетрон – основная деталь, которая иногда выходит из строя. Ее можно заменить на новую, но для этого учитывается полная совместимость по мощности, частоте, расположению клемм.

Принцип работы магнетрона

Микроволновая печь работает так: она преобразует электроэнергию в высокочастотное электромагнитное излучение. В результате, молекулы воды, содержащиеся в пище, начинают «двигаться», что приводит к разогреву. Устройство, генерирующее микроволны, называется магнетроном.

Нередко магнетрон сравнивают с электровакуумным диодом, который работает за счет явления термоэлектронной эмиссии. Явление образуется, если нагревается поверхность катода или эмиттера.

Высокая температура «вынуждает» активные электроны покинуть поверхность. Но для этого на анод должно подаваться напряжение.

Образуемое электрическое поле приводит электроды в движение, которые по силовым линиям направляются к аноду. Электрон, оказавшийся в области магнитного поля, меняет свою траекторию.

Их траектория нарушается, и они начинают вращаться вокруг катода. Электроны, проходящие около резонаторов, отдают им часть собственной энергии (взаимозаменяемость). В результате в полости образуется мощное сверхвысокочастотное поле, выводимое наружу посредством проволочной петли.

Магнетрон «запускается», когда на анод подается высокое напряжение – 3000 – 4000 В. По этой причине в бытовых электросетях магнетрон должен подключаться через высоковольтный трансформатор.

Устройство магнетрона

Магнетрон – элемент, ответственный за генерацию высокочастотных колебаний. Есть устройства с похожим принципом действия – клистроны и платинотроны, но они не получили должного распространения.

Впервые магнетрон задействовали в СВЧ-печи в 1960 году. Сейчас используется многорезонаторный элемент. Его компоненты и их описания:

  • анод. Цилиндр из меди, состоящий из нескольких секторов. В нем есть полости-резонаторы, которые создают кольцевую систему колебаний;
  • катод. Цилиндр с нитью накаливания, расположенный в центре магнетрона. Эта часть ответственна за эмиссию электронов;
  • кольцевые магниты. Расположены на торцах печи. Они создают магнитное поле, направленное параллельно они магнетрона. Электроны движутся в том же направлении;
  • проволочная петля. Находится в резонаторе, соединяется с катодом и выводится к антенне-излучателю. Задача петли – вывод высокочастотного излучения в волновод. Оттуда оно поступает в рабочую камеру микроволновки.

Подключение магнетрона

Схема включения – однополупериодное выпрямление высоковольтного напряжения. Выход трансформатора работает в режиме короткого замыкания выходной обмотки (не дольше 5 минут).

Испорченный магнетрон нет смысла нести в ремонт – даже хорошо оснащенные мастерские этим не занимаются. Поэтому приобретают новую деталь.

Извлекая ее из микроволновки, помечают контакты разъемов, чтобы не перепутать их при переустановке. При неправильном подключении выводов магнетрон работать не будет.

Но подойдет аналогичная деталь. Мощность выбирается та же или выше, крепления и разъемы подключения должны совпадать.

Независимо от производителя, магнетроны имеют единое устройство, отличается только конструкция. Поэтому, заменяя деталь, нужно убедиться, что аналог плотно прилегает к волноводу.

Благодаря серийному изготовлению СВЧ блоков микроволновка становится простой, но полезной в условиях кухни техникой, которая в разы облегчает процедуру приготовления или разогрева пищи. Обслуживать ее легко, а конструкция не предполагает незаменимых деталей, что повышает надежность. Бытует мнение, что излучения от микроволн – вредны, но это не более чем миф.

Магнетроны.

Устройство и работа. Виды и применение. Как выбрать

Магнетроны называются электронные приборы, в которых образуются колебания сверхвысокой частоты при помощи модуляции потока электронов. Магнитные и электрические поля в нем действуют с большой силой. Наиболее распространенная модификация магнетрона – это многорезонаторный.

Впервые магнетрон был создан в Америке в 1921 году. С течением времени эксперименты с ним продолжались. В результате появилось множество видов магнетронов, использующихся в радиоэлектронике. В 1960 году приборы стали использоваться в печах сверхвысокой частоты для домашнего применения. Менее распространены клистроны, платинотроны, которые основаны на этом же принципе действия.

Устройство и принцип работы

1 — Анод
2 — Катод
3 — Накал
4 — Резонансная полость
5 — Антенна

Магнетроны резонансного типа состоят из:
  • Анодный блок . Представляет собой толстостенный металлический цилиндр с полостями в стенках. Эти полости являются объемными резонаторами, которые создают колебательную кольцевую систему.
  • Катод . Он имеет цилиндрическую форму. Внутри него размещен подогреватель.
  • Внешние электромагниты или постоянные магниты . Они создают магнитное поле, которое параллельно оси прибора.
  • Проволочная петля . Она применяется для вывода сверхвысоких частот, и закреплена в резонаторе.

Резонаторы создают кольцевую систему колебаний. Возле них пучки электронов воздействуют на электромагнитные волны. Так как эта система выполнена замкнутой, то она способна возбудиться только на определенных частотах колебаний. При нахождении рядом с рабочей частотой других частот, случается перескакивание частоты и нарушается стабильность работы устройства.

Чтобы исключить такие отрицательные эффекты магнетроны с одинаковыми резонаторами оснащаются разными связками, либо используются магнетроны с отличающимися размерами резонаторов.

Магнетроны разделяют по виду резонаторов:

  • Лопаточные.
  • Щель-отверстие.
  • Щелевые.

В магнетронах применяется движение электронов в перпендикулярных магнитных и электрических полях, созданных в зазоре кольца между анодом и катодом. Между ними подается напряжение (анодное), которое образует радиальное электрическое поле. Под воздействием этого поля электроны вырываются из нагретого катода и устремляются к аноду.

Анодный блок находится между полюсов магнита, образующего магнитное поле, которое направлено вдоль оси магнетрона. Магнитное поле действует на электрон и отклоняет его на спиральную траекторию. В промежутке между анодом и катодом создается вращательное облако, похожее на колесо со спицами. Электроны возбуждают в объемных резонаторах колебания высокой частоты.

Отдельно каждый резонатор является колебательной системой. Магнитное поле концентрируется внутри полости, а электрическое поле сосредоточено у щелей. Энергия выводится из магнетрона с помощью индуктивной петли. Она размещена в соседних резонаторах. Электроэнергия подключается к нагрузке коаксиальным кабелем.

Нагревание токами высокой частоты производится в волноводах различного сечения, либо в объемных резонаторах. Также нагревание может производиться электромагнитными волнами.

Приборы работают от выпрямленного тока по простой схеме выпрямления. Устройства небольшой мощности способны работать от переменного тока. Рабочая частота тока магнетронов может достигать 100 ГГц, мощностью до нескольких десятков киловатт в постоянном режиме, и до 5 мегаватт в режиме импульсов.

Устройство магнетрона довольно простое. Его стоимость невысока. Поэтому такие качества в сочетании с повышенной эффективностью нагревания и разнообразным использованием высокочастотных токов открывают большие возможности использования в разных сферах жизни.

Основные виды магнетронов
  • Многорезонаторные устройства . Они содержат анодные блоки с несколькими резонаторами. Блоки состоят из различного вида резонаторов. В диапазоне 10 см длины волны магнетрон обладает КПД 30%. Выход излучения высокой частоты осуществляется сбоку в щель резонатора.
  • Обращенные устройства . Они бывают двух исполнений: коаксиальные и обычные. Такие магнетроны способны выдать импульсы высокой частоты 700 наносекунд с энергией 250 джоулей. Коаксиальный вид магнетрона содержит стабилизирующий резонатор. В нем имеются отверстия во внешней стенке, а также ферритовые стержни с подмагничивающими катушками.
Сфера использования магнетронов
  • В устройствах радаров антенна подключена к волноводу. Она, по сути, является щелевым волноводом, или рупорным коническим облучателем вместе с отражателем в виде параболы (тарелка). Управление магнетрона осуществляется с помощью коротких мощных импульсов напряжения. В итоге образуется короткий импульс энергии с малой длиной волны. Малая часть такой энергии поступает снова на антенну и волновод, и далее к чувствительному приемнику. Сигнал обрабатывается и поступает на электронно-лучевую трубку на экран радара.
  • В бытовых микроволновых печах волновод имеет отверстие, которое не создает препятствие радиочастотным волнам в рабочей камере. Важным условием работы микроволновки является условие, чтобы при работе печи в камере находились какие-либо продукты. При этом микроволны поглощаются продуктами, и не возвращаются на волновод. Стоячие волны в микроволновой печи могут искрить. При долгом искрении магнетрон может выйти из строя. Если в микроволновке мало продуктов для приготовления, то лучше дополнительно поместить в камеру стакан с водой для лучшего поглощения волн.

1 — Магнетрон
2 — Высоковольтный конденсатор
3 — Высоковольтный диод
4 — Защита
5 — Высоковольтный трансформатор

  • В радиолокационных станциях используются коаксиальные магнетроны с быстрым изменением частоты. Это позволяет расширить тактико-технические свойства локаторов.
Выбор и приобретение магнетрона

Чтобы самому приобрести магнетрон для домашней микроволновой печи, необходимо изучить и разобраться в маркировке, выяснить, какие бывают их виды, и их параметры.

Наиболее малую мощность имеет магнетрон 2М 213. Его мощность составляет 700 ватт при нагрузке и 600 ватт номинальная.

Приборы средней мощности в основном изготавливают на 1000 ватт. Марка такого магнетрона – 2М 214.

Наибольшая мощность магнетрона у модели 2М 246.

Показатель мощности у них равен 1150 ватт. Перед приобретением необходимо сопоставить цену магнетрона со стоимостью всей печи, и не забыть о стоимости работ по ремонту. Возможно, что не будет смысла в ремонте.

Можно ли магнетрон заменить самостоятельно

Для разных моделей микроволновок можно устанавливать магнетрон других фирм изготовления. Главное, чтобы он подходил по мощности, в настоящее время не проблема приобрести его в торговой сети. Исключение составляют модели, которые уже сняты с производства.

Однако, даже если вы разобрались в устройстве микроволновки, то не рекомендуется заниматься заменой деталей в домашних условиях, так как этим должны заниматься квалифицированные специалисты, способные обеспечить безопасную работу устройства. К тому же, сделать это самостоятельно будет довольно проблематично.

Работа микроволновки

Пища имеет в составе воду, которая состоит из заряженных частиц. Продукты в микроволновой печи разогреваются посредством воздействия на них волн высокой частоты. Молекулы воды выступают в качестве диполя, так как проводят волны электрического поля.

Как работает магнетрон, как он выглядит, его предназначение

Микроволновую печь в наше время можно встретить практически на каждой кухне. Однако не многие знают, как она работает, и что такое магнетрон. Чтобы понять, что представляют собой микроволны и как они образуются, необходимо разобраться с устройством этого прибора.


Как выглядит магнетрон

Назначение и принцип работы магнетрона

Магнетроном называют электронное устройство большой мощности, которое с помощью изменения потока электронов генерирует высокочастотные микроволны. Молекулы воды, которые обязательно присутствуют в продуктах, имеют хорошую электропроводность. Под действием сверхвысокочастотных магнитных колебаний, создаваемых магнетроном, они начинают двигаться с высокой скоростью, нагревая при этом пищу.

В бытовых приборах используется многорезонаторная разновидность магнетрона, в которой на электроны одновременно воздействуют три поля:

  1. сверхвысокочастотное;
  2. электрическое;
  3. магнитное.

Видео: что такое магнетрон

Магнетрон генерирует СВЧ колебания, обеспечивая высокую мощность на выходе, не смотря на небольшой вес и компактные габариты. В непрерывном режиме мощность устройства может достигать десятков киловатт. Максимальная мощность при импульсном режиме работы составляет – 5МВт. Мощность магнетронов, установленных в большинстве микроволновых печей, составляет 650-850 Вт.

Питание маломощных магнетронов осуществляется переменным током. Для более мощных устройств необходим выпрямленный оперативный ток. Магнетроны работают на различных частотах в диапазоне 0,5 – 100 ГГц.


