Терморегулятор: принцип работы и виды
Чтобы достичь комфортной температуры в помещении недостаточно просто включить систему отопления или кондиционирования. А все потому, что климатическая техника либо не способна сама по себе оценить условия в помещении, либо делает это не очень эффективно. Поэтому для оптимальной работы климатической техники необходимо применять терморегуляторы.
Что такое терморегулятор и для чего он нужен?
В широком смысле — это устройство, которое поддерживает заданный температурный режим воздуха или определенной поверхности, например пола. Фактически терморегулятор — промежуточное звено в цепочке комфортных условий, в которой с одной стороны находится соответствующий обогревательный или охлаждающий прибор, а с другой — датчик температуры.
Сфера применения таких устройств очень широкая: от контроля приборов отопления небольших квартир до гигантских промышленных объектов. Они управляют бытовыми кондиционерами и морозильными камерами большой мощности. Термостаты могут регулировать подогрев грунта в теплицах, отвечать за антиобледенение крыш, и работать во многих других системах. И хотя речь не идет про одно и то же изделие, конструктивно они всегда очень похожи.
Как работает терморегулятор?
Основной принцип работы терморегуляторов на самом деле очень простой. Он всего лишь сравнивает фактическую температуру (которую измеряет термодатчик) с заданной, и принимает решение о подаче или прекращения питания климатической системы. Если температура в помещении отличается от заданной, реле термостата включает нагрузку, а после достижения заданного значения — отключает питание. Термостат может поддерживать конкретное значение температуры или ее диапазон. На это влияет параметр гистерезиса.
Конечно, существует много моделей, которые оснащены большим количеством дополнительных функций, таких как включение нагрева по таймеру или программирование работы согласно определенному графику. Но в основе всех устройств лежит именно этот простой принцип.
Какие существуют виды терморегуляторов?
Существует много видов таких устройств в зависимости от назначения, типа управления, способа монтажа, мощности и т.д.

