Принцип действия биполярного транзистора в активном режиме: Режим работы биполярного транзистора и основные физические процессы

Содержание

схемы включения. Схема включения биполярного транзистора с общим эмиттером

Статическим режимом работы транзистора называется такой режим, при котором отсутствует нагрузка в выходной цепи, а изменение входного тока или напряжения не вызывает изменение выходного напряжения Рис.7.

Статические характеристики транзисторов бывают двух видов: входные и выходные . На Рис.8. изображена схема установки для измерения статических характеристик транзистора, включённого по схеме с общим эмиттером.

Рис.8. Схема

измерений статических

параметров транзистора с ОЭ.

Входная статическая характеристика I Б от входного напряжения U БЭ при постоянном выходном напряжении U КЭ . Для схемы с общим эмиттером:

I Б = f (U БЭ) при U ЭК = const.

Поскольку ветви входной статической характеристики для U КЭ > 0 расположены очень близко друг к другу и практически сливаются в одну, то на практике с достаточной точностью можно пользоваться одной усреднённой характеристикой (Рис.9

а ). Особенность входной статической характеристики является наличие в нижней части нелинейного участка в районе изгиба U 1 (приблизительно 0,2…0,3 В для германиевых транзисторов и 0,3…0,4 В – для кремниевых).

Выходная статическая характеристика – это зависимость выходного тока I К от выходного напряжения U КЭ при постоянном входном токе I Б . Для схемы включения с общим эмиттером:

I К = f (U КЭ) при I Б = const.

Из Рис.9б видно, что выходные характеристики представляют собой прямые линии, почти параллельные оси напряжения. Это объясняется тем, что коллекторный переход закрыт независимо от величины напряжения база-коллектор, и ток коллектора определяется только количеством носителей заряда, проходящих из эмиттера через базу в коллектор, т. е. током эмиттера

I Э .

Динамическим режимом работы транзистора называется такой режим, при котором в выходной цепи стоит нагрузочный резистор R К , за счёт которого изменение входного тока или напряжения U ВХ будет вызывать изменение выходного напряжения U ВЫХ = U КЭ (Рис.10).


Рис.9. Статические характеристики транзистора с ОЭ: а – входные; б – выходные.

Входная динамическая характеристика – это зависимость входного тока

I Б от входного напряжения U БЭ при наличии нагрузки. Для схемы с общим эмиттером:

I Б = f (U БЭ)

Поскольку в статическом режиме для U КЭ > 0 мы пользуемся одной усреднённой характеристикой, то входная динамическая характеристика совпадает со входной статической (Рис.11а ).

Рис.10. Схема включения транзистора в динамическом режиме с ОЭ.

Выходная динамическая (нагрузочная) характеристика представляет собой зависимость выходного напряжения U КЭ от выходного тока I К при фиксированных значениях входного тока I Б (Рис.11б

):

U КЭ = E К – I К R К

Так как это уравнение линейное, то выходная динамическая характеристика представляет собой прямую линию и строится на выходных статических характеристиках по двум точкам, например: А , В на Рис.11б .

Координаты точки А [U КЭ = 0; I K = Е К R К ] – на оси I K .

Координаты точки В [I K = 0; U КЭ = Е К ] – на оси U КЭ.

Координаты точки Р [U 0К; I 0 K ] – соответствуют положению рабочей точки РТ в режиме покоя (при отсутствии сигнала).

Рис.11. Динамические характеристики транзистора с ОЭ:

а) – входная; б) – выходная.

Нагрузочная пряма проводится через любые две точки А, В, или Р, координаты которых известны.

В зависимости от состояния p-n переходов транзисторов различают несколько видов его работы – режим отсечки, режим насыщения, предельный и линейный режимы (Рис.11).

Режим отсечки. Это режим, при котором оба его перехода закрыты – транзистор заперт. Ток базы в этом случае равен нулю. Ток коллектора будет равен обратному току I К0 , а напряжение U КЭ = E К.

Режим насыщения – это режим, когда оба перехода – и эмиттерный и коллекторный открыты, а в транзисторе происходит свободный переход носителей зарядов. При этом ток базы будет максимальный, ток коллектора будет равен току коллектора насыщения, а напряжение между коллектором и эмиттером стремиться к нулю.

I Б = max; I К ≈ I КН; U КЭ = E К – I КН R Н; U КЭ → 0.

Предельные режимы – это режимы, работа в которых ограничена максимально-допустимыми параметрами: I К доп, U КЭ доп, P К доп (Рис.11б ) и I Б нас, U БЭ доп (Рис.11а ) и связана с перегревом транзистора или выхода его из строя.

Линейный режим – это режим, в котором обеспечивается достаточная линейность характеристик и он может использоваться для активного усиления.

Биполярный транзистор — электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется

биполярный , поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки . Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока — основной «большой» ток, и управляющий «маленький» ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей . Это похоже на два диода , соединенных лицом к лицу или наоборот.


У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector и emitter

). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.


Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках , в веществе P-типа находятся положительно заряженные ионы — дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером V КЭ (V CE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.


Теперь подключим напряжение между базой и эмиттером V BE , но значительно ниже чем V CE (для кремниевых транзисторов минимальное необходимое V BE — 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет «дотянуться» своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.


В итоге мы получаем два тока: маленький — от базы к эмиттеру I BE , и большой — от коллектора к эмиттеру I CE .

Если увеличить напряжение на базе, то в прослойке P соберется еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом, при небольшом изменении тока базы I B , сильно меняется ток коллектора I С. Так и происходит усиление сигнала в биполярном транзисторе . Cоотношение тока коллектора I С к току базы I B называется коэффициентом усиления по току. Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.


2. Расчет входного тока базы I b

Теперь посчитаем ток базы I b . Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (V max) и минимальном (V min). Назовем эти значения тока соответственно — I bmax и I bmin .

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер V BE . Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить — около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода , и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером V BE = 0.6V. А поскольку эмиттер подключен к земле (V E = 0), то напряжение от базы до земли тоже 0.6V (V B = 0.6V).

Посчитаем I bmax и I bmin с помощью закона Ома:


2. Расчет выходного тока коллектора I С

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора (I cmax и I cmin).


3. Расчет выходного напряжения V out

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, V Cmax получился меньше чем V Cmin . Это произошло из-за того, что напряжение на резисторе V Rc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение V out /V in в десять раз — далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.


Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток I b , несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод V out поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

  • Режим отсечки (cut off mode).
  • Активный режим (active mode).
  • Режим насыщения (saturation mode).
  • Инверсный ражим (reverse mode).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V — 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки .

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора I С к току базы I B . Обозначается β , hfe или h31e , в зависимости от специфики расчетов, проводимых с транзисторов.

β — величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий — в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается R in (R вх ). Чем оно больше — тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

R вх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость — проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление R out = 0 (R вых = 0)).

Страница 1 из 2

Биполярный транзистор представляет собой полупроводниковый прибор, имеющий два электронно-дырочных перехода, образованных в одном монокристалле полупроводника. Эти переходы образуют в полупроводнике три области с различными типами электропроводности. Одна крайняя область называется эмиттером (Э), другая — коллектором (К), средняя — базой (Б). К каждой области припаивают металлические выводы для включения транзистора в электрическую цепь.
Электропроводность эмиттера и коллектора противоположна электропроводности базы. В зависимости от порядка чередования р- и n-областей различают транзисторы со структурой р-n-р и n-р-n. Условные графические обозначения транзисторов р-n-р и n-р-n отличаются лишь направлением стрелки у электрода, обозначающего эмиттер.

Принцип работы транзисторов р-n-р и n-р-n одинаков, поэтому в дальнейшем будем рассматривать лишь работу транзистора со структурой р-n-р.
Электронно-дырочный переход, образованный эмиттером и базой, называется эмиттерным, а коллектором и базой — коллекторным. Расстояние между переходами очень мало: у высокочастотных транзисторов оно менее 10 микрометров (1 мкм = 0,001 мм), а у низкочастотных не превышает 50 мкм.
При работе транзистора на его переходы поступают внешние напряжения от источника питания. В зависимости от полярности этих напряжений каждый переход может быть включен как в прямом, так и в обратном направлении. Различают три режима работы транзистора: 1) режим отсечки — оба перехода и, соответственно, транзистор полностью закрыты; 2) режим насыщения — транзистор полностью открыт;3) активный режим — это режим, промежуточный между двумя первыми. Режимы отсечки и насыщения совместно применяются в ключевых каскадах, когда транзистор попеременно то полностью открыт, то полностью заперт с частотой импульсов, поступающих на его базу. Каскады, работающие в ключевом режиме, применяются в импульсных схемах (импульсные блоки питания, выходные каскады строчной развертки телевизоров и др.). Частично в режиме отсечки могут работать выходные каскады усилителей мощности.
Наиболее часто транзисторы применяются в активном режиме. Такой режим определяется подачей на базу транзистора напряжения небольшой величины, которое называется напряжением смещения (U см.) Транзистор приоткрывается и через его переходы начинает течь ток. Принцип работы транзистора основан на том, что относительно небольшой ток, текущий через эмиттерный переход (ток базы), управляет током большей величины в цепи коллектора. Ток эмиттера представляет собой сумму токов базы и коллектора.

Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (I ЭБО ) И коллектора (I КБО ). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения . Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками U ЭБ и U КБ . В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (I Э.нас ) и коллектора (I К.нас ).

Для усиления сигналов применяется активный режим работы транзистора .
При работе транзистора в активном режиме его эмиттерный переход включается в прямом, а коллекторный — в обратном направлениях.

Под действием прямого напряжения U ЭБ происходит инжекция дырок из эмиттера в базу. Попав в базу n-типа, дырки становятся в ней неосновными носителями заряда и под действием сил диффузии движутся (диффундируют) к коллекторному р-n-переходу. Часть дырок в базе заполняется (рекомбинирует) имеющимися в ней свободными электронами. Однако ширина базы небольшая — от нескольких единиц до 10 мкм. Поэтому основная часть дырок достигает коллекторного р-n-перехода и его электрическим полем перебрасывается в коллектор. Очевидно, что ток коллектора I К p не может быть больше тока эмиттера, так как часть дырок рекомбинирует в базе. Поэтому I K p = h 21Б I э
Величина h 21Б называется статическим коэффициентом передачи тока эмиттера. Для современных транзисторов h 21Б = 0,90…0,998. Так как коллекторный переход включен в обратном направлении (часто говорят — смещен в обратном направлении), через него протекает также обратный ток I КБО , образованный неосновными носителями базы (дырками) и коллектора (электронами). Поэтому полный ток коллектора транзистора, включенного по схеме с общей базой

I к = h 21Б I э + I КБО
Дырки, не дошедшие до коллекторного перехода и прорекомбинировавшие (заполнившиеся) в базе, сообщают ей положительный заряд. Для восстановления электрической нейтральности базы в нее из внешней цепи поступает такое же количество электронов. Движение электронов из внешней цепи в базу создает в ней рекомбинационный ток I Б.рек. Помимо рекомбинационного через базу протекает обратный ток коллектора в противоположном направлении и полный ток базы
I Б = I Б.рек — I КБО
В активном режиме ток базы в десятки и сотни раз меньше тока коллектора и тока эмиттера.

В предыдущей схеме электрическая цепь, образованная источником U ЭБ , эмиттером и базой транзистора, называется входной, а цепь, образованная источником U КБ , коллектором и базой этого же транзистора,— выходной. База является общим электродом транзистора для входной и выходной цепей, поэтому такое его включение называют схемой с общей базой, или сокращенно «схемой ОБ».

На следующем рисунке изображена схема, в которой общим электродом для входной и выходной цепей является эмиттер. Это схема включения с общим эмиттером, или сокращенно «схема ОЭ» .

В ней выходным током, как и в схеме ОБ, является ток коллектора I К , незначительно отличающийся от тока эмиттера I э , а входным — ток базы I Б , значительно меньший, чем коллекторный ток. Связь между токами I Б и I К в схеме ОЭ определяется уравнением: I К = h 21 Е I Б + I КЭО
Коэффициент пропорциональности h 21 Е называют статическим коэффициентом передачи тока базы. Его можно выразить через статический коэффициент передачи тока эмиттера h 21Б
h 21 Е = h 21Б / (1 —h 21Б )
Если h 21Б находится в пределах 0,9…0,998, соответствующие значения h 21 Е будут в пределах 9…499.
Составляющая I кэо называется обратным током коллектора в схеме ОЭ. Ее значение в 1+h 21 Е раз больше, чем I КБО , т. е.I КЭО =(1+ h 21 Е) I КБО. Обратные токи I КБО и I КЭО не зависят от входных напряжений U ЭБ и U БЭ и вследствие этого называются неуправляемыми составляющими коллекторного тока. Эти токи сильно зависят от температуры окружающей среды и определяют температурные свойства транзистора. Установлено, что значение обратного тока I КБО удваивается при повышении температуры на 10 °С для германиевых и на 8 °С для кремниевых транзисторов. В схеме ОЭ температурные изменения неуправляемого обратного тока I КЭО могут в десятки и сотни раз превысить температурные изменения неуправляемого обратного тока I КБО и полностью нарушить работу транзистора. Поэтому в транзисторных схемах применяются специальные меры термостабилизации транзисторных каскадов, способствующие уменьшению влияния температурных изменений токов на работу транзистора.
На практике часто встречаются схемы, в которых общим электродом для входной и выходной цепей транзистора является коллектор. Это схема включения с общим коллектором, или «схема ОК» (эмиттерный повторитель) .