Упрощенная схема работы магнетрона

Из чего состоит магнетрон

Все приборы, генерирующие СВЧ волны, независимо от их выходных характеристик, имеют идентичную конструкцию. Схема магнетрона состоит из следующих частей:

  • анодного блока, представляющего собой толстостенный цилиндр из металла, в стенках которого имеются отверстия (резонаторы), необходимые для образования кольцевой колебательной системы;
  • цилиндрического катода, во внутренней полости которого встроен подогреватель;
  • электромагнита или внешнего магнита, создающего магнитное поле;
  • проволочной петли, которая крепится к резонатору и служит для вывода энергии.

Резонаторы устройства выполняют замедляющую функцию. В них происходит столкновение электромагнитных волн с пучком электронов. В результате этого взаимодействия высокочастотное поле получает от электронов часть их энергии, вывод которой осуществляется посредством петли связи, закрепленной на анодном блоке.

Устройство будет работать бесперебойно только при условии, что разница между рабочей и резонансной частотами составит как минимум 10%. При небольшой разнице частот применяется разнорезонаторная колебательная система, в которой четные и нечетные резонаторы различаются по размеру.

Сферы применения магнетронов

Помимо обычных микроволновых печей магнетроны применяются в различных областях промышленности, а также при производстве радиолокационных систем. В зависимости от сферы применения магнетроны имеют определенные особенности:

  • Для работы в радарных установках устройство прикрепляется к антенне конической формы с параболическим отражателем. Управление осуществляется с помощью коротких импульсов высокой интенсивности. Излучаемая микроволновая энергия улавливается чувствительным приемником. Отображение обработанного сигнала происходит на электронно-лучевой трубке.
  • Для функционирования радиолокационных станций применяются коаксиальные магнетроны, характеризующиеся быстрым изменением частот. Их целесообразно использовать для расширения тактико-технических качеств локаторов.
  • В магнетронах, установленных в бытовых микроволновых печах, имеется прозрачное отверстие, которое выходит в рабочую камеру прибора. Использование пустой печи может способствовать поломке прибора, так как микроволны будут не отражаться, а поглощаться волноводом.

В промышленности магнетроны применяются для обеззараживания, сушки зерновых культур. СВЧ-технологии используются при пастеризации и стерилизации молока и других жидких продуктов. Они эффективны для поддержания технологического режима при сушке лекарственных трав или древесины. В химической промышленности магнетроны применяются при получении различных кислот и разложении нитратов.

Видео: как работает магнетрон

Основные преимущества магнетронов

Поскольку рабочие частоты микроволновых излучателей на несколько порядков ниже инфракрасных или световых источников, глубина проникновения излучаемых ими волн существенно выше. При высоких значениях частот объект, подвергающийся обработке, нагревается только снаружи, а остальной объем прогревается за счет процесса теплопроводности, что ведет к ухудшению качественных характеристик.

Использование микроволн предпочтительнее теплового излучения, когда требуется быстрый разогрев, варка или сушка продуктов. Использование магнетрона не влияет на их вкусовые характеристики и внешний вид, а содержание витаминов и других полезных веществ практически не изменяется.

Применение микроволновых печей помогает снизить затраты на электроэнергию. Это объясняется следующими преимуществами СВЧ-технологий:

  • точная регулировка температуры;
  • высокая плотность энергии и мощности;
  • хорошая фокусировка;
  • мгновенное отключение и включение.


Магнетрон

Возможные неисправности магнетрона и его замена

Поскольку магнетрон является основной деталью СВЧ-печи, необходимо знать основные причины его выхода из строя. Существует несколько видов поломок излучателя, после которых он не подлежит восстановлению:

  • короткое замыкание;
  • повреждение нити накаливания;
  • нарушение герметичности;
  • отсутствие генерации колебаний.

В некоторых случаях магнетрон можно вернуть в рабочее состояние. Например, можно устранить пробой конденсаторов на участке между корпусом и магнитным излучателем. Такое может произойти во время перепадов напряжения в сети. Для диагностики прибора необходимо отключить прибор от сети и провести проверку с помощью специального тестера.

Если СВЧ-печь долгое время работала без продуктов, ее мощность может значительно снизиться. Для ее восстановления можно добавить напряжение на накал. Однако конструкция некоторых микроволновых печей не позволяет этого сделать.

При возникновении СВЧ-разряда между корпусом микроволновой печи и излучателем, необходима срочная замена колпачка. Новая деталь должна быть абсолютно идентична сгоревшей.

Если восстановить вышедший из строя магнетрон не удалось, то его можно заменить. Перед покупкой нового излучателя необходимо внимательно изучить маркировку и технические характеристики устройства.

Видео: устройство и принцип работы микроволновой печи


Магнетрон устройство и принцип работы

Термин «магнетрон» был предложен Альбертом Халлом, который в 1921 году впервые опубликовал результаты теоретических и экспериментальных исследований работы прибора в статическом режиме и предложил ряд конструкций магнетрона. Генерирование электромагнитных колебаний в дециметровом диапазоне волн посредством магнетрона открыл и запатентовал в 1924 чехословацкий физик А. Жачек.

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трех странах: в Чехословакии (Жачек, 1924 г.), в СССР (А.А. Слуцкин и Д.С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

Французский ученый Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окруженным резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936-39 гг., стала известна мировому сообществу благодаря публикации 1940 г. (Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.)

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия. (Brown, Louis. A Radar History of World War II . Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.)

В 1940 британские физики Джон Рэндалл (англ. John Randall ) и Гарри Бут (англ. Harry Boot ) изобрели резонансный магнетрон [1] Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты [2] . Кроме того, компактный размер магнетрона привел к резкому уменьшению размеров радарной аппаратуры [3] , что позволило устанавливать ее на самолетах [4] .

Явление перестройки частоты магнетрона напряжением впервые обнаружили в 1949 американские инженеры Д. Уилбур и Ф. Питерс. Магнетрон, настраиваемый напряжением, или митрон — генераторный прибор магнетронного типа, рабочая частота которого в широком диапазоне изменяется пропорционально анодному напряжению.

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования.

Характеристики

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике.

Конструкция

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Такая система имеет не одну, а несколько резонансных частот, при которых на кольцевой колебательной системе укладывается целое число стоячих волн от 1 до N/2 (N — число резонаторов). Наиболее выгодным является вид колебаний, при котором число полуволн равно числу резонаторов (так называемый π-вид колебаний). Этот вид колебаний назван так потому, что напряжения СВЧ на двух соседних резонаторах сдвинуты по фазе на π.

Для стабильной работы магнетрона (во избежание перескоков во время работы на другие виды колебаний, сопровождающиеся изменениями частоты и выходной мощности) необходимо, чтобы ближайшая резонансная частота колебательной системы значительно отличалась от рабочей частоты (примерно на 10 %). Так как в магнетроне с одинаковыми резонаторами разность этих частот получается недостаточной, её увеличивают либо введением связок в виде металлических колец, одно из которых соединяет все чётные, а другое все нечётные ламели анодного блока, либо применением разнорезонаторной колебательной системы (чётные резонаторы имеют один размер, нечётные — другой).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Принцип работы

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения уменьшается и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона увеличивается и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Применение

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается обратно антенне и волноводу, где она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

yourmicrowell.ru

Работа магнетрона — коротко

Принцип действия магнетрона основан на влиянии электрического и магнитного полей на траекторию движения электронов. По своей сути, магнетрон является электровакуумным диодом. Другими словами «электронной лампой» с двумя электродами. В основе работы электровакуумных приборов лежит явление термоэлектронной эмиссии. Термоэлектронная эмиссия возникает при разогреве поверхности эмиттера (катода), в следствии чего увеличивается количество электронов, способных совершить работу выхода. Для того, что бы выяснить, как электроны ведут себя в электрическом поле, рассмотрим принцип действия обычного электровакуумного диода.

На рисунке выше изображена схема работы электровакуумного диода. На части «А» рисунка, составлена электрическая цепь состоящая из диода, батареи питания «В», и ключа «К». Ключ «К» разомкнут – следовательно, напряжение на аноде отсутствует «Ua = 0». Если нет напряжения, то ток анода тоже будет равен нулю «Ia = 0». На нить накала подано напряжение «Un» следовательно, катод диода разогрет, и самые активные электроны уже готовы покинуть его. Но своей энергии им для этого не хватает, поэтому они все еще находятся возле катода.

Перейдем ко второй части рисунка. На части «Б» данного рисунка все та же схема, но ключ «К» на ней замкнут. Следовательно — на аноде появилось напряжение «Ua = x», поданное с положительного полюса батареи питания «В» через ключ «К». В результате чего, между электродами диода возникло электрическое поле. Под действием силы этого поля электроны начали покидать катод и устремились к аноду. Таким образом, цепь замкнулась и по цепи начал протекать ток анода определенной величины «Ia = y». Из выше изложенного можно сделать вывод, что электрическое поле заставляет электроны двигаться по прямой вдоль, своих силовых линий.

Магнитное поле ни как не действует на не подвижный электрон. Но если электрон, движущийся по прямой траектории под действием электрического поля, попадает в магнитное поле, то последнее влияет на траекторию движения электрона, отклоняя ее вдоль своих силовых линий. Таким образом, электрон двигавшийся по прямой, под действием магнитного поля начинает двигаться по дуге.

Теперь рассмотрим внутренности магнетрона. Отличительной особенностью конструкции магнетрона – является конструкция анода. Анод магнетрона представляет собой толстостенный медный цилиндр с системой резонаторов внутри. В поперечном сечении, вид конструкции анода напоминает колесо телеги со спицами. Каждая «спица» — является резонатором. В центре анода расположен катод с подогревателем. По краям анодного блока находятся два кольцевых магнита, которые образуют магнитную систему, между полюсами которой и располагается анод. Если бы данная магнитная система отсутствовала, то не было бы и магнитного поля и в этом случае, при подаче напряжения накала и анодного напряжения, электроны двигались бы по прямой, от катода — к аноду т. е. вдоль силовых линий электрического поля.

На рисунке сверху изображена очень упрощенная схема работы магнетрона. На ней голубым цветом выделена приблизительная форма траектории движения одного электрона покинувшего катод и стремящегося к аноду. На рисунке видно, что благодаря наличию магнитного поля, траектория движения электрона изменяется таким образом, что покинувший катод электрон достигает анода, далеко не сразу. Из-за такого влияния магнитного поля на движение электрона, в рабочей области образуется своеобразное «электронное облако», которое вращается вокруг катода – внутри анода. Пролетая мимо резонаторов, электроны отдают им часть своей энергии и наводят в них токи высокой частоты которые в свою очередь, создают сильное СВЧ поле в полостях резонаторов. В одну из таких полостей помещена петля связи (на схеме не показана), посредством которой энергия СВЧ поля выводится наружу.

Это очень краткое описание работы магнетрона. Для тех, кто хотел бы познакомиться с принципом его действия поближе, даю ссылки на более подробные описания.

Новости нашего магазина

Миллионы людей во всем мире ежедневно разогревают пищу в микроволновых печах, но при этом не задумываясь о том, как работает СВЧ-печь, а ведь это на самом деле интересно.
Кстати, первые микроволновые печи, вопреки расхожему мнению появились не в Германии, а в Америке. В Советском союзе они также выпускались с середины 80-х годов.

Как видно на рисунке, микроволновка устроено достаточно просто — в каждой модели есть дверца с защелками, лампа освещения камеры, поддон и тренога на которой вращается тарелка, панель управления и вентиляционные отверстия. А внутри агрегата скрывается конденсатор, трансформатор, волновод и самый главный элемент микроволновой печи — магнетрон. Вот об этом загадочном устройстве в этой статье мы поговорим подробнее.

