Принцип действия выпрямительного диода: принцип действия и основные параметры

Содержание

принцип действия и основные параметры

Выпрямительный диод — это прибор проводящий ток только в одну сторону. В основе его конструкции один p-n переход и два вывода. Выпрямительный диод изменяет ток переменный на постоянный. Помимо этого, выпрямительные диоды повсеместно практикуют в электросхемах умножения напряжения, цепях, где отсутствуют жесткие требования к параметрам сигнала по времени и частоте.

  • Принцип работы
  • Основные параметры устройств
  • Выпрямительные схемы
  • Импульсные приборы
  • Импортные приборы

Принцип работы

Принцип работы этого устройства основывается на особенностях p-n перехода. Возле переходов двух полупроводников расположен слой, в котором отсутствуют носители заряда. Это запирающий слой. Его сопротивление велико.

При воздействии на слой определенного внешнего переменного напряжения, толщина его становится меньше, а впоследствии и вообще исчезнет. Возрастающий при этом ток называют прямым. Он проходит от анода к катоду. Если внешнее переменное напряжение будет иметь другую полярность, то запирающий слой будет больше, сопротивление возрастет.

Разновидности устройств, их обозначение

По конструкции различают приборы двух видов: точечные и плоскостные. В промышленности наиболее распространены кремниевые (обозначение — Si) и германиевые (обозначение — Ge). У первых рабочая температура выше. Преимущество вторых — малое падение напряжения при прямом токе.

Принцип обозначений диодов – это буквенно-цифровой код:

  • Первый элемент – обозначение материала из которого он выполнен;
  • Второй определяет подкласс;
  • Третий обозначает рабочие возможности;
  • Четвертый является порядковым номером разработки;
  • Пятый – обозначение разбраковки по параметрам.

Вольт-амперную характеристику (ВАХ) выпрямительного диода можно представить графически. Из графика видно, что ВАХ устройства нелинейная.

В начальном квадранте Вольт-амперной характеристики ее прямая ветвь отражает наибольшую проводимость устройства, когда к нему приложена прямая разность потенциалов. Обратная ветвь (третий квадрант) ВАХ отражает ситуацию низкой проводимости. Это происходит при обратной разности потенциалов.

Реальные Вольт-амперные характеристики подвластны температуре. С повышением температуры прямая разность потенциалов уменьшается.

Из графика Вольт-амперной характеристики следует, что при низкой проводимости ток через устройство не проходит. Однако при определенной величине обратного напряжения происходит лавинный пробой.


ВАХ кремниевых устройств отличается от германиевых. ВАХ приведены в зависимости от различных температур окружающей среды. Обратный ток кремниевых приборов намного меньше аналогичного параметра германиевых. Из графиков ВАХ следует, что она возрастает с увеличением температуры.

Важнейшим свойством является резкая асимметрия ВАХ. При прямом смещении – высокая проводимость, при обратном – низкая. Именно это свойство используется в выпрямительных приборах.

Анализируя приборные характеристики, следует отметить: учитываются такие величины, как коэффициент выпрямления, сопротивление, емкость устройства. Это дифференциальные параметры.

Коэффициент выпрямления отражает качество выпрямителя.

Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box». Ежемесячные платежи станут на 30-50% меньше, чем были до использования экономителя. Он убирает реактивную составляющую из сети, в результате чего снижается нагрузка и, как следствие, ток потребления. Электроприборы потребляют меньше электроэнергии, снижаются затраты на ее оплату.


Коэффициент выпрямления можно рассчитать. Он будет равен отношению прямого тока прибора к обратному. Такой расчет приемлем для идеального устройства. Значение коэффициента выпрямления может достигать нескольких сотен тысяч. Чем он больше, тем лучше выпрямитель делает свою работу.

Основные параметры устройств

Какие же параметры характеризуют приборы? Основные параметры выпрямительных диодов:

  • Наибольшее значение среднего прямого тока;
  • Наибольшее допустимое значение обратного напряжения;
  • Максимально допустимая частота разности потенциалов при заданном прямом токе.

Исходя из максимального значения прямого тока, выпрямительные диоды разделяют на:

  • Приборы малой мощности. У них значение прямого тока до 300 мА;
  • Выпрямительные диоды средней мощности. Диапазон изменения прямого тока от 300 мА до 10 А;
  • Силовые (большой мощности). Значение более 10 А.

Существуют силовые устройства, зависящие от формы, материала, типа монтажа. Наиболее распространенные из них:

  • Силовые приборы средней мощности. Их технические параметры позволяют работать с напряжением до 1,3 килоВольт;
  • Силовые, большой мощности, могущие пропускать ток до 400 А. Это высоковольтные устройства. Существуют разные корпуса исполнения силовых диодов. Наиболее распространены штыревой и таблеточный вид.

Выпрямительные схемы

Схемы включения силовых устройств бывают различными. Для выпрямления сетевого напряжения они делятся на однофазные и многофазные, однополупериодные и двухполупериодные. Большинство из них однофазные. Ниже представлена конструкция такого однополупериодного выпрямителя и двух графиков напряжения на временной диаграмме.


Переменное напряжение U1 подается на вход (рис. а). Справа на графике оно представлено синусоидой. Состояние диода открытое. Через нагрузку Rн протекает ток. При отрицательном полупериоде диод закрыт. Поэтому к нагрузке подводится только положительная разность потенциалов. На рис. в отражена его временная зависимость. Эта разность потенциалов действует в течение одного полупериода. Отсюда происходит название схемы.

Самая простая двухполупериодная схема состоит из двух однополупериодных. Для такой конструкции выпрямления достаточно двух диодов и одного резистора.


Диоды пропускают только положительную волну переменного тока. Недостатком конструкции является то, что в полупериод переменная разность потенциалов снимается лишь с половины вторичной обмотки трансформатора.

Если в конструкции вместо двух диодов применить четыре коэффициент полезного действия повысится.

Выпрямители широко используются в различных сферах промышленности. Трехфазный прибор задействован в автомобильных генераторах. А применение изобретенного генератора переменного тока способствовало уменьшению размеров этого устройства. Помимо этого, увеличилась его надежность.

В высоковольтных устройствах широко применяют высоковольтные столбы, которые скомпонованы из диодов. Соединены они последовательно.

Импульсные приборы

Импульсным называют прибор, у которого время перехода из одного состояния в другое мало. Они применяются для работы в импульсных схемах. От своих выпрямительных аналогов такие приборы отличаются малыми емкостями p-n переходов.

Для приборов подобного класса, кроме параметров, указанных выше, следует отнести следующие:

  • Максимальные импульсные прямые (обратные) напряжения, токи;
  • Период установки прямого напряжения;
  • Период восстановления обратного сопротивления прибора.

В быстродействующих импульсных схемах широко применяют диоды Шотки.

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Существует множество приборов и устройств, которые преобразовывают электрический ток. Предлагаем рассмотреть, что такое выпрямительные диоды большой мощности и средней, их принцип работы, а также характеристики и применение.

Описание выпрямительных диодов

Выпрямительный электрический диод высокой и средней мощности (СВЧ) – это устройство, которое позволяет электрическому току двигаться только в одном направлении, в основном он используется для работы определенного источника питания. Выпрямительные диоды могут перерабатывать более высокий ток, чем обычные проводники. Как правило, они применяются для преобразования переменного тока в постоянный, частота которого не превышает 20 кгц. Схема их работы имеет следующий вид:

Фото — Принцип работы выпрямительного диода

Многие электрические приборы нуждаются в данных дискретных компонентах из-за того, что они могут выступать в роли интегральных схем. Чаще всего выпрямительные мощные диоды изготавливают из кремния, благодаря чему их поверхность PN-перехода довольно велика. Такой подход обеспечивает отличную передачу тока, при этом гарантируя отсутствие замыканий или перепадов.


Фото — Выпрямительные диодыВыпрямительные диоды

Кремниевые полупроводниковые выпрямители, ламповые термоэлектронные диоды изготавливаются при использовании таких соединений, как оксид меди или селена. С введением полупроводниковой электроники, выпрямители типа вакуумных трубок с металлической основой устарели, но до сих пор их аналоги используются в аудио и теле-аппаратуре. Сейчас для питания аппаратов от очень низкого до очень высокого тока в основном используются полупроводниковые диоды различных типов (быстродействующие блоки, иностранные германиевые приборы, отечественные устройства таблеточного исполнения, диоды Шоттки и т.д.).

Другие устройства, которые оснащены управляющими электродами, где требуется более простой способ ректификации или переменное выходное напряжение (как пример, для сварочных аппаратов) используют более мощные выпрямители. Это могут кремниевые или германиевые приборы. Это тиристоры, стабилитроны или другие контролируемые коммутационные твердотельные переключатели, которые функционируют как диоды, пропуская ток только в одном направлении. Их использует промышленная электроника, также они широко применяются для инженерной электротехники, сварки или контроля работы линий передач тока.


Фото — Выпрямительный диод и катод с анодом

Типы стандартных выпрямителей

Существуют различные силовые выпрямительные полупроводниковые диоды в зависимости от типа монтажа, материала, формы, количества диодов, уровня пропускаемого тока. Самыми распространенными считаются:

  1. Устройства средней силы, которые могут передавать ток силы от 1 до 6 Ампер. При этом технические параметры большинства приборов говорят, что такие диоды могут изменить ток с напряжение до 1,3 килоВольт;
  2. Выпрямительные диоды максимальной серии могут пропускать ток от 10 Ампер до 400, в основном они применяются как сверхбыстрые преобразователи, для контроля промышленной сферы деятельности. Эти устройства называются также высоковольтные;
  3. Низкочастотные диоды или маломощные.

Перед тем, как купить какие либо устройств данного типа, очень важно правильно подобрать основные параметры выпрямительных диодов. К ним относятся: характеристики ВАХ (максимальный обратный ток, максимальный пиковый ток), максимальное обратное напряжение, прямое напряжение, материал корпуса и средняя сила выпрямленного тока

Мы предоставляем таблицу, где Вы сможете в зависимости от своих потребностей, осуществить выбор типа диода. Указанные технические характеристики могут изменяться по требованию производителя, поэтому перед покупкой уточняйте информацию продавца.


Фото — Таблица низкочастотных диодов

Импортные (зарубежные) выпрямительные диоды (типа КВРС, SMD):


Фото — Таблица импортных диодов

Данные про силовые или высокочастотные диоды:


Фото — Силовые диоды

Выпрямительные схемы включения также бывают разные. Они могут быть однофазными (например, автомобильные и лавинные диоды) или многофазными (трехфазные считаются самыми популярными). Большинство выпрямители малой мощности для отечественного оборудования однофазны, но трехфазный очень важен для промышленного оборудования. Для генератора, трансформатора, станочных приспособлений.

Но при этом, для неконтролируемого мостового трехфазного выпрямителя используются шесть диодов. Поэтому его часто называют шестидиодным выпрямительным прибором. Мосты считаются импульсными и способны нормализовать и выпрямить даже нестабильный ток.

Для маломощных аппаратов (зарядного устройства) двойные диоды, соединенные последовательно с анодом первого диода, также соединены с катодом второго, а изготовлены в едином корпусе. Некоторые имеющиеся в продаже двойные диоды имеют в доступе все четыре терминала, которые можно настроить по своим потребностям.

Фото — Выпрямительный диод средней мощности

Для более высокой мощности одним дискретным устройством обычно используется каждый из шести диодов моста. Его можно применять как для поверхностного оборудования, так и для контроля более сложных приспособлений. Нередко шестидиодные мосты используют ограничительные схемы.

Видео: Принцип работы диодов

Маркировка выпрямительных диодов

В зависимости от конструкций и назначения, выпрямительные диоды маркируются следующим образом:

Исходя из таких данных, мы имеем следующие расшифровки:

КД – импульсный или выпрямительный диод кремниевого исполнения;

КЦ – кремниевые блоки выпрямительного типа.

Перед тем, как купить выпрямительные диоды в Харькове, Москве и любых других городах, обязательно уточняйте справочные характеристики у продавцов-консультантов.

Выпрямительный диод — это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Классификация

В соответствии со значением прямого тока, который является максимально допустимым, выпрямительный диод может иметь малую, среднюю и большую мощности:

  • малой — выпрямляют прямой ток до 300 mA;
  • выпрямительные диоды средней мощности — от 300 mA до 10 А;
  • большой — более 10 А.

Германий или кремний


По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.


Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые — только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Технология изготовления


Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Конструкция


Для того чтобы организовать защиту от воздействий извне, а также добиться надежного отвода тепла, кристалл, имеющий p-n-переход, монтируется в корпусе.
Диоды, имеющие малую мощность, производят в корпусе из пластмассы, снабдив гибкими внешними выводами. Выпрямительные диоды средней мощности имеют металлостеклянный корпус уже с жесткими внешними выводами. Детали большой мощности размещаются в корпусе из металлостекла или металлокерамики.

Кремниевые или германиевые кристаллы с p-n-переходом припаивают к кристаллодержателю, который одновременно служит основанием корпуса. К нему же приваривают корпус, имеющий стеклянный изолятор, сквозь который идет вывод одного из электродов.

Диоды малой мощности, которые имеют сравнительно малые габариты и вес, обладают гибкими выводами, при посредстве которых монтируются в схемах.

Поскольку токи, с которыми работают полупроводники средней мощности и мощные выпрямительные диоды, достигают значительных величин, их выводы намного мощнее. Нижняя их часть выполнена в виде массивного основания, отводящего тепло, оснащенного винтом и внешней поверхностью плоской формы, которая призвана обеспечивать надежный тепловой контакт с внешним радиатором.

Характеристики

Каждый тип полупроводников имеет свои рабочие и предельные параметры, которые подбирают для того, чтобы обеспечить работу в какой-либо схеме.

Параметры выпрямительных диодов:

  • I прям max — прямой ток, который максимально допустим, А.
  • U обрат max — обратное напряжение, которое максимально допустимо, В.
  • I обрат — обратный ток постоянный, мкА.
  • U прям — прямое напряжение постоянное, В.
  • Рабочая частота , кГц.
  • Температура работы , С.
  • Р max — рассеиваемая на диоде мощность, которая максимально допустима.

Характеристики выпрямительных диодов далеко не исчерпываются данным списком. Однако для выбора детали обычно их бывает достаточно.

Схема простейшего выпрямителя переменного тока


Рассмотрим, как работает схема (выпрямительный диод играет в ней главную роль) примитивного выпрямителя.

На его вход подается сетевое переменное напряжение с положительными и отрицательными полупериодами. К выходу выпрямителя подключается нагрузка (R нагр.), а функцию элемента, выпрямляющего ток, выполняет диод (VD).

Положительные полупериоды напряжения, поступающие на анод, вызывают открывание диода. В это время через него, а следовательно через нагрузку (R нагр.), которая питается от выпрямителя, протекает прямой ток (I прям.).

Отрицательные полупериоды напряжения, поступающие на анод диода, вызывают его закрывание. По цепи протекает небольшой обратный ток диода (I обр.). Здесь диод производит отсекание отрицательной полуволны переменного тока.

В результате выходит, что через подключенную к сети нагрузку (R нагр.), через диод (VD), теперь проходит пульсирующий, а не переменный ток одного направления. Ведь он может проходить исключительно в положительные полупериоды. В этом и заключается смысл выпрямления переменного тока.

Однако такое напряжение может запитать только нагрузку малой мощности, которая питается от сети переменного тока и не предъявляет серьезных требований к питанию, к примеру, лампы накаливания.

Лампа будет пропускать напряжение лишь при прохождении положительных импульсов, вследствие этого электроприбор подвергается слабому мерцанию, имеющему частоту 50 Гц. Правда, вследствие того, что нить подвержена тепловой инертности, она не сможет до конца остывать в перерывах между импульсами, а значит, мерцание будет почти не заметно.

В случае если такое напряжение подать на усилитель или приемник мощности, то в громкоговорителе будет слышен звук низкой частоты (частотой 50 Гц), который называется фоном переменного тока. Этот эффект происходит по причине того, что пульсирующий ток во время прохождения через нагрузку наводит в ней пульсирующее напряжение, порождающее фон.

Подобный недостаток в какой-то мере устраняется, если параллельно нагрузке включить фильтрующий конденсатор (C фильтр), емкость которого достаточно велика.

Конденсатор будет заряжаться импульсами тока при положительных полупериодах, и разряжаться через нагрузку (R нагр.) при отрицательных полупериодах. При достаточной емкости конденсатора за время, которое проходит между двумя импульсами тока, он не успеет полностью разрядиться, а следовательно, на нагрузке (R нагр.) будет постоянно находиться ток.

Но даже таким, относительно сглаженным, током также не следует питать нагрузку, ведь она будет продолжать фонить, потому что величина пульсаций (U пульс.) пока еще достаточно серьезна.

Недостатки

В выпрямителе, работу которого мы только что разобрали, с пользой применяется лишь половина волн переменного тока, вследствие этого на нем происходит потеря более чем половины входного напряжения. Такой вид выпрямления переменного тока получил название однополупериодного, а выпрямители, которые используют этот вид выпрямления, называются однополупериодными. Недостатки однополупериодных выпрямителей успешно устранены в выпрямителях, использующих диодный мост.

Диодный мост


Диодный мост — это компактная схема, которая составлена из четырех диодов, и служит цели преобразования переменного тока в постоянный. Мостовая схема дает возможность пропускать ток в каждом полупериоде, что выгодно отличает ее от однополупериодной. Диодные мосты производятся в форме сборок небольшого размера, которые заключены в корпус из пластмассы.

На выходе корпуса такой сборки имеются четыре вывода с обозначениями «+», «» или «~ », указывающими на назначение контактов. Однако диодные мосты встречаются и не в сборке, нередко они собираются прямо на печатной плате путем включения четырех диодов. Выпрямитель, который выполняется на диодном мосте, называется двухполупериодным.

%d0%b2%d1%8b%d0%bf%d1%80%d1%8f%d0%bc%d0%b8%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d0%b5%20%d0%b4%d0%b8%d0%be%d0%b4%d1%8b — с русского на все языки

Все языкиАнглийскийРусскийКитайскийНемецкийФранцузскийИспанскийИтальянскийЛатинскийФинскийГреческийИвритАрабскийСуахилиНорвежскийПортугальскийВенгерскийТурецкийИндонезийскийШведскийПольскийЭстонскийЛатышскийДатскийНидерландскийАрмянскийУкраинскийЯпонскийСанскритТайскийИрландскийТатарскийСловацкийСловенскийТувинскийУрдуИдишМакедонскийКаталанскийБашкирскийЧешскийГрузинскийКорейскийХорватскийРумынский, МолдавскийЯкутскийКиргизскийТибетскийБелорусскийБолгарскийИсландскийАлбанскийНауатльКомиВаллийскийКазахскийУзбекскийСербскийВьетнамскийАзербайджанскийБаскскийХиндиМаориКечуаАканАймараГаитянскийМонгольскийПалиМайяЛитовскийШорскийКрымскотатарскийЭсперантоИнгушскийСеверносаамскийВерхнелужицкийЧеченскийГэльскийШумерскийОсетинскийЧеркесскийАдыгейскийПерсидскийАйнский языкКхмерскийДревнерусский языкЦерковнославянский (Старославянский)МикенскийКвеньяЮпийскийАфрикаансПапьяментоПенджабскийТагальскийМокшанскийКриВарайскийКурдскийЭльзасскийФарерскийАбхазскийАрагонскийАрумынскийАстурийскийЭрзянскийКомиМарийскийЧувашскийСефардскийУдмурдскийВепсскийАлтайскийДолганскийКарачаевскийКумыкскийНогайскийОсманскийТофаларскийТуркменскийУйгурскийУрумскийБурятскийОрокскийЭвенкийскийМаньчжурскийГуараниТаджикскийИнупиакМалайскийТвиЛингалаБагобоЙорубаСилезскийЛюксембургскийЧерокиШайенскогоКлингонский

 

Все языкиАнглийскийНемецкийНорвежскийКитайскийИвритФранцузскийУкраинскийИтальянскийПортугальскийВенгерскийТурецкийПольскийДатскийЛатинскийИспанскийСловенскийГреческийЛатышскийФинскийПерсидскийНидерландскийШведскийЯпонскийЭстонскийТаджикскийАрабскийКазахскийТатарскийЧеченскийКарачаевскийСловацкийБелорусскийЧешскийАрмянскийАзербайджанскийУзбекскийШорскийРусскийЭсперантоКрымскотатарскийСуахилиЛитовскийТайскийОсетинскийАдыгейскийЯкутскийАйнский языкЦерковнославянский (Старославянский)ИсландскийИндонезийскийАварскийМонгольскийИдишИнгушскийЭрзянскийКорейскийИжорскийМарийскийМокшанскийУдмурдскийВодскийВепсскийАлтайскийЧувашскийКумыкскийТуркменскийУйгурскийУрумскийЭвенкийскийБашкирскийБаскский

Выпрямительные диоды: Параметры выпрямительных диодов

 

Выпрямительные диоды характеризуются статическими (\(U_{пр}\), \(I_{пр}\)), динамическими (\(I_{пр ср}\), \(U_{пр ср}\), \(I_{обр ср}\), \(U_{обр ср}\), \(f_р\), \(R_д\), \(C_д\)) и предельно допустимыми параметрами (\(I_{пр ср max}\), \(P_{д max}\), \(U_{обр max}\), \(U_{обр и max}\), \(T_{п max}\), \(I_{и max}\)). Для выпрямительных диодов большое значение имеет характер нагрузки (активная, емкостная или индуктивная), влияющий на форму и значение протекающего тока, т.е. определяющий режим работы диода.

Обратное напряжение (\(U_{обр max}\), \(U_{обр и п max}\), \(U_{обр и нп max}\)). Величина \(U_{обр max}\) соответствует максимально допустимому постоянному обратному напряжению, при котором диод может эксплуатироваться в течение всего срока службы. \(U_{обр и п max}\) — максимально допустимое импульсное повторяющееся напряжение. При непрерывно приложенном переменном импульсном напряжении \(U_{обр и п max}\) гарантируется долговременная работоспособность диода, например, в выпрямителе. Значение неповторяющегося импульсного обратного напряжения (\(U_{обр и нп max}\)) определяет перегрузочную способность диода по напряжению. Неповторяющееся переходное напряжение обусловливается обычно внешней причиной, и предполагается, что его действие исчезает полностью до появления следующего переходного напряжения. В документации на некоторые типы выпрямительных диодов установлено только одно из перечисленных допустимых значений напряжений: \(U_{обр и п max}\) либо \(U_{обр max}\). При этом следует иметь в виду, что при установлении нормы только на \(U_{обр max}\) допускается работа диода и при \(U_{обр и п max}\), равном \(U_{обр max}\), а при установлении нормы только на \(U_{обр и п max}\) постоянное рабочее напряжение следует снижать на 30…40% по сравнению с \(U_{обр и п max}\), например, при работе диода в резервируемых источниках питания постоянного тока. Каждое из перечисленных значений напряжения устанавливается, как правило, для всего диапазона рабочих температур.

Прямой ток (\(I_{пр max}\), \(I_{пр ср max}\)). Для прямого тока, в зависимости от условий эксплуатации диодов, также может нормироваться несколько его значений. Максимально допустимый прямой постоянный ток (\(I_{пр max}\)) в основном приводится для диодов малой мощности. Обычно наряду с \(I_{пр max}\) или вместо него указывается максимально допустимый средний ток (\(I_{пр ср max}\)), который важен при применении диодов в выпрямителях.{\circ}}\). Значение этого тока гарантируется на основании проводимых на предприятиях-изготовителях испытаний в течение заданного времени в указанном режиме. В этом случае максимальное амплитудное значение тока составляет \(3,14 \cdot I_{пр ср max}\), а его действующее значение — \(1,57 \cdot I_{пр ср max}\).

При работе диодов в выпрямителях на активно-емкостную нагрузку амплитудное и действующее значения тока могут значительно превышать их нормированное значение при активной нагрузке, поскольку угол проводимости в этом случае может уменьшаться (рис. 2.3‑2). Так, например, при допустимом коэффициенте пульсаций на выходе выпрямителя 0,1% максимальное амплитудное значение тока выпрямительных диодов (\(I_{пр и п}\)) может достигать \(15 \cdot I_{пр ср max}\), а действующее значение — \(3,5 \cdot I_{пр ср max}\), хотя среднее его значение будет оставаться равным \(I_{пр ср max}\). Поэтому при разработке радиоэлектронной аппаратуры в целях исключения перегрузки диодов по величине действующего и амплитудного значений токов и их перегрева при работе на активно-емкостную нагрузку значение среднего тока через каждый диод следует снижать не менее чем в 2,2 раза по сравнению с заданным в технической документации значением \(I_{пр ср max}\) диода. Практически, для однополупериодного выпрямителя и выпрямителя с удвоением напряжения каждый диод необходимо выбирать на ток \(I_{пр ср max} \ge {2,2} \cdot I_{н max}\), а для двухполупериодного выпрямителя, соответственно, на \(I_{пр ср max} \ge {1,1} \cdot I_{н max}\), где \(I_{н max}\) — максимальное значение тока нагрузки выпрямителя.