Это разделение все же достаточно условное, ведь существует много термостатов, которые сочетают в себе возможность управления разным климатическим оборудованием. Например, к некоторым моделям можно подключать как теплый пол, так и отопительные приборы, а отдельные термостаты могут одновременно регулировать функционирование как системы обогрева, так и охлаждения.
Также, в зависимости от принципа управления можно выделить два основных типы термостатов:
- механические;
- цифровые.
Механические модели имеют очень простую конструкцию с минимальным использованием электрических схем. Управление их работой осуществляется с помощью ручки, а в отдельных моделях — еще и тумблера для включения/выключения. Нужная температура выставляется поворотом ручки терморегулятора в соответствии со шкалой на корпусе. Такие устройства используют довольно примитивный визуальный интерфейс в виде светового индикатора.
Конструкция цифровых термостатов характеризуется намного более сложной схемотехникой. Они всегда оснащены полноценным визуальным интерфейсом: цифровым или жидкокристаллическим экраном, а настройка их работы осуществляется с помощью кнопок (физических или сенсорных). Цифровые термостаты отличаются наличием большого количества функций: от блокировки клавиш до программирования работы согласно установленному через Интернет графику.
Мы рассказали вам о том, что собой представляет терморегулятор, какое место он занимает в климатической системе, а также о принципе его работы и видах. О том, как правильно выбрать подходящую модель терморегулятора, узнайте из нашей следующей статьи.
Оцените новость:принцип работы, установка, схема подключения
Вы ищете средство, что экономить электроэнергию при эксплуатации теплого пола? Для этого существует идеальное решение – терморегулятор для теплого пола. Термостат будет эффективно регулировать и поддерживать заданную температуру. Конечно, это все при условии правильного выбора этого устройства и его монтажа.
Каким же образом терморегулятор для водяного теплого пола делает их экономически выгодными? Дело в том, что он не только, как может показаться, регулирует температуру, но и позволяет в ручном или автоматическом режиме устанавливать временной интервал нагревания. Термостат для водяных плов с обогревом обеспечивает изменение температуры в помещении в тепловом промежутке от 5 до 45 градусов. И делает это достаточно оперативно.
Предназначение
Основная задача, которую выполняет терморегулятор для водяного теплого пола – уменьшение или увеличение объема горячего теплоносителя из центральной системы отопления. Для нагревательных кабелей, работающих на электрической энергии, устройство регулирует мощность тока. Данные о текущих показателях температуры поступают от термодатчика. В водяном отоплении он устанавливается во входящий патрубок гребенки, для электрического – между кабелями нагрева.
Так как большинство моделей рассчитаны для комплектации электрических систем отопления, рассмотрим технические характеристики этой группы товаров:
- Номинальная мощность. Выбор и монтаж терморегулятора теплого пола может осуществляться только после расчета мощности всей системы. Рекомендуется выбирать модель с небольшим запасом.
- Способ регулирования температуры – автоматический или ручной.
- Различия по способу монтажа — накладные или встраиваемые.
- Возможность подключения нескольких датчиков температуры. Двухзонный терморегулятор для теплого пола считывает показания нагрева электрических элементов из воздуха в помещении. Такие устройства работают полностью автоматически, но имеют более высокую стоимость, чем модели с меньшими функциями.
Виды термостатов
Терморегулятор для водяных теплых полов можно классифицировать по разным показателям: типу, виду датчика, месту размещения и т. д. Однако, самым существенным признаком, конечно, является принцип действия.
- Электронно-механический. Он работает по принципу, аналогичному работе обычного утюга – без задания конкретной температуры. После того как температура в комнате нагреется до установленной,
Терморегулятор: принцип работы и виды
Чтобы достичь комфортной температуры в помещении недостаточно просто включить систему отопления или кондиционирования. А все потому, что климатическая техника либо не способна сама по себе оценить условия в помещении, либо делает это не очень эффективно. Поэтому для оптимальной работы климатической техники необходимо применять терморегуляторы.
Что такое терморегулятор и для чего он нужен?
В широком смысле — это устройство, которое поддерживает заданный температурный режим воздуха или определенной поверхности, например пола. Фактически терморегулятор — промежуточное звено в цепочке комфортных условий, в которой с одной стороны находится соответствующий обогревательный или охлаждающий прибор, а с другой — датчик температуры.
Сфера применения таких устройств очень широкая: от контроля приборов отопления небольших квартир до гигантских промышленных объектов. Они управляют бытовыми кондиционерами и морозильными камерами большой мощности. Термостаты могут регулировать подогрев грунта в теплицах, отвечать за антиобледенение крыш, и работать во многих других системах. И хотя речь не идет про одно и то же изделие, конструктивно они всегда очень похожи.
Как работает терморегулятор?
Основной принцип работы терморегуляторов на самом деле очень простой. Он всего лишь сравнивает фактическую температуру (которую измеряет термодатчик) с заданной, и принимает решение о подаче или прекращения питания климатической системы. Если температура в помещении отличается от заданной, реле термостата включает нагрузку, а после достижения заданного значения — отключает питание. Термостат может поддерживать конкретное значение температуры или ее диапазон. На это влияет параметр гистерезиса.
Конечно, существует много моделей, которые оснащены большим количеством дополнительных функций, таких как включение нагрева по таймеру или программирование работы согласно определенному графику. Но в основе всех устройств лежит именно этот простой принцип.
Какие существуют виды терморегуляторов?
Существует много видов таких устройств в зависимости от назначения, типа управления, способа монтажа, мощности и т.д.