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.

И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой — слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h31 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора — коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги: Добавить метки

Являются биполярные транзисторы. Схемы включения зависят от того, какая у них проводимость (дырочная или электронная) и выполняемые функции.

Классификация

Транзисторы разделяют на группы:

  1. По материалам: чаще всего используются арсенид галлия и кремний.
  2. По частоте сигнала: низкая (до 3 МГц), средняя (до 30 МГц), высокая (до 300 МГц), сверхвысокая (выше 300 МГц).
  3. По максимальной мощности рассеивания: до 0,3 Вт, до 3 Вт, более 3 Вт.
  4. По типу устройства: три соединенных слоя полупроводника с поочередным изменением прямого и обратного способов примесной проводимости.

Как работают транзисторы?

Наружные и внутренний слои транзистора соединены с подводящими электродами, называемыми соответственно эмиттером, коллектором и базой.

Эмиттер и коллектор не отличаются друг от друга типами проводимости, но степень легирования примесями у последнего значительно ниже. За счет этого обеспечивается увеличение допустимого выходного напряжения.

База, являющаяся средним слоем, обладает большим сопротивлением, поскольку сделана из полупроводника со слабым легированием. Она имеет значительную площадь контакта с коллектором, что улучшает отвод тепла, выделяющегося из-за обратного смещения перехода, а также облегчает прохождение неосновных носителей — электронов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством. При перемене мест крайних слоев с одинаковой проводимостью невозможно получить аналогичные параметры полупроводникового устройства.

Схемы включения способны поддерживать его в двух состояниях: он может быть открытым или закрытым. В активном режиме, когда транзистор открыт, эмиттерное смещение перехода сделано в прямом направлении. Чтобы наглядно это рассмотреть, например, на полупроводниковом триоде типа n-p-n, на него следует подать напряжение от источников, как изображено на рисунке ниже.

Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Но на практике происходит обратное из-за близкого расположения переходов друг к другу и их взаимного влияния. Поскольку к эмиттеру подключен «минус» батареи, открытый переход позволяет электронам поступать в зону базы, где происходит их частичная рекомбинация с дырками — основными носителями. Образуется базовый ток I б. Чем он сильней, тем пропорционально больше ток на выходе. На этом принципе работают усилители на биполярных транзисторах.

Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. Благодаря незначительной толщине слоя (микроны) и большой величине отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Там их втягивает электрическое поле перехода, способствующее их активному переносу. Коллекторный и эмиттерный токи практически равны между собой, если пренебречь незначительной потерей зарядов, вызванных рекомбинацией в базе: I э = I б + I к.

Параметры транзисторов

  1. Коэффициенты усиления по напряжению U эк /U бэ и току: β = I к /I б (фактические значения). Обычно коэффициент β не превышает значения 300, но может достигать величины 800 и выше.
  2. Входное сопротивление.
  3. Частотная характеристика — работоспособность транзистора до заданной частоты, при превышении которой переходные процессы в нем не успевают за изменениями подаваемого сигнала.

Биполярный транзистор: схемы включения, режимы работы

Режимы работы отличаются в зависимости от того, как собрана схема. Сигнал должен подаваться и сниматься в двух точках для каждого случая, а в наличии имеются только три вывода. Отсюда следует, что один электрод должен одновременно принадлежать входу и выходу. Так включаются любые биполярные транзисторы. Схемы включения: ОБ, ОЭ и ОК.

1. Схема с ОК

Схема включения с общим коллектором: сигнал поступает на резистор R L , который входит также в коллекторную цепь. Такое подключение называют схемой с общим коллектором.

Этот вариант создает только усиление по току. Преимущество эмиттерного повторителя состоит в создании большого сопротивления входа (10-500 кОм), что позволяет удобно согласовывать каскады.

2. Схема с ОБ

Схема включения биполярного транзистора с общей базой: входящий сигнал поступает через С 1 , а после усиления снимается в выходной коллекторной цепи, где электрод базы является общим. В таком случае создается усиление по напряжению аналогично работе с ОЭ.

Недостатком является небольшое сопротивление входа (30-100 Ом), и схема с ОБ применяется как генератор колебаний.

3. Схема с ОЭ

Во многих вариантах, когда применяются биполярные транзисторы, схемы включения преимущественно делаются с общим эмиттером. Питающее напряжение подается через нагрузочный резистор R L , а к эмиттеру подключается отрицательный полюс внешнего питания.

Переменный сигнал со входа поступает на электроды эмиттера и базы (V in), а в коллекторной цепи он становится уже больше по величине (V CE). Основные элементы схемы: транзистор, резистор R L и цепь выхода усилителя с внешним питанием. Вспомогательные: конденсатор С 1 , препятствующий прохождению постоянного тока в цепь подаваемого входного сигнала, и резистор R 1 , через который транзистор открывается.

В коллекторной цепи напряжения на выходе транзистора и на резисторе R L вместе равны величине ЭДС: V CC = I C R L + V CE .

Таким образом, небольшим сигналом V in на входе задается закон изменения постоянного напряжения питания в переменное на выходе управляемого транзисторного преобразователя. Схема обеспечивает возрастание входного тока в 20-100 раз, а напряжения — в 10-200 раз. Соответственно, мощность также повышается.

Недостаток схемы: небольшое сопротивление входа (500-1000 Ом). По этой причине появляются проблемы в формировании Выходное сопротивление составляет 2-20 кОм.

Приведенные схемы демонстрируют, как работает биполярный транзистор. Если не принять дополнительных мер, на их работоспособность будут сильно влиять внешние воздействия, например перегрев и частота сигнала. Также заземление эмиттера создает нелинейные искажения на выходе. Чтобы повысить надежность работы, в схеме подключают обратные связи, фильтры и т. п. При этом коэффициент усиления снижается, но устройство становится более работоспособным.

Режимы работы

На функции транзистора влияет значение подключаемого напряжения. Все режимы работы можно показать, если применяется представленная ранее схема включения биполярного транзистора с общим эмиттером.

1. Режим отсечки

Данный режим создается, когда значение напряжения V БЭ снижается до 0,7 В. При этом эмиттерный переход закрывается, и коллекторный ток отсутствует, поскольку нет свободных электронов в базе. Таким образом, транзистор заперт.

2. Активный режим

Если на базу подать напряжение, достаточное, чтобы открыть транзистор, появляется небольшой входной ток и повышенный на выходе, в зависимости от величины коэффициента усиления. Тогда транзистор будет работать как усилитель.

3. Режим насыщения

Режим отличается от активного тем, что транзистор полностью открывается, и ток коллектора достигает максимально возможного значения. Его увеличения можно достигнуть только за счет изменения прикладываемой ЭДС или нагрузки в цепи выхода. При изменении базового тока коллекторный не меняется. Режим насыщения характеризуется тем, что транзистор предельно открыт, и здесь он служит переключателем во включенном состоянии. Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи.

Все режимы работы зависят от характера выходных характеристик, изображенных на графике.

Их можно наглядно продемонстрировать, если будет собрана схема включения биполярного транзистора с ОЭ.

Если отложить на осях ординат и абсцисс отрезки, соответствующие максимально возможному коллекторному току и величине напряжения питания V CC , а затем соединить их концы между собой, получится линия нагрузки (красного цвета). Она описывается выражением: I C = (V CC — V CE)/R C . Из рисунка следует, что рабочая точка, определяющая ток коллектора I C и напряжение V CE , будет смещаться по нагрузочной линии снизу вверх при увеличении тока базы I В.

Зона между осью V CE и первой характеристикой выхода (заштрихована), где I В = 0, характеризует режим отсечки. При этом обратный ток I C ничтожно мал, а транзистор закрыт.

Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении I В коллекторный ток уже не изменяется. Зоной насыщения на графике является заштрихованная область между осью I C и самой крутой характеристикой.

Как ведет себя транзистор в разных режимах?

Транзистор работает с переменными или постоянными сигналами, поступающими во входную цепь.

Биполярный транзистор: схемы включения, усилитель

Большей частью транзистор служит в качестве усилителя. Переменный сигнал на входе приводит к изменению его выходного тока. Здесь можно применить схемы с ОК или с ОЭ. В выходной цепи для сигнала требуется нагрузка. Обычно используют резистор, установленный в выходной коллекторной цепи. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.

Работу усилителя хорошо видно на временных диаграммах.

Когда преобразуются импульсные сигналы, режим остается тем же, что и для синусоидальных. Качество преобразования их гармонических составляющих определяется частотными характеристиками транзисторов.

Работа в режиме переключения

Предназначены для бесконтактной коммутации соединений в электрических цепях. Принцип заключается в ступенчатом изменении сопротивления транзистора. Биполярный тип вполне подходит под требования ключевого устройства.

Заключение

Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Универсальные возможности и большая классификация позволяют широко применять биполярные транзисторы. Схемы включения определяют их функции и режимы работы. Многое также зависит от характеристик.

Основные схемы включения биполярных транзисторов усиливают, генерируют и преобразуют входные сигналы, а также переключают электрические цепи.

Структура биполярного транзистора и принцип его работы. частотные характеристики транзистора. распределение концентрации носителей заряда в области базы, эмиттера и коллектора. зарядовая модель биполярного транзистора. структура и принцип действия тиристора

Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором. Такой транзистор состоит

из двух взаимодействующих

p − n − переходов, созданных в объеме

монокристалла кремния или германия. Работа биполярного транзистора основана на явлениях, происходящих в объеме полупроводника.  Два

p − n − перехода  разделяют  три  области,  называемые

эмиттером, базой и коллектором (рис. 14.1).

Рис. 14.1. Биполярный транзистор типа n − p − n : (а) упрощенная модель; (б)

условное графическое изображение

В зависимости от характера примесей в этих областях принято

различать транзисторы типа

n − p − n

и  p − n − p . Ограничим наше

рассмотрение приборами типа

n − p − n , которые в настоящее время

чаще используются, имеют лучшие характеристики в области высоких частот и большее усиление при одной и той же концентрации примесей и одинаковой геометрии. Это объясняется тем, что подвижность электронов в два, три раза выше подвижности дырок. Для

того чтобы было велико взаимодействие токов через два перехода, расстояние между ними должно быть мало по сравнению с диффузионной длиной основных носителей тока.

Термин «биполярный транзистор» указывает на то, что работа данного прибора связана с движением как электронов, так и дырок. Рассмотрим одномерную структуру. Источники напряжений подключены таким образом, что усилительный прибор работает в активном

режиме при нормальном включении: источник Uэ

смещает переход

«эмиттер-база» в прямом направлении, а источник Uk

смещает переход «коллектор-база» в обратном направлении (рис. 14.1а). Возможны еще три режима, которые используются в переключательных устройствах: инверсный активный режим (аналогичный нормальному активному, но с взаимной переменой мест эмиттера и коллектора), режим отсечки (оба напряжения являются обратными) и, наконец, режим насыщения (оба перехода смещены в обратном направлении).

В активном нормальном режиме работы транзистора потенциал

Uэ  вызывает инжекцию электронов из эмиттера в область базы, которая располагается между границами

xБЭ

и xБК

обедненных областей

p − n − переходов.     В         активной        области           базы    происходит

диффузия электронов. (Следует иметь в виду, что в базе так называемого дрейфового транзистора наряду с диффузией имеет место дрейф неосновных носителей под действием внутреннего поля). Некоторые электроны рекомбинируют с дырками, однако, большая

часть проходит область базы и достигает того участка, где источник

напряжения

UКБ , включенный в обратном направлении, создает интенсивное электрическое поле, ускоряющее носители по направлению к коллектору. Чтобы этот процесс шел эффективно, активная область базы должна быть гораздо меньше диффузионной длины электронов.

Процесс усиления происходит следующим образом. Так как концентрация легирующих примесей в базе мала, инжекция дырок из базы в эмиттер приводит к возникновению лишь небольшого дырочного тока, протекающего через вывод базы. С помощью этого малого тока можно управлять гораздо большим током коллектора

(как уже отмечалось, работа транзистора основана на существовании носителей обоих знаков).

Когда к эмиттерному переходу приложено прямое напряжение, электроны из эмиттера инжектируются в базу, где становятся неосновными носителями. Поскольку к коллекторному переходу приложено обратное напряжение, то электроны из базы затягиваются электричесим полем перехода в область коллектора. Ток, проходящий через коллектор, можно определить по формуле

Ik  = −(I

k0  + αIэ

) .         (14.1)

Величина α  представляет собой коэффициент усиления по току, который является одним из основных параметров транзисторов.