 

Рис. 2.3-2. Диаграммы напряжений и токов однофазного двухполупериодного выпрямителя при активно-емкостной нагрузке

 

Допустимая величина среднего прямого тока зависит также от температуры корпуса или окружающей среды и частоты повторения импульсов. В качестве примера на рис. 2.3‑3 показана зависимость от температуры, а на рис. 2.3‑8 — от частоты.

 

Рис. 2.3-3. Зависимость прямого среднего тока выпрямительных диодов от темперетуры

 

Ток перегрузки и ударный ток (\(I_{прг max}\), \(I_{пр уд max}\)). При разработке выпрямителей следует учитывать ток перегрузки диодов. Существующие диоды нормируются следующими параметрами по току перегрузки: \(I_{прг max}\) — максимально допустимый ток перегрузки и \(I_{пр уд max}\) — ударный ток. Ток перегрузки важен для начального включения диодов выпрямителя на емкостную нагрузку, когда емкость фильтра выпрямителя не заряжена (рис. 2.3‑4).

 

Рис. 2.3-4. Ток перегрузки диодов в момент включения выпрямителя на активную емкостную нагрузку

 

Максимальный ток перегрузки примерно может быть рассчитан по формуле: \(\newcommand{\slfrac}[2]{\left.#1\right/#2}I_{прг max} \approx {1,41} \cdot \slfrac{U_{тр}}{ \left( R_{1 тр} \cdot n + R_{2 тр} + r_{дин} \right)} \), где \(U_{тр}\) — напряжение вторичной обмотки трансформатора, \(R_{1 тр}\) — сопротивление первичной обмотки трансформатора, \(R_{2 тр}\) — сопротивление вторичной обмотки трансформатора, \(n\) — коэффициент трансформации (для понижающего трансформатора он меньше единицы), \(r_{дин}\) — динамическое сопротивление диода.2}_{пр уд max} \operatorname{d}t} \). Во всех случаях показатель защищенности диода должен быть больше аналогичного показателя устройства защиты. Обычно воздействие тока \(I_{пр уд max}\) допускается лишь ограниченное число раз, в отличие от \(I_{прг max}\), число импульсов перегрузки которого не нормируется. Допустимые значения \(I_{прг max}\) и \(I_{пр уд max}\) зависят от длительности импульса перегрузки (\(t_{прг}\)) и температуры (рис. 2.3‑5, 2.3‑6, 2.3‑7).

 

Рис. 2.3-5. Зависимость допустимой амплитуды тока перегрузки от температуры корпуса

 

Рис. 2.3-6. Зависимость допустимой амплитуды тока перегрузки от длительности импульса

 

Рис. 2.3-7. Зависимость допустимой амплитуды ударного тока от длительности импульса при различной температуре перехода

 

Граничная рабочая частота (\(f_р\)). При повышении частоты приложенного напряжения выше граничного для конкретного диода значения \(f_р\), которое носит название граничной рабочей частоты, выпрямляющие свойства диода ухудшаются, значение выпрямленного тока уменьшается (падает эквивалентное сопротивление \(p\)-\(n\)-перехода), потери в диоде увеличиваются и он значительно разогревается. Таким образом, с повышением частоты максимально допустимый средний прямой ток уменьшается. На рис. 2.3‑8 показана типичная зависимость среднего прямого тока выпрямительного диода от частоты приложенного напряжения.

 

Рис. 2.3-8. Зависимость максимально допустимого прямого среднего тока от частоты

 

В таб. 2.3‑1 приведен полный перечень специальных параметров выпрямительных диодов. Помимо описанных выше величин этот список включает также некоторые характеристики рассеиваемой мощности в различных режимах работы диода, некоторые токовые характеристики и др.

 

Таб. 2.3-1. Специальные параметры выпрямительных диодов 

 

 

< Предыдущая   Следующая >

Выпрямительный диод! Принцип работы. Часть 1. | Заметки городского фотографа

Здравствуйте, дорогие читатели! Сегодня мне бы хотелось рассказать вам о выпрямительных диодах, а также об их предназначении и принципе работы. Приступим!

Выпрямительный диод 1N4001

Выпрямительный диод 1N4001

Для чего же нам нужны выпрямительные диоды? Ответ на этот вопрос очень прост!

Давайте вспомним 2 вида электрического тока. Есть ток переменный, а есть постоянный. Вся наша электроника ( это смартфоны, ноутбуки 💻, смарт-часы , электронные часы ⏰, телевизорыи и т.д) работает на постоянном токе . Но в обычной сети ( например в розетке) течёт переменный ток. Для его выпрямления и используются наши выпрямительные диоды!

Вообще, для выпрямления переменного тока используется не один диод, а целый диодный мост! Но на выходе получается ещё не постоянный ток, импульсный, но это тема уже другой статьи.

Схема диодного моста. Входной ток переменный, а выходной импульсный ток.

Схема диодного моста. Входной ток переменный, а выходной импульсный ток.

Итак, теперь перейдём к принципу действия нашего диода. Сразу скажу, что выпрямительный диод является полупроводником(также расскажу в следующих статьях). Все полупроводниковые устройства работают благодаря p-n переходу( или же электронно-дырочному переходу). Посмотрите на картинку ниже.

P-n переход

P-n переход

Мы видим p-n переход( это граница между p -областью и n-областью). Его более подробно я разберу в следующей статье.

А сейчас перейдём снова к принципу работы. Когда переменный ток проходит через анод нашего диода ( через положительный электрод ) то он выходит на катоде уже импульсным током. Это происходит благодаря тому, что ,проходя через диод ,переменный ток не может вернуться обратно в сеть переменного тока, так как p-n переход не даст ему этого сделать. То есть переменный ток может спокойно пройти через электронно- дырочный переход, но вот выйти у него уже не получится.

Наверное, вам пока не понятно как это происходит, но после следующей статьи вы всё поймёте. Спасибо за прочтение!

Выпрямительные диоды — презентация онлайн

1. Выпрямительные диоды

Выполнили студенты группы 235-3:
Прытков С.В.
Дорохов А.С.
Ержанов Д.С.
Ефимов К.

2. Содержание.

1.
2.
3.
4.
5.
6.
7.
8.
9.
Определение.
Область применения.
Принцип работы.
Разновидности устройств и их обозначение.
Параметры выпрямительных диодов.
ВАХ.
Коэффициент выпрямления.
Мостовые схемы включения диодов.
Диоды Шотки.

3. Определение.

Выпрямительный диод — это
полупроводниковый прибор с
одним p-n переходом и с двумя
электродами, который служит
для преобразования
переменного тока в
постоянный.

4. Область применения.

Выпрямительные диоды применяются в
цепях управления, коммутации, в
ограничительных и развязывающих цепях, в
источниках питания для преобразования
(выпрямления) переменного напряжения в
постоянное, в схемах умножения напряжения и
преобразователях постоянного напряжения,
где не предъявляются высокие требования к
частотным и временным параметрам сигналов.

5. Принцип работы выпрямительного диода

Принцип работы этого устройства основывается на
особенностях p-n перехода. Анод присоединён к p
слою, катод к n слою. Возле переходов двух
полупроводников расположен слой, в котором отсутствуют
носители заряда. Это запирающий слой. Его
сопротивление велико.
При воздействии на слой определенного внешнего
переменного напряжения, толщина его становится
меньше, а впоследствии и вообще исчезнет.
Возрастающий при этом ток называют прямым. Он
проходит от анода к катоду. Если внешнее переменное
напряжение будет иметь другую полярность, то
запирающий слой будет больше, сопротивление возрастет.

6. Разновидности устройств и их обозначение.


По конструкции различают приборы двух видов: точечные и плоскостные.
В промышленности наиболее распространены кремниевые (обозначение —
Si) и германиевые (обозначение — Ge). У первых рабочая температура выше.
Преимущество вторых — малое падение напряжения при прямом токе.
Принцип обозначений диодов – это буквенно-цифровой код:
— Первый элемент – обозначение материала из которого он выполнен;
— Второй определяет подкласс;
— Третий обозначает рабочие возможности;
— Четвертый является порядковым номером разработки;
— Пятый – обозначение разбраковки по параметрам.

7. Параметры выпрямительных диодов.

• Частотный диапазон выпрямительных диодов
невелик. При преобразовании промышленного
переменного тока рабочая частота составляет 50 Гц,
предельная частота выпрямительных диодов не
превышает 20 кГц.
• По максимально допустимому среднему прямому
току диоды делятся на три группы: диоды малой
мощности (Iпр.ср. ≤ 0,3 А), диоды средней
мощности (0,3 А
(силовые) диоды (Iпр.ср. ≥ 10 А). Диоды средней и
большой мощности требуют отвода тепла, поэтому
они имеют конструктивные элементы для установки
на радиатор.

8. Параметры выпрямительных диодов.

• В состав параметров диодов входят
диапазон температур окружающей среды (для
кремниевых диодов обычно от −60 до +125 °С)
и максимальная температура корпуса.
• Среди выпрямительных диодов следует особо
выделить диоды Шотки, создаваемые на базе
контакта металл-полупроводник и
отличающиеся более высокой рабочей
частотой (для 1 МГц и более), низким прямым
падением напряжения (менее 0,6 В).

9. Вольт-амперная характеристика

Вольт-амперную характеристику (ВАХ)
выпрямительного диода можно
представить графически. Из графика
видно, что ВАХ устройства нелинейная.
В начальном квадранте Вольт-амперной
характеристики ее прямая ветвь
отражает наибольшую проводимость
устройства, когда к нему приложена
прямая разность потенциалов. Обратная
ветвь (третий квадрант) ВАХ отражает
ситуацию низкой проводимости. Это
происходит при обратной разности
потенциалов.
Реальные Вольт-амперные характеристики
подвластны температуре. С
повышением температуры прямая
разность потенциалов уменьшается.

10. Коэффициент выпрямления

• Коэффициент выпрямления можно рассчитать.
Он будет равен отношению прямого тока
прибора к обратному. Такой расчет приемлем
для идеального устройства. Значение
коэффициента выпрямления может достигать
нескольких сотен тысяч.
Чем он больше, тем лучше
выпрямитель делает свою
работу.

11. Мостовые схемы включения диодов.

Дио́дный мо́ст — электрическая схема,
предназначенная для преобразования
(«выпрямления») переменного
тока в пульсирующий. Такое выпрямление
называется двухполупериодным.
Выделим два варианта включения мостовых
схем :
1. Однофазную
2. Трехфазную.

12. Однофазная мостовая схема.

На вход схемы подается переменное напряжение (для простоты будем
рассматривать синусоидальное), в каждый из полупериодов ток
проходит через два диода, два других диода закрыты
Выпрямление положительной полуволны
Выпрямление отрицательной полуволны
результате такого преобразования на выходе мостовой схемы
получается пульсирующее напряжение вдвое большее частоты
напряжения на входе .
В
а) исходное напряжение (напряжение на входе), б)
однополупериодное выпрямление, с) двухполупериодное
выпрямление

14. Трехфазная мостовая схема.

В схеме трехфазного выпрямительного моста в результате
получается напряжение на выходе с меньшими пульсациями, чем
в однофазном выпрямителе .

15. Диоды Шотки

Диоды Шоттки получают, используя переход металл-полупроводник.
При этом применяют подложки из низкоомного n-кремния (или
карбида кремния) с высокоомным тонким эпитаксиальным слоем того
же полупроводника .
УГО и структура диода Шоттки:
1 –низкоомный исходный кристалл кремния
2 – эпитаксиальный слой высокоомного

‖‖‖
Кремния
‖‖‖
3 – область объемного заряд
4 – металлический контакт

Полупроводниковые приборы

Полупроводниковые приборы

Анализ полупроводниковых приборов будем проводить по следующей схеме:

1. Определение.

2. Структура.