Магнетрон — «сердце» микроволновой печи

Магнетрон переводится с греческого «магнит» и «электрон». Говоря простым языком, магнетрон — это мощная лампа, которая генерирует микроволны. Со школьного курса физики мы помним, что волна — это сочетание переменных магнитного и электрических полей. Любая пища содержит молекулы воды, а отрицательно и положительно заряженные частицы воды отлично проводят электричество, которое магнетрон преобразует в сверхчастотное электрическое поле, и греет пищу с помощью невидимых человеческому глазу волн.
Кстати, микроволны существуют и в природе — их испускает солнце.
Впервые термин появился почти 100 лет назад благодаря американскому ученому Асафу Холлу, но патент на изобретение магнетрона получил другой ученый только в 1924 году, и в дальнейшем ученые всего мира ломали головы как увеличить частоту колебания для генерации волн. Тут отлично сработали советские ученые, которые предложили использовать в его устройстве медь, что увеличило частоту колебаний вдвое.
С тех пор магнетрон успешно используется в радарах и радиолокационных приборах, и даже был очень полезен во времена Второй мировой войны. Но только через год после Победы магнетрон расплавил шоколад в кармане американского инженера, и именно таким случайным образом этот прибор начали использовать в быту, создав на его основе всем известную микроволновую печь. Правда первая в мире микроволновая печь весила более 300 кг и стоила 3 тысячи долларов.

Устройство магнетрона

Визуально магнетрон кажется не хитро устроенной деталью. Снаружи магнетрона возвышается колпачок антенны излучателя (№1 на рисунке). Внутри магнетрон состоит из двух кольцеобразных магнитов (№2), которые создают магнитное поле. Под №3 изображен радиатор, который избавляет устройство от излишков тепла. Под №4 — контакты, которые обеспечивают работу устройства. Изолятор (№5) защищает корпус от излучения, коробка фильтра (№6) защищает фильтр от внешнего воздействия. Корпус, изображенный под №7, делает устройство жестким, а значит, более защищенным. Сетка фильтра (№8) выполнена из медной проволоки, она не дает микроволнам покидать магнетрон, и обеспечивает контакт между магнетроном и печью. Изолятор (№9), соответственно изолирует устройство, а фланец, изображенный под №10 фиксирует магнетрон к корпусу печи.

Применение магнетрона в быту

Конечно магнетрон используемый для СВЧ-печей, работает несколько иначе, чем магнетрон в радиолокационных системах военных. И самое главное правило продления службы микроволновой печи — категорически нельзя включать пустую микроволновую печь. В противном случае может возникнуть искрение — микроволнам в таком случае некуда деться, и магнетрон может повредиться.
Скорость, при которой пища разогревается зависит исключительно от мощности магнетрона. Обычно она колеблется от 650 до 850 Вт. Чтобы проверить мощность, нужно закипятить в микроволновке стандартный стакан с водой, на это должно уйти от 2 до 3 минут.

Магнетрон распространяет радиацию?

Это один из самых распространенных мифов. В микроволновой печи попросту нет элементов, которые могут выделять радиацию, а микроволны заставляют молекулы усиленно «тереться», и за счет этого пища нагревается.
Микроволновых волн также не стоит бояться, хотя бы потому что любая микроволновая печь сконструирована так, чтобы защитить окружающих от них. Например, ни одна микроволновая печь не будет работать с открытой дверцей. В каком то количестве волны могут выходить наружу, но не дальше чем на расстояние 5 метров, а поэтому просто не стойте рядом с печью во время подогрева пищи. Питательные вещества из-за работы магнетрона также теряются не более, чем при любой другой термообработке.

Неисправности магнетронов

Магнетрон — это едва ли не главная деталь микроволновой печи, поэтому неудивительно, что когда он выходит из строя, хочется понять, подлежит запчасть ремонту или замене.
Сразу плохие новости — случаи поломки магнетрона, которые не подлежат ремонту. К ним относится обрыв нити накаливания, короткое замыкание, отсутствие генерации волн и нарушение вакуума.
Но бывают и такие неисправности магнетрона, которые можно устранить, например пробой конденсаторов, который определяется при выключенной внешней сети между магнетроном и корпусом с помощью тестера. Причиной такой поломки могут быть перепады напряжения в сети.
Также из-за того, что микроволновка долго работала «впустую» может заметно снизится мощность печи. В этом случае может помочь способ добавления напряжения на накал, если это позволяет конструкция вашей микроволновой печи.
Бывает, что в печи возникает СВЧ-разряд между антенной магнетрона и корпусом устройства. В такой ситуации нужно срочно заменить колпачок. Но учтите, что деталь должна быть идентичной сгоревшей.

Покупка магнетрона к СВЧ

Если магнетрон не подлежит ремонту, и вы решили его заменить, учтите, что он должен полностью соответствовать вышедшей из строя детали. Если вы собираетесь купить магнетрон самостоятельно, уточните его маркировку.
Кстати, при выборе магнетрона руководствуйтесь не столько маркой микроволновой печи, сколько мощностью детали.

Как работает микроволновка — принцип действия простыми словами

СВЧ-печь — привычный атрибут современной кухни. В этой статье, эксперты Miele рассказывают о принципах работы микроволновой печи.

Принцип работы микроволновой печи

Аббревиатуру «‎СВЧ» расшифровывают как «‎сверхвысокочастотное излучение». Именно на нем основан принцип работы микроволновки. Нагрев пищи происходит под воздействием волн с частотой 2,4 МГц. Они нагревают наружный слой продуктов, проникая на глубину не более 3 сантиметров. Внутренняя часть прогревается за счет нагрева внешней.

При включении прибора происходит ускорение частиц — они поляризуют молекулы воды в разогреваемых блюдах, выстраивая их вдоль линий электромагнитного поля. Это движение вызывает нагрев продукта.

Как работает магнетрон в микроволновке

Магнетрон — основной элемент для работы микроволновой печи. Это электронная лампа, которая создает сверхвысокочастотное излучение. В основе принципа его работы лежит взаимодействие между магнитными полями — они создают высокочастотные колебания, за счет которых происходит нагрев в рабочей камере.

Устройство и принцип работы магнетрона в микроволновке:

  1. Анодный блок. Установлен в сильном магнитном поле. Его создают постоянные магниты.
  2. Между катодом и анодом происходит воздействие, которое создает электрическое напряжение.
  3. Катод-электроны производят движение к аноду — их траектория изменяется магнитным полем, происходит их возвращение на катод.
  4. При определенных значениях магнитного и электрического полей происходит следующее: электроны описывают окружность, проходят мимо анода, и производят возврат к катоду.
  5. Вылетающие из катода электроны заменяют те, которые описали окружность.
  6. Подобное движение вызывает постоянные высокочастотные колебания. Их выводят на волновод магнетрона.

Как безопасно использовать микроволновку

К основным правилам безопасного применения микроволновки относят:

  1. Целевое использование. Прибор предназначен для применения в помещениях, на высоте ниже 2000 метров над уровнем моря. Сфера применения — бытовая.
  2. Опасность выхода микроволн. СВЧ-печь запрещено использовать, если погнута дверца, ослаблены ее шарниры либо на корпусе / стенках рабочей камеры видны трещины и повреждения.
  3. Правильное использование встраиваемых моделей. Не закрываем дверцу во время работы. Ее закрытие может приводить к застою нагретого влажного воздуха.
  4. Правильный подбор посуды. Использование металлической посуды может приводить к повреждению магнетрона прибора. Не включаем прибор, если в нем нет продуктов и не осуществляем предварительный нагрев посуды.
  5. Опасность взрыва закрытых емкостей. Не разогреваем жидкость в закрытых бутылках, продукты в контейнерах с крышкой. Повышение давление может приводить к взрыву внутри рабочей камеры.

Для безопасного использования микроволновки необходимо учитывать параметры ее подключения к электрической сети:

  • запрещено подключение через многоместные розетки и удлинители;
  • прибор подключают только к сети с заземлением.

Несоблюдение этих основных правил может приводить к поражению электрическим током и возгоранию. Основные правила пожарной безопасности при использовании микроволновки:

  1. Не производят сушку трав, хлеба, булочек и их хранение в рабочей камере прибора. Возгораемые продукты с малым количеством жидкости могут быть высушены под воздействием излучения.
  2. Прибор не предназначен для приготовления продуктов во фритюре. При приготовлении блюд с большим количеством масла и жира контролируем процесс. В случае возгорания — выключаем микроволновку и гасим пламя, оставляя дверцу закрытой.
  3. Крепкие алкогольные напитки следует разбавлять перед нагревом.
  4. Использование посуды из пластика, которая не предназначена для применения в СВЧ-печах, может привести к возгоранию устройства.

Правила безопасности для предотвращения получения ожогов:

  1. При использовании гриля надеваем защитные рукавицы. Рабочая камера, решетка гриля и прочие элементы имеют высокую температуру.
  2. Не нагреваем в приборе подушечки с зернами, вишневыми косточками и гелем. Их воспламенение возможно после изъятия из рабочей камеры.
  3. Не используем прибор для дезинфекции предметов.
  4. Перед разогревом жидкости перемешиваем ее. При доведении до необходимой температуры — не достаем ее в течении 20 секунд. Это связано с тем, что при нагреве с помощью СВЧ жидкость закипает неравномерно. Это может приводить к образованию пузырьков с задержкой во времени — при изъятии посуды с жидкостью из рабочей камеры.
  5. Не разогреваем яйца, сваренные вкрутую. Для нагрева яиц в скорлупе используем специальную посуду. Яйца в скорлупе предварительно прокалываем.

В случае, если в доме присутствуют дети, необходимо объяснить им основные правила пользования прибором и опасность их нарушения. Детям до 8 лет запрещен доступ к СВЧ-печам.

Дополнительное оснащение микроволновки

В дополнительное оснащение микроволновок Miele входит:

  • блюдо Гурмэ. Круглый противень для гриля с антипригарным покрытием;
  • решетка для гриля. Для применения во всех режимах, кроме отдельного микроволнового.

Дополнительно для покупки доступны декоративные ручки для дверцы микроволновой печи. Их ассортимент представлен на сайте Miele.

Выбрать микроволновку

Получайте подборку новых статей на электронную почту

Магнетрон: устройство и принцип действия

Миллионы людей во всем мире ежедневно разогревают пищу в микроволновых печах, но при этом не задумываясь о том, как работает СВЧ-печь, а ведь это на самом деле интересно.
Кстати, первые микроволновые печи, вопреки расхожему мнению появились не в Германии, а в Америке. В Советском союзе они также выпускались с середины 80-х годов.


Как видно на рисунке, микроволновка устроено достаточно просто — в каждой модели есть дверца с защелками, лампа освещения камеры, поддон и тренога на которой вращается тарелка, панель управления и вентиляционные отверстия. А внутри агрегата скрывается конденсатор, трансформатор, волновод и самый главный элемент микроволновой печи — магнетрон. Вот об этом загадочном устройстве в этой статье мы поговорим подробнее.

Магнетрон — «сердце» микроволновой печи

Магнетрон переводится с греческого «магнит» и «электрон». Говоря простым языком, магнетрон — это мощная лампа, которая генерирует микроволны. Со школьного курса физики мы помним, что волна — это сочетание переменных магнитного и электрических полей. Любая пища содержит молекулы воды, а отрицательно и положительно заряженные частицы воды отлично проводят электричество, которое магнетрон преобразует в сверхчастотное электрическое поле, и греет пищу с помощью невидимых человеческому глазу волн.
Кстати, микроволны существуют и в природе — их испускает солнце.
Впервые термин появился почти 100 лет назад благодаря американскому ученому Асафу Холлу, но патент на изобретение магнетрона получил другой ученый только в 1924 году, и в дальнейшем ученые всего мира ломали головы как увеличить частоту колебания для генерации волн. Тут отлично сработали советские ученые, которые предложили использовать в его устройстве медь, что увеличило частоту колебаний вдвое.
С тех пор магнетрон успешно используется в радарах и радиолокационных приборах, и даже был очень полезен во времена Второй мировой войны. Но только через год после Победы магнетрон расплавил шоколад в кармане американского инженера, и именно таким случайным образом этот прибор начали использовать в быту, создав на его основе всем известную микроволновую печь. Правда первая в мире микроволновая печь весила более 300 кг и стоила 3 тысячи долларов.
 