Коллекторный ток в отсутствие эмиттерного тока обозначается как Ik0 . Эта величина определяется равновесными носителями в базе и равна обратному току насыщения. Для эффективной работы транзистора коэффициент α  должен быть близок к единице, характерные значения в реальных приборах составляют 0,98÷0,99. Значение

коэффициента усиления зависит от конструкции прибора и режима

его  работы,  т.е.  от  значений  токов  и  напряжений  через  оба

p − n − перехода.

Поскольку напряжение UК

подключается как обратное, уровень

импеданса, относящийся к этой части цепи, оказывается существенно выше того уровня, который связан с источником

Uэ . По этой

причине транзистор является элементом цепи, создающим усиление по напряжению. Коэффициент передачи тока от эмиттера к коллектору  оказывается  немного  меньшим  единицы.  Произведение этих двух величин есть коэффициент усиления по мощности, который может превышать единицу. В активном режиме работу транзистора можно оценивать также крутизной характеристики, которая определилась путем измерения приращения тока на выходе в зависимости от изменения напряжения на входе.

При анализе работы биполярного транзистора в качестве усилительного прибора особый интерес представляет случай, когда напряжение «база-эмиттер» изменяется во времени периодически. Если амплитуда этого напряжения достаточно мала, то говорят, что транзистор работает в режиме малого сигнала.

Если в качестве основы для расчетов работы транзистора рассматривать заряды, которые накапливаются в различных областях прибора, то такая модель называется зарядовой. Если предположить, что ток, протекающий по переходу, является линейной функцией заряда, его производной по времени, а также переменного напряжения, приложенного к переходу, то накопленный заряд можно представить в виде функции, которая зависит только от времени и удовлетворяет обобщенному закону сохранения заряда. Зарядовая модель может быть выражена как

I = Q   n

+ Qp

+  dQn

+ dQp

+ dQпер ,        (14.2)

τ’n

τ’ p       dt         dt         dt

где I полный ток в переходе; Qn

заряд, внесенный электронами в

нейтральную

p − область; Qp

заряд, внесенный дырками в нейтральную

n − область;

τ’n

среднее время жизни электрона с учетом

процессов рекомбинации в объеме и на поверхности;

τ’p

среднее

время жизни дырки;

Qпер

заряд в обедненной области; Qn

τ’n        и

Qp   τ’ p

составляющие тока, связанные с поддержанием процессов

рекомбинации в нейтральных областях;

dQn

dt  и

dQp

dt  составляющие тока, обусловленные изменениеями избыточных носителей

в нейтральных областях;

dQпер

dt  составляющая тока, обусловленная изменением заряда в обедненной области.

Транзистор типа

n − p − n , работающий как усилитель, управляется напряжением, которое прикладывается к переходу «базаэмиттер». Изменение этого напряжения влияет на значения составляющих заряда.

Дифференциальные уравнения, описывающие зарядовую модель транзистора, являются линейными, несмотря на то, что токи и напряжения в транзисторе связаны между собой нелинейной зависимостью. Эти уравнения весьма полезны для расчетов устройств, в которых транзистор подключен к внешней нагрузке. Среди всевозможных применений зарядовой модели можно указать ее использование для нахождения тока коллектора в транзисторе, который работает в активном режиме и имеет источник тока в базовой цепи.

Особенно часто эту модель применяют при исследовании работы транзистора в режиме большого сигнала, а также при изучении нестационарного процесса, сопровождающего переход транзистора из режима отсечки в режим насыщения. Эта модель позволяет также определить ток стока в МОП-транзисторе на основании соотношения, которое связывает заряд в канале с временем перехода носителей через область канала.

Вольтамперные характеристики зависимости тока  коллектора от напряжения между коллектором и эмиттером представлены в качестве примера на рис. 14.2.

Рис. 14.2. Выходные характеристики транзистора, включенного по схеме «общий эмиттер»: 1 насыщение; 2 активный режим; 3 отсечка

Тиристоры представляют собой четырехслойные полупроводниковые приборы, предназначенные для создания накопительных устройств,  управляемых  выпрямителей, регуляторов  мощности  и т.п. Эти приборы имеют два устойчивых состояния, в одном из которых они проводят ток («включено»), а в другом разрывают цепь («выключено»). Тиристоры могут работать с напряжениями до 1000

В и коммутировать токи до 500 А. Удается достичь длительности переключения вплоть до десятков микросекунд.

Управляемый тиристор используют как регулирующий элемент осветительной аппаратуры. Он применяется также в силовых устройствах  преобразования  частоты,  может  служить  быстродействующим коммутатором и т.д.

Идеальная структура такого прибора представляет объединение транзисторов типа

p − n − p

и n − p − n

(рис. 14.3).

Рис. 14.3. Идеальная структура кремниевого управляемого тиристора

Ток  в  цепи  управляющего  электрода  усиливается

n − p − n транзистором, поэтому в цепи

p − n − p — транзистора возникает ток,

который усиливается транзистором типа n-p-n. Этот ток возрастает до тех пор, пока не становится равным току насыщения. С ростом тока управляющего электрода напряжение лавинного пробоя (напряжение включения) уменьшается. При больших токах управляющего электрода лавинный пробой наблюдается в точках, близких к кривой, описывающей вольтамперную характеристику выпрямляющего

p − n − перехода.

Материал взят из книги Основы полупроводниковой техники и ее применение  в  автотранспортном  комплексе (Ткачева Т.М.)

Биполярные транзисторы

3.9. Биполярные транзисторы

 

1. Общие сведения. Характеристики

 

Биполярный транзистор – это полупроводниковый прибор с двумя р-n переходами и тремя выводами, служащий для усиления мощности. В транзисторе имеется три области – эмиттер (э), база (б) и коллектор (к). В зависимости от типа проводимости этих областей различают транзисторы n-p-n и p-n-p типа. Таким образом, в транзисторе имеется два p-n перехода: эмиттер-база (эмиттерный) и коллектор-база (коллекторный). Стрелка на условных обозначениях транзисторов (см. в начале главы) указывает направление от p области к n области. Принцип работы обоих типов транзисторов одинаков.

Толщина базы делается значительно меньше длины свободного пробега неосновных носителей тока, попадающих в нее из эмиттера, а концентрация основных носителей в базе много меньше концентрации основных носителей в эмиттере. В результате в базе сводится до минимума рекомбинация неосновных носителей с основными, пришедшими из эмиттера.

Площадь коллекторного перехода (перехода база-коллектор) значительно больше площади эмиттерного перехода (перехода база-эмиттер). Это делается для того, чтобы перехватить весь поток носителей, идущих от эмиттера, а также потому, что на коллекторном переходе выделяется большая мощность. Концентрация же основных носителей в коллекторе несколько меньше, чем в эмиттере.

В зависимости от того, какое напряжение (прямое или обратное) подано на переходы транзистора, выделяют четыре режима работы транзистора. В активном режиме (он является основным) напряжение на эмиттерном переходе прямое, на коллекторном – обратное. В режиме отсечки (запирания) на оба перехода подается обратное напряжение. В режиме насыщения напряжение на обоих переходах прямое. В инверсном режиме на коллекторном переходе напряжение прямое, а на эмиттерном – обратное.

Рассмотрим работу транзистора n-p-n типа в активном режиме без нагрузки (рис. 3.30). На рисунке темными кружками изображены электроны, светлыми – дырки. Поскольку на переход база-эмиттер подано прямое напряжение, то сопротивление эмиттерного перехода мало и для получения тока на этом переходе достаточно напряжения Е1 в десятые доли вольта. Сопротивление коллекторного перехода велико (на него подано обратное напряжение) и напряжение Е2 обычно составляет единицы и десятки вольт.

При увеличении прямого напряжения на эмиттерном переходе электроны из эмиттера переходят в базу. Благодаря малой толщине базы и малой концентрации в ней дырок лишь незначительная часть электронов рекомбинирует с дырками базы, образуя ток базы (его стараются сделать как можно меньше). Основная часть электронов достигает коллекторного перехода и под действием его обратного напряжения втягивается в коллектор (электроны являются неосновными носителями для базы и поле запирающего слоя на переходе коллектор-база является для них ускоряющим). Поэтому ток коллектора лишь немного меньше тока эмиттера: iэ=iк+iб.

Когда на эмиттерный переход не подано прямое напряжение, то через коллектроный переход протекает только небольшой обратный ток, созданный неосновными носителями. Таким образом, прямое напряжение эмиттерного перехода существенно влияет на токи эмиттера и коллектора: чем больше это напряжение, тем больше токи эмиттера и коллектора. Такое свойство транзистора позволяет использовать его в качестве электронного ключа, а также для усиления электрического тока.

Для расчета схем с транзисторами необходимо знать их характеристики (зависимости между токами и напряжениями). Для схемы включения транзистора с общим эмиттером (рис. 3.30) входная характеристика представляет собой зависимость силы тока базы от напряжения база-эмиттер при постоянном напряжении коллектр-эмиттер. Она имеет такой же вид, как прямая ветвь ВАХ полупроводникового диода. Выходные характеристики биполярного транзистора при схеме включения с общим эмиттером представляют собой зависимости силы тока коллектора от напряжения коллектор-эмиттер при различных постоянных значениях тока базы (рис. 3.31).

Самая нижняя выходная характеристика построена для iб=0. Она похожа на обратную ветвь вольт-амперной характеристики полупроводникового диода. Чем больше сила тока базы, тем выше расположена выходная характеристика.

Активная область на семействе выходных характеристик транзистора (рис. 3.32) ограничена максимально допустимым током коллектора, максимально допустимым напряжением коллектор-эмиттер, гиперболой максимально допустимой мощности рассеяния и неуправляемым током коллектора (ток коллектора при iб=0). Для уменьшения нелинейных искажений рабочую область ограничивают также слева (см. штриховую линию на рис. 3.32).

Характеристики транзисторов, как и всех полупроводниковых элементов, очень сильно зависит от температуры. При увеличении температуры сопротивление полупроводников уменьшается и токи в них увеличиваются. Поэтому семейство выходных характеристик при увеличении температуры смещается вверх (рис. 3.33).

 

2. Определение структуры и выводов биполярных транзисторов

В последнее время все чаще используют транзисторы, извлеченные из неработающих электронных приборов. В связи с этим возникает проблема определения структуры и выводов транзисторов.

При экспериментальном определении структуры транзистора (р-n-р или n-р-n) его можно рассматривать состоящим из двух диодов, соединенных в зависимости от структуры анодами или катодами (рис. 3.34 а, б), причем точка соединения диодов соответствует выводу базы транзистора. Для определения структуры и вывода базы транзистора воспользуемся омметром с известной полярностью напряжения, подаваемого на гнезда омметра от внутреннего источника питания. Обычно положительный полюс внутреннего источника питания омметра соединен с гнездом “общий”.

Следует отметить, что существуют омметры и с другой полярностью напряжения на гнездах. Так, например, авометр Ц20-05 выпускается в двух модификациях: в одной из них на общее гнездо омметра выведен плюс внутреннего источника питания, а в другой — минус. Поэтому перед экспериментальным определением структуры и вывода базы транзистора следует с помощью диода с маркированной полярностью проверить, какой полюс внутреннего источника питания омметра соединен с общим гнездом.

При одной полярности щупов омметра, подключаемых к переходу транзистора, сопротивление перехода оказывается малым (прямое подключение), а при другой — большим (обратное подключение). Если при малом сопротивлении переходов транзистора плюсовой щуп омметра касался одного и того же вывода, значит это вывод базы и транзистор имеет структуру n-р-n. Если в этой же ситуации минусовой щуп омметра касался одного и того же вывода (базы), то транзистор р-n-р типа.

После того, как определена структура транзистора и найден вывод базы транзистора, приступают к определению выводов эмиттера и коллектора. На рисунках, поясняющих принцип работы биполярного транзистора, области эмиттера и коллектора выглядят симметрично и, казалось бы, что выводы коллектора и эмиттера можно поменять местами. Однако конструктивно эмиттер и коллектор выполняются по-разному (имеют неодинаковую концентрацию носителей заряда и площадь поверхности). Поэтому менять их местами не следует, так как получится существенно меньший коэффициент усиления по току и меньшая мощность рассеяния транзистора. Для некоторых транзисторов в этом случае может возникнуть лавинный пробой перехода база-эмиттер, что нарушит нормальную работу собранного электронного устройства. На рисунке 3.35 приведены две выходные характеристики транзистора КТ315А в схеме включения с общим эмиттером: 1 – для стандартного включения транзистора, 2 — для случая, когда эмиттер и коллектор транзистора поменяли местами (инверсный режим работы).

Существует несколько вариантов экспериментального определения выводов эмиттера и коллектора. Рассмотрим два из них.

Возьмем резистор сопротивлением 10-100 кОм и включим его между выводом базы и предполагаемым выводом коллектора. К выводам эмиттера и коллектора омметр можно подключить так, как показано на рисунках 3.36а и 3.36б для транзистора n-р-n типа, а на рисунках 3.37а и 3.37б — для транзистора р-n-р типа. На всех рисунках предполагаемый вывод коллектора расположен вверху (по рисунку). Правильному выбору выводов коллектора и эмиттера соответствует меньшее сопротивление, фиксируемое омметром, т.е. подключение по схемам рисунков 3.36а, 3.37а.