3. Принцип действия.

4. Основные характеристики.

5. Основные параметры.

6. Применение.

7. Условно-графическое обозначение.

1. Полупроводниковые диоды

Полупроводниковый диод – полупроводниковый прибор, содержащий один p-n-переход и два вывода: анод и катод.

 

 

По конструктивному исполнению:

— плоскостные

— точечные.

В плоскостных диодах площадь p-n-перехода гораздо больше его ширины. Технологически плоскостные диоды строятся следующим образом: полупроводник одного типа проводимости добавляется в область с другим типом проводимости, за счет чего и образуется p-n-переход. В полупроводник одного типа добавляется проволока с другим типом проводимости, и контакт будет точечным. Плоскостные диоды используются для больших токов, а точечные – для небольших токов высокой частоты.

По назначению полупроводниковые диоды делятся на:

– выпрямительные

– стабилитроны

– туннельные

– варикапы и др.

Рассмотрим основные типы диодов.

1.1. Выпрямительные диоды

Выпрямительный диод используется как при прямом, так и при обратном включении. Содержит один pn переход и два омических вывода. Структура выпрямительного диода такая как и у полупроводникового диода. Принцип действия основан на односторонней проводимости pn перехода, т. е. при прямом включении сопротивление диода , а при обратном сопротивлении диода . Основная характеристика выпрямительного диода – ВАХ.

ВАХ диода как и p-n-перехода зависит от температуры. С повышением температуры ток диода возрастает. Кремниевые диоды в меньшей степени зависят от температуры чем германиевые. Зависимость от температуры в большей степени проявляется при токе обратном, так как он определяется движением не основных носителей зарядов.

Параметры:

· постоянное прямое напряжение при заданном прямом токе;

· постоянный обратный ток при заданном обратном напряжении;

· сопротивление ;

· ;

· максимально допустимое ;

· емкость диода С;

· максимальная рассеиваемая мощность .

Выпрямительные диоды применяются в выпрямителях.

УГО:

 

 

1.2. Стабилитрон

Стабилитрон – полупроводниковый диод, обратное напряжение которого в области электрического пробоя слабо зависит от тока. Стабилитрон – диод, который используется в обратном включении. Его рабочий режим – режим электрического пробоя.

Основные параметры:

· напряжение на участке стабилизации: ;

· дифференциальное сопротивление на участке стабилизации: ;

· минимальный и максимальный ток на участке стабилизации. Рабочий ток выбирается посередине этого участка;

· температурный коэффициент стабилизации напряжения (TKU).

Этот коэффициент показывает, как изменяется при изменении температуры.

Стабилитрон используется в схемах стабилизаторов напряжения, а также в качестве опорного (эталонного) напряжения.

УГО: 

 

1.3. Туннельные диоды

Туннельный диод – полупроводниковый диод, ВАХ которого имеет участок с отрицательным дифференциальным сопротивлением. Туннельные диоды выполняются на основе полупроводника с высокой концентрацией примесей. В этом случае возникает очень узкий потенциальный барьер и при определенном значении прямое напряжение перенос носителей зарядов осуществляется туннельным эффектом.

ВАХ:

 

 

 

 

 

 

Основные характеристики:

· максимальный и минимальный токи;

· максимальное и минимальное напряжения;

· дифференциальное сопротивление на участке: ;

· емкость – С;

· время переключения времени, в течении которого дифференциальное сопротивление диода остается отрицательным.

Применяются в усилителях, а также генераторах колебаний, в технике СВИ и импульсной технике.

УГО:

 

1.4. Варикапы

Варикапы – это полупроводниковый диод, в котором используется зависимость барьерной емкости от обратного напряжения. Принцип действия основан на том, что при повышении обратного напряжения, приложенного к переходу, его барьерная емкость уменьшается, т. е. изменением обратного напряжения можно изменять емкость этого диода. По сути дела варикап – это конденсатор переменной емкости.

Характеристика:

Параметры:

· коэффициент перекрытия по емкости: ;

· применяется в колебательных контурах для настройки на режим диссонанса.

УГО:

 

Лавинный диод-принцип работы, применение, структура

Перед тем, как дать определение лавинного диода, разберемся с понятием  лавинного пробоя p-n-перехода, потому как именно на нем основывается работа этого прибора, который является разновидностью стабилитрона и использует зенеровский пробой, правильнее назвать полупроводники с напряжением пробоя больше 5 В – лавинными диодами.

Понятие лавинного пробоя

 

Лавинный пробой инициируется сильным электрическим полем, им обладают полупроводники с p-n-переходом с большой толщиной. Неосновные носители, дислоцированные в переходе, забирают для себя основную функцию, при разгоне они ионизируют атомы. Новые электроны, а в основном это электроны теплового происхождения, сталкиваясь с атомами кремния, расположенными по соседству, вызывают лавинообразный рост всего процесса, создают новые пары электрон-дырка.

 

Действие пробоя обладает свойством обратимости и происходит без каких-либо последствий разрушительных для кристаллической структуры полупроводникового прибора, особенно если постараться не допустить перегрева прибора  и ограничить величину тока. Значение напряжения для лавинного пробоя варьируется в границах значений от 5 до 1000 В, зависит от конструктивных особенностей диода и уровня легирования кремния.

Оптимизация лавинного диода

Рис. №1. Мощный силовой лавинный диод ДЛ153-2000, внешний вид.

Мощные лавинные диоды марки ДЛ153-2000 используются в трехфазных преобразователях, частота, в которых доходит до 500 Гц, они служат для выпрямления напряжения мощных турбогенераторов с мощностью до 320 МВт. Для снижения рабочих температур (допустимое значение 175оС)  в длительном (номинальном) режиме и режиме форсировки при частоте 500 Гц необходимо принимать определенные меры. Понижение рабочего ресурса преобразователя и экспоненциальном (пропорциональном значению величины — скорости роста) росте интенсивности отказов из повышения температуры кремниевой структуры.

Рис. №2. Чертеж силового лавинного диода ДЛ153-2000.

 

В программу исследований по снижению потерь мощности и понижению температуры включены следующие исследования:

  1. Использование радиационных дефектов для легирования кремниевой структуры диода.
  2. Измерение времени жизни носителей заряда способом Лэкса;
  3. Контроль параметров статики и динамики диодов.
  4. Нахождение полной мощности потерь и температурных величин структуры диода с присоединенным охладителем.

Результат исследования оптимизации, с помощью облучения кремниевой структуры полупроводникового прибора с помощью ускоренных электронов, показал улучшение системы параметров. Суммарная мощность потерь уменьшилась во всех рабочих режимах на 37%, а температура понижена на 28%. Результат подтвердил эффективность облучения структуры для получения надежных силовых полупроводниковых приборов.

Лавинно-пролетный диод

Рис. №3. Структура лавинно-пролетного диода.

Разновидность лавинного диода – лавинно-пролетный диод (IMPATT-диод). Он построен на основе лавинного умножения заряженных носителей. Прибор используется для генерации колебаний в СВЧ-диапазоне. Рабочая область прибора – область лавинного пробоя.

 

Структура состоит из кремния и арсенида галлия (металл-полупроводник) и другие. В базе диода, области заполненной электронами и дырками с неизменным значением тока возникает фаза, которая характеризуется большим значением напряженности поля, она предваряет появление лавинного ударного фронта.

 

Главный режим лавинно-пролетного диода – режим захваченной плазмы, состояние компенсированной полупроводниковой плазмы.  Существует отдельный тип подобных диодов  — BARITT-диоды, их характеризует инжекционно-пролетный режим.

 

 

Показатели технологического качества для конструкции лавинного диода

Основное преимущество лавинного диода перед выпрямительным в способности восстанавливать   параметры в результате больших перенапряжений, в то время как вторые разрушаются и выходят из строя.

Рис. №4. Чертеж с габаритно-присоединительными размерами лавинного диода типа: а) ДЛ152 и б) ДП151.

Требования к качеству конструкции включают:

  1. В процессе изготовления диодов плотность дислокации кремния большого диаметра выше 60 мм, ограничивается до 102см2.
  2. Свирла-дефекты исключаются.
  3. Ограничивается содержание О2 и С в кремнии, который преобразуется в сложные комплексы Si-O и Si-C.
  4. Примесная атмосфера из примесей тяжелых и щелочных металлов на дислокациях существенно уменьшается.
  5. Существующие, так называемые «звездные дефекты», в виде микротрещин появляющихся в результате термической обработки в напряженном кремнии и ухудшающими ВАХ прибора, значительно снижаются.

Рис. №5. Параметры некоторых типов лавинных диодов.

Что необходимо для лавинного p-n-перехода

  1. Качественный кремний, который обладает отсутствием структурных дефектов в виде дислокаций, свирл-дефектов, незначительным содержанием примесных атомов и небольшим разбросом удельного сопротивления.
  2. Технологическая обработка не должна наносить повреждения кристаллической решетке, диффузия щелочных и тяжелых металлов должна быть ограниченна, а примесные атмосферы не должны появляться. И недолжна генерироваться локальная область дислокаций и упругого перенапряжения.
  3. Механические перенапряжения должны быть исключены.
  4. ОПЗ и приконтактная область не должны смыкаться. Небольшая напряженность электрического поля должна обеспечиваться защитой, качественным травлением и геометрией фаски.

Лавинный диод способен обеспечить надежность электрической схемы и позволить снизить мощность применяемого диода, достигается это тем, что защитную роль от пробоя принимает лавинный ток, а не использование добавочного запаса по обратному напряжению силового диода.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

 

Похожее

Выпрямительный диод

: функция и схема

Выпрямительный диод

— это полупроводниковое устройство, используемое для преобразования переменного тока в постоянный. Он имеет очевидную однонаправленную проводимость и может быть изготовлен из таких материалов, как полупроводниковый германий или кремний. Эта статья дает вам краткое введение в выпрямительные диоды.

Каталог

Выбор выпрямительного диода

Выпрямительные диоды обычно представляют собой планарные кремниевые диоды , которые используются в различных схемах выпрямителя мощности.

При выборе выпрямительного диода следует учитывать такие параметры, как его максимальный ток выпрямителя, максимальный обратный рабочий ток, частота среза и время обратного восстановления.

Выпрямительный диод, используемый в цепи последовательного стабилизированного питания, не имеет высоких требований к времени обратного восстановления частоты среза. Пока максимальный ток выпрямления и максимальный обратный рабочий ток соответствуют требованиям схемы, выбирается выпрямительный диод.Например, серия 1N, серия 2CZ, серия RLR и т.д. более высокая рабочая частота и более короткое время обратного восстановления (например, серия RU, серия EU, серия V, серия 1SR и т. д.). Или мы можем выбрать диод с быстрым восстановлением или выпрямительный диод Шоттки.

II Параметры выпрямительного диода

1.Максимум a verage r ectified c urrent IF : максимальный прямой средний ток, допустимый для длительной работы.

Ток определяется площадью перехода и условиями рассеивания тепла PN-переходом. Средний ток через диод не может быть больше этого значения и должен соответствовать условиям рассеивания тепла. Например, ПЧ выпрямленного диода серии 1N4000 составляет 1 А.

2. Максимальное рабочее r everse v oltage VR : максимально допустимое обратное напряжение, подаваемое на диод. Если это значение будет превышено, обратный ток (IR) резко возрастет и однонаправленная проводимость диода будет нарушена, что приведет к обратному пробою.

Обычно половину напряжения обратного пробоя (VB) принимают за (VR). Например:

Параметр

1N4001

1N4002

1N4003

1N4004

1N4004

1N4007

03

VR

50V

100V

200V

400V

600V

800V

76

800V

76

Максимальный обратный ток IR : обратный ток, протекающий через диод при самом высоком обратном рабочем напряжении. Этот параметр отражает однонаправленную проводимость диода. Следовательно, чем меньше значение тока, тем лучше качество диода.

4. Напряжение пробоя VB : значение выпрямителя напряжения в точке резкого изгиба обратной вольт-амперной характеристики диода. Когда обратная характеристика является мягкой, она относится к значению напряжения при заданном обратном токе утечки.

5. Максимальная рабочая частота fm : максимальная рабочая частота диода при нормальных условиях. Это в основном определяется емкостью перехода и диффузионной емкостью PN перехода. Если рабочая частота превышает fm, однонаправленная проводимость диода не будет хорошо отражена.