Устройство магнетрона

Визуально магнетрон кажется не хитро устроенной деталью. Снаружи магнетрона возвышается колпачок антенны излучателя (№1 на рисунке). Внутри магнетрон состоит из двух кольцеобразных магнитов (№2), которые создают магнитное поле. Под №3 изображен радиатор, который избавляет устройство от излишков тепла. Под №4 — контакты, которые обеспечивают работу устройства. Изолятор (№5) защищает корпус от излучения, коробка фильтра (№6) защищает фильтр от внешнего воздействия. Корпус, изображенный под №7, делает устройство жестким, а значит, более защищенным. Сетка фильтра (№8) выполнена из медной проволоки, она не дает микроволнам покидать магнетрон, и обеспечивает контакт между магнетроном и печью. Изолятор (№9), соответственно изолирует устройство, а фланец, изображенный под №10 фиксирует магнетрон к корпусу печи.

Применение магнетрона в быту

Конечно магнетрон используемый для СВЧ-печей, работает несколько иначе, чем магнетрон в радиолокационных системах военных. И самое главное правило продления службы микроволновой печи — категорически нельзя включать пустую микроволновую печь. В противном случае может возникнуть искрение — микроволнам в таком случае некуда деться, и магнетрон может повредиться.
Скорость, при которой пища разогревается зависит исключительно от мощности магнетрона. Обычно она колеблется от 650 до 850 Вт. Чтобы проверить мощность, нужно закипятить в микроволновке стандартный стакан с водой, на это должно уйти от 2 до 3 минут.

Магнетрон распространяет радиацию?

Это один из самых распространенных мифов. В микроволновой печи попросту нет элементов, которые могут выделять радиацию, а микроволны заставляют молекулы усиленно «тереться», и за счет этого пища нагревается.
Микроволновых волн также не стоит бояться, хотя бы потому что любая микроволновая печь сконструирована так, чтобы защитить окружающих от них. Например, ни одна микроволновая печь не будет работать с открытой дверцей. В каком то количестве волны могут выходить наружу, но не дальше чем на расстояние 5 метров, а поэтому просто не стойте рядом с печью во время подогрева пищи. Питательные вещества из-за работы магнетрона также теряются не более, чем при любой другой термообработке.

Неисправности магнетронов

Магнетрон — это едва ли не главная деталь микроволновой печи, поэтому неудивительно, что когда он выходит из строя, хочется понять, подлежит запчасть ремонту или замене.
Сразу плохие новости — случаи поломки магнетрона, которые не подлежат ремонту. К ним относится обрыв нити накаливания, короткое замыкание, отсутствие генерации волн и нарушение вакуума.
Но бывают и такие неисправности магнетрона, которые можно устранить, например пробой конденсаторов, который определяется при выключенной внешней сети между магнетроном и корпусом с помощью тестера. Причиной такой поломки могут быть перепады напряжения в сети.
Также из-за того, что микроволновка долго работала «впустую» может заметно снизится мощность печи. В этом случае может помочь способ добавления напряжения на накал, если это позволяет конструкция вашей микроволновой печи.
Бывает, что в печи возникает СВЧ-разряд между антенной магнетрона и корпусом устройства. В такой ситуации нужно срочно заменить колпачок. Но учтите, что деталь должна быть идентичной сгоревшей.

Покупка магнетрона к СВЧ

Если магнетрон не подлежит ремонту, и вы решили его заменить, учтите, что он должен полностью соответствовать вышедшей из строя детали. Если вы собираетесь купить магнетрон самостоятельно, уточните его маркировку.
Кстати, при выборе магнетрона руководствуйтесь не столько маркой микроволновой печи, сколько мощностью детали.

Принцип работы и внутреннее устройство микроволновой печи

Если вам пришел в голову вопрос, как работает микроволновка, то ответить на него будет несложно, ведь это устройство присутствует на рынке бытовой техники достаточно давно, и его характеристики изучены вдоль и поперек. Принцип работы микроволновой печи основывается на воздействии микроволн на продукт, помещенный внутрь прибора. Подробно о том, что такое СВЧ-печь и микроволны, будет рассказано ниже.

Принцип работы СВЧ-волн

Для работы микроволн необходимы дипольные молекулы. Они заряжены одновременно и положительно, и отрицательно. Таких молекул более чем достаточно в овощах, фруктах и мясной продукции. Средняя концентрация, к примеру, в килограмме рыбы составляет несколько миллионов частиц. В обычной среде, без электрического поля, молекулы находится в хаотичном состоянии. Но как только начинает работать магнетрон в СВЧ-печке, то частицы выстраиваются в определённом порядке. Положительно заряженные направляются в одну сторону, а отрицательно – в другую. В момент смены полярности молекулы меняет своё направление на противоположное, разворачиваясь на 180 градусов.

СВЧ волны вызывают разворот молекул

Микроволны в классических СВЧ-моделях двигаются на частоте в 2450 МГц, где каждый герц равен одному колебанию в секунду. Смена поля происходит 2 раза за период одной волны. После включения печки частицы ускоряются, начинают тереться друг о друга, наращивая температуру в камере. Причём волны затрагивают только лишь поверхностный слой, проникая в пищу не глубже 3 см.

С оглядкой на физику теплопроводности можно сделать вывод, что если необходимо разогреть какой-то крупный объект, то гораздо практичнее выставить мощность устройства на средний уровень. Таким образом продукт прогреется заметно лучше, пусть и с бо́льшими временными затратами. Если же включить микроволновую печь на полную мощность, то внешняя оболочка объекта будет буквально кипеть, тогда как внутренности останутся прохладными.

Устройство СВЧ-техники

Все микроволновые печи без исключения включают в себя ряд обязательных элементов: камера, интерфейс управления, блок генерации СВЧ-волн и защитные системы. На функциональность, стоимость и другие эксплуатационные качества влияют уже отдельные конструкционные особенности. Разберём главные элементы оборудования.

Магнетрон

Именно это устройство генерирует волны в камере, которые воздействуют на молекулы в пище, в следствие чего и происходит нагрев. Причём для подогрева продуктов какая-то внешняя тепловая стимуляция не нужна. Поэтому внутри камеры температура никогда не превышает отметки в 100⁰С.

Анод устройства имеет форму цилиндра с отдельными плоскостями. Внутри конструкции находится катод с элементом накаливания. По краям магнетрона проходят магниты кольцевидной формы. Создаваемое поле мешает электронам передвигаться от катода к аноду, образуя эффект вращения.

В результате за счёт проволочной петли в камеру проникает сверхвысокочастотное поле (СВЧ). Магнетрон становится активным, как только получает достаточное напряжение, а это порядка 3000-4000 В. Такие показатели предполагают наличие высоковольтного трансформатора.

Магнетрон и другие элементы микроволновки

Читайте также: каковы стандартные размеры микроволновки.

Защитные системы

Главная задача систем – не допустить выход из строя ключевых элементов СВЧ-печи, причём как электронных, так и аппаратных. Подобная техника снабжена многоуровневой защитой: предохранители первичные, вторичные и дополнительные. Последние могут быть самыми разными и зависят от конкретной модели.

Если один из этапов проверки не был пройден, то есть, сработает хотя бы один из предохранителей, то оборудование попросту выключится. К примеру, при открытой дверце напрочь блокируется запуск магнетрона.

Блок управления

Интерфейс может быть либо механическим, либо электронным. Первый отличается повышенной надёжностью, потому как перегорать там нечему в принципе. Чаще всего механический интерфейс состоит всего из двух шайб, регулирующих время и мощность нагрева. Как такового функционала здесь нет.

Читайте также: что делать, если кнопки на микроволновке не работают.

Электронное управление предполагает обилие всевозможных режимов. Посредством кнопок или сенсорного дисплея можно задать желаемую температуру в камере, обозначить время на таймере, выбрать автоматическую программу готовки и многое другое.

СВЧ-печь с сенсорной панелью управления

Все выбранные параметры отображается на ЖК-экране. Модели с электронным управлением встречаются в среднебюджетном и премиальном секторах. Интерфейс отличается удобством, но электроника гораздо чаще выходит из строя, чем механика. К тому же, ремонт первой влетит в серьёзную сумму.

Электрическая схема

Все бытовые модели СВЧ-печей выполнены по одной и той же схеме, а основные блоки располагаются в штатных местах. Техника прошлых поколений отличается только исполнением интерфейса управления. Современные устройства оснащаются электронным блоком, а силовой трансформатор заменён на более эффективный инвертор.

Дополнительные элементы

В продаже можно встретить технику трёх видов: классическую, с грилем, с конвекцией и грилем. В обычной печке можно разогреть продукты, разморозить их, и только. Тогда как наличие гриля и/или конвекции расширяет возможности оборудования. Естественно, что дополнительные элементы заметно прибавляют стоимости печи и увеличивают расход электроэнергии.

Модели с конвекцией оснащаются вентилятором, позволяя качественно поджарить продукты. Пища равномерно запекается и в результате покрывается хрустящей корочкой. В печах с грилем можно поджарить курицу, пирожки и другие блюда. Такой тандем легко заменяет обычную духовку.

Вентилятор равномерно распределяет тепло по камере

Грили в СВЧ-печах могут быть трёх типов – кварцевые, угольные или на ТЭНе. В первом случае мы имеем скрытый за металлической сеткой элемент, который быстро нагревается, расходует заметно меньше энергии, чем остальные разновидности, и в обслуживании не нуждается.

Угольные грили хороши тем, что практически полностью копируют открытый огонь. Блюда на выходе получаются такими же сочными, как если бы их готовили на мангале или в газовой духовке. Нагревательный элемент выполнен из углеволокна и привередлив в обслуживании.

Грили на ТЭНе универсальны. Их сравнительно легко обслуживать – чистить и менять. Трубки могут располагаться либо сверху, либо снизу. Но есть модели с двумя нагревательными элементами и даже с подвижным грилем, где ТЭН опускается при готовке и встаёт на место, когда технику отключают.

Важная функция дверцы микроволновки

Не меньшее внимание во время производства уделяется дверце. В СВЧ-печах дверца является не только декоративным элементом, но еще и выполняет роль своего рода предохранителя. Принцип очень простой: если вы открываете дверцу, срабатывает блокировка и работа агрегатов останавливается. Несмотря на видимую простоту, устройство дверцы довольно непростое, ведь с ним связана безопасная эксплуатация всего аппарата.

Итак, рассмотрим несколько подробнее, как работает дверка микроволновой печи:

  1. Во-первых, производителю необходимо проследить, чтобы дверца и корпус устройства идеально прилегали друг к другу с минимальным углом. Большие зазоры не позволяют использовать устройство. Причина проста: дверь служит своего рода щитом от микроволнового излучения, и если зазор будет достаточно велик, излучение может проникнуть за пределы камеры для приготовления пищи. О том, что такое излучение и какова его опасность, уже давно известно.
  2. Во-вторых, периметр дверцы оснащают дроссельным заслоном высокой частоты. Этот аппарат служит для понижения излучения до приемлемого уровня.
  3. В-третьих, в момент отливки корпуса двери добавляется множество присадок, с помощью которых достигается высокий процент поглощения излучения. Разумеется, нельзя быть полностью уверенным в 100% поглощения излучения, но не стоит сомневаться, что остаточные волны не представляют опасности и значимого вреда для здоровья человека.

Опасны ли микроволны

Споры о вреде СВЧ-печей не утихают с момента запуска их в массовое производство. На сегодняшний день нет сколько-нибудь достоверной информации, подтверждающей вред от использования данного вида устройств.

Не стоит забывать, что микроволновка не излучает радиоактивные волны. Наоборот, микроволновка позволяет готовить продукты без потери их полезных свойств. Пища является более здоровой, т.к. в ней сохраняется до 80% витаминов и минералов.

Традиционные духовки и плиты не могут похвастаться таким результатом. Если эксплуатировать устройство четко по правилам, то никакой опасности от его работы нет. Данное заключение подтверждается  и тем, как устроена микроволновая печь, о чем было сказано выше.