Рассмотрим второй вариант определения выводов коллектора и эмиттера. В качестве источника питания используют любой источник постоянного напряжения (3-9 В). Миллиамперметр включают между положительным полюсом источника и предполагаемым выводом коллектора для транзисторов n-р-n типа (рис. 3.38а и 3.38б), между отрицательным полюсом источника и предполагаемым выводом коллектора для транзисторов р-n-р типа (рис. 3.39а и 3.39б). Предполагаемый вывод коллектора, как и в предыдущем случае, расположен на рисунке вверху. Правильно выбранному выводу коллектора соответствует больший ток, фиксируемый миллиамперметром.

В этом варианте можно определить не только выводы транзистора, но и приблизительно определить коэффициент усиления транзистора по току: , где Iк — сила тока коллектора, Iб — сила тока базы.

Ток базы можно рассчитать по формуле  , где Uп — напряжение источника питания, Uбэ — напряжение между базой и эмиттером транзистора.

 

Для кремниевых транзисторов напряжение база-эмиттер составляет примерно 0,6 В. Выберем напряжение питания 4,5 В и сопротивление резистора 390 кОм. Тогда Iб = 10-2 мА, и коэффициент усиления определяется из формулы: , где Iк — сила тока коллектора в мА.

 

🚀 Реферат на тему «Биполярные транзисторы. Принцип действия. Схемы включения»

Содержание

1   Общие сведения

2        Принцип действия

Параметры

Схемы включения

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

Список используемой литературы

1. Общие сведения

Биполярный транзистор — это полупроводниковый прибор с двумя взаимодействующими электрическими переходами и тремя (или более) выводами, предназначенный для усиления сигнала.

Первые транзисторы были точечными, но они работали недостаточно устойчиво. В настоящее время применяются исключительно плоскостные транзисторы. Устройство плоскостного биполярного транзистора показано схематически на рисунке 1.

Рисунок 1 — устройство плоскостного биполярного транзистора

Транзистор представляет собой пластину германия, или кремния, или другого полупроводника, в которой созданы три области с различной электропроводностью. Для примера взят транзистор типа n-p-n, имеющий среднюю область с дырочной, а две крайние области — с электронной электропроводностью. Широко применяются также транзисторы типа p-n-p, в которых дырочной электропроводностью обладают две крайние области, а средняя имеет электронную электропроводность. Условное графическое обозначение транзисторов представлено на рисунке 2.

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

Рисунок 2 — условное графическое обозначение транзисторов

Средняя область транзистора называется базой, одна крайняя область — эмиттером, другая — коллектором. Каждая из областей снабжается омическим контактом, от которого делается вывод, обозначаемый Э, К, Б соответственно. Таким образом, в транзисторе имеются два n-p-перехода: эмиттерный — между эмиттером и базой и коллекторный — между базой и коллектором. Расстояние между ними должно быть очень малым, не более единиц микрометров, т.е. область базы должна быть очень тонкой. Это является условием хорошей работы транзистора. Кроме того, концентрация примесей в базе всегда значительно меньше, чем в коллекторе и эмиттере.

Назначение эмиттера — это инжекция (впрыскивание) в область базы неосновных для нее носителей заряда, для чего область эмиттера выполняют более насыщенной основными носителями (более низкоомной), чем область базы. Назначение коллектора — это экстракция (втягивание) носителей из базы.

Транзисторы классифицируются по различным признакам:

—        по диапазону рабочих частот — низкой, средней и большой;

по методу изготовления — сплавные, диффузионные, планарные и др;

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

по материалу: германиевые, кремниевые.

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах:

Активный режим — напряжение на эмиттерном переходе прямое, а на коллекторном — обратное.

Режим отсечки (запирания) — обратное напряжение подано на оба перехода.

Режим насыщения — на обоих переходах прямое напряжение.

Основным является активный режим. Он используется в большинстве усилителей и генераторов. Режимы отсечки и насыщения характерны для импульсной работы транзистора.

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

В схемах с транзисторами обычно образуются две цепи: входная (управляющая) — в нее включают источник усиливаемых сигналов и выходная (управляемая) — в нее включается нагрузка.

. Принцип работы

Рассмотрим принцип работы транзистора, на примере n-p-n транзистора. В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

Рисунок 3 — принцип действия транзистора

В транзисторе типа n-p-n основные носители заряда в эмиттере (электроны) проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того, что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны) и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+ Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк= α Iэ), называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α = 0,9-0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малый ток базы управляет значительно большим током коллектора.

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

В зависимости от смещения, созданного на эмиттерном и коллекторном p-n-переходах, транзистор может работать в трех режимах. Если один переход смещен в прямом направлении, а другой — в обратном, режим называют активным (рис. 4, а). Если в прямом направлении включен эмиттерный переход, а коллекторный — в обратном, такое включение называют нормальным (рис.4, б). Если смещение на p-n-переходах противоположное, включение называют инверсным (рис. 4, в). В последнем случае коллектор выполняет роль эмиттера, а эмиттер — роль коллектора.

Рисунок 4 — режимы работы транзистора (а — активный, б — нормальный, в — инверсный)

Так как размеры эмиттера меньше размеров коллектора, то при инверсном режиме включения эмиттер не сможет уловить значительную часть носителей заряда, инжектированных коллектором в базу, а так же будет нагреваться. Активный режим используется в усилительных цепях и в цепях генерирования, где транзистор выполняет функции активного элемента цепи. Если оба p-n-перехода смещены в обратном направлении, транзистор работает в режиме отсечки — отключен. Если оба p-n-перехода смещены в прямом направлении, транзистор работает в режиме насыщения — включен. Режимы отсечки и насыщения используют в ключевых режимах работы транзистора.

. Основные параметры

·              Входное сопротивление;

·              Выходная проводимость;

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

·              Обратный ток коллектор-эмиттер;

·              Время включения;

·              Предельная частота коэффициента передачи тока базы;

·              Обратный ток коллектора;

·              Максимально допустимый ток;

·              Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

·      коэффициент усиления по току α;

·              сопротивления эмиттера, коллектора и базы переменному току rэ,rк,rб, которые представляют собой:

·      rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;

·              rк — сумму сопротивлений коллекторной области и коллекторного перехода;

·              rб- поперечное сопротивление базы.

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Подробнее

Рисунок 5 — эквивалентная схема биполярного транзистора с использованием h-параметров

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

. Схемы включения

При включении транзистора в цепь один из его выводов делают общим для входной и выходной цепей. Поэтому цепи включения бывают: с общей базой (ОБ) (рис.6, а), с общим эмиттером (ОЭ) (рис.6, б) и общим коллектором (ОК) (рис.6, в).

Работу биполярного транзистора в активном режиме рассмотрим на примере биполярного диффузионного сплавного транзистора со структурой p-n-p, включенного по схеме с ОБ в активном режиме. При этом понимает, что заряды распределены равномерно, транзистор замене одноименной моделью, толщина базы незначительная, эмиттер насыщен акцепторной примесью, во много раз превышающей донорную примесь базы, и площадь эмиттера значительно меньше площади коллектора.

Рисунок 6 — схемы включения p-n-p транзисторов и их структуры (а — с общей базой, б — с общим эмиттером, в — с общим коллектором).

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена реферата

В активном режиме прямое смещение эмиттерного перехода создается за счет включения источника постоянного напряжения, а обратное смещение коллекторного перехода — за счет включения источника между коллектором и базой (рис.7). Напряжение -Uэб имеет небольшое значение, близкое к высоте потенциального барьера, и составляет доли вольта. Напротив, напряжение Uкб на порядок больше напряжения -Uэб и ограничивается напряжением пробоя коллекторного перехода. При включении источников питания потенциальный барьер эмиттерного перехода снижается за счет напряжения -Uэб, а потенциальный барьер коллекторного перехода повышается за счет напряжения -Uкб. В результате дырки эмиттера легко преодолевают понизившийся потенциальный барьер и за счет диффузии инжектируется в базу, а электроны базы — в эмиттер.

Дырки эмиттера диффундируют в базу и движутся в направлении к коллекторному переходу за счет перепада плотности дырок по длине базы, большинство из них доходит до коллекторного перехода, но незначительная часть рекомбинирует с электронами базы. На работу транзистора существенно влияет движение неосновных носителей через коллекторный переход: дырок базы — в коллектор и электронов коллектора — в базу. Их количество растет с повышением температуры, а также зависит от материала полупроводника.

Рисунок 7 — активный режим работы транзистора

транзистор эмиттер коллектор

Список используемой литературы

1. Иванов И.И., Соловьев Г.И., Фролов В.Я. Электротехника и основы электроники.

Нужна помощь в написании реферата?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Заказать реферат

Схемы включения БТ – В помощь студентам БНТУ – курсовые, рефераты, лабораторные !

Схемы включения БТ

Биполярный транзистор, являющийся трехполюсным прибором, можно использовать в трех схемах включения: с общей базой (ОБ) (рисунок 3,а), общим эмиттером (ОЭ) (рисунок 3,б), и общим коллектором (ОК) (рисунок 3,в). Потенциал общего электрода принимается за нулевой (земля). Отсчёт напряжений на остальных электродах производится относительно точки нулевого потенциала. Стрелки на условных изображениях БТ указывают (как и на рис. 1) направление прямого тока эмиттерного перехода. В обозначениях напряжений вторая буква индекса обозначает общий электрод для двух источников питания.

Режимы работы биполярного транзистора

В зависимости от полярности внешних напряжений, подаваемых на электроды транзистора, различают следующие режимы его работы.

  1. Активный режим – эмиттерный переход смещён в прямом направлении (открыт), а коллекторный – в обратном направлении (закрыт) (режим, при котором транзистор обладает активными свойствами, т.е. способен обеспечивать усиление по мощности).
  2. Режим отсечки – оба перехода смещены в обратном направлении (закрыты) (в этом режиме транзистор заперт и ток его близок к нулю).
  3. Режим насыщения – оба перехода смещены в прямом направлении (открыты) (в этом режиме транзистор полностью открыт и протекающий ток равен максимальному значению).
  4. Инверсный режим – коллекторный переход смещён в прямом направлении, а эмиттерный – в обратном. В таком режиме коллектор выполняет роль эмиттера, а эмиттер – роль коллектора. При инверсном включении параметры реального транзистора существенно отличаются от параметров при нормальном включении.

 

Примечание: Скорость перехода транзистора из открытого состояния в закрытое и обратно главным образом зависит от переходных процессов в базе, связанных с накоплением и рассасыванием неравновесных носителей зарядов.

Принцип действия транзистора

Принцип действия транзисторов n-p-n и p-n-p типов одинаков, различие заключается лишь в полярности внешних напряжений и типа основных носителей, инжектированных в область базы.

Принцип действия транзистора принято рассматривать в активном режиме работы с общей базой (рис. 3, а). Под действием внешнего напряженияUэб эмиттерный переход смещен в прямом направлении, а под действием Uкб коллекторный переход – в обратном.

При увеличении Uкб снижается потенциальный         барьер эмиттерного перехода, а так как концентрация электронов в эмиттере значительно больше концентрации дырок в базе, то происходит инжекция электронов из эмиттера в базу и дырок из базы в эмиттер. Это вызывает протекание токов инжекцииIэп –  электронного и Iэр – дырочного. Так как число дырок в области базы значительно меньше количества электронов в области эмиттера, то Iэп<<Iэр.

Для количественно оценки составляющих полного тока эмиттерного перехода вводят параметр – коэффициент инжекции или эффективность эмиттерного перехода:

который показывает, какую долю от общего тока эмиттера составляет ток инжектированных в базу носителей заряда (в данном случае электронов). На практике коэффициент инжекции оказывается близким к единице (=0,98…0,995). Дырки, инжектированные из области базы в область эмиттера, полностью рекомбинируют. В дальнейшем этот процесс не рассматривается, поскольку инжекция электронов из эмиттера в базу является доминирующей.

Электроны, инжектированные в базу, создают в ней вблизи p-n перехода неравновесную концентрацию носителей, которая нарушает электронейтральность области базы. Для сохранения электронейтральности из внешней цепи от источника питанияUэб дырки через вывод базы устремляются к эмиттерному переходу, создавая ток

. Таким образом, входная цепь эмиттер – база оказывается замкнутой, во внешней цепи протекает входной ток – ток эмиттера Iэ. Часть подошедших к эмиттерному переходу дырок рекомбинирует с инжектированными электронами, а вследствие разности концентраций (в диффузионных транзисторах)  и разности концентраций и наличия внутреннего электрического поля (в дрейфовых) электроны и дырки движутся вглубь базы к коллекторному переходу. Так как ширина базы значительно меньше диффузионной длины электронов, то большинство инжектированных электронов не успевает рекомбинировать. Электроны, подошедшие к обратносмещенному коллекторному переходу, попадают в ускоряющее полеUкб, экстрагируют (втягиваются) в коллектор, создавая ток коллектора Iкп, а подошедшие дырки отталкиваются полем коллекторного перехода и возвращаются к базовому выводу. Таким образом, выходная цепь – (коллектор–база) оказывается замкнутой и в ней протекает ток Iк.