Это разделение все же достаточно условное, ведь существует много термостатов, которые сочетают в себе возможность управления разным климатическим оборудованием. Например, к некоторым моделям можно подключать как теплый пол, так и отопительные приборы, а отдельные термостаты могут одновременно регулировать функционирование как системы обогрева, так и охлаждения.
Также, в зависимости от принципа управления можно выделить два основных типы термостатов:
- механические;
- цифровые.
Механические модели имеют очень простую конструкцию с минимальным использованием электрических схем. Управление их работой осуществляется с помощью ручки, а в отдельных моделях — еще и тумблера для включения/выключения. Нужная температура выставляется поворотом ручки терморегулятора в соответствии со шкалой на корпусе. Такие устройства используют довольно примитивный визуальный интерфейс в виде светового индикатора.
Конструкция цифровых термостатов характеризуется намного более сложной схемотехникой. Они всегда оснащены полноценным визуальным интерфейсом: цифровым или жидкокристаллическим экраном, а настройка их работы осуществляется с помощью кнопок (физических или сенсорных). Цифровые термостаты отличаются наличием большого количества функций: от блокировки клавиш до программирования работы согласно установленному через Интернет графику.
Мы рассказали вам о том, что собой представляет терморегулятор, какое место он занимает в климатической системе, а также о принципе его работы и видах. О том, как правильно выбрать подходящую модель терморегулятора, узнайте из нашей следующей статьи.
Оцените новость:Принцип работы электрического терморегулятора
Электрические терморегуляторы используются во всех без исключения нагревательных электроприборах: утюгах, электрочайниках, кондиционерах, конвекторах, водонагревателях и прочих приборах в которых используется электрический нагревательный элемент.
Электрические терморегуляторы, хотя и различаются по конструктивному исполнению, все же имеют общий принцип работы. Все они предназначены для автоматического поддержания температуры (воды, воздуха, поверхности самого прибора) в заданных пределах. Суть регулирования заключается в подключении нагревательного элемента, когда температура ниже заданной и отключении когда она начинает превышать заданный уровень или значение.
Рассмотрим более подробно работу регулятора, устанавливаемого в подавляющем большинстве моделей домашних утюгов. Основным компонентом терморегулятора является пластина из термозависимого материала (обычно используется биметалл). Эта пластина является регулирующей, обычно ее можно либо настраивать на заданную температуру вручную (в утюгах, нагревателях воздуха и воды), либо температура уже заранее задана заводом-изготовителем электроприбора (в электрочайниках). Эта пластина находится в тепловом контакте с нагревательным элементом или нагревательной средой (воздухом, водой). Кроме этого она управляет электрическими контактами, замыкающими и размыкающими электрическую цепь нагревательного элемента.
Если заданная температура ниже установленной, регулирующая пластина изогнута так, что электрические контакты находятся в замкнутом положении и через нагревательный элемент течет электрический ток. Как только температура начинает превышать установленный уровень, пластина изгибается в противоположную сторону, размыкая при этом контакты и отключая нагревательный элемент от электропитания.
В регулируемых терморегуляторах изменение значения температуры осуществляется механическим путем. В регуляторе находится специальный шток, который давит на часть регулирующей пластины. Степень давления регулируется при помощи ручки. Чем больше пластина зажата штоком, тем при меньшей температуре она сработает.
Более современные терморегуляторы, например используемые в водонагревателях thermex, имеют более совершенную конструкцию, но принцип работы практически не изменяется. Есть еще один класс регуляторов, которые используют немеханический принцип поддержания температуры. Они собраны из электрических компонентов, не редко включающих микросхемы. О них мы поговорим в следующих статьях.
| < Предыдущая | Следующая > |
|---|
Диагностика неисправностей термостата и особенности ремонта
Двигатель внутреннего сгорания может работать лишь в узком температурном диапазоне. Отклонение в меньшую или большую сторону приводит к повышенному износу и поломкам мотора. Основное назначение термостата заключается в поддержании оптимального режима эксплуатации. Он помогает ускорить процесс прогрева двигателя, а в случае приближающегося перегрева, обеспечивает снижение температуры охлаждающей жидкости. Выход термостата из строя чреват закипанием мотора, способным нанести существенный вред силовой установке, поэтому при первых же подозрениях о неправильной работе устройства, необходимо произвести диагностику системы охлаждения двигателя.

Структурная схема термостата
Исторический экскурс
Автопроизводители стали серийно устанавливать термостат в жидкосную систему охлаждения с 1922 года. Связанно это было с появлением силовых установок, выделяющих большое количество тепла, в которых стандартные ребра теплоотдачи перестали справляться с возложенной на них задачей. Терморегулятор стал нужен для недопускания последствий работы мотора с перегревом.
Первые конструкции не обеспечивали высокой надежности работы. В процессе усовершенствования автомобильных термостатов появилось несколько основных видов терморегуляторов. Устройство их сильно отличалось, например, наполнитель мог быть жидкостным или твердым. Современные устройства обзавелись электроникой, позволяющей получать управляющие сигналы от электронного контроллера.
Принцип действия термостата с твердым наполнителем
Механический клапан является основным конструктивным узлом, выполняющим распределение потоков антифриза. Управляется он термочувствительным элементом, в качестве которого очень часто используется искусственный воск, расположенный в герметичной камере. Его расплавление приводит к увеличению занимаемого объема. Воск сжимает резиновую камеру. Она, в свою очередь, воздействует на металлический хромированный шток. Задействованный клапан открывает либо закрывает ход для жидкости, что и является главным принципом того, как работает термостат.

Пример распределения потоков охлаждающей жидкости
Для большей стабильности работы термочувствительного элемента помимо гранулированного нефтяного воска могут быть использованы его смесь с графитовыми, медными или алюминиевыми мелкодисперсными частичками. Главным требованием является стабильное расширение при переходе из твердого в жидкое состояние и обратно. Это позволяет точно регулировать температуру работы двигателя, пуская жидкость в большой или малый круг. Термостат дизеля структурно аналогичен бензиновой версии двс.

Термостат с твердым наполнителем
Принцип действия термостата с жидким наполнителем
Принцип работы термостата с сильфоном похож на устройства с твердым наполнителем. Главное отличие в том, что термочувствительным элементом выступает смесь дистиллированной воды и этилового спирта. При холодном двигателе испарение внутри герметичного баллона не происходит и избыточного давления нет. Клапан термостат не допускает циркуляции охлаждающей жидкости через радиатор.