Например, fm диода серии 1N4000 составляет 3 кГц. Кроме того, диоды с быстрым восстановлением используются для выпрямления высокочастотных переменных токов, например, в импульсных источниках питания.

6. Время обратного восстановления trr : относится к времени обратного восстановления при указанной нагрузке, прямом токе и максимальном обратном переходном напряжении.

7. Емкость нулевого смещения ance CO : сумма диффузионной емкости и емкости перехода при нулевом напряжении на диоде.

Из-за ограничений производственного процесса даже у однотипных диодов их параметры имеют большой разброс. Параметры, приведенные в руководстве, часто находятся в пределах допустимого диапазона.При изменении условий испытаний изменятся и соответствующие параметры.

Например, IR выпрямительного диода серии 1N5200 с кремниевым пластиковым уплотнением при 25 ° C составляет менее 10 мкА, а при 100 ° C становится менее 500 мкА.

III Причина повреждения

1. Неадекватная молниезащита и защита от перенапряжения . Даже при наличии молниезащиты и устройств защиты от перенапряжения при ненадежной работе выпрямительный диод выходит из строя из-за ударов молнии или перенапряжения.

2. Плохие условия эксплуатации. В генераторной установке непрямого действия из-за неправильного расчета передаточного числа или из-за того, что соотношение диаметров двух ременных шкивов не соответствует требованиям передаточного числа, генератор работает на высокой скорости в течение длительного времени. Также выпрямитель долгое время работает при более высоком напряжении, ускоряя старение и вызывая пробой.

3. Плохое управление операциями . Операторы безответственны и не понимают изменений внешней нагрузки (особенно с полуночи до 6 утра следующего дня).Или на улице произошел сбой нагрузки, и оператор вовремя не принял меры. Это вызовет перенапряжение, а выпрямительный диод выйдет из строя и повредится.

4. Неправильная установка или изготовление . Поскольку генераторная установка долгое время работала в условиях сильной вибрации, выпрямительный диод также находится под воздействием этих помех. Кроме того, генераторная установка не работает в равномерном темпе, поэтому рабочее напряжение выпрямительного диода также колеблется.Это значительно ускоряет старение и повреждение выпрямительного диода.

5. Неправильные характеристики и модели диодов . Если параметры замененного выпрямительного диода не соответствуют требованиям, либо выполнена неправильная проводка, выпрямительный диод выйдет из строя и выйдет из строя.

6. Запас прочности выпрямительного диода слишком мал . Запас безопасности выпрямительного диода по перенапряжению и перегрузке по току слишком мал, поэтому он не может выдерживать пиковые атаки в цепи возбуждения.

IV Что делает выпрямитель?

Выпрямительный диод имеет явную однонаправленную проводимость. Он может быть изготовлен из таких материалов, как полупроводник , германий или кремний. Функция выпрямительного диода заключается в использовании однонаправленной проводимости PN-перехода для преобразования переменного тока в пульсирующий постоянный ток. Итак, каковы основные функции выпрямительного диода? Ниже приводится подробное введение:

1. Прямая характеристика

Самая заметная особенность выпрямительного диода — это его прямая характеристика.Когда прямое напряжение подается на выпрямительный диод, начальная часть прямого напряжения очень мала, и она не может эффективно преодолеть блокирующий эффект электрического поля в PN-переходе.

Когда прямой ток почти равен нулю, прямое напряжение не может проводить диод, что называется напряжением мертвой зоны .

Когда прямое напряжение больше, чем напряжение мертвой зоны, электрическое поле эффективно преодолевается, выпрямительный диод включается, и ток быстро растет по мере увеличения напряжения.В нормальном диапазоне токов напряжение на выводах выпрямительного диода практически не меняется при его включении.

Рисунок 2. Прямые и обратные характеристики выпрямителя

2. Обратные характеристики

Когда обратное напряжение, приложенное к диоду выпрямителя, не превышает определенного диапазона, обратный ток формируется дрейфом миноритарных перевозчиков. Поскольку обратный ток очень мал, выпрямительный диод выключен.

На ток обратного насыщения выпрямительного диода влияет температура. Как правило, обратный ток кремниевых выпрямительных диодов намного меньше, чем обратный ток германиевых выпрямительных диодов. Ток обратного насыщения маломощных кремниевых выпрямительных диодов составляет порядка нА, а маломощных германиевых выпрямительных диодов — порядка мкА.

Когда температура выпрямительного диода увеличивается, полупроводник возбуждается, и количество неосновных носителей увеличивается.

3. Обратный пробой

Обратный пробой выпрямительного диода делится на два типа: Зенера и лавинный пробой .

При высокой концентрации легирования из-за малой ширины барьерной области обратное напряжение разрушит структуру ковалентной связи, поэтому электроны оторвутся от ковалентной связи, и будут генерироваться электронные дырки. Это называется пробоем Зенера.

Другой вид поломки — лавинный.По мере увеличения обратного напряжения выпрямительного диода внешнее электрическое поле будет увеличивать скорость дрейфа электронов, поэтому валентные электроны будут сталкиваться друг с другом из ковалентной связи, создавая новые электронно-дырочные пары.

Рисунок 3. Пробой стабилитрона и лавинный пробой

В Что такое схема выпрямителя?

Схема выпрямителя предназначена для преобразования переменного тока в постоянный.Как правило, он состоит из трансформатора, схемы главного выпрямителя и схемы фильтра. Если вы хотите получить постоянное значение напряжения, вам нужно добавить схему регулятора напряжения. Здесь мы поговорим только об основной схеме выпрямителя.

1. Схема однополупериодного выпрямителя

Структура этой схемы однополупериодного выпрямителя очень проста. Основным компонентом является диод, как показано на схеме ниже.

Рисунок 4.Принципиальная схема однополупериодного выпрямителя

Вход 220 В — это синусоидальный переменный ток. Он проходит через трансформатор и уменьшается после трансформатора, но в конечном итоге это все еще синусоидальный сигнал переменного тока.

Типичная особенность диодов — однонаправленная проводимость . Если напряжение на аноде диода больше напряжения на катоде диода, диод будет включен. В противном случае диод погаснет.

На следующем рисунке показан этот процесс.На рисунке а показан выход переменного тока трансформатора. Когда выходное напряжение находится в положительном полупериоде, напряжение в точке a выше, чем напряжение в точке b, и диод будет включен. А напряжение на нагрузке RL примерно равно выходному напряжению трансформатора.

Когда выходное напряжение находится в отрицательном полупериоде, напряжение в точке b выше, чем напряжение в точке a, тогда диод будет отключен. Соответствующий ток не может течь к нагрузке, поэтому половина цикла отсутствует на рисунке b.

Рисунок 5. Схема однополупериодного выпрямителя Форма волны до и после фильтрации

2. Схема двухполупериодного выпрямителя

Поскольку полупериод теряется при полуволновом выпрямлении, эффективность ограничена. Двухполупериодный мостовой выпрямитель может решить эту проблему.

По сравнению с однополупериодным выпрямлением, при двухполупериодном выпрямлении используется еще один диод. Однако трансформатор здесь с центральной осью , который использует однонаправленную проводимость диода.

Рисунок 6. Принципиальная схема двухполупериодного выпрямителя

Давайте проанализируем этот принцип. Если переменный ток находится в положительном полупериоде, напряжение в точке a выше, чем напряжение в точке b, тогда диод D1 будет включен, а диод D2 будет отключен. Таким образом, ток будет течь только из точки a через диод D1 и резистор RL и, наконец, к центральной оси трансформатора.

Если переменный ток находится в отрицательном полупериоде, напряжение в точке b выше, чем напряжение в точке a, диод D2 будет включен, а диод D1 будет отключен.Таким образом, ток будет течь только из точки b и через диод D2 и резистор RL, наконец, к центральной оси трансформатора.

Повторение этих циклов приводит к фильтрации. На следующем рисунке показан сигнал до и после фильтрации.

Рис. 7. Форма сигнала двухполупериодной схемы выпрямителя до и после фильтрации

3. Схема мостового выпрямителя

Схема мостового выпрямителя сложнее двух предыдущих.Принципиальная схема выглядит следующим образом. Схема простого мостового выпрямителя состоит из трансформатора и главного выпрямительного моста , а также нагрузки .

Рисунок 8 . Мост Схема выпрямителя -1

Если выходной сигнал переменного тока находится в положительном полупериоде, в нормальных условиях ток течет в точку A, обращенную к диоду 2 и диоду 1.

Рисунок 9.Принципиальная схема мостового выпрямителя-2

Однако из-за высокого напряжения в точке А диод 1 находится в выключенном состоянии, а диод 2 во включенном состоянии. Таким образом, ток будет проходить через диод 2, затем течь из точки B и затем достигать точки D через нагрузку.

Рисунок 10 . Мост Схема схемы выпрямителя 3

На первый взгляд, и диод 1, и диод 4 могут быть включены, но ток течет из точки А в мост выпрямителя, а затем через нагрузку.Напряжение будет уменьшаться после того, как ток пройдет через нагрузку, поэтому напряжение в точке D намного ниже, чем напряжение в точке A, и диод 4 включен, а диод 1 выключен. Наконец, ток течет в нижний конец трансформатора.

Рисунок 11. Схема схемы мостового выпрямителя-4

Когда напряжение на нижнем конце выше, чем напряжение на верхнем конце, ток достигает точки C.

Рисунок 1 2 .Принципиальная схема мостового выпрямителя — 5

Кроме того, поскольку напряжение в точке C высокое, диод 4 находится в выключенном состоянии, а диод 3 во включенном состоянии. Ток будет течь через диод 3 из точки B, а затем достигнет точки D через нагрузку.

Рисунок 13. Схема схемы мостового выпрямителя-6

Подобно положительному полупериоду, на первый взгляд, диод 1 и диод 4 могут быть включены. Но поскольку ток течет из точки C в выпрямительный мост, а затем через нагрузку, напряжение в точке D намного ниже, чем в точке C, поэтому диод 1 включен, а диод 4 выключен.Наконец, ток течет в верхнюю часть трансформатора.

Рисунок 14. Схема схемы мостового выпрямителя-7

Преимущества мостового выпрямления

По сравнению с двухполупериодным выпрямлением мостовое выпрямление имеет много преимуществ.

Для двухполупериодного выпрямления требуется трансформатор с центральной осью, а для мостового выпрямления этого требования нет.

Когда диод выключен, напряжение на двух концах диода мостового выпрямителя меньше половины напряжения двухполупериодного выпрямления.Так что требования к характеристикам мостового выпрямительного диода не так высоки.

VI Замена выпрямительного диода и Проверка

1. Замена

После повреждения выпрямительного диода его можно заменить на выпрямительный диод той же модели или другой модели с такими же параметрами.

Обычно выпрямительные диоды с высоким выдерживаемым напряжением (обратное напряжение) могут заменить выпрямительные диоды с низким выдерживаемым напряжением .А выпрямительные диоды с низким выдерживаемым напряжением не могут заменить диоды с высоким выдерживаемым напряжением.

Диод с большим током выпрямления может заменить диод с низким значением тока выпрямления, в то время как диод с низким значением тока выпрямления не может заменить диод с высоким значением тока выпрямления.

2. Как проверить мостовой выпрямитель

(1) Удалите из выпрямителя все диоды выпрямителя.

(2) Используйте диапазон мультиметра 100 × R или 1000 × R Ом для измерения двух выводных проводов выпрямительного диода.Затем поменяйте местами голову и хвост и снова попробуйте.

(3) Если значение сопротивления, измеренное дважды, сильно различается, это означает, что диод исправен (за исключением диодов с мягким пробоем).

Если дважды измеренное значение сопротивления мало и почти одинаково, это означает, что диод вышел из строя и его нельзя использовать.

Если значение сопротивления, измеренное дважды, бесконечно, это означает, что диод был отключен внутри и не может использоваться.

Рекомендуемые статьи:

Как работает фотодиод?

Что такое лавинные диоды?

Что такое лазерные диоды?

Как работает диодный выпрямитель — тестирование и низкое прямое падение напряжения в выпрямительном диоде

Введение:

Диодный выпрямитель представляет собой полупроводниковое устройство и относится к «активным» электронным компонентам. Его основная функция — пропускать электрический ток только в одном направлении и блокировать в другом.Это свойство также приводит к выпрямлению электрического тока при использовании источника переменного тока. Выпрямительный диод обычно узнаваем по его черному цвету и белому кольцу на одном из его концов, что сравнимо с цветовой кодировкой резистора, которую мы изучали в предыдущей статье. Его размер может отличаться в зависимости от его допустимой мощности. Его два конца с двумя выводами или клеммами, отсюда и название диод (что по-гречески означает двуногий).