Процесс переноса неосновных носителей через базу характеризуется коэффициентом переноса: 

величина которого зависит от ширины базы, диффузионной длины носителей и близка к единице: 0,988…0,995.

Экстракция электронов может сопровождаться ударной ионизацией атомов полупроводника и лавинным умножением носителей заряда в коллекторном переходе. Процесс умножения носителей оценивается коэффициентом лавинного умножения:

В связи с этим ток коллектора, вызванный инжекцией основных носителей заряда через эмиттерный переход, равен: , где h31б=– статический коэффициент передачи тока эмиттера.

Кроме управляемого тока коллектора, который зависит от количества носителей, инжектированных из эмиттера в базу и экстрагированных из базы в коллектор с учётом коэффициента лавинного размножения, протекает обратный неуправляемый токIкбо . Причина появления этого тока обусловлена дрейфом неосновных носителей базы и коллектора к обратносмещённому коллекторному переходу и их экстракцией через него. Этот ток имеет такую же природу, как и обратный ток полупроводникового диода. Поэтому его называют обратным током коллекторного перехода.

Таким образом, принцип действия транзистора основан на следующих физических процессах:

  1. Инжекция носителей через прямосмещённый эмиттерный переход;
  2. Рекомбинации и диффузионном переносе носителей через область базы от эмиттерного к коллекторному переходу;
  3. Экстракции носителей через обратносмещённый коллекторный переход.

 

Основные параметры транзистора в схеме с общей базой

На практике чаще всего используются два семейства ВАХ транзисторов – входные и выходные. Входные характеристики определяют зависимость входного тока (базы или эмиттера в зависимости от способа включения транзистора) от напряжения между базой и эмиттером при фиксированных значениях напряжения на коллекторе. Выходные характеристики определяют зависимость тока коллектора от напряжения коллектор-эмиттер при фиксированных значениях тока базы или эмиттера (в зависимости от способа включения транзистора). Входные характеристики имеют вид, аналогичный характеристикам диодов: ток экспоненциально возрастает с увеличением напряжения база-эмиттер. При повышении и понижении температуры входные характеристики смещаются в сторону меньших и больших входных напряжений соответственно. Напряжение между базой и эмиттером для кремниевых транзисторов уменьшается примерно на 2 мВ при увеличении температуры на каждый градус Цельсия. Особенностью выходных характеристик транзистора, включенного по схеме с ОБ, является слабая зависимость тока коллектора от напряжения коллектор-базаUкб. При больших напряжениях Uкб происходит пробой коллекторного перехода. При увеличении температуры выходные характеристики смещаются в сторону больших токов из-за увеличения обратного токаIко . У транзистора, включенного по схеме с ОЭ, ток коллектора более сильно зависит от напряжения коллектор-эмиттер. Резкое возрастание тока коллектора начинается при меньшем коллекторном напряжении, чем для включения транзистора по схеме с ОБ. При повышении температуры выходные характеристики значительно смещаются в сторону больших токов, их наклон сильно увеличивается.

ВАХ транзисторов и диодов снимаются на постоянном токе (по точкам) или с помощью специальных приборов — характериографов, позволяющих избежать сильного нагрева приборов.

Входные и выходные характеристики транзисторов используются для расчета цепей смещения и стабилизации режима, расчета конечных состояний ключевых схем (режима отсечки, насыщения).

 

Рассмотрим способы измерения основных характеристик биполярных

транзисторов.

Вольтамперные характеристики. Схема для исследования ВАХ транзистора показана на рисунке 7. Семейство входных ВАХ снимается при фиксированных значениях Ukб  путем изменения тока Iэ и измерения Uэб.

Семейство выходных ВАХ снимается при фиксированных значениях Ie, путем изменения напряжения Ukб, и измерения Ik.

Основными параметрами транзисторов в схеме с общей базой являются:

  • Дифференциальный коэффициент передачи эмиттерного тока:
  • Дифференциальное сопротивление эмиттерного перехода:
  • Дифференциальное сопротивление коллекторного перехода:
  • Коэффициент внутренней связи по напряжению, характеризующий влияние коллекторного напряжения на эмиттерное:

При определении параметров приведенных выше с помощью ВАХ транзисторов производные заменяют конечными приращениями соответствующих величин.

Статические коэффициенты передачи тока эмиттера (a) и базы (β) определяются в соответствии с выражениями:

 

Частотные свойства биполярного транзистора

Частотные свойства определяют диапазон частот синусоидального сигнала, в пределах которого прибор может выполнять характерную для него функцию преобразования сигнала. Принято частотные свойства приборов характеризовать зависимостью величин его параметров от частоты. Для биполярных транзисторов используется зависимость от частоты коэффициента передачи входного тока в схемах ОБ и ОЭ Н21Б и Н21Э. Обычно рассматривается нормальный активный режим при малых амплитудах сигнала в схемах включения с ОБ и ОЭ.

В динамическом режиме вместо приращения токов необходимо брать комплексные амплитуды, поэтому и коэффициенты передачи заменяются комплексными (частотно зависимыми) величинами:Н21Б и Н21Э.

Величины Н21Б и Н21Э могут быть найдены двумя способами:

• решением дифференциальных уравнений физических процессов и определением из них токов;

• анализом Т-образной эквивалентной схемы по законам теории электрических цепей.

Во втором случае Н21Б и Н21Э будут выражены через величины электрических элементов схемы. Мы проведем анализ частотных свойств коэффициентов передачи, используя Т-образную линейную модель (эквивалентную схему)n-р-n транзистора

На частотные свойства БТ влияют СЭ, СК и r½ ББ, а также время пролета носителей через базу t Б.

Нет надобности рассматривать влияние на частотные свойства транзистора каждого элемента в отдельности. Совместно все эти факторы влияют на коэффициент передачи тока эмиттера Н21Б, который становится комплексным, следующим образом:

,

где Н21Б0- коэффициент передачи тока эмиттера на низкой частоте, f – текущая частота, fН21Б- предельная частота.

Модуль коэффициента передачи тока эмиттера равен

Не трудно заметить, что модуль коэффициента передачи ½ Н21Б½ на предельной частоте fН21Б снижается в

раз.

Сдвиг по фазе между входным и вых. токами определяется формулой:

Для схемы с ОЭ известно соотношение

Подставляя ( ) в ( ) получим

,

где

.

Модуль коэффициента передачи тока базы будет равен

Как видно, частотные свойства БТ в схеме ОЭ значительно уступают транзистору, включенному по схеме с ОБ.

Граничная частота fГР – это такая частота, на которой модуль коэффициента передачи ½ Н21Э½ =1. Из формул  получим, что fГР» fН21Э× Н21Э0.

Транзистор можно использовать в качестве генератора или усилителя только в том случае, если его коэффициент усиления по мощности КP> 1. Поэтому обобщающим частотным параметром является максимальная частота генерирования или максимальная частота усиления по мощности, на которой коэффициент усиления по мощности равен единице. Связь этой частоты с высокочастотными параметрами определяется выражением

, где fН21Б-предельная частота в мегагерцах;
r1ББ-объемное сопротивление в омах; CК-емкость коллекторного перехода в

пикофарадах; fМАКС-в мГц.

Частота на которой модуль коэффициента передачи, a уменьшается в

раз по сравнению с его значением на низкой частоте, называется граничной частотой fгр.Величина fгр для схемы с ОБ определяется из соотношения fгр = п / tD, где tд = W * W / 2Dр – среднее время диффузии носителей.

Граничные частоты для схемы с ОБ и ОЭ связаны формулой:

Wб = W * (1 – a0) = Wa /(1 + B0),

где B – модуль коэффициэнта передачи тока базы при W = 0. Граничная частота в схеме с ОЭ в 1 + B0 раз меньше чем в схеме с ОБ.

Чтобы охарактеризовать частотные свойства транзистора широко используются частотные характеристики; представляющие собой зависимость модуля коэффициента передачиa от частоты (АЧХ) (ФЧХ) С увеличением частоты W увеличивается сдвиг по фазе, обусловленный влиянием инерционных процессов при прохождении не основных носителей через базу; и в конечном счете уменьшается коэффициентa. Уменьшение коэффициента a происходит в результате того, что с повышением частоты ток коллектора отстает от тока эмиттера.

Биполярный транзистор

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, разновидность транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости.

По этому способу чередования различают npn и pnp транзисторы (n — электронный тип примесной проводимости, p — дырочный).

Электрод, подключённый к центральному слою называют базой, электроды подключённые к внешним слоям называют коллектором и эмиттером.

На простейшей схеме различия между коллектором и эммитером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p-n перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Принцип действия транзистора

В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении.

Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.

В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.

Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор.

Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).

Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.

Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β=α/(1-α)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.

Опубликовано на: ru.wikipedia.org


Задать вопрос

Контактная информация:
тел:
(812) 387-55- 06, 387-65-64, 387-86-94
тел/факс: (812) 327-96-60
e- mail: ,

<< Предыдущая  Следующая >> Принцип работы биполярного переходного транзистора

и его эквивалентной схемы

Биполярный переходной транзистор (BJT):

Биполярный транзистор (BJT) имеет три вывода, подключенных к трем областям легированного полупроводника. В транзисторе N-P-N тонкая и слегка легированная база P-типа зажата между сильно легированным N-образным эмиттером и другим коллектором N-типа ; в то время как в транзисторе PNP тонкая и слегка легированная N-типа база зажата между сильно легированным P-типом эмиттер r и другим P-типа collecto r .Далее мы будем рассматривать только NPN BJT.

Рисунок 1. Биполярный переходной транзистор (BJT)

Принцип работы BJT:

Рис 2. Биполярный транзистор n-p-n (BJT)

На рисунке 2 показан транзистор n-p-n r, смещенный в активной области (см. смещение транзистора), переход BE смещен в прямом направлении, а переход CB с обратным смещением. Ширина обедненной области BE-перехода мала по сравнению с шириной CB-перехода.

Прямое смещение в BE-переходе снижает барьерный потенциал и заставляет электроны течь от эмиттера к базе.Поскольку основание тонкое и слегка легированное, оно состоит из очень небольшого количества дырок, поэтому некоторые электроны из эмиттера (около 2%) рекомбинируют с дырками, присутствующими в области базы, и вытекают из вывода базы.

Это основной ток, он течет из-за рекомбинации электронов и дырок (обратите внимание, что направление обычного тока противоположно направлению потока электронов). Оставшееся большое количество электронов пересечет коллекторный переход с обратным смещением и составит коллекторный ток.Таким образом, по KCL,

Базовый ток очень мал по сравнению с током эмиттера и коллектора.

Здесь основными носителями заряда являются электроны. Транзистор p-n-p работает так же, как и транзистор n-p-n, с той лишь разницей, что большинство носителей заряда — это дырки, а не электроны. Лишь небольшая часть тока течет из-за основных носителей, а большая часть тока течет из-за неосновных носителей заряда в BJT. Следовательно, они называются устройствами неосновных носителей

.

Схема эквивалента BJT:

Инжир.3 Эквивалентная схема BJT

p-n переход представлен диодом. Поскольку транзистор имеет два p-n перехода, он эквивалентен двум диодам, соединенным спина к спине. Это называется двухдиодной аналогией BJT.

Обратная связь важна для нас.

Биполярный переходной транзистор — обзор

8.4.3 Силовые транзисторы

Транзистор представляет собой трехслойное трехполюсное устройство. Это может быть биполярный переходной транзистор (BJT) или металлооксидный полупроводниковый полевой транзистор (MOSFET).Обычно производители классифицируют транзисторы в соответствии с их областью применения:

Малосигнальные транзисторы общего назначения предназначены для работы с малой и средней мощностью (менее 1 Вт) или для коммутации.

Силовые транзисторы предназначены для работы с большими токами и / или большими напряжениями.

RF (радиочастотные) транзисторы предназначены для высокочастотной работы, например, в системах связи.

BJT представляет собой транзистор NPN или PNP, показанный на рис. 8.40, с тремя выводами: базой, коллектором и эмиттером. BJT иногда считают двумя диодами, соединенными последовательно, чтобы получить структуру n-p-n или p-n-p.

Рисунок 8.40. BJT: структура (вверху) и символ схемы (внизу), транзистор NPN (слева) и транзистор PNP (справа)

Протекание тока базы (I B ) позволяет увеличить ток коллектора (I C ) для поток.Ток эмиттера — это сумма токов базы и коллектора. BJT действует как усилитель тока, хотя во многих случаях этот ток пропускается через резистор для создания напряжения. Соединяя BJT с резисторами (и конденсаторами), результирующие схемы могут обеспечивать усиление как тока, так и напряжения.

MOSFET представляет собой транзистор nMOS или pMOS, показанный на рис. 8.41, с тремя выводами: затвор, сток и исток. Некоторые полевые МОП-транзисторы также имеют четвертое соединение, основную часть или подложку, но с трехконтактным устройством основная часть внутренне соединена с истоком транзистора.