Вред может приносить не полезная еда, приготовленная в СВЧ-печи (так называемый фаст-фуд), а термическое микроволновое воздействие здесь совершенно не при чем. Вред пирогов (и других мучных продуктов) заключается не в том, что они приготовлены в духовке, а в их повышенной калорийности и медленной усвояемости организмом.

Частота работы вашей микроволновки, о которой тоже упоминается, когда речь заходит о вреде, тоже не играет какой-то значимой роли. Она (частота) может меняться сколько угодно, но это (вопреки распространенному заблуждению) не приведет к увеличению или понижению излучения, фон остается одинаковым.

Заключение

Вывод, который напрашивается сам собой: микроволновка – очень простое, но при этом незаменимое на кухне устройство, которое каждый день облегчает нам жизнь. Она удобна и неприхотлива в использовании и обслуживании, легко чистится, занимает мало места и потребляет совсем немного энергии.  Надежность этой техники подтверждена на практике в течение нескольких десятилетий.

Как работают магнетроны? — Объясни, что материал

Хотите приготовить ужин за пять минут или сделать самолет безопаснее? летать в непогоду? Тогда тебе понадобятся микроволновки. Это невидимое, сверхэнергетические коротковолновые радиоволны, которые распространяются на скорости света, делая важные вещи в микроволновых печах и радиолокационно-навигационное оборудование. Сделать микроволновую печь легко, если у вас есть оборудование — удобный гаджет, называемый магнетроном.Что это и как это работает? Возьмем пристальный взгляд!

Фото: Магнетрон с резонатором CV64, разработанный в Бирмингеме в 1942 году, был достаточно мал, чтобы поместиться внутри самолета. Подобные устройства впервые позволили самолетам использовать радиолокационную защиту. Выставка в Think Tank (музей науки в Бирмингеме, Англия). Приносим извинения за немного плохое качество изображения: экспонат находится в стеклянной витрине и его сложно сфотографировать.

Как работает магнетрон?

Изображение: Справа: один из рисунков высокоэнергетического магнетрона, разработанного в 1940-х годах Перси Спенсером, который усовершенствовал микроволновую печь, работая в Raytheon.(Я раскрасил его так, чтобы он соответствовал моему рисунку ниже.) Вы можете увидеть увеличенную версию этого рисунка и прочитать полную техническую информацию через Google Patents. Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

Магнетроны ужасно сложны. Нет, правда — они ужасно сложный! Чтобы понять, как они работают, я считаю полезным сравнить их к двум другим вещам, которые работают аналогичным образом: телевизор старого образца набор и флейта.

Магнетрон имеет много общего с электронно-лучевым. (электронная) трубка, герметичная стеклянная колба, которая превращает изображение в телевизор старого образца.Трубка — это сердце телевизора: она делает картинку вы можете увидеть, стреляя пучками электронов в экран, покрытый в химических веществах, называемых люминофором, поэтому они светятся и выделяют точки света. Вы можете прочитать все об этом в нашей основной статье на телевидение, но вот (вкратце) то, что происходит. Внутри телевизора, есть отрицательно заряженная электрическая клемма, называемая катодом который нагревается до высокой температуры, поэтому электроны «выкипают» из него. Они ускоряются вниз по стеклянной трубке, привлеченные положительно заряженный терминал или анод и достигают таких высоких скоростей, что они промчаться мимо и врезаться в люминофорный экран на конце трубки.Но Магнетрон не имеет той же цели в жизни, что и телевизор. Вместо того, чтобы делать изображение, он предназначен для генерации микроволн — и это немного как флейта. Флейта — это открытая труба, наполненная воздухом. Дуть поперек верхнюю часть правильным образом, и вы заставляете ее вибрировать в определенном музыкальный тон (называемый его резонансной частотой), генерирующий звук, который вы можете услышать, который прямо соответствует длине трубка.

Задача магнетрона — генерировать довольно короткие радиоволны.Если бы вы могли их видеть, вы могли бы легко измерить их школьной линейкой. Обычно они не короче 1 мм (0,04 дюйма; самое короткое деление на метрической линейке) и не более 30 см (12 дюймов; длина типичной школьной линейки). Магнетрон делает свое дело резонирует как флейта, когда вы накачиваете в нее электрическую энергию. Но, в отличие от флейта, она производит электромагнитные волны вместо звуковых, поэтому вы не можете услышать резонансную энергию, которую он производит. (Вы также не можете увидеть эту энергию, потому что ваши глаза не чувствительны к коротковолновому излучению, микроволновому излучению). радиация).

Краткая история магнетронов

  • 1920-е годы: американский инженер Альберт В. Халл изобретает первый магнетрон, работая в General Electric. [1]
  • 1934: Артур Л. Сэмюэл из Bell Telephone Laboratories изобретает резонаторный магнетрон. [2]
  • 1936–7: Советские ученые Николай Алексеев и Дмитрий Маляров создают четырехсегментный резонаторный магнетрон. Хотя подробности их работы просачиваются в Германию, в Великобритании это остается неизвестным. и США.[3]
  • 1939: Два физика, Джон Рэндалл и Гарри Бут, работают в Бирмингемский университет, Англия, самостоятельно разработал гораздо более мощный магнетрон, который достаточно компактен, чтобы поместиться на кораблях, самолетах и подводные лодки. [4]
  • 1940-е: американский инженер Перси Спенсер случайно обнаруживает что микроволны, производимые магнетроном, обладают достаточной мощностью, чтобы нагреть и готовить еду. Он патентует микроволновую печь в 1950-х годах.
  • 1943: Впервые установлен британский резонаторный магнетрон.[3]
  • 1976: Исследователи Массачусетского технологического института Джордж Бекефи и Таддеус Орзеховски разрабатывают релятивистский магнетрон, который примерно в 10–100 раз мощнее магнетрона с резонатором. Они достигают мощности 900 МВт по сравнению с 10 МВт или около того, которые тогда могли производить магнетроны с резонатором. [5]
  • 2009: исследователи из Мичиганского университета, спонсируемые ВВС США. объявляют о разработке более компактного магнетрона большей мощности, который может улучшить разрешающую способность радиолокационной навигации.

Фото: Внутри вашей микроволновой печи находится магнетрон, обычно сразу за панелью управления и приборной панелью справа. Если открыть дверцу, то иногда можно увидеть магнетрон и его охлаждающие ребра через перфорированную металлическую решетку, отделяющую его от основной рабочей камеры.

Узнать больше

На этом сайте

Книги

статей

Легко читается
История и развитие магнетронов
  • Андрей Хаф и удивительный микроволновый усилитель Джека Коупленда и Андре А.Хаэф. IEEE Spectrum, 25 августа 2015 г. Изучение работы забытого персонажа из истории микроволнового излучения.
  • [PDF] Изобретение резонаторного магнетрона и его внедрение в Канаду и США Полом А. Рэдхедом. Физика в Канаде, ноябрь / декабрь 2001 г. Это превосходный краткий отчет о том, как развивались магнетроны во время Второй мировой войны в США, Великобритании и Канаде. [Архивировано через The Wayback Machine.]
  • Полостной магнетрон во Второй мировой войне: была ли секретность оправданной? Бернарда Ловелла, Notes and Records Лондонского королевского общества, Vol.58, No. 3 (сентябрь 2004 г.), стр. 283–294.
  • Личности в науке: Альберт В. Халл, Scientific American, Vol. 168, № 5, май 1943 г., стр. 195. Краткая биография первооткрывателя магнетронов — и почему его работа так важна в военное время.
  • The Cavity Magnetron: Not Just a British Invention by Yves Blanchard et al, IEEE Antennas and Propagation Magazine, октябрь 2013 г.
Более технический
  • Обзор релятивистского магнетрона Дмитрия Андреева, Артема Кускова и Эдла Шамилоглу.Материя и радиация в крайностях 4, 067201 (2019). Включает отличный обзор общей истории магнетронов и множество полезных ссылок.
  • Исторические заметки о резонаторном магнетроне Х.А.Х. Бут и Дж. Рэндалл. Труды Института инженеров по электротехнике и радиоэлектронике, номер 7, июль 1976 г., стр.724. Как два британских пионера разработали первые военные магнетроны.

Патенты

Работа: Иллюстрации оригинального резонаторного магнетрона Артура Сэмюэля из его Патент США №2063342: Устройство электронного разряда, любезно предоставлено Бюро по патентам и товарным знакам США.Как и на рисунках выше, анод окрашен в красный цвет, катод — в желтый, а катушка, окружающая стеклянную газоразрядную трубку, темно-серого цвета.

Если вы хотите прочитать подробные технические описания того, как устроены магнетроны и как они работают, патенты — отличное место для начала. Их не всегда так легко понять, но описания чрезвычайно подробны и, как правило, имеют очень четкие обозначенные диаграммы. Вот несколько, с которых можно начать: вы найдете гораздо больше, если выполните поиск в USPTO (или в Google Patents), используя ключевое слово «магнетрон»:

  • Патент США № 2099533: Магнетрон Дитриха Принца, Telefunken Gesellschaft, 30 июля 1935 г.Ранний немецкий дизайн магнетрона.
  • Патент США № 2063342: Устройство электронного разряда, автор Артур Л. Самуэль, Bell Telephone Laboratories, 8 декабря 1936 г. Первый магнетрон с резонатором.
  • Патент США № 2408 235: Высокоэффективный магнетрон Перси Л. Спенсера, Raytheon Manufacturing Company, 24 сентября 1946 г. Полный текст патента Перси Спенсера на магнетрон резонатора, проиллюстрированный выше.
  • Патент США № 7
  • 2: Магнетрон, автор: Такеши Исии и др. Panasonic Corporation, 15 марта 2011 г.Очень подробное описание типа магнетрона, который вы найдете в современной микроволновой печи.

Список литературы

  1. ↑ Личности в науке: Альберт В. Халл.
  2. ↑ Патент США №2063342: Устройство электронного разряда, автор Артур Л. Самуэль.
  3. ↑ Полостной магнетрон во Второй мировой войне: была ли секретность оправданной? Бернарда Ловелла. Николай Алексеев и Дмитрий Маляров — Пути жизни изобретателей мультирезонаторного магнетрона Н. А. Борисовой, 2011 21-я Международная Крымская конференция «СВЧ и телекоммуникационные технологии», Севастополь, 2011, с.97–99.
  4. ↑ Исторические заметки о резонаторном магнетроне Х.А.Х. Бут и Дж. Рэндалл.
  5. ↑ Обзор релятивистского магнетрона Дмитрия Андреева, Артема Кускова и Эдла Шамилоглу.

Магнетрон, Часть 1: Применение и принципы работы

Магнетрон с вакуумной трубкой почти устарел (за исключением миллионов бытовых микроволновых печей). Его разработка была ключом к созданию высокоэффективных радаров времен Второй мировой войны, а также привела к появлению других электронно-лучевых радиочастотных / микроволновых устройств.

Электронные лампы такие «вчерашние», не так ли? Они были устаревшими и заменены твердотельными устройствами по многим причинам, за исключением некоторых узкоспециализированных приложений, таких как некоторые радиолокационные передатчики. Точно так же почтенная электронно-лучевая трубка (ЭЛТ), которая десятилетиями использовалась в домашних телевизорах, осциллографах, пользовательских консолях, мониторах и всевозможных дисплеях, была заменена устройствами с плоским экраном

.

Конечно, ЭЛТ больше нет, но есть еще одна электронная лампа, которая выживает благодаря широкому использованию в конкретном приложении — хотя во многих других она в значительной степени устарела.Как же так? Если у вас есть микроволновая печь на кухне, у вас дома есть вакуумная трубка, называемая магнетроном. Тем не менее, по мнению многих экспертов и историков, это скромное, непритязательное действующее устройство также изменило ход Второй мировой войны.

Q: Что такое магнетрон?

A: Магнетрон — это специализированная электронная лампа, которая выполняет одно действие: это источник генератора мощности для частот от нескольких сотен МГц до нескольких ГГц. В зависимости от размера и других факторов он может производить от десятков и сотен ватт до киловатт.

Q: Зачем вообще изучать это уникальное и несколько устаревшее устройство?