Внутреннее описание:

Диод, как и все полупроводники, в основном состоит из чистого кремния (в настоящее время более популярного, чем германий).По своей природе кремний является плохим проводником электричества, поэтому путем добавления в него определенных примесей (легирования) в определенной степени достигается проводимость. Эти примеси могут быть положительными или отрицательными носителями заряда, известными как p-тип и n-тип соответственно.

В диоде кремний p-типа и n-типа сплавлены вместе, образуя переход, называемый pn переходом. При подключении к источнику напряжения этот переход ограничит прохождение тока от n-типа к p-типу и позволит течь от p-типа к кремнию n-типа, только если напряжение больше 0.6 вольт. Это минимальное напряжение требуется в любом кремниевом полупроводнике для инициирования проводимости электронов и известно как прямое напряжение. Вывод p-типа диода называется анодом, а вывод n-типа называется катодом и обозначается кольцом или полосой на его корпусе.

Функции и использование:

В электронной схеме диод действует так же, как резиновый клапан в велосипедной шине. Клапан позволяет перекачиваемому воздуху поступать с одной стороны и блокирует с другой.Точно так же выпрямительный диод пропускает ток только в одном направлении. Таким образом, он используется в качестве защиты полярности в электронных схемах, чтобы избежать опасности случайного переключения напряжения питания.

Другой важной функцией выпрямительного диода является выпрямление, то есть преобразование переменного тока в постоянный. Напряжение переменного тока изменяется с положительного на отрицательное и наоборот несколько раз в секунду. В зависимости от подключения выпрямительный диод пропускает только положительный или отрицательный цикл и блокирует другой.Таким образом, результат будет либо чисто положительным, либо отрицательным. Это называется исправлением. Это свойство хорошо эксплуатируется и используется в источниках питания, адаптерах переменного / постоянного тока, зарядных устройствах и т. Д. Но важно знать, что для успешного выполнения описанной выше процедуры диода требуется минимальное входное напряжение на нем не менее 0,7 Вольт. выпрямление или, проще говоря, диоду требуется не менее 0,7 вольт, чтобы удовлетворительно инициировать проводимость электричества. Это называется низким прямым падением напряжения выпрямительного диода.

Тестирование:

Шаги, необходимые для тестирования диодного выпрямителя, следующие.

  • Возьмите цифровой мультиметр хорошего качества
  • Установите диапазон в положении диода
  • На дисплее вы должны получить 3 или бесконечное показание напряжения в зависимости от используемого мультиметра
  • Подключите красный зонд к катоду и черный зонд к аноду диода
  • На дисплее сразу же отобразится низкое прямое падение напряжения (выпрямительный диод) около 0.6 вольт
  • Теперь поменяйте местами соединения, дисплей вернется к исходным показаниям, указывая, что диод исправен
  • Если измеритель показывает любое другое показание, диод может иметь негерметичность или неисправен, а показание 0000 означает короткое замыкание

Ссылки

Руководство по кремниевому стабилитрону и выпрямителю: теория, конструкция, характеристики и применение , разработано Департаментом разработки приложений Motorola. (ASIN: B000ND8BXC)

Источник изображения

Схема полуволнового выпрямителя: https: // commons.wikimedia.org/wiki/File:Half-wave_rectifier.png

Символ выпрямительного диода

: https://commons.wikimedia.org/wiki/File:Diode_3D_and_ckt.png

Трехфазный диодный выпрямитель | Plexim

Принцип работы

Трехфазный диодный выпрямитель преобразует трехфазное переменное напряжение на входе в постоянное напряжение на выходе. Чтобы показать принцип работы схемы, индуктивности источника и нагрузки (L s и L d ) не учитываются для простоты. Напряжение постоянного тока делится на шесть сегментов в пределах одного периода основного источника, который соответствует различным комбинациям линейного напряжения источника (V LL ).В каждом сегменте есть минимальное и максимальное напряжение постоянного тока:

  • Минимальное напряжение постоянного тока: Если одно линейное напряжение равно нулю, то напряжение постоянного тока составляет минимум V DC = V LL · sin (60 °).
  • Максимальное напряжение постоянного тока: напряжение постоянного тока увеличивается до максимального значения V DC = V LL , где два линейных напряжения равны.

Между минимальным и максимальным напряжениями постоянного тока находится среднее напряжение постоянного тока, которое определяется по формуле: V DC, av = V LL · 3 / pi.Пульсации постоянного напряжения возникают с частотой, в 6 раз превышающей частоту сети. Для шести интервалов знаки фазных токов (I a , I b , I c ) даются по формуле:

Фазовый интервал Знак фазных токов
0 ° <φ <60 ° (0, -1, 1)
60 ° <φ <120 ° (1, -1, 0)
120 ° <φ <180 ° (1, 0, -1)
180 ° <φ <240 ° (0, 1, -1)
240 ° <φ <300 ° (-0, 1, 0)
300 ° <φ <360 ° (-1, 0, 1)

Влияние индукторов

Как и в случае с однофазным диодным выпрямителем, включение нагрузки (L d ) и индуктивности источника (L s ) приводит к интервалу коммутации тока между двумя парами диодов.Чем больше индуктивность источника, тем больше времени требуется для коммутации тока. Например, после фазового интервала 1 (0 ° <φ <60 °) ток коммутируется с пары диодов D 5 / D 6 на D 1 / D 6 . В течение этого интервала V ca остается равным нулю, поскольку D 1 и D 5 оба являются проводящими, что приводит к уменьшению постоянного напряжения. Падение постоянного напряжения пропорционально индуктивности источника, то есть ΔV out ~ L s.

Эксперименты

  • Измените индуктивность источника с 0 мкГн на 50 мкГн и наблюдайте увеличение интервала коммутации тока, а также падение напряжения нагрузки.
  • Убедитесь, что большая индуктивность нагрузки снижает пульсации постоянного напряжения.

Полупериодный и двухполупериодный выпрямители | Принцип, работа, ограничения

Что такое выпрямитель?

А выпрямитель устройство, которое преобразует переменное (AC) входное напряжение в постоянное (DC) выходное напряжение.Любое электрическое устройство, которое имеет высокое сопротивление току в одно направление и низкое сопротивление току в противоположном направлении обладают возможность преобразовывать переменный ток в постоянный.

Принцип

Диод с p-n переходом предлагает очень низкое сопротивление при прямом смещении и чрезвычайно высокое сопротивление при обратном смещении. Благодаря этому свойству диод с p-n переходом в первую очередь пропускает ток только в одном направлении. Итак, если на диод подается переменное напряжение, ток протекает только в той части циклов, когда диод направлен вперед пристрастный.Это свойство диода с p-n переходом используется для выпрямления переменного тока. напряжения и схема, используемая для этой цели, называется выпрямителем . п-п переходной диод может использоваться либо как (а) полуволновой выпрямитель, либо (б) как двухполупериодный выпрямитель.

(а) Однополупериодный выпрямитель

Строительство

Аранжировка для полуволны Выпрямитель показан на рис. Входное напряжение переменного тока подается на первичную обмотку. P подходящего понижающего трансформатора. Вторичная обмотка S трансформатора подключен к полупроводниковому диоду p-n перехода D и нагрузке сопротивление R L .

Однополупериодный выпрямитель

Метод работы

Пусть в течение первой половины входного цикла переменного тока конец A вторичной обмотки S трансформатора имеет положительный потенциал, а конец B — отрицательный потенциал. В этой ситуации диод смещен в прямом направлении, и в цепи течет ток. Следовательно, получается выходное напряжение на нагрузке R L .

Во время второй половины входного переменного тока конец A вторичной обмотки S трансформатора находится под отрицательным потенциалом, а диод D находится под обратным смещением.Таким образом, ток не течет через нагрузку R L и отсутствует выходное напряжение на R L .


В следующем положительном полупериоде входа переменного тока мы снова получаем выход и так далее. Таким образом, мы получаем выходное напряжение как показано на рис. Здесь выходное напряжение, хотя и изменяется по величине, ограничивается только одним направлением и считается исправленным. Поскольку выпрямленный выход схемы получается только для половины входного переменного тока. волна, устройство называется однополупериодный выпрямитель .

(б) Двухполупериодный выпрямитель

Двухполупериодный выпрямитель — это выпрямитель, выпрямляет обе половины каждого входного цикла переменного тока и дает однонаправленный выходное напряжение постоянно.

Строительство

В двухполупериодном выпрямителе мы используйте два полупроводниковых диода, которые работают в дополнительном режиме. AC входное питание подается через первичную обмотку P трансформатора с центральным ответвлением. Два конца A и B второго S трансформатора подключены к p-концы диодов D1 и D2 соответственно.Нагрузка сопротивление R L подключено между n-клеммой как диоды, так и центральный отвод O второго трансформатора. DC выходная мощность достигается через положение нагрузки R L .

Двухполупериодный выпрямитель

Метод работы

Во время первый полупериод входного напряжения, клемма A является положительной с относительно O, в то время как B отрицательно по отношению к O.Диод сначала прямое смещение и проводит, в то время как второй диод имеет обратное смещение и не провести, ток протекает через R L от D до O. Во время второй полупериод, A отрицателен, а B положителен по отношению к O, таким образом, первый диод имеет обратное смещение, а второй диод — прямое смещение. В ток через R L в том же направлении, что и во время первая половина цикла. Результирующий выходной ток представляет собой непрерывную серию.

Поскольку мы получаем вывод в положительная половина, а также отрицательная половина входного цикла переменного тока, выпрямитель называется двухполупериодным выпрямителем.Очевидно, это более эффективная схема для получать выпрямленное напряжение или ток, чем однополупериодный выпрямитель .

Ограничение выпрямителя

Хотя двухполупериодный выпрямитель обеспечивает непрерывное выходное напряжение / ток в одном направлении, выпрямленное напряжение имеет форму импульсов половинной формы. синусоиды. Итак, выходное напряжение однонаправленное, но не имеет стабильное значение. Фактически, такой пульсирующий выходной сигнал имеет некоторую пульсацию переменного тока, смешанную с чистое напряжение постоянного тока, и чтобы получить чистое выходное напряжение постоянного тока, мы должны отфильтровать Пульсации переменного тока при использовании дополнительных фильтров.

Читайте также

Кремниевые выпрямительные диоды

  • Изучив этот раздел, вы сможете:
  • • Опишите типичные применения выпрямителя.
  • • Обратите внимание на маркировку полярности выпрямителя.
  • • Опишите типовые параметры выпрямителя.
  • • Переход п.д.
  • • Средний прямой ток.
  • • Повторяющийся пиковый прямой ток.
  • • Обратный ток утечки.
  • • Повторяющееся пиковое обратное напряжение.
  • • Время обратного восстановления.
  • • Опишите влияние температуры на выпрямители.
  • • Температурный разгон.

Рисунок 2.1.1. Кремниевые выпрямительные диоды

Кремниевые выпрямительные диоды

Выпрямительные диоды, подобные тем, что показаны на рис.2.1.1 обычно используются в таких приложениях, как источники питания, использующие как высокое напряжение, так и большой ток, где они выпрямляют входящее сетевое (линейное) напряжение и должны пропускать весь ток, необходимый для любой цепи, которую они питают, который может составлять несколько ампер. или десятки ампер.

Как показано на рис. 2.1.2, для прохождения таких токов требуется большая площадь перехода, чтобы прямое сопротивление диода оставалось как можно более низким. Даже в этом случае диод может сильно нагреться.Черный полимерный корпус или даже болт на радиаторе помогают рассеивать тепло.

Сопротивление диода в обратном направлении (когда диод выключен) должно быть высоким, а изоляция, обеспечиваемая обедняющим слоем между слоями P и N, чрезвычайно хороша, чтобы избежать возможности обратного пробоя, когда изоляция обедненного слоя выходит из строя, и диод необратимо выходит из строя из-за высокого обратного напряжения на переходе.