Рисунок 8.41. MOSFET: структура (вверху) и обозначение схемы (внизу), nMOS-транзистор (слева) и pMOS-транзистор (справа)

Приложение напряжения между затвором и истоком (V GS ) MOS-транзистора (напряжение больше чем пороговое напряжение для транзистора) позволяет протекать току стока (I D ). Вход затвора в транзистор является емкостным, и в устройстве протекает только небольшой ток затвора (ток утечки в неидеальном конденсаторе). (В простом анализе предполагается, что этот ток затвора равен нулю для идеального конденсатора.) МОП-транзистор использует входное напряжение для управления выходным током. Во многих случаях этот ток пропускается через резистор для создания напряжения. Соединяя полевой МОП-транзистор с резисторами (и конденсаторами), полученные схемы могут обеспечивать выход напряжения и тока.

И BJT, и MOSFET могут использоваться для создания схем усилителя или аналоговых фильтров (линейные приложения) или коммутационных приложений (нелинейные приложения). Примеры приложений для силовых транзисторов:

Управление двигателем постоянного тока

Управление двигателем переменного тока

Управление шаговым двигателем

усилители звука (выходной каскад усилителя, управляющего динамиками)

импульсные источники питания

Для силового транзистора безопасная рабочая область (SOAR) определяет безопасные пределы работы транзистора с точки зрения рабочих напряжений и токи для непрерывной работы (уровни постоянного тока и напряжения), а также для уровней, которые превышают область непрерывной работы в течение ограниченного периода времени.При использовании в качестве переключателя (особенно применимо для управления двигателем) время включения и выключения также необходимо учитывать, чтобы гарантировать правильную работу схемы, в которой используется транзистор. Если схема пытается слишком быстро включать и выключать транзистор, транзистор не может реагировать достаточно быстро, и результатом будет неправильная работа схемы.

Выбор силового транзистора для использования зависит от ряда факторов:

наличие транзистора, способного работать при требуемых уровнях напряжения, тока и температуры

максимальный транзистор рассеиваемая мощность

подходящий корпус — корпус транзистора (два примера показаны на рисунке 8.42) требуется для крепления транзистора к печатной плате или корпусу и для отвода тепла, выделяемого внутри корпуса.

Рис. 8.42. Примеры корпусов силовых транзисторов

Размер транзистора

Материал корпуса (пластик, керамика или металл) — когда в корпусе корпуса используется металл, один из выводов устройства должен быть электрически подключено к корпусу

Сопротивление включения и выключения — когда полевой МОП-транзистор используется в качестве переключателя

стоимость

Когда транзистор используется в качестве усилителя, создается схема усилителя. один из пяти классов усилителя (Таблица 8.13). Каждый класс имеет рейтинг эффективности, который описывает количество мощности, подаваемой на нагрузку схемы (например, электродвигателя), в процентах от мощности, подаваемой на усилитель. 100-процентный КПД означает, что усилитель не рассеивает мощность (в виде тепла), но 100-процентный КПД недостижим.

Таблица 8.13. Классы усилителя

Класс усилителя Описание
Класс A Транзистор проводит в течение всего периода входного сигнала.КПД низкий, максимум 25%.
Класс B Транзистор проводит в течение одной половины периода входного сигнала. КПД выше, максимум около 78%.
Класс AB Усилитель работает где-то между классом A и классом B.
Класс C Транзистор проводит менее половины периода входного сигнала. КПД приближается к 100%, но дает большие искажения входного сигнала.
Класс D Транзистор используется в качестве переключателя (ВКЛ или ВЫКЛ) и производит усилитель с хорошим КПД. Их часто называют переключающими усилителями или переключаемыми усилителями.

Силовые транзисторы могут использоваться в управлении двигателем, чтобы обеспечить управление скоростью, положением или крутящим моментом двигателя. Пример схемы транзисторного усилителя для управления скоростью электродвигателя постоянного тока показан на рисунке 8.43:

Рисунок 8.43. Управление скоростью двигателя без обратной связи

Схема работает от двухканального источника питания, где + V S — положительное напряжение источника питания, а –V S — отрицательное напряжение источника питания.

Пользователь устанавливает положение потенциометра для получения напряжения, которое представляет требуемую скорость двигателя.

Выход потенциометра буферизируется с помощью операционного усилителя.

Выход операционного усилителя управляет усилителем класса B.

Усилитель класса B приводит в действие двигатель постоянного тока.

В усилителе класса B используются один транзистор NPN и один транзистор PNP.Когда входное напряжение (выходное напряжение операционного усилителя) положительно (по отношению к общему узлу), NPN-транзистор проводит. Ток течет от положительного источника питания к общему узлу через двигатель, и двигатель вращается в одном направлении. Когда входное напряжение (выходное напряжение операционного усилителя) отрицательное (по отношению к общему узлу), транзистор PNP проводит. Ток течет от общего узла к отрицательному источнику питания через двигатель, и двигатель вращается в другом направлении.Два диода с обратным смещением подключены к узлам коллектор-эмиттер транзистора и используются для защиты транзисторов от высоких напряжений, которые могут возникнуть из-за быстро меняющихся токов в индуктивных катушках двигателя.

Это пример системы без обратной связи, в которой напряжение, приложенное к двигателю от схемы контроллера, заставляет двигатель вращаться. Изменение напряжения двигателя приведет к тому, что двигатель будет вращаться с другой скоростью. Одна потенциальная проблема с этой компоновкой заключается в том, что скорость двигателя изменяется в зависимости от различных нагрузок, подключенных к выходному валу двигателя, даже когда приложенное напряжение является постоянным.

Если скорость вала двигателя измеряется с помощью тахогенератора, напряжение генерируется в соответствии с фактической скоростью двигателя. Если это напряжение затем подается обратно в схему контроллера, как показано на рисунке 8.44, создается замкнутая система, и этот сигнал обратной связи может использоваться для автоматического увеличения или уменьшения скорости двигателя. Здесь усилитель мощности (символ треугольника) представляет собой схему транзисторного усилителя. Пользовательский ввод устанавливает требуемую скорость, а схема контроллера автоматически регулирует скорость двигателя до правильного значения.Динамика результирующей системы управления зависит от динамики двигателя и используемого алгоритма управления.

Рисунок 8.44. Управление скоростью двигателя с обратной связью

Система управления, показанная на рисунке 8.44, может быть реализована путем разработки цифровой схемы управления с аналоговым входом и выходом. Базовая компоновка показана на Рисунке 8.45. Здесь CPLD реализует алгоритм цифрового управления, такой как пропорционально-интегральное (PI) управление. Скорость двигателя устанавливается пользователем с помощью аналогового напряжения.Полярность вводимой команды определяет направление вращения вала двигателя, а величина определяет скорость вращения вала двигателя.

Рисунок 8.45. Пример управления двигателем постоянного тока через CPLD

Цифровой выход контроллера обеспечивает ввод данных в n-разрядный ЦАП. Выходное напряжение ЦАП подается через схему преобразования сигнала на базе операционного усилителя, которая обеспечивает вход для усилителя класса B. Схема преобразования сигнала на базе операционного усилителя создает выходное напряжение в диапазоне, требуемом для каскада усилителя мощности.Выход усилителя обеспечивает напряжение и ток, необходимые для вращения двигателя в любом направлении.

Тахогенератор вырабатывает напряжение постоянного тока с полярностью, определяемой направлением вращения вала двигателя, и величиной, определяемой скоростью вращения вала двигателя. Это напряжение является входом для схемы преобразования сигнала на базе операционного усилителя, которая изменяет уровни напряжения тахогенератора до уровней, требуемых n-разрядным АЦП. АЦП преобразует напряжение обратно в цифровое значение, которое обеспечивает цифровое представление напряжения аналогового тахогенератора.

Схема в CPLD обеспечивает функции цифрового алгоритма управления, который управляет напряжением, подаваемым на двигатель.

Каждый АЦП и ЦАП в конструкции требует своего собственного опорного сигнала (обычно напряжения).

Последней частью схемы является источник питания, который получает доступное напряжение источника питания и выдает уровни напряжения источника питания, необходимые для каждой части конструкции.

Примером коммерческого биполярного силового транзистора является транзистор 2N3772 NPN от ST Microelectronics.Это мощный кремниевый транзистор, помещенный в металлический корпус TO-3, и находит применение в таких областях, как линейные усилители и устройства индуктивной коммутации. В Таблице 8.14 приведены типичные абсолютные максимальные номинальные значения для силового транзистора в различных условиях эксплуатации.

Таблица 8.14. Типовой лист технических данных Абсолютные максимальные характеристики

I 9016 см Коллектор пиковый ток An Примером коммерческого силового МОП-транзистора является N-канальный транзистор STF2NK60Z от ST Microelectronics.Это мощный кремниевый транзистор, доступный в следующих корпусах: TO-92, TO-220, IPAK и TO-220FP. Внутри транзистора находятся защитные стабилитроны. Приложения включают маломощные зарядные устройства, импульсные источники питания и управление люминесцентными лампами.

ECSTUFF4U для инженера-электронщика: что такое BJT

Полная форма БЮТ представляет собой биполярный переходной транзистор, в котором используются как электронные, так и дырочные носители заряда. Для своей работы BJT использует два перехода между двумя полупроводниками, такими как n-тип и p-тип.

Биполярные транзисторы производятся двух типов: NPN и PNP, и доступны в виде отдельных компонентов или в большом количестве изготавливаются в виде интегральных схем. Функция BJT заключается в усилении тока, который можно использовать как усилители или переключатели. Эти функции предлагают широкий спектр приложений электронного оборудования, включая компьютеры, телевизоры, мобильные телефоны, усилители звука, промышленное управление и радиопередатчики.

Значение BJT:
  • Транзистор с биполярным переходом — это трехслойный полупроводниковый прибор NPN или PNP с двумя переходами, в котором одна p-область зажата двумя n-областями, а две p-области зажаты одной n-областью.У него есть три терминала: коллектор (C), эмиттер (E) и база (B).
Символ Параметр Единицы
В CE0 Напряжение коллектора-эмиттера (I E = 0) В В CEV Напряжение коллектор-эмиттер (для установленного ненулевого значения V BE ) В
В CB0 Напряжение коллектор-база (I B = 0) В
В EB0 Напряжение эмиттер-база (I C = 0) В
I c Ток коллектора A A
I b Базовый ток A
I bm Базовый пиковый ток A
P tot Общая рассеиваемая мощность при заданных температурных условиях (T C ) W
T stg Температура хранения ° C
Рисунок BJT
  • Ток в устройстве происходит за счет движения как дырок, так и электронов.
  • Эмиттер обозначен стрелкой, указывающей направление тока эмиттера. Никакая стрелка не связана с базой или коллектором.

Схема условного обозначения BJT:



NPN PNP

Типы БЮТ:
Есть два типа переходных транзисторов:

1.Транзистор NPN
2. Транзистор PNP

В этой статье дается краткая информация о транзисторах NPN и PNP, таких как принцип работы, преимущества и применение, чтобы лучше понять эту тему.

Принцип работы транзистора NPN:
  • Эта схема представляет собой NPN-тип BJT-транзистора, показанного на рисунке, существует два типа протекания тока: I C , I E известен как коллекторный и эмиттерный ток, а V CB , V EB — коллектор. — напряжение базы и напряжение эмиттер-база.
  • Показанный на рисунке ток I C , I E, I B ток, идущий в транзистор, равен, и знак принимается как положительный, а если ток исчезает, знак принимается как отрицательный.

Транзистор

NPN Применение:
  • Использовать как усилитель
  • Использование в качестве пары тона Дарлинг
  • Использовать как выключатель

Принцип работы транзистора PNP:
  • В переходном транзисторе P-N-P ток эмиттера проходит через вывод эмиттера, показанный на рисунке.
  • При использовании любого устройства BJT соединение эмиттер-база смещено в прямом направлении, а соединение коллектор-база — в обратном.
Итак, сделайте вывод, что BJT может работать в разных режимах BJT, таких как отключенный, насыщенный и активный режим.

Применение транзистора

PNP:
  • Используется в парной цепи любимой тонны
  • Используется в тяжелых двигателях для управления током
  • Используется как переключатель
  • Используется как роботизированная мастерская
  • Используется в цепи усиления
Полная форма БЮТ представляет собой биполярный переходной транзистор, в котором используются как электронные, так и дырочные носители заряда.Для своей работы BJT использует два перехода между двумя полупроводниками, такими как n-тип и p-тип.

Биполярные транзисторы производятся двух типов: NPN и PNP, и доступны в виде отдельных компонентов или в большом количестве изготавливаются в виде интегральных схем. Функция BJT заключается в усилении тока, который можно использовать как усилители или переключатели. Эти функции предлагают широкий спектр приложений электронного оборудования, включая компьютеры, телевизоры, мобильные телефоны, усилители звука, промышленное управление и радиопередатчики.