Термостат с жидким наполнителем
При нагреве двигателя этиловый спирт начинает интенсивно испаряться. Давление в баллоне растет. Расширяющийся в длину сильфон воздействует на шток и происходит отпирание клапана. После этого антифриз попадает вместо малого в большой круг циркуляции.
Виды термостатов
К вариантам конструктивного исполнения термостатов относят:
- одноклапанное техническое решение;
- двухступенчатая реализация;
- двухклапанное устройство;
- электронное управление.
Наибольшую популярность получила одноклапанная технология. Она отличается простотой и надежностью. Автомобили прошлых лет преимущественно имели именно такой вид термостата. Двухступенчатая конструкция стала вынужденной мерой, вызванной высоким давлением антифриза. Клапан терморегулятора не был в состоянии преодолеть усилие, в результате чего в конструкции появились малая и большая тарелки. Меньшая открывается первой, так как на нее действует незначительное давление охлаждающей жидкости. Во время второго этапа добавляется основная тарелка и весь антифриз направляется в большой круг.
Двухступенчатая реализация имеет только один клапан. В отличие от нее устройство двухклапанного термостата предполагает наличие двух отдельных регулирующих устройств, объединенных в одном корпусе. Каждый клапан отвечает только за свой круг циркулирования охлаждающей жидкости. Наиболее важным в конструкции является синхронизм работы каждой части устройства.

Термостат с электронным управлением
Максимальной точности в работе автопроизводителям удалось достичь, снабдив терморегулятор электронным управлением. Конструктивным различием с классической моделью является наличие нагревательного сопротивления. Термостат поддерживает температуру двигателя 85-95°С при высоких нагрузках и 95-110°С в остальных режимах работы мотора. Это позволяет снизить расход топлива и получить небольшой прирост мощности. Управляющий сигнал терморегулятор получает с ЭБУ инжектора. В случае с дизельным двигателем температурные диапазоны могут быть другими.
Конструктивные особенности термостатов
Конструктивно термостаты делятся на корпусные и бескорпусные. Каждый вид имеет свои преимущества. Лидером на данный момент все же является терморегулятор, имеющий оболочку.
Корпусной термостат независимо от внутренней начинки имеет не менее двух выходов. Изготавливаются терморегуляторы из латуни, алюминия, пластика. Ручного регулирования температуры срабатывания устройство не имеет.

Корпусной термостат
Бескорпусный терморегулятор монтируется в блок двигателя. Для этих целей в моторе предусмотрено специальное место. Температурная характеристика термостата наносится при помощи цифровой маркировки. Внешний вид бескорпусного регулятора отображен на изображении ниже.

Бескорпусный термостат
Основные поломки устройства
Наиболее опасной поломкой является заклинивание терморегулятора в закрытом положении. Перегрев мотора ведет к уменьшению его ресурса и ускорению старения масла. При неблагоприятных условиях после закипания двигателя могут появиться серьезные повреждения, исправить которые возможно только капитальным ремонтом.
После того как клапан заклинит в открытом положении, антифриз все время делает циркуляцию по большому кругу. Двигатель долго прогревается, особенно в зимнее время. Работа мотора при температуре ниже нормы ускоряет процесс его износа.
Признаки неисправности
Основными признаками необходимости провести диагностику термостата являются:
- прогрев двигателя стал более длительным;
- нижний патрубок нагревается одновременно с прогревом мотора;
- температура стремительно движется в красную зону;
- после преодоления пробки нижний патрубок холодный, а двигатель близок к закипанию.
К неисправностям термостата можно отнести и потерю герметичности. Если замечаются подтеки антифриза, необходимо обнаружить место утечки. Снижение уровня охлаждающей жидкости может вызвать перегрев двигателя.
Диагностика термостата
Нормально работающий термостат не требует внимания автовладельца. Вмешательство в работу системы охлаждения потребуется при появлении признаков перегрева или слишком длительного прогрева мотора. В таком случае в первую очередь необходимо начинать с диагностики терморегулятора. Рекомендуется придерживаться следующего плана:
- Оценить работу термостата без снятия с автомобиля. Необходимо визуально оценить температуру патрубков. таким образом можно вычислить заклинивший в открытом или закрытом положении терморегулятор;
- Снять терморегулятор. Поместив его в емкость с водой, начать нагревание, контролируя выдвижение штока. Если клапан не открывается в кипящей воде, то и в случае перегрева термостат не перенаправит охлаждающую жидкость в радиатор.