A: Есть по крайней мере три причины: он все еще широко используется, и ежегодно производятся миллионы; большие используются для радиолокационных и радиовещательных операций; и он научил ученых и инженеров электронным устройствам, которые используют электромагнитные принципы и комбинируют электрические и магнитные радиочастотные поля и многое другое, что приводит к появлению важных радиочастотных / микроволновых устройств, таких как лампа бегущей волны (ЛБВ).

Q: Каков физический принцип и основная конструкция магнетрона?

A: В отличие от генератора, построенного вокруг резонансного контура, состоящего из дискретных катушек индуктивности и конденсаторов, магнетрон использует уникальную физическую структуру в сочетании с комбинацией электрических полей, движения электронов и магнитных полей в ограниченной металлической полости.Хотя магнетрон представляет собой вакуумную трубку, он очень сильно отличается от обычной вакуумной трубки, в которой используются электроны, испускаемые нагретым катодом и движущиеся по прямой к положительно заряженному аноду, причем их путь движения модулируется электрическим полем промежуточная сетка.

В обычной вакуумной лампе нет магнитного аспекта. Напротив, магнетрон представляет собой устройство «скрещенного поля», которое использует электрическое поле в сочетании с магнитным полем с линиями поля-энергии, расположенными под прямым углом друг к другу.(Название «магнетрон» представляет собой сочетание «магнитного» и «электронного»)

Q: Как работает магнетрон?

A: Анализ магнетрона может варьироваться от качественного объяснения до высокотехнического анализа с использованием продвинутой теории электромагнитного поля и математики. Мы будем использовать более качественный подход.

Q: Каково физическое устройство магнетрона?

Рис. 1. Магнетрон с вакуумной трубкой использует резонансные полости на аноде, в которые электроны, испускаемые нагретым катодом, направляются мощным статическим магнитным полем под прямым углом.(Изображение: Hyperphysics / Georgia State University)

A: В основном, первом магнетроне — и, конечно, есть много вариаций — использовался сплошной медный блок (для рассеивания тепла), просверленный с отверстиями (называемыми полостями) (Рисунок 1) . Размер этих полостей имеет решающее значение для установления рабочей частоты магнетрона. Эта физическая конструкция и устройство радикально отличаются от вакуумной трубки со стеклянной оболочкой, которая использовалась в попытке эффективно генерировать короткие волны и высокие частоты, необходимые для ВЧ / СВЧ-схем (1 ГГц = 1000 МГц = 0.3 метра = 30 см).

Q: Как это устройство работает при подаче напряжения?

A: Катод в центре (который нагревается нитью накала) испускает электроны так же, как катод стеклянной вакуумной трубки, но на этом их сходство заканчивается. Эти электроны обычно притягиваются и движутся как радиальные спицы к внешнему кольцу как к аноду, который заряжен положительно (как пластина трубки). Однако существует мощное статическое магнитное поле (синие линии), направленное вдоль оси сердечника магнетрона.Это поле заставляет электроны двигаться по круговой схеме потока к внешнему кольцу (красные линии). Магнитное поле изначально создавалось электромагнитами, но, поскольку годы спустя были разработаны более мощные постоянные магниты, они стали использоваться вместо них.

Q: Кажется, что все, что было сделано, — это сдвинуть статический электрический поток, а колебания отсутствуют — так как же магнетрон производит колебания?

A: Магнитное поле отклоняет электроны, и они «кружатся» по кругу.При этом они «качают» на собственной резонансной частоте резонаторов. Возникающий в результате ток вокруг полостей заставляет их излучать электромагнитную энергию на резонансной частоте полостей.

В: Это все? Как можно использовать эту резонансную энергию?

A: С точки зрения физики, работа выполняется над электронами, и они поглощают энергию от приложенного к аноду источника питания. Электроны продолжают движение и достигают уровня энергии, на котором имеется избыточный отрицательный заряд, и этот заряд выталкивается обратно вокруг полости.Это, в свою очередь, передает энергию колебаниям на собственной частоте резонатора (накачка). Полость аналогична резонансному ЖК-резервуару: положительно заряженное поле находится вдоль одного края открытой стороны полости, а отрицательно заряженное поле выровнено вдоль другого края, поэтому отделенная строка функционирует как конденсатор с вакуумом. зазор для интервала.

Q: Как энергия колебаний извлекается из полости магнетрона и используется в системе?

A: Коаксиальная муфта с датчиком точного размера вставляется сбоку в одну полость для захвата энергии от блока, Рис. 2 ; он функционирует как приемная антенна для электромагнитной энергии.

Рис. 2: Зонд с согласованной частотой вставляется в отверстие в одной из полостей для перехвата и извлечения колеблющейся высокочастотной энергии в магнетроне. (Изображение: EU Radar Tutorial)

Q: Что устанавливает частоту колебаний магнетрона?

A: Размер и расположение полостей определяют частоту, поскольку они действуют как резонансные камеры. Магнетроны обычно имеют небольшой регулировочный винт для изменения размера полости, поэтому физические размеры могут быть отрегулированы для резонанса с точной желаемой частотой, несмотря на неизбежные производственные допуски.Обратите внимание, что магнетрон — это устройство с фиксированной частотой и не настраивается, хотя есть несколько продвинутых и более сложных версий, которые имеют скромный диапазон настройки.

Часть 2 этого FAQ посвящена истории и роли магнетрона, а также его будущему и возможной кончине.

EE World Online References

Список литературы

  • Википедия, «Полостной магнетрон» (есть ссылки на многие исторические ссылки)
  • Объясните этот материал, «Как работают магнетроны»
  • Государственный университет Джорджии, Гиперфизика, «Магнетрон»
  • Государственный университет Джорджии, Гиперфизика, «Микроволновые печи»
  • Микроволны101, «Магнетроны»
  • Вики по истории инженерии и технологии, «Полостной магнетрон»
  • Музей клапанов, «CV64»
  • Лампы и трубки, «CV64 Ранний британский магнетрон с резонаторами S-диапазона»
  • Radar Tutorial EU, «Магнетрон»
  • Амплеон Н.В., «РФ твердотельная кулинария»
  • ARMMS RF and Microwave Society, «Краткое изложение развития магнетронов»

Что такое магнетрон? Определение, конструкция, работа и применение магнетрона

Определение : Магнетрон — это устройство, генерирующее электромагнитную волну большой мощности. Он в основном рассматривается как самовозбуждающийся СВЧ-генератор. И также известен как прибор с перекрестным полем .

Причина этого названия в том, что электрическое и магнитное поля, создаваемые внутри трубки, взаимно перпендикулярны друг другу, поэтому они пересекают друг друга.

Содержание: Магнетрон

  1. Принцип работы
  2. Строительство
  3. рабочий
  4. Частота, давящая и тянущая
  5. Преимущества
  6. Недостатки
  7. Приложения
Принцип работы

Магнетрон — это, по сути, вакуумная трубка большой мощности с множеством полостей. Он также известен как магнетрон полости из-за наличия анода в резонансной полости трубки.

Принцип действия магнетрона таков, что когда электроны взаимодействуют с электрическим и магнитным полем в резонаторе, генерируются колебания большой мощности.

Магнетроны в основном используются в радарах как единственный мощный источник радиочастотного сигнала в качестве генератора мощности, несмотря на усилитель мощности. Он был изобретен в 1921 году Альбертом Халлом. Однако усовершенствованный магнетрон с резонатором большой мощности был изобретен в 1940 Джоном Рэндаллом и Гарри Бутом.

В этой статье мы обсудим, как работает магнетрон с резонатором. Но перед этим мы должны знать, как устроен магнетрон.

Конструкция магнетронов

На рисунке показан магнетрон с 8 полостями:

Цилиндрический магнетрон имеет цилиндрический катод определенной длины и радиуса, расположенный в центре, вокруг которого находится цилиндрический анод. Полости расположены по окружности анода на одинаковом расстоянии.

Кроме того, область, существующая между анодом и катодом трубки, известна как пространство / область взаимодействия .

Здесь следует отметить, что существует разность фаз 180 ° между соседними полостями. Следовательно, резонаторы будут передавать свое возбуждение от одного резонатора к другому с фазовым сдвигом 180 °.

Таким образом, мы можем сказать, что если одна пластина положительна, то автоматически соседняя пластина будет отрицательной. И это наглядно показано на приведенном выше рисунке.

Более конкретно, мы можем сказать, что края и полости показывают соотношение фаз 180 °.

Как мы уже обсуждали, здесь электрическое и магнитное поля перпендикулярны друг другу.А магнитное поле создается с помощью постоянного магнита.

Работа магнетрона

Возбуждение катода магнетрона обеспечивается источником постоянного тока, который вызывает выход из него электронов.

Здесь, в этом разделе, мы обсудим работу магнетрона в двух категориях. Первый без применения ВЧ-входа к аноду, а второй — с применением ВЧ-входа.

1. При отсутствии РЧ входа

Случай I : Когда магнитное поле равно 0 или отсутствует

При отсутствии магнитного поля электрон, выходящий из катода, радиально движется к аноду.Это показано на рисунке ниже:

Это так, потому что движущийся электрон не испытывает воздействия магнитного поля и движется по прямой траектории.

Случай II : При наличии небольшого магнитного поля

Если внутри магнетрона существует небольшое магнитное поле, то электрон, выходящий из катода, немного отклонится от своего прямого пути. И это вызовет искривленное движение электрона от катода к аноду, как показано на рисунке: Это движение электрона является результатом действия на него электрической, а также магнитной силы.

Случай III : В случае дальнейшего увеличения магнитного поля электроны, выходящие из катода, сильно отклоняются магнитным полем. И проведите по поверхности катода, как показано ниже: Это приводит к тому, что анодный ток становится равным 0. Значение магнитного поля, которое заставляет анодный ток становиться равным 0, известно как критическое магнитное поле .

Если магнитное поле увеличивается за пределы критического магнитного поля. Тогда электрон отскочит обратно к самому катоду, не достигнув анода.

Достижение испускаемых электронов от катода обратно к нему известно как обратный нагрев . Поэтому, чтобы избежать этого, подача электроэнергии на катод должна быть отключена после того, как в трубке возникнут колебания.

2. При наличии РЧ поля

Случай I : Если на анод магнетрона подается активный РЧ-вход, то в пространстве взаимодействия магнетрона возникают колебания. Итак, когда электрон испускается с катода на анод, он передает свою энергию, чтобы колебаться.

Такие электроны называются привилегированными электронами . В этом состоянии электроны будут иметь низкую скорость и, таким образом, потребуется довольно много времени, чтобы добраться от катода до анода.

Это показано на рисунке ниже:

Случай II : Другое условие возникает при наличии РЧ входа. В этом случае электрон, испускаемый катодом во время движения, забирает энергию из колебаний, тем самым увеличивая свою скорость.

Таким образом, несмотря на то, что электроны достигают анода, они отскакивают обратно к катоду, и эти электроны известны как нежелательные электроны .

Распространение нежелательных электронов показано ниже:

Случай III : При дальнейшем увеличении ВЧ-входа электрон, испускаемый во время движения, увеличивает свою скорость, чтобы догнать электрон, выпущенный ранее, со сравнительно меньшей скоростью.

Итак, все те электроны, которые не получают энергию от колебаний для своего движения, известны как привилегированные электроны.И эти благоприятные электроны образуют электронный сгусток или электронное облако и достигают анода от катода.

Формирование электронного сгустка внутри трубки известно как эффект фазовой фокусировки .

Из-за этого орбита электрона ограничивается спицами. Эти спицы вращаются в соответствии с некоторой дробной величиной количества электронов, испускаемых катодом, пока не достигнут анода, передавая свою энергию колебаниям.

Однако электроны, выпущенные из области катода между спицами, заберут энергию поля и очень быстро вернутся на катод.Но эта энергия очень мала по сравнению с энергией, выделяемой на колебания. Это показано на рисунке ниже:

Движение этих благоприятных электронов внутри трубки увеличивает поле, существующее между зазорами в полости. Это приводит к устойчивым колебаниям внутри магнетрона, обеспечивая высокую мощность на выходе.