Значение BJT:
  • Транзистор с биполярным переходом — это трехслойный полупроводниковый прибор NPN или PNP с двумя переходами, в котором одна p-область зажата двумя n-областями, а две p-области зажаты одной n-областью. У него есть три терминала: коллектор (C), эмиттер (E) и база (B).
    Рисунок BJT
  • Ток в устройстве происходит за счет движения как дырок, так и электронов.
  • Эмиттер обозначен стрелкой, указывающей направление тока эмиттера. Никакая стрелка не связана с базой или коллектором.

Схема условного обозначения BJT:



NPN PNP

Типы БЮТ:
Есть два типа переходных транзисторов:

1.Транзистор NPN
2. Транзистор PNP

В этой статье дается краткая информация о транзисторах NPN и PNP, таких как принцип работы, преимущества и применение, чтобы лучше понять эту тему.

Принцип работы транзистора NPN:
  • Эта схема представляет собой NPN-тип BJT-транзистора, показанного на рисунке, существует два типа протекания тока: I C , I E известен как коллекторный и эмиттерный ток, а V CB , V EB — коллектор. — напряжение базы и напряжение эмиттер-база.
  • Показанный на рисунке ток I C , I E, I B ток, идущий в транзистор, равен, и знак принимается как положительный, а если ток исчезает, знак принимается как отрицательный.

Транзистор

NPN Применение:
  • Использовать как усилитель
  • Использование в качестве пары тона Дарлинг
  • Использовать как выключатель

Принцип работы транзистора PNP:
  • В переходном транзисторе P-N-P ток эмиттера проходит через вывод эмиттера, показанный на рисунке.
  • При использовании любого устройства BJT соединение эмиттер-база смещено в прямом направлении, а соединение коллектор-база — в обратном.
Итак, сделайте вывод, что BJT может работать в разных режимах BJT, таких как отключенный, насыщенный и активный режим.

Применение транзистора

PNP:
  • Используется в парной цепи любимой тонны
  • Используется в тяжелых двигателях для управления током
  • Используется как переключатель
  • Используется как роботизированная мастерская
  • Используется в цепи усиления

Отсечка, насыщение и активные области транзистора

Рис.( i ) показывает схему транзистора CE , а на рис. ( ii ) показаны выходные характеристики вместе с постоянным током. линия нагрузки.

( i ) Отрезать выкл. Точка, где линия нагрузки пересекает кривую I B = 0, известна как срез от . На этом этапе I B = 0 и существует только небольшой ток коллектора (, т. Е. . ток утечки коллектора I CEO ).При отключении переход база-эмиттер больше не остается смещенным в прямом направлении, и нормальное действие транзистора теряется. Напряжение коллектор-эмиттер примерно равно В C C , т.е. V C E ( отрезать off ) = V C C

( ii ) Насыщенность. Точка, где линия нагрузки пересекает кривую I B = I B ( sat ), называется sa turation .В этот момент базовый ток максимален, как и ток коллектора. При насыщении переход коллектор-база больше не остается смещенным в обратном направлении, и нормальное действие транзистора теряется.

Если базовый ток больше I B ( сат ), то коллекторный ток не может увеличиваться, потому что соединение коллектор-база больше не имеет обратного смещения.

( iii ) Активный r egion. Область между отсечкой и насыщением известна как активный r egion .В активной области переход коллектор-база остается смещенным в обратном направлении, а переход база-эмиттер остается смещенным в прямом направлении. Следовательно, транзистор будет нормально работать в этой области.

Примечание. Мы обеспечиваем смещение транзистора, чтобы гарантировать его работу в активной области. Читатель может найти подробное обсуждение смещения транзистора в следующей главе.

Сводка. Транзистор A имеет два перехода pn i.е ., это как два диода. Переход между базой и эмиттером может называться , эмиттер, , диод . Переход между базой и коллектором можно назвать коллекторным диодом. Выше мы видели, что транзистор может действовать в одном из трех состояний: отключено, насыщено и активно . Состояние транзистора полностью определяется состояниями эмиттерного диода и коллекторного диода [см. Рис. Выше].Соотношения между состояниями диодов и транзисторов следующие:

ОТКЛЮЧЕНИЕ : Эмиттерный диод и коллекторный диод ВЫКЛ.

ACTIVE : Эмиттерный диод ВКЛ. , а коллекторный диод ВЫКЛ.

НАСЫЩЕННЫЙ : Эмиттерный диод и коллекторный диод включены.

В активном состоянии ток коллектора [см. Рис. Ниже ( i )] в β умножен на базовый ток ( i.е. I C = I B ). Если транзистор отсечен, нет тока базы, значит, нет тока коллектора или эмиттера. То есть канал эмиттера коллектора открыт [См. Рис. Ниже]

( ii )]. При насыщении коллектор и эмиттер, по сути, закорочены вместе. То есть транзистор ведет себя так, как если бы между коллектором и эмиттером был замкнут переключатель [см. Ниже рис. ( iii )].

Примечание. Когда транзистор находится в активном состоянии, I C = I B . Следовательно, транзистор действует как усилитель при работе в активном состоянии. Усиление означает линейное усиление . Фактически, усилители малых сигналов являются наиболее распространенными линейными устройствами .

Какие три режима работы BJT? — MVOrganizing

Какие три режима работы BJT?

Учитывая, что есть два полезных режима p-n-перехода и два p-n перехода для каждого BJT (т.е.е., CBJ и EBJ), BJT может быть в одном из четырех режимов! Мы обнаружим, что обратный активный режим имеет ограниченную полезность, и, следовательно, тремя основными рабочими режимами BJT являются Cutoff, Active и Saturation.

Каковы общие типы смещения для BJT?

Типы цепей смещения для усилителей класса А

  • Фиксированное смещение.
  • Смещение коллектора к базе.
  • Фиксированное смещение с эмиттерным резистором.
  • Делитель напряжения смещения или делитель напряжения.
  • Смещение эмиттера.

В каких регионах работает BJT?

Биполярный переходной транзистор (BJT) имеет три рабочих региона:

  • Отрезка (для NPN BJT)
  • Активная область (для NPN)
  • Насыщенный (для NPN)

В каком из следующих режимов можно использовать BJT?

Пояснение: BJT работает как усилители в активном режиме и как переключатель в режиме отсечки или насыщения. Объяснение: В режиме отсечки нет тока, протекающего через BJT, поэтому оба перехода должны быть смещены в обратном направлении, иначе, если любой из них смещен в прямом направлении, ток будет течь.

Какие режимы работы транзистора?

Режимы работы

  • Насыщение — Транзистор действует как короткое замыкание.
  • Отсечка — Транзистор действует как разомкнутая цепь.
  • Активный — Ток от коллектора к эмиттеру пропорционален току, протекающему в базе.
  • Reverse-Active — Как и в активном режиме, ток пропорционален базовому току, но течет в обратном направлении.

Как BJT используется в качестве усилителя?

Транзистор действует как усилитель, увеличивая силу слабого сигнала.Напряжение смещения постоянного тока, приложенное к переходу базы эмиттера, заставляет его оставаться в прямом смещенном состоянии. Таким образом, небольшое входное напряжение приводит к большому выходному напряжению, что показывает, что транзистор работает как усилитель.

Какие бывают типы BJT?

Биполярный транзистор (bipolar junction transistor: BJT) состоит из трех полупроводниковых областей, образующих два перехода. Есть два типа структуры: npn и pnp. Доступны изделия с npn до 800 В и pnp до -600 В.Кроме того, существуют также встроенные транзисторы с резисторами смещения (БРТ).

Какова функция BJT?

Основная основная функция BJT — усиление тока, что позволит использовать BJT в качестве усилителей или переключателей для широкого применения в электронном оборудовании, включая мобильные телефоны, промышленное управление, телевидение и радиопередатчики.

Почему BJT называется транзисторным?

Устройство

… часто называют транзистором с биполярным переходом, потому что для его работы необходимо, чтобы отрицательно заряженные электроны и их положительно заряженные аналоги (дырки, соответствующие отсутствию электронов в кристаллической решетке) сосуществовали в течение короткого времени в присутствии друг друга.

Что такое символ BJT?

Это твердотельное устройство, которое пропускает ток по двум клеммам, то есть коллектору и эмиттеру, и управляется третьим устройством, известным как клемма или базовая клемма. В отличие от обычного диода с p-n переходом, этот транзистор имеет два p-n перехода. Основные символы BJT — это n-тип и p-тип.

Что такое транзистор PNP?

PNP-транзистор — полная противоположность устройству NPN-транзистора, которое мы рассматривали в предыдущем руководстве. Затем транзисторы PNP используют небольшой базовый ток и отрицательное базовое напряжение для управления гораздо большим током эмиттер-коллектор.

Биполярный транзистор и транзистор одинаковы?

BJT — это биполярный переходной транзистор, тогда как MOSFET — это полевой транзистор на основе оксида металла и полупроводника. BJT имеет три терминала, а именно базу, эмиттер и коллектор, в то время как MOSFET имеет три терминала, а именно исток, сток и затвор.

Почему CMOS лучше чем BJT?

Затворы

CMOS рассеивают мощность только при переключении, а НЕ когда они «открыты» (транзистор выключен) или «закрыт» (транзистор включен). Следовательно, снижено энергопотребление.Размеры MOS-устройств можно легче уменьшить, и они имеют меньшую стоимость изготовления по сравнению с BJT.

В чем разница между JFET и BJT?

Ключевое различие между BJT и JFET заключается в том, что BJT — это устройство, в котором выходной ток управляется базовым током. Напротив, JFET — это устройство, выходной ток которого регулируется приложенным к нему входным напряжением.

В чем основное различие между BJT и FET?

BJT и FET — это два разных типа транзисторов, также известные как активные полупроводниковые устройства.Аббревиатура BJT — биполярный переходной транзистор, а FET — это полевой транзистор… Разница между BJT и FET.

BJT полевой транзистор
BJT — устройство с управлением по току FET — устройство, управляемое напряжением
BJT имеет шум FET имеет меньше шума

Почему FET предпочтительнее BJT?

полевые транзисторы — это чувствительные к напряжению устройства с высоким входным сопротивлением (порядка 107–1012 Ом).Поскольку этот входной импеданс значительно выше, чем у BJT, полевые транзисторы предпочтительнее BJT для использования в качестве входного каскада для многокаскадного усилителя. Полевые транзисторы, как правило, легче изготовить, чем биполярные транзисторы.

Почему BJT более шумный, чем FET?

BJT шумнее, чем полевые транзисторы. BJT имеет два pn перехода, тогда как полевой транзистор имеет только один pn переход. Следовательно, носители заряда должны будут пересечь больше обедненных областей в BJT, и, следовательно, возможность добавления теплового шума и неосновных носителей заряда намного выше.

Что означает полевой транзистор?

Транзистор полевой

В чем разница между полевым транзистором с каналом N и каналом P?

В N-канальном MOSFET исток соединен с землей, сток — с нагрузкой, и полевой транзистор включается, когда на затвор подается положительное напряжение. Это означает, что если вы хотите использовать МОП-транзистор с P-каналом для переключения напряжений выше 5 В, вам понадобится другой транзистор (какой-либо), чтобы включать и выключать его.

Что такое шум транзистора?

Шум в транзисторном усилителе определяется как избыточный шум, генерируемый усилителем, не тот шум, который усиливается от входа к выходу, а тот, который генерируется внутри усилителя.Это определяется путем измерения отношения сигнал / шум (S / N) на входе и выходе усилителя.

Что вызывает 1f звук?

Шум

1 / f в токе или напряжении обычно связан с постоянным током, поскольку колебания сопротивления преобразуются в колебания напряжения или тока по закону Ома. В электронных устройствах это проявляется как низкочастотное явление, поскольку более высокие частоты затмеваются белым шумом от других источников.

Что такое эффект Миллера в БЮТ?

Из Википедии, бесплатной энциклопедии.В электронике эффект Миллера объясняет увеличение эквивалентной входной емкости инвертирующего усилителя напряжения из-за усиления эффекта емкости между входными и выходными клеммами.

Что такое точка Q транзистора?

Точка Q или рабочая точка устройства, также известная как точка смещения, или точка покоя — это установившееся постоянное напряжение или ток на определенной клемме активного устройства, такого как диод или транзистор, без подачи входного сигнала.

Что такое линия нагрузки и точка Q?

Линия нагрузки постоянного тока — это линия нагрузки эквивалентной схемы постоянного тока, определяемая путем уменьшения реактивных составляющих до нуля (замена конденсаторов разомкнутыми цепями и индукторов короткими замыканиями). Он используется для определения правильной рабочей точки постоянного тока, часто называемой точкой Q.

Какие факторы влияют на точку Q?

Основным фактором, влияющим на рабочую точку, является температура. Рабочая точка смещается из-за изменения температуры….Чтобы получить Q-балл:

  • Точка Q лежит на линии нагрузки.
  • Обычно средняя точка этой линии считается точкой Q для усиления, так что она может усиливать верхнюю и нижнюю часть входного сигнала.

В чем смысл диода?

Диод — это устройство, позволяющее току течь в одном направлении, но не в другом. Это достигается за счет встроенного электрического поля. Диод — это устройство, которое позволяет току течь в одном направлении, но не в другом.

Преобразует ли диод переменный ток в постоянный?