Проверка термостата
В процессе эксплуатации автомобиля необходимо постоянно следить за его температурным режимом. Обнаружив неисправность термостата, необходимо в кратчайшие сроки произвести диагностику и ремонт системы охлаждения. В противном случае возможно закипание двигателя и последующий дорогостоящий ремонт.
Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них
Принцип работы терморегулятора для теплого пола
Терморегулятор для теплых полов предназначен для поддержания заданной температуры в помещении. Рассмотрим принцип работы терморегулятора.
Как работает терморегулятор теплого пола
Принцип работы терморегулятора заключается в замыкании и размыкании электрической цепи при достижении заданной температуры. По команде одного из температурных датчиков срабатывает реле, и терморегулятор начинает или прекращает подавать электропитание на нагревательные элементы. Для управления электрическими теплыми полами необходимо применять терморегуляторы с выносным датчиком температуры. Подробнее узнать о принципе работы выносного датчика можно в нашей статье.
Например, Вы установили на терморегуляторе температуру +26 °С. Терморегулятор подает на нагревательные элементы питание, теплый пол нагревается. По достижению +27 °С терморегулятор прекращает нагрев и теплый пол остывает. Когда температура пола опускается до +25 °С, терморегулятор вновь подает напряжение на нагревательные элементы. Теплый пол будет работать циклами: включаться на +25 °С и отключаться на +27 °С.
Отклонение от заданной температуры (+26 °С) на 1 °С называется гистерезисом терморегулятора. Значение гистерезиса может отличаться в зависимости от модели терморегулятора. По умолчанию, в большинстве терморегуляторов гистерезис равен 1 °С. Продвинутые модели терморегуляторов позволяют задавать в настройках свое значение гистерезиса.
На графике наглядно продемонстрирован принцип работы системы обогрева теплого пола с подключенным терморегулятором.

График расхода электроэнергии пленочным полом*
* — приведены примерные значения, чтобы показать принцип работы теплого пола. Значения времени нагрева будут зависеть от вида теплых полов, мощности, теплоизоляции и других внешних условий.
Возврат к списку
терморегулятор холодильника, устройство, конструкция, работа, принцип, сильфон, регулировка, настройка, тарировка, замена, аналог, подбор
- Home
- устройство терморегулятора
устройство терморегулятора
Терморегулятор предназначен для поддержания в холодильнике, заданной температуры путем автоматических выключений и включений электродвигателя компрессора (в компрессионных холодильниках) или нагревателя в (в абсорбционных холодильниках). При регулировании холодопроизводительности путем периодических остановок и пусков агрегата температура в холодильнике будет несколько колебаться, что в определенной мере зависит от чувствительности терморегулятора.Терморегулятор бытового холодильника представляет собой рычажный механизм с силовым рычагом и контактной системой, в электрическую цепь холодильника. На силовой рычаг воздействует упругий элемент (сильфон) термочувствительной системы и основная пружина, регулируемая винтом. Электроизоляционная прокладка изолирует электрическую цепь прибора от его механических частей. Термочувствительная система манометрического типа состоит из упругого элемента – сильфона (металлический баллон с гофрированными стенками) или мембраны с припаянной к ним трубкой. Система наполнена небольшим количеством фреона или хлорметила и тщательно герметизирована.
В рабочих условиях фреон находится в состоянии насыщенного пара, давление которого, как известно, изменяется в определенной зависимости (для данного пара) от его температуры. Жидкая фаза фреона находится в конечной части трубки. Эта часть трубки, особенно в месте раздела жидкости и пара фреона, реагирует на изменение температуры, и ее помещают контролируемую среду охлаждаемого объекта.
Работа терморегулятора.
При понижении температуры трубки понизится давление насыщенных паров в термосистеме. Под воздействием основной пружины гофры сильфона будут сжиматься и силовой рычаг повернется на своей оси, в результате чего контакты разомкнутся. При повышении температуры давление насыщенных паров соответственно возрастет. Преодолевая сопротивление пружины, гофры сильфона расширятся, и рычаг повернется в противоположную сторону, а контакты при этом замкнутся.
Из этого следует, что задаваемая температура, при которой будут размыкаться контакты, зависит от усилия пружины. Так, при меньшем усилии основной пружины контакты будут размыкаться при соответственно меньшем давлении паров в термочувствительной системе и, следовательно, при более низкой температуре.
Наоборот, для получения более высокой температуры, усилие пружины должно быть большим. В этом случае пружина должна преодолеть относительно большее сопротивление сильфона, так как при более высокой температуре будет большее давление паров фреона в термочувствительной системе. Таким образом, для изменения задаваемой температуры, необходимо