Рисунок 2.1.2. Кремниевый выпрямитель


Конструкция

Маркировка полярности диодов

На полимерном кожухе диодов катод обычно обозначается линией вокруг одного конца кожуха диода.Однако существуют альтернативные указания: на некоторых выпрямительных диодах, залитых смолой, закругленный конец на корпусе указывает катод, как показано на рис. 2.1.2. На выпрямительных диодах с металлическими стержнями полярность диода может быть обозначена символом диода, напечатанным на корпусе. Штифт диода часто является катодом, но на него нельзя полагаться, как показано на рис. 2.1.1, это может быть анод! На диодах мостового выпрямителя символы + и — (плюс и минус), показанные на корпусе выпрямителя, указывают полярность выхода постоянного тока, а не анода или катода устройства, входные клеммы переменного тока обозначены маленькими синусоидальными символами.Один угол корпуса на некоторых линейных мостовых выпрямителях также часто скошен, но это не следует воспринимать как надежный указатель полярности, поскольку доступны выпрямители, которые используют эту индикацию как выходную клемму + или -.

Кремниевые выпрямительные диоды бывают самых разных форм с сильно различающимися параметрами. Они различаются по токонесущей способности от миллиампер до десятков ампер, некоторые из них имеют обратное напряжение пробоя в тысячи вольт.

Параметры выпрямителя

Что означают параметры.

Слой истощения (соединение) p.d.

Слой истощения или стык p.d. представляет собой разность потенциалов (напряжение), которая естественным образом создается на обедненном слое за счет комбинации дырок и электронов во время изготовления диода. Этот п.д. необходимо преодолеть, прежде чем диод с прямым смещением станет проводящим. Для кремниевого перехода p.d составляет около 0,6 В.

Обратный ток утечки (I

R ).

Когда PN-переход смещен в обратном направлении, будет течь очень небольшой ток утечки (I R ), в основном из-за тепловой активности в полупроводниковом материале, встряхивая свободные свободные электроны.Именно эти свободные электроны образуют небольшой ток утечки. В кремниевых устройствах это всего несколько наноампер (нА).

Максимальный повторяющийся прямой ток (I

FRM ).

Это максимальный ток, который может пропустить диод с прямым смещением без повреждения устройства при выпрямлении повторяющейся синусоидальной волны. I FRM обычно задается диодом, выпрямляющим синусоидальную волну с максимальным рабочим циклом 0,5 на низкой частоте (например, от 25 до 60 Гц), чтобы представить условия, возникающие, когда диод выпрямляет сетевое (линейное) напряжение.

Средний прямой ток (I

FAV ).

Это средний выпрямленный прямой ток или выходной ток (I FAV ) диода, обычно это прямой ток при выпрямлении синусоидальной волны 50 Гц или 60 Гц, усредненный между периодом, когда (полуволновой) выпрямительный диод проводимость, и период волны при обратном смещении диода. Обратите внимание, что это среднее значение будет значительно меньше повторяющегося значения, указанного для I FRM .Этот (и другие параметры) также во многом зависят от температуры перехода диода. Взаимосвязь между различными параметрами и температурой перехода обычно указывается в виде сносок в технических паспортах производителей.

Повторяющееся пиковое обратное напряжение (В

RRM )

Максимальное пиковое напряжение, которое может повторно подаваться на диод при обратном смещении (анод — катод +) без повреждения устройства. Это важный параметр, обычно относящийся к работе от сети (линии).Например. диод, используемый в качестве полуволнового выпрямителя для выпрямления сетевого напряжения 230 В переменного тока, будет проводить в течение положительного полупериода сигнала сети и отключаться во время отрицательного полупериода. В схеме источника питания катод выпрямительного диода обычно подключается к большому электролитическому накопительному конденсатору, который будет поддерживать катодное напряжение выпрямителя на уровне, близком к пиковым напряжениям формы волны сети. Помните, что волна 230 В переменного тока относится к среднеквадратичному значению волны, поэтому пиковое значение будет примерно 230 В x 1.414 = примерно + 325В. Во время отрицательного полупериода сигнала сети анод диода упадет до максимального отрицательного значения около -325 В. Следовательно, будут повторяющиеся периоды (50 или 60 раз в секунду, когда обратное напряжение на диоде будет 325 В x 2 = 650 В. Поэтому для этой задачи необходимо использовать выпрямительный диод с параметром V RRM на минимум 650 В, и для обеспечения надежности должен быть запас прочности для такого важного компонента, поэтому было бы разумнее выбрать диод с V RRM на 800 или 1000 В.

Максимальное рабочее пиковое обратное напряжение (В

RWM )

Это максимально допустимое обратное напряжение. Обратное напряжение на диоде в любое время, независимо от того, является ли обратное напряжение изолированным переходным всплеском или повторяющимся обратным напряжением.

Рис. 2.1.3 Подавление выбросов

Максимальное обратное напряжение постоянного тока (В

R )

Этот параметр устанавливает допустимый предел для обратного напряжения и обычно имеет то же значение, что и V RRM и V RWM .Теоретически эти максимальные параметры могут быть разными, но поскольку любое напряжение (мгновенное, повторяющееся или постоянное), которое не более чем примерно на 5% превышает любой из этих параметров, может потенциально разрушить диод, всегда рекомендуется проявлять осторожность при установке. диоды и предусмотреть разумный запас на случай неожиданных скачков напряжения. Одной из распространенных мер безопасности для защиты выпрямителей источника питания от внешних всплесков является подключение небольшого емкостного конденсатора высокого напряжения, обычно дискового керамического типа, к каждому из четырех диодов в мостовом выпрямителе, как показано на рис.2.1.3.

Время обратного восстановления (t

rr )

Рис. 2.1.4 Обратный ход


Время восстановления (t rr )

Время, необходимое для падения тока до заданного низкого уровня обратного тока при переключении с заданного прямого тока (диод включен) на заданный обратный ток (диод выключен, обычно <10% от значения 'вкл. ' Текущий). Типичное значение t rr раз для выпрямительных диодов, хотя и не такое быстрое, как у малосигнальных диодов, и в некоторой степени зависит от задействованных напряжений и токов, можно найти в десятках наносекунд (нс) e.грамм. 30 нс для выпрямителя BYV28 3.5A I AF 50 В и <60 нс для двойного выпрямителя BYV44 30A I AF 500 В.

Когда выпрямительный диод используется в высокоскоростной операции переключения, например, в импульсном источнике питания, в идеале обратный ток должен мгновенно упасть до нуля. Однако, когда диод является проводящим (до выключения), по обе стороны от перехода будет большая концентрация неосновных носителей; это будут дырки, которые только что перешли на слой N-типа, и электроны, которые только что перешли на слой P-типа, но до того, как они были нейтрализованы путем присоединения к основным носителям.Если теперь внезапно применяется обратное напряжение (V R ), как показано на рис. 2.1.4, диод должен быть выключен, но вместо того, чтобы ток через диод мгновенно падал до нуля, обратный ток (I R ) устанавливается, поскольку эти неосновные носители притягиваются обратно через переход (дырки обратно в P-слой, а электроны обратно в N-слой). Этот обратный ток будет продолжать течь, пока все эти носители заряда не вернутся на свою естественную сторону перехода.

Максимальная температура

На каждый из этих параметров могут влиять другие факторы, такие как температура окружающей среды, в которой работает диод, или температура перехода самого устройства.Любой полупроводник выделяет тепло, особенно те, которые используются в источниках питания. Поэтому важно, чтобы при проектировании таких цепей учитывались температурные эффекты. Одной из самых больших проблем является предотвращение теплового разгона, когда диод (или любой другой полупроводник) увеличивает свою температуру, что приводит к увеличению тока через устройство, что приводит к дальнейшему повышению температуры и так далее, пока устройство не будет разрушено. . Чтобы предотвратить эту проблему, каждый из параметров диода ссылается на температуру, например, обратный ток утечки кремниевого PN-диода обычно указывается при температуре окружающей среды 25 ° C, но он, вероятно, будет примерно удваиваться на каждые 10 ° C выше этого значения.Также повышение температуры вызовет уменьшение потенциала прямого перехода примерно на 2–3 мВ на каждый 1 ° C повышения температуры. Еще большее влияние на выпрямители Шоттки оказывает температура.

Начало страницы

Туннельный диод

— определение, символ и работа

Туннель определение диода

А Туннельный диод представляет собой сильно легированный p-n переходной диод, в котором уменьшается электрический ток как напряжение увеличивается.

В туннельный диод, электрический ток вызван «туннелированием». В туннельный диод используется как устройство с очень быстрым переключением в компьютеры. Он также используется в высокочастотных генераторах и усилители.

Символ туннельного диода

Условное обозначение туннельного диода показано на рисунке ниже. В туннельном диоде p-тип полупроводник действует как анод, а n-тип полупроводник действует как катод.

ср знать, что анод — это положительно заряженный электрод, который притягивает электроны, тогда как катод отрицательно заряжен. электрод, испускающий электроны. В туннельном диоде n-типа полупроводник излучает или производит электроны, поэтому его называют как катод. С другой стороны, полупроводник p-типа притягивает электроны, испускаемые полупроводником n-типа, поэтому Полупроводник p-типа называется анодом.

Что такое туннельный диод?

Туннель диоды являются одними из самых важных твердотельных электронных устройств которые появились в последнее десятилетие. Туннель Диод был изобретен в 1958 году Лео Эсаки.

Лев Эсаки заметил, что если полупроводниковый диод сильно легирован с примесями он будет демонстрировать отрицательное сопротивление.Отрицательный сопротивление означает, что ток через туннельный диод уменьшается при повышении напряжения. В 1973 году Лео Эсаки получил Нобелевская премия по физике за открытие электронного туннелирования эффект, используемый в этих диодах.

А туннельный диод также известен как диод Эсаки, названный в честь Лео Эсаки за работу над туннельным эффектом.Операция туннельного диода зависит от принципа квантовой механики известный как «Туннелирование». В электронике туннелирование означает прямое поток электронов через малую обедненную область из Зона проводимости n-стороны в валентную зону p-стороны.

германий Материал обычно используется для изготовления туннельных диодов. Они есть также сделаны из других материалов, таких как галлий арсенид, антимонид галлия и кремний.

Ширина обедненной области в туннельном диоде

обедненная область — это область в диоде с p-n-переходом, где мобильные носители заряда (бесплатно электроны и дырки) отсутствуют. Область истощения действует как барьер, препятствующий поток электронов из полупроводника n-типа и дырок из полупроводника p-типа.

ширина область обеднения зависит от количества примесей добавлен. Примеси — это атомы, введенные в p-тип и Полупроводник n-типа для увеличения электропроводности.

Если а в диод p-n-перехода добавляется небольшое количество примесей (полупроводник p-типа и n-типа), широкая обедненная область сформирован.С другой стороны, если большое количество примесей добавлен к диоду p-n-перехода, узкая обедненная область сформирован.

В туннельный диод, полупроводники p-типа и n-типа сильно легированные, что означает введение большого количества примесей на полупроводник p-типа и n-типа. Этот тяжелый допинг процесс дает чрезвычайно узкую область истощения.В концентрация примесей в туннельном диоде в 1000 раз больше, чем у обычного диода с p-n переходом.

В нормальный диод с p-n переходом, обедненная ширина велика, как по сравнению с туннельным диодом. Этот широкий слой истощения или Область истощения в нормальном диоде препятствует прохождению тока. Следовательно, истощающий слой действует как барьер. Чтобы преодолеть это барьер, нам нужно подать достаточное напряжение.Когда достаточно подается напряжение, электрический ток начинает течь через нормальный диод p-n перехода.

В отличие от нормальный диод с p-n переходом, ширина обедненного слоя в туннельном диоде крайне узкий. Итак, применяя небольшой напряжения достаточно для выработки электрического тока в туннельном диоде.

Туннель диоды способны оставаться стабильными в течение длительного времени чем обычные диоды с p-n переходом.Они также способны высокоскоростных операций.

Концепт проходки тоннелей

истощение область или обедненный слой в диоде с p-n переходом состоит из положительных и отрицательных ионов. Из-за этих положительных и отрицательные ионы, существует встроенный потенциал или электрический поле в области истощения.Это электрическое поле в область истощения оказывает электрическую силу в направлении противоположно внешнему электрическому полю (напряжению).

Другой вещь нужно помнить, что валентная зона и проводимость зонные энергетические уровни в полупроводнике n-типа незначительно ниже энергетических уровней валентной зоны и зоны проводимости в полупроводнике p-типа.Эта разница в уровнях энергии связано с различием уровней энергии легирующей примеси. атомы (донорные или акцепторные), используемые для образования n-типа и Полупроводник p-типа.