Частота толкания и извлечения

Изменение частоты колебаний магнетрона приводит к появлению термина «выталкивание» и «вытягивание» частоты.

Когда напряжение, прикладываемое к аноду магнетрона, изменяется, это вызывает изменение скорости электронов, движущихся от катода к аноду. В результате изменяется частота колебаний.

Таким образом, мы можем сказать, что когда резонансная частота магнетрона изменяется из-за изменения анодного напряжения, это известно как смещение частоты .

Изменение резонансной частоты иногда является результатом изменения импеданса нагрузки магнетрона.Импеданс нагрузки меняется, когда изменение является чисто резистивным или реактивным. Это изменение частоты известно как затягивание частоты . Устойчивый источник питания может уменьшить это изменение частоты.

Преимущества
  • Магнетроны — это высокоэффективное устройство, используемое для генерации мощного микроволнового сигнала.
  • Использование магнетронов в радаре может создать радарную систему лучшего качества для целей слежения.
  • Обычно он небольшой по размеру, поэтому он менее громоздкий.
Недостатки
  • Достаточно дорого.
  • Несмотря на широкий диапазон частот, существует недостаток управляемости генерируемой частоты.
  • Он предлагает среднюю мощность от 1 до 2 киловатт.
  • Магнетроны довольно шумные.

Применения магнетрона

  • Основным применением магнетрона является импульсная радиолокационная система для создания мощного микроволнового сигнала.
  • Магнетроны также используются в нагревательных приборах, таких как микроволновые печи, для создания колебаний с фиксированной частотой.
  • Перестраиваемые магнетроны находят свое применение в генераторах развертки.

Примечательно, что этот режим работы магнетрона также известен как π-режим. Это происходит потому, что между двумя соседними пластинами поддерживается правильный фазовый сдвиг 180 °. Также следует отметить, что колебания создаются только в π-режиме.

Принцип работы микроволновой печи — обзоры устройств

Как известно, использование микроволн для приготовления пищи было изобретено Перси Лебароном Спенсером в 1945 году.Уже в 1947 году была создана первая микроволновая печь, которая весила более 660 фунтов. Но во второй половине 20 века специалисты неоднократно обсуждали безопасность приготовления в микроволновой печи, что, конечно же, ограничивало распространение этих устройств. Ограничивающим фактором в тот период была и невозможность использования традиционной металлической посуды.

Но сегодня эти две проблемы полностью решены. Компании предлагают огромный ассортимент специальной пластиковой и стеклянной посуды для СВЧ по доступной цене, а многочисленные исследования неоднократно доказывали полную безопасность современных моделей.Кроме того, надежное дверное экранирование полностью исключает проникновение в помещение мощного СВЧ-излучения.

Однако есть простой способ самостоятельно проверить качество дверной заслонки. Достаточно вставить в камеру мобильный телефон, закрыть дверь и набрать ее номер. Отсутствие связи будет убедительным доказательством надежности дверной заслонки. Тем не менее, знание принципа работы микроволновой печи может дополнительно снять подозрения о возможном вреде от ее использования.

Технические характеристики современных моделей варьируются в широком диапазоне, что влияет на их функциональность, цену и, соответственно, выбор оптимальной СВЧ.

Принцип действия

Как известно, микроволновая печь использует бесконтактный нагрев за счет преобразования электромагнитной энергии в тепло.

Традиционные методы приготовления предполагают поступление тепла на поверхность пищи. Дальнейшее тепло распределяется внутри за счет теплопроводности. Процесс разогрева пищи в микроволновой печи принципиально отличается.В этом случае тепло внутри пищи генерируется с помощью молекул воды.

Следовательно, скорость объемного нагрева микроволнами значительно выше.

Микроволновое излучение не вызывает химических изменений в продуктах питания и сохраняет от 75 до 98% содержащихся в них витаминов. Для сравнения: обычная термообработка обеспечивает сохранность всего 35-60%.

Основные компоненты

Микроволновая печь содержит:

— рабочая камера с экранированной дверцей;

— трансформатор высоковольтный для питания магнетрона;

— схема включения и управления;

— магнетрон для генерации СВЧ-излучения;

— волновод для передачи излучения от магнетрона к камере.

Схема демонстрирует их традиционное размещение.

Вспомогательные элементы:

— поворотный стол увеличивает равномерность нагрева;

— цепь управления; p>

— вентилятор для охлаждения магнетрона и вентиляции камеры.

Процесс работы

СВЧ-генератор называется магнетроном и является основным элементом устройства. Специальный трансформатор — стабилизатор — самый дорогой элемент.

Обеспечивает питание магнетрона.Его номинальное рабочее напряжение на высоковольтной обмотке 2100-2300 В, номинальное напряжение первичной обмотки 3-3,2 В. Но его нет в современных инверторных СВЧ-печах, использующих иной принцип регулирования мощности магнетрона.

Отличительной чертой таких трансформаторов является высокая индуктивность рассеяния высоковольтной обмотки и особая конструкция магнитопровода с магнитными шунтами. Они обеспечивают стабильность высокого напряжения. Это значение изменяется всего на 1,2% при колебании напряжения питания на 10%.

Отдельные элементы магнитопровода свариваются друг с другом для обеспечения бесшумной работы трансформатора. Накопительный высоковольтный конденсатор емкостью от 0,8 до 1,2 мкФ рассчитан на работу при напряжении до 10 кВ.

Прямоугольный волновод используется в качестве линии для передачи энергии от магнетрона к эмиттеру. Излучатель обеспечивает ВЧ-мощность в рабочей камере. Конструкция излучателя и волновода обеспечивает согласование рабочей камеры с магнетроном.Излучатель возбуждает в камере широкий спектр волн для обеспечения равномерности нагрева.

Рабочая камера представляет собой полый прямоугольный резонатор. Размеры внутренних стенок намного больше длины волны. Электромагнитные волны многократно отражаются в камере от ее стенок и образуют многочисленные стоячие волны электромагнитного поля с узлами и пучками.

Пищевая термообработка

Напряженность электромагнитного поля в камере увеличена до уровня поглощения микроволновой энергии пищей.Точечный нагрев пищи пропорционален квадрату эффективного значения напряженности электрического поля в данной точке.

Инженеры обеспечивают оптимальное наложение стоячих волн для максимальной однородности нагрева пищи. Но, к сожалению, идеальная равномерность нагрева невозможна из-за значительных колебаний диэлектрических свойств и формы блюд и посуды. Поэтому эта проблема решается дополнительными методами.

Сюда входят:

— поворотный стол для пищевых продуктов;

— наложение оси вращения антенны на ось симметрии рабочей камеры;

— несимметричная форма диаграммы направленности;

— крыльчатка вращающаяся с металлическими лопастями, выполняющая функцию мешалки СВЧ потока;

— использование двух излучателей с разветвленным волноводом.

Дверца микроволновой печи

Дверца рабочей камеры — очень важная часть, потому что она предотвращает распространение микроволновой энергии на кухне. Поэтому конструкция двери довольно сложная.

Дверь имеет высокочастотную дроссельную заслонку по всему периметру, которая снижает мощность микроволн до безопасного значения. Открытая щель дроссельной заслонки заполнена специальным пластиком, который эффективно поглощает микроволновую энергию.

Конструкция дверцы обеспечивает очень плотное прилегание к плоскости лицевой поверхности рабочей камеры.Установленные официальные требования допускают зазор не более 0,5 мм. В этом случае плотность потока энергии вне СВЧ печи не превышает допустимого уровня — 2,1 мВт / см.

Характеристики

Регулировка мощности обычно осуществляется путем изменения соотношения длительностей пауз и периодов генерации магнетрона. Отсутствие пауз соответствует максимальной мощности. Равенство длительности паузы и периодов генерации соответствует уровню мощности 50% и т. Д.Управление работой магнетрона осуществляется через первичную обмотку трансформатора.

У всех микроволновых печей есть общая черта. Они не предназначены для использования посуды с содержанием металлов из-за риска возникновения индукции тока. Индукционный ток сопровождается искренним и может вызвать дуговую разрядку.

Панель управления современных моделей обеспечивает их программирование и отключение устройства при нарушении блокировки двери или при повышении температуры магнетрона, трансформатора или в рабочей камере.Органы управления включают электромеханические циферблаты, электронные кнопки и сенсорную панель.

Некоторые встроенные и комбинированные современные микроволновые печи поддерживают управление по Wi-Fi. В ролике демонстрируются возможности умной микроволновки с поддержкой Alexa.

Что такое микроволновая печь и как она работает?

Микроволновая печь и она работает

Микроволновые печи сейчас очень распространены на наших кухнях. Мы готовим или разогреваем пищу с невероятной скоростью благодаря электромагнитному излучению и электричеству.Но иногда мы действительно задаемся вопросом, как работает микроволновая печь? Здесь мы объяснили принцип работы микроволновой печи.

Микроволновая печь

Краткая история микроволновой печи.

Американский инженер Перси Спенсер изобрел микроволновую печь во время Второй мировой войны. На самом деле, настоящая заслуга в разработке резонаторного магнетрона в Великобритании. Полостной магнетрон производит волны малой длины. Эти длины волн идеально подходят для использования в микроволновой печи. Однако эти агрегаты были огромными и не подходили для домашнего использования.

Кроме того, Sharp Corporation представила первую коммерческую микроволновую печь в 1970 году. Эти микроволновые печи были небольшими и их можно было легко разместить в домашних условиях. Кроме того, стоимость этих микроволновых печей была низкой по сравнению с предыдущими версиями. С тех пор микроволновая печь стала частью каждой кухни по всему миру.

Как работает микроволновая печь?

Прежде всего, микроволновые печи нагревают пищу изнутри, пропуская через нее электромагнитное излучение.Источником электромагнитного излучения является магнетрон внутри микроволновой печи. Эти излучения являются неионизирующими излучениями. Кроме того, частота микроволн выше, чем у радиоволн, но ниже, чем у инфракрасного света.

Магнетрон забирает электричество из электросети и преобразует его в микроволны с частотой выше радиоволн. Затем этот магнетрон направляет эти волны по волноводу.

Кроме того, пища внутри микроволновой печи непрерывно вращается круговыми движениями.Таким образом, обеспечивается равномерное нагревание блюд. Микроволны внутри металлического отделения духовки колеблются в разных направлениях. Отражающие поверхности внутри духовки заставляют их колебаться в разных направлениях. Во время этого движения через пищу проходят волны.

Волны, проходя сквозь пищу, вызывают колебания молекул в ней. По мере того, как через молекулы проходит все больше и больше волн, они начинают очень быстро вибрировать и выделять тепло. Таким образом, эти волны передают энергию пище, делая ее горячей.

Кроме того, микроволны нагревают молекулы воды быстрее, чем любые другие молекулы. Таким образом, пища с более высоким содержанием воды нагревается быстрее, если сравнивать ее с твердой или полутвердой пищей.

Микроволны не проникают глубоко внутрь пищи. Внутри пища обычно готовится за счет кондукции. Это означает, что вам нужно подождать, пока температура внутри продукта не достигнет температуры приготовления за счет теплопроводности, а не микроволн. Мы должны помнить об этом.В противном случае пища внутри останется сырой, а внешний слой будет выглядеть готовым.

Безопасность и микроволновые печи

В микроволновой печи приняты меры безопасности, чтобы микроволны не выходили за пределы микроволновой печи. Отверстия в стене микроволновой печи не будут пропускать волны наружу, потому что волны большие и не выходят наружу. Еще одна мера безопасности — автоматическое отключение магнетрона при случайном или намеренном открытии двери. Таким образом, он быстро перестает производить микроволны.

Более того, волны каким-либо образом выходят наружу, они не повреждают ткани человека. По мере того, как волны выходят за пределы духовки, уровни энергии волн падают с расстоянием. Следовательно, у них недостаточно энергии, чтобы повредить человеческие ткани, когда выходят волны. Но вам следует заменить или отремонтировать микроволновую печь, если вы обнаружите, что она течет наружу, чтобы быть более безопасной.

Скорость и эффективность.