Выпрямитель — это электрическое устройство, преобразующее переменный ток (AC) в постоянный (DC), процесс, известный как выпрямление. Термин выпрямитель описывает диод, который используется для преобразования переменного тока в постоянный.

Биполярный переходной транзистор

, транзисторы, справка по назначению

БЮТ n-p-n и p-n-p:

Биполярный переходной транзистор (BJT) — это тип транзистора. Это трехконтактное устройство, изготовленное из легированного полупроводникового материала, которое может использоваться в приложениях для усиления или переключения.Биполярные транзисторы названы так потому, что в их работе участвуют как электроны, так и дырки. Хотя небольшая часть базы — основные носители переносят ток эмиттера, неосновные носители в базе несут основной ток, поэтому BJT классифицируются как

.

устройства «неосновных операторов». BJT состоит из двух p-n-переходов, как показано на рисунке. Они могут иметь одну из конфигураций транзисторов: n-p-n (рисунок 6.7 (a)) или p-n-p (рисунок (b)). Обратите внимание на направление тока вне BJT для n-p-n BJT, в то время как он находится в транзисторе для p-n-p транзистора, а также смещение отличается для двух BJT, как показано знаками (+) и (-) на рисунке.Первое, что следует отметить, это то, что один из pn-переходов смещен в прямом направлении, что называется переходом эмиттер-база, а другой pn-переход имеет обратное смещение, также называемое переходом коллектор-база, эта область работы транзистора называется активной. прямой режим. Для транзистора существует четыре возможных режима работы. Мы должны заботиться только о прямом активном режиме. Три терминала BJT называются базой, эмиттером и коллектором, как показано на рисунке. Давайте сначала разберемся с работой транзистора n-p-n.Принцип работы транзистора n-p-n и транзистора p-n-p одинаков, если мы изменим электроны на дырки и соответственно изменим знаки напряжения смещения, как показано на рисунке

.

Рисунок: Диаграмма зон и потоки носителей в BJT

А теперь нарисуем ленточную диаграмму этого устройства. Рисунок очень важен, потому что он иллюстрирует все важные особенности работы транзистора. Поскольку переход база-эмиттер смещен в прямом направлении, электроны должны переходить из эмиттера (n-типа) в базу.Точно так же в эмиттер должны быть введены некоторые отверстия от основания.

BJT Работа в активном режиме

Когда транзистор находится в полностью выключенном состоянии (например, разомкнутый ключ), он называется отсечкой . И наоборот, когда он полностью проводящий между эмиттером и коллектором (пропускает через коллектор столько тока, сколько позволяют источник питания коллектора и нагрузка), он называется насыщенным . Это два режима работы, которые исследовались до сих пор при использовании транзистора в качестве переключателя.

Однако биполярные транзисторы не должны ограничиваться этими двумя крайними режимами работы. Как мы узнали в предыдущем разделе, базовый ток «открывает ворота» для ограниченного количества тока через коллектор. Если этот предел для регулируемого тока больше нуля, но меньше максимально допустимого для цепи питания и нагрузки, транзистор будет «дросселировать» ток коллектора в режиме где-то между отсечкой и насыщением. Этот режим работы называется активным режимом .

Автомобильная аналогия работы транзистора выглядит следующим образом: отсечка — это состояние отсутствия движущей силы, создаваемой механическими частями автомобиля, чтобы заставить его двигаться. В режиме отсечки тормоз включен (нулевой базовый ток), предотвращая движение (ток коллектора). Активный режим — это автомобиль, движущийся с постоянной контролируемой скоростью (постоянный контролируемый ток коллектора) в соответствии с указаниями водителя. Saturation Автомобиль, движущийся по крутому склону, который не позволяет ему ехать с такой скоростью, которую хочет водитель.Другими словами, «насыщенный» автомобиль — это автомобиль с педалью акселератора, нажатой до упора (базовый ток требует большего тока коллектора, чем может обеспечить цепь источника питания / нагрузки).

Давайте настроим схему для моделирования SPICE, чтобы продемонстрировать, что происходит, когда транзистор находится в активном режиме работы. (Рисунок ниже)

Схема для моделирования SPICE в «активном режиме» и список соединений.
 имитация биполярного транзистора 
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.модель mod1 npn
.dc v1 0 2 0,05
.plot dc i (вамметр)
.end

«Q» — это стандартное буквенное обозначение транзистора на принципиальной схеме, точно так же, как «R» — для резистора, а «C» — для конденсатора. В этой схеме у нас есть NPN-транзистор, питаемый от батареи (V 1 ) и управляемый током через источник тока (I 1 ). Источник тока — это устройство, которое выводит определенное количество тока, генерируя такое же или меньшее напряжение на своих выводах, чтобы обеспечить точное количество тока через него.Источники тока, как известно, трудно найти в природе (в отличие от источников напряжения, которые, напротив, пытаются поддерживать постоянное напряжение, выдавая столько или меньше тока для выполнения этой задачи), но их можно смоделировать с помощью небольшого набора электронных компонентов. . Как мы скоро увидим, сами транзисторы имеют тенденцию имитировать поведение источника тока при постоянном токе в своей способности регулировать ток при фиксированном значении.

В моделировании SPICE мы установим источник тока на постоянное значение 20 мкА, затем изменим источник напряжения (V 1 ) в диапазоне от 0 до 2 вольт и проследим, сколько тока проходит через него.«Пустая» батарея (амперметр V ) на рисунке выше с ее выходным напряжением 0 В служит просто для обеспечения SPICE схемным элементом для измерения тока.

A Переменное напряжение коллектора от 0 до 2 В при постоянном токе базы 20 мкА дает постоянный ток коллектора 2 мА в области насыщения.

Постоянный базовый ток 20 мкА устанавливает ограничение тока коллектора в 2 мА, что ровно в 100 раз больше. Обратите внимание, насколько плоская кривая (рисунок выше) для тока коллектора в диапазоне напряжения батареи от 0 до 2 вольт.Единственное исключение из этого невыразительного графика — в самом начале, когда батарея увеличивается с 0 вольт до 0,25 вольт. Здесь ток коллектора быстро увеличивается от 0 ампер до своего предельного значения 2 мА.

Давайте посмотрим, что произойдет, если мы изменим напряжение батареи в более широком диапазоне, на этот раз от 0 до 50 вольт. Мы сохраним базовый ток на уровне 20 мкА. (Рисунок ниже)

Переменное напряжение коллектора от 0 до 50 В при постоянном токе базы 20 мкА дает постоянный ток коллектора 2 мА.
 имитация биполярного транзистора 
i1 0 1 dc 20u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2
.plot dc i (vammeter)
.end

Тот же результат! Коллекторный ток на рисунке выше остается абсолютно стабильным на уровне 2 мА, хотя напряжение батареи (v1) изменяется от 0 до 50 вольт. Из нашего моделирования может показаться, что напряжение между коллектором и эмиттером мало влияет на ток коллектора, за исключением очень низких уровней (чуть выше 0 вольт).Транзистор действует как регулятор тока, пропуская через коллектор ровно 2 мА и не более.

Теперь посмотрим, что произойдет, если мы увеличим управляющий (I 1 ) ток с 20 мкА до 75 мкА, снова изменим напряжение батареи (V 1 ) с 0 до 50 вольт и построим график тока коллектора на рисунке ниже. .

Изменение напряжения коллектора от 0 до 50 В (.dc v1 0 50 2) при постоянном токе базы 75 мкА дает постоянный ток коллектора 7,5 мА. Другие кривые генерируются с помощью развертки тока (i1 15u 75u 15u) в отчете анализа постоянного тока (.постоянного тока v1 0 50 2 i1 15u 75u 15u).
 имитация биполярного транзистора 
i1 0 1 dc 75u
q1 2 1 0 mod1
vammeter 3 2 dc 0
v1 3 0 dc
.model mod1 npn
.dc v1 0 50 2 i1 15u 75u 15u
.plot dc i (vammeter )
. Конец

Неудивительно, что SPICE дает нам похожий график: ровная линия, на этот раз стабильно удерживающаяся на уровне 7,5 мА — ровно в 100 раз больше базового тока — в диапазоне напряжений батареи от чуть выше 0 вольт до 50 вольт. Похоже, что ток базы является решающим фактором для тока коллектора, напряжение батареи V 1 не имеет значения, пока оно выше определенного минимального уровня.

Это соотношение напряжение / ток полностью отличается от того, что мы привыкли видеть на резисторе. С резистором ток увеличивается линейно с увеличением напряжения на нем. Здесь, с транзистором, ток от эмиттера к коллектору остается ограниченным на фиксированном максимальном значении независимо от того, насколько высоко увеличивается напряжение на эмиттере и коллекторе.

Часто бывает полезно наложить несколько графиков ток / напряжение коллектора для разных базовых токов на один график, как показано на рисунке ниже.Набор подобных кривых — по одной кривой, построенной для каждого отдельного уровня тока базы — для конкретного транзистора называется характеристическими кривыми транзистора :

Зависимость напряжения от коллектора к эмиттеру от тока коллектора для различных базовых токов.

Каждая кривая на графике отражает ток коллектора транзистора, построенный в диапазоне напряжений между коллектором и эмиттером для заданной величины тока базы. Поскольку транзистор имеет тенденцию действовать как регулятор тока, ограничивая ток коллектора до пропорции, установленной током базы, полезно выразить эту пропорцию как стандартную меру производительности транзистора.В частности, отношение тока коллектора к току базы известно как соотношение Beta (обозначается греческой буквой β):

Иногда коэффициент β обозначается как «h fe » — метка, используемая в области математического анализа полупроводников, известной как «гибридные параметры», которая стремится достичь точного предсказания характеристик транзистора с помощью подробных уравнений. Переменных гибридных параметров много, но каждая помечена общей буквой «h» и определенным нижним индексом.Переменная «h fe » — это просто еще один (стандартизованный) способ выражения отношения тока коллектора к току базы, и она взаимозаменяема с «β». Коэффициент β безразмерный.

β для любого транзистора определяется его конструкцией: он не может быть изменен после изготовления. Редко бывает, чтобы два транзистора одной конструкции точно совпадали из-за физических переменных, влияющих на β. Если конструкция схемы основана на равных отношениях β между несколькими транзисторами, «согласованные наборы» транзисторов могут быть приобретены за дополнительную плату.Однако обычно считается плохой практикой проектирования конструировать схемы с такими зависимостями.

β транзистора не остается стабильным для всех условий эксплуатации. Для реального транзистора коэффициент β может изменяться более чем в 3 раза в пределах его рабочего тока. Например, транзистор с заявленным β, равным 50, может фактически тестироваться с отношениями I c / I b от 30 до 100, в зависимости от величины тока коллектора, температуры транзистора и частоты усиливаемого сигнала. сигнал, среди других факторов.Для учебных целей достаточно принять постоянное значение β для любого данного транзистора; поймите, что реальная жизнь не так проста!

Иногда для понимания полезно «смоделировать» сложные электронные компоненты с помощью набора более простых и понятных компонентов. Модель на рисунке ниже используется во многих вводных текстах по электронике.

Элементарный диодный резистор, модель транзистора.

В этой модели транзистор представляет собой комбинацию диода и реостата (переменного резистора).Ток через диод база-эмиттер контролирует сопротивление реостата коллектор-эмиттер (как показано пунктирной линией, соединяющей два компонента), тем самым управляя током коллектора. NPN-транзистор смоделирован на показанном рисунке, но PNP-транзистор будет немного отличаться (только диод база-эмиттер будет перевернут). Эта модель успешно иллюстрирует основную концепцию транзисторного усиления: как сигнал тока базы может управлять током коллектора.Однако мне не нравится эта модель, потому что она неверно передает понятие установленной величины сопротивления коллектор-эмиттер для данной величины базового тока. Если бы это было правдой, транзистор вообще не регулировал бы ток коллектора , как показывают характеристические кривые. Вместо того, чтобы кривые коллекторного тока сглаживались после их кратковременного подъема по мере увеличения напряжения коллектор-эмиттер, коллекторный ток был бы прямо пропорционален напряжению коллектор-эмиттер, постоянно возрастая по прямой линии на графике.

Лучшая модель транзистора, часто встречающаяся в более продвинутых учебниках, показана на рисунке ниже.

Модель источника тока транзистора

Он представляет транзистор как комбинацию диода и источника тока, при этом выход источника тока установлен на кратное (коэффициент β) базовому току. Эта модель гораздо точнее отображает истинные входные / выходные характеристики транзистора: ток базы устанавливает определенную величину тока коллектора , а не определенную величину сопротивления коллектора-эмиттера , как предполагает первая модель.Кроме того, эта модель предпочтительна при выполнении сетевого анализа транзисторных схем, поскольку источник тока является хорошо изученным теоретическим компонентом. К сожалению, использование источника тока для моделирования поведения транзистора по управлению током может ввести в заблуждение: ни в коем случае транзистор никогда не будет действовать как источник электрической энергии. Источник тока не моделирует тот факт, что его источником энергии является внешний источник питания, подобный усилителю.

Добавить комментарий

Ваш адрес email не будет опубликован.