Электрический Текущий в обычном p-n переходе диод

Когда а напряжение прямого смещения приложено к обычному p-n переходу диода ширина обедненной области уменьшается и при этом со временем высота барьера также уменьшается.Однако электроны в полупроводнике n-типа не может проникать через слой истощения, потому что встроенное напряжение истощения слой противодействует потоку электронов.

Если приложенное напряжение больше, чем встроенное напряжение слой обеднения, электроны с n-стороны преодолевают противодействующей силе истощенного слоя, а затем входит в p-сторона.Проще говоря, электроны могут проходить через барьер (обедненный слой), если энергия электронов больше высоты барьера или барьерный потенциал.


Следовательно, ан обычный диод с p-n переходом производит электрический ток, только если приложенное напряжение больше, чем встроенное напряжение область истощения.

Электрический Текущий в туннельном диоде

В туннельный диод, валентная зона и энергия зоны проводимости уровни в полупроводнике n-типа ниже валентного энергетические уровни зоны и зоны проводимости в p-типе полупроводник.В отличие от обычного диода с p-n переходом, Разница в уровнях энергии в туннельном диоде очень велика. Из-за такой большой разницы в уровнях энергии зона проводимости материала n-типа перекрывается с валентная зона материала p-типа.

Квантовая механика говорит, что электроны будут напрямую проникать через слой истощения или барьер, если ширина истощения очень небольшой.

обедненный слой туннельного диода очень мал. Он находится в нанометры. Таким образом, электроны могут напрямую туннелировать через небольшая область обеднения из n-сторонней зоны проводимости в p-сторона валентная зона.

В обычные диоды, ток вырабатывается при подаче напряжения больше, чем встроенное напряжение области истощения.Но в туннельных диодах небольшое напряжение, которое меньше встроенного напряжения области истощения достаточно, чтобы произвести электрический ток.

В туннельные диоды, электроны не должны преодолевать встречные сила из обедненного слоя, чтобы произвести электрический ток. Электроны могут напрямую туннелировать из зоны проводимости n-область в валентную зону p-области.Таким образом, электрические ток вырабатывается в туннельном диоде.

Как туннельный диод работает?

Шаг 1: Несмещенный туннельный диод

Когда на туннельный диод не подается напряжение, он называется несмещенный туннельный диод. В туннельном диоде зона проводимости материал n-типа перекрывается с валентной зоной материал p-типа из-за сильного легирования.

Потому что этого перекрытия электроны зоны проводимости на n-стороне и дырки валентной зоны на стороне p имеют почти одинаковую энергию уровень. Поэтому, когда температура увеличивается, некоторые электроны туннель из зоны проводимости n-области в валентную полоса p-области. Подобным образом дыры туннелируют от валентная зона p-области к зоне проводимости n-области.

Однако чистый текущий поток будет равен нулю, потому что равное количество носители заряда (свободные электроны и дырки) текут навстречу друг другу. направления.

Шаг 2: Небольшое напряжение, приложенное к туннельному диоду

Когда а на туннельный диод подается небольшое напряжение, которое меньше чем встроенное напряжение обедненного слоя, нет прямого ток течет через переход.

Однако небольшое количество электронов в зоне проводимости n-область будет туннелировать в пустые состояния валентной зоны в р-области. Это создаст небольшой туннель прямого смещения. Текущий. Таким образом, туннельный ток начинает течь с небольшой приложение напряжения.

Шаг 3: Приложенное напряжение немного увеличено

Когда напряжение, подаваемое на туннельный диод, немного увеличивается, большое количество свободных электронов на n-стороне и дырок на p-стороне генерируются.Из-за увеличения напряжения перекрытие зоны проводимости и валентной зоны составляет повысился.

В простыми словами, уровень энергии n-сторонней зоны проводимости становится в точности равным энергетическому уровню валентности на стороне p. группа. В результате протекает максимальный туннельный ток.

Шаг 4: Приложенное напряжение дополнительно увеличивается

Если приложенное напряжение дополнительно увеличивается, небольшое смещение зона проводимости и валентная зона.

С зона проводимости материала n-типа и валентность лента из материала p-типа внахлест порога. Электронный туннель из зоны проводимости n-области в валентную зону p-области и вызывают небольшой ток. Таким образом, туннелирование ток начинает уменьшаться.

Шаг 5: Приложенное напряжение значительно увеличено

Если приложенное напряжение значительно увеличивается, туннелирование ток падает до нуля.В этот момент зона проводимости и валентные зоны больше не перекрываются и туннельный диод работает таким же образом, как и обычный диод с p-n переходом.

Если это приложенное напряжение больше встроенного потенциала истощенного слоя начинается регулярный прямой ток протекает через туннельный диод.

часть кривой, на которой ток уменьшается по мере увеличения напряжения увеличивается область отрицательного сопротивления туннеля диод.Область отрицательного сопротивления является наиболее важной. и наиболее широко используемая характеристика туннельного диода.

А туннельный диод, работающий в области отрицательного сопротивления, может использоваться как усилитель или генератор.

Преимущества из туннельные диоды

  • Долгая жизнь
  • Высокоскоростной операция
  • Низкий уровень шума
  • Низкое энергопотребление расход

Недостатки из туннельные диоды

  • Туннель массовое производство диодов невозможно
  • Быть двойником оконечное устройство, вход и выход не изолированы от друг друга.

Приложения из туннельные диоды

  • Туннель диоды используются в качестве запоминающих устройств логической памяти.
  • Туннель диоды используются в схемах релаксационных генераторов.
  • Туннель диод используется как сверхбыстрый переключатель.
  • Туннель диоды используются в FM-приемниках.

Типы диодов

различные типы диодов следующие:

  1. стабилитрон диод
  2. Лавинный диод
  3. Фотодиод
  4. Свет Излучающий диод
  5. Лазер диод
  6. Туннель диод
  7. Шоттки диод
  8. Варактор диод
  9. П-Н переходной диод

Принцип работы диода Шоттки

— Inst Tools

Что такое диод Шоттки?

Диод Шоттки, также известный как диод с горячей несущей, представляет собой полупроводниковый диод, который имеет низкое прямое падение напряжения и очень быстрое переключение.Когда через диод протекает ток, на выводах диода наблюдается небольшое падение напряжения. Нормальный диод будет иметь падение напряжения от 0,6 до 1,7 вольт, в то время как падение напряжения на диоде Шоттки обычно составляет от 0,15 до 0,45 вольт. Это меньшее падение напряжения обеспечивает лучшую эффективность системы и более высокую скорость переключения. В диоде Шоттки между полупроводником и металлом образуется переход полупроводник-металл, создавая таким образом барьер Шоттки. Полупроводник N-типа действует как катод, а металлическая сторона действует как анод диода.Этот барьер Шоттки приводит как к низкому прямому падению напряжения, так и к очень быстрому переключению.

Рис. Символ диода Шоттки

Диоды Шоттки — это сильноточные диоды, используемые в основном в высокочастотных устройствах с быстрым переключением. Их также называют диодами с горячими носителями. Термин горячие носители происходит от более высокого уровня энергии электронов в n-области по сравнению с электронами в металлической области. Символ диода Шоттки показан на рисунке выше. Диод Шоттки формируется путем соединения легированной полупроводниковой области (обычно n-типа) с таким металлом, как золото, серебро или платина.Вместо pn-перехода существует переход металл-полупроводник, как показано на рисунке ниже. Прямое падение напряжения обычно составляет около 0,3 В, потому что здесь нет обедненной области, как в диоде с pn переходом.

Диод Шоттки работает только с мажоритарными носителями. Нет неосновных носителей заряда и, следовательно, нет обратного тока утечки, как в других типах диодов. Металлическая область сильно занята электронами зоны проводимости, а полупроводниковая область n-типа слабо легирована.При прямом смещении электроны с более высокой энергией в n-области инжектируются в металлическую область, где они очень быстро отдают свою избыточную энергию. Поскольку нет неосновных носителей, как в обычном выпрямительном диоде, происходит очень быстрая реакция на изменение смещения. Schottky — это быстросменный диод, и большинство его приложений используют это свойство. Его можно использовать в высокочастотных приложениях и во многих цифровых схемах для уменьшения времени переключения.

Эквивалентная схема диода Шоттки приведена ниже

VI характеристики диода с барьером Шоттки

Из VI характеристик очевидно, что VI характеристики диода с барьером Шоттки аналогичны нормальному диоду с PN переходом, за следующими исключениями.

Прямое падение напряжения на диоде с барьером Шоттки низкое по сравнению с обычным диодом с PN переходом.Прямое падение напряжения диода с барьером Шоттки, сделанного из кремния, показывает прямое падение напряжения от 0,3 до 0,5 вольт.

Прямое падение напряжения увеличивается с увеличением концентрации легирования полупроводника n-типа.

VI характеристики диода с барьером Шоттки более крутые по сравнению с VI характеристиками нормального диода с PN переходом из-за высокой концентрации носителей тока.

Преимущества

Диоды Шоттки

используются во многих приложениях, где другие типы диодов не работают.У них есть ряд преимуществ:

  • Низкое напряжение включения: Напряжение включения диода составляет от 0,2 до 0,3 В для кремниевого диода и от 0,6 до 0,7 В для стандартного кремниевого диода. Благодаря этому он имеет примерно такое же напряжение включения, что и германиевый диод.
  • Быстрое время восстановления: Быстрое время восстановления из-за небольшого количества накопленного заряда означает, что его можно использовать для приложений высокоскоростного переключения.
  • Низкая емкость перехода: Ввиду очень маленькой активной площади, часто в результате использования точечного контакта с кремнием, уровни емкости очень малы.

Преимущества диода Шоттки означают, что его характеристики во многих областях могут намного превосходить характеристики других диодов.

Главный недостаток

Основным недостатком диода Шоттки является относительно высокий обратный ток.Из-за металлического полупроводникового перехода он более подвержен утечке тока при обратном подключении напряжения. Кроме того, диоды Шоттки обычно имеют низкие максимальные обратные напряжения. Как правило, они имеют максимальное значение 50 В или меньше. Помните, что обратное напряжение — это значение, при котором диод выйдет из строя и начнет проводить большой ток при обратном подключении напряжения (от катода к аноду). Это означает, что диоды Шоттки не могут выдерживать большое обратное напряжение без пробоя и проведения большого количества тока.И даже до достижения этого максимального обратного значения он все равно будет пропускать небольшое количество тока.

В зависимости от применения и использования схемы это может оказаться важным или нет.

Приложения

Диоды с барьером Шоттки широко используются в электронной промышленности, находя множество применений в качестве диодного выпрямителя. Его уникальные свойства позволяют использовать его в ряде приложений, где другие диоды не могут обеспечить такой же уровень производительности.В частности, он используется в таких областях, как:

  • ВЧ смеситель и детекторный диод : Диод Шоттки нашел свое применение в радиочастотных приложениях благодаря своей высокой скорости переключения и высокочастотной способности. В связи с этим диоды с барьером Шоттки используются во многих высокопроизводительных кольцевых смесителях диодов. В дополнение к этому, их низкое напряжение включения и высокая частота, а также низкая емкость делают их идеальными в качестве ВЧ-детекторов.
  • Выпрямитель мощности: Диоды с барьером Шоттки также используются в приложениях с высокой мощностью в качестве выпрямителей.Их высокая плотность тока и низкое прямое падение напряжения означают, что тратится меньше энергии, чем при использовании обычных диодов с PN переходом. Это повышение эффективности означает, что необходимо рассеивать меньше тепла, и в конструкцию можно включить радиаторы меньшего размера.
  • Силовые схемы ИЛИ: Диоды Шоттки могут использоваться в приложениях, где нагрузка приводится в действие двумя отдельными источниками питания. Одним из примеров может быть источник питания от сети и источник питания от батареи. В этих случаях необходимо, чтобы мощность от одного источника питания не поступала в другой.Этого можно добиться с помощью диодов. Однако важно, чтобы любое падение напряжения на диодах было минимальным для обеспечения максимальной эффективности. Как и во многих других применениях, этот диод идеально подходит для этого ввиду низкого прямого падения напряжения. Диоды Шоттки, как правило, имеют высокий обратный ток утечки. Это может привести к проблемам с любыми используемыми цепями датчиков. Пути утечки в цепи с высоким импедансом могут привести к ошибочным показаниям. Поэтому это должно быть учтено в схемотехнике.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.