Микроволновая печь нагревает пищу быстрее, и это ее самое большое преимущество.Вы также думаете, что это будет более эффективно, так как на приготовление еды потребуется меньше времени. К сожалению, это не так. Микроволновая печь требует много электроэнергии, поскольку сам магнетрон не так эффективен, когда дело доходит до преобразования в микроволны.

Кроме того, вам потребуется дополнительный двигатель, чтобы вращать продукты внутри круговыми движениями. Вам также необходимо охладить магнетрон. Магнетрон довольно быстро нагревается, и для его охлаждения может потребоваться дополнительный вентилятор. Все это дополнение почти приближается к эффективности традиционной духовки.Так что особой разницы в эффективности нет. Но да, вы можете приготовить или разогреть пищу в микроволновой печи быстрее, чем в традиционной духовке.

Итак, микроволновая печь изменила способ приготовления пищи. Это также открыло больше возможностей в индустрии упаковки для пищевых продуктов. Теперь вы можете приготовить вкусную еду на столе за считанные минуты.

Часы работы СВЧ:

Читайте дальше: Что такое беспроводная зарядка? >>

Magnetron — обзор | Темы ScienceDirect

5.2 Механизм микроволнового нагрева

Как указано в международном соглашении, предпочтительные частоты микроволнового нагрева составляют 915 МГц ( λ = ~ 33 см) и 2,45 ГГц ( λ = ~ 12 см) [15]. Электромагнитное излучение, генерируемое магнетроном, заставляет дипольные молекулы пытаться вращаться синхронно с переменным электрическим полем. На молекулярном уровне сопротивление этому вращению приводит к трению между молекулами и вызывает эффект нагрева [16].

При обычном термическом нагреве процесс регулируется температурой поверхности, а также некоторыми физическими свойствами нагреваемого материала, такими как теплоемкость, плотность и температуропроводность. Тогда как при микроволновом нагреве эффект нагрева обусловлен взаимодействием диполей с электромагнитным излучением. При микроволновом нагреве материал получает высокие температуры и скорости нагрева [17]. Эффективность преобразования электрической энергии в тепловую при микроволновом нагреве высока (80–85%) [18].

Техника микроволнового нагрева — это метод объемного нагрева, который включает в себя другие процедуры нагрева, такие как нагрев за счет теплопроводности в диапазоне рабочих частот 0–6 Гц и нагрев за счет индукции в диапазоне рабочих частот 50 Гц – 30 кГц. Омический нагрев происходит в диапазоне частот между индукцией и проводимостью. Радиочастотный нагрев в диапазоне частот 1–100 МГц используется для нагрузок с высоким удельным сопротивлением при размещении между электродами [15]. Мередит [19] приводит типичный электромагнитный спектр с примерами приложений, выполняемых в различных частотных диапазонах.

В учебниках есть много принципов и теорий, объясняющих механизм микроволнового нагрева. В общем, существует три механизма, с помощью которых достигается эффект нагрева в методах микроволнового нагрева, которые резюмируются следующим образом.

Дипольная переориентация или поляризация: этот механизм объясняет, как достигается эффект нагрева в полярных соединениях. Когда полярное соединение подвергается микроволновому излучению, оно смещает атомные ядра из их положения равновесия (атомная поляризация) или электроны вокруг ядер (электронная поляризация), образуя индуцированные диполи.Эти диполи имеют тенденцию переориентировать себя под действием переменного электрического поля. Эта перестройка происходит со скоростью триллион раз в секунду [15, 20]. В результате между вращающимися молекулами возникает трение, в результате чего выделяется тепло во всем объеме материала.

Диполярная ориентация была четко объяснена в разделе «Основы микроволн» компании Denshi CO, Ltd. [21], например, вода содержит атом кислорода и два атома водорода под углом 104.5 градусов [22]. Это неравномерное разделение электронов дает молекуле воды легкий отрицательный заряд, близкий к ее атому кислорода, и легкий положительный заряд, близкий к ее атомам водорода. Диполь образовался из-за того, что атомы берут на себя небольшой заряд каждого плюса (+) и минуса (-). Этот диполь или диэлектрический материал подвергается воздействию электрического поля, такого как радиоволны или микроволны; он вибрирует более или менее 2450 миллионов раз, чтобы его заменить в секунду [23].

На более низкой частоте радиоволны вода не может генерировать тепло, потому что постоянный диполь внезапно следует направлению электрического поля.Точно так же в высокочастотном диапазоне диполи не смогут отслеживать быстрые изменения направления электрического поля. Таким образом, вода не производит тепла. В умеренном диапазоне частот вода подвергается дипольной ориентации. В этом случае за электрическим полем постоянный диполь немного изменяется. Вода забирает энергию из радиоволны и выделяет тепло в течение времени задержки в этом номинальном частотном диапазоне [21].

Межфазная поляризация или поляризация Максвелла-Вагнера: этот механизм объясняет, как достигается эффект нагрева в гетерогенных системах.Здесь поляризация возникает из-за различий в диэлектрической проницаемости и проводимости веществ на границах раздела. Диэлектрические потери и искажения поля из-за накопления объемного заряда приводят к эффекту нагрева.

Механизм проводимости: В электропроводящем материале электрические токи заряженных частиц или носителей (электронов, ионов и т. Д.) Перемещаются через материал из-за приложенного извне электромагнитного поля. Эти движущиеся электрические токи проходят через относительно высокое электрическое сопротивление в структуре материала, выделяя тепло [15, 20].

Диэлектрические свойства необходимы для определения максимального нагрева материала при воздействии электромагнитного излучения (микроволнового излучения). На тангенс угла диэлектрических потерь (Tan δ ) поглотителя микроволн в основном влияют диэлектрическая проницаемость ( ε ′ ) и коэффициент диэлектрических потерь ( ε ″ ). Диэлектрическая проницаемость определяет, сколько энергии поглощается и сколько отражается, тем самым показывая способность материала поляризоваться электрическим полем.Коэффициент диэлектрических потерь определяет эффективность преобразования. Отношение этих двух величин дает коэффициент рассеяния материала.

(5.1) Tanδ = ε ″ ε ′

Таким образом, хороший микроволновый приемник должен иметь материал с высоким значением ε ″ и умеренным значением ε ′ [15].

Основы магнетрона | M-Press Systems

В большинстве промышленного микроволнового оборудования используются магнетроны для генерации необходимой микроволновой энергии. Это связано с тем, что магнетроны относительно дешевы, компактны, просты в эксплуатации и имеют хороший КПД.Только в приложениях с высокими требованиями к стабильности частоты и фазы используются другие типы электронных ламп, например Гиротроны или клистроны.

Принцип работы магнетронов

Магнетрон состоит из нити накала в центре трубки, действующей как катод, с телом анода, окружающим нить. Нить накала и тело анода упакованы в одно устройство вместе с постоянными магнитами и, в некоторых случаях, дополнительными электромагнитными катушками, которые позволяют контролировать и изменять выходную мощность магнетрона.Затем внутренняя часть анодного тела, содержащего нить накала, откачивается до высокого вакуума и герметизируется.

Нить изготовлена ​​из специального материала, например Торированный вольфрам, который при нагревании примерно до 2400 ° C начинает испускать свободные электроны. Поскольку нить накала подключена к отрицательному полюсу источника постоянного тока высокого напряжения, а тело анода — к положительному полюсу, электроны ускоряются электрическим полем по направлению к аноду. Однако из-за того, что магнитное поле ориентировано перпендикулярно пути ускоренных электронов, они вынуждены следовать по спиральной траектории, ведущей от нити накала к телу анода.Анодное тело содержит ряд выточенных в нем полостей, и когда поток электронов проходит через эти полости, они «сгруппированы» вместе из-за резонансных эффектов. Одна из полостей связана с антенной, расположенной вне магнетрона, и преобразует часть кинетической энергии электронных сгустков в радиочастотную (микроволновую) энергию, которая передается от антенны в волновод через устройство, называемое пусковой установкой. Обратите внимание, что выходная частота магнетрона напрямую зависит от механических размеров полостей, обработанных в корпусе анода, поэтому магнетроны становятся меньше с увеличением выходной частоты.

Работа магнетронов

Для работы магнетрону требуются 2 источника питания:

  • Источник питания с нитью

    Источник питания с нитью служит для нагрева нити до температуры, достаточно высокой для испускания достаточного количества свободных электронов . Этот источник питания может обеспечивать переменное или постоянное напряжение с типичным напряжением от 2,5 до 15 В и токами от нескольких А до 100 А и выше. Напряжение на нити накала необходимо приложить за некоторое время до напряжения на катоде, чтобы нить накала имела достаточно времени для предварительного нагрева.Кроме того, из-за эффекта, называемого «обратной бомбардировкой», напряжение на нити, возможно, придется уменьшить, когда магнетрон вырабатывает микроволновую энергию, поэтому в магнетронах с переменной выходной мощностью напряжение нити часто контролируется электронной схемой, сохраняя нить накала. при оптимальной температуре.
  • Источник питания высокого напряжения

    Источник высокого напряжения — это фактический источник питания магнетрона, поскольку он обеспечивает энергию для ускорения электронов.Источник высокого напряжения всегда является источником постоянного тока, в зависимости от выходной мощности и области применения доступны различные типы источников питания. Типичные значения напряжения находятся в диапазоне от 2 кВ (2000 В) до 15 кВ и выше, при токах питания от нескольких 100 мА до нескольких А.

Срок службы магнетронов

Хотя некоторые другие факторы могут повлиять на срок службы магнетрона, например недостаточное время предварительного нагрева для нити накала или скачки напряжения на источнике высокого напряжения, при нормальной работе оно ограничивается в основном сроком службы нити накала.Из-за испарения тория и «пескоструйного эффекта», вызванного обратной бомбардировкой электронов, нить накала изнашивается, что дает магнетрону ограниченный срок службы, который обычно составляет от 2000 до 10.000 часов. Чтобы продлить срок службы, необходимо учитывать следующие моменты:

  • Обращение и хранение

    Нити магнетронов, особенно сделанные из торированного вольфрама, довольно хрупкие и могут быть легко разрушены ударами или сильными вибрациями.Кроме того, загрязнение корпуса фильтра или антенны грязью или пылью может привести к преждевременному выходу из строя магнетронов, поэтому с ними следует обращаться осторожно и безопасно хранить в их оригинальной упаковке до тех пор, пока они не будут установлены внутри микроволнового генератора.
  • Подача нити

    Максимальный срок службы магнетрона может быть достигнут только в том случае, если температура нити накала поддерживается постоянной во всех режимах работы. Поэтому следует часто проверять подачу нити, по крайней мере, перед установкой нового магнетрона.Это особенно важно в случае электронных (переменных) филаментов.
  • Пусковая секция

    Пусковая секция отвечает за передачу микроволновой энергии от магнетрона в волноводную систему, неправильно спроектированные или плохо обслуживаемые пусковые установки приводят к недостаточной связи и перегреву магнетрона.
  • Согласование нагрузки

    Плохо согласованные нагрузки вызывают перегрев магнетрона из-за отраженной микроволновой энергии. Нагрузки всегда должны согласовываться с использованием подходящих элементов настройки, если импеданс нагрузки изменяется во время работы, следует установить автонастройки или циркуляторы для защиты магнетрона.
  • Циркуляторы

    Циркуляторы — самый безопасный вариант для защиты магнетронов в приложениях с большой мощностью. Однако циркуляционные насосы требуют регулярного обслуживания, чтобы гарантировать, что они работают в соответствии со спецификациями и эффективно защищают магнетрон.
  • Система охлаждения

    Магнетроны требуют охлаждения тела анода, корпуса фильтра и антенны. В частности, охлаждающий воздух для корпуса фильтра и антенны должен быть чистым, сухим и без пыли. Если корпус анода имеет водяное охлаждение, убедитесь, что вода хорошего качества и не приводит к образованию накипи в охлаждающих каналах.
  • Система управления

    Магнетроны высокой мощности и магнетроны с регулируемой выходной мощностью используют электронные системы управления для контроля и регулирования подачи высокого напряжения, анодного тока, выходной мощности и нагрева нити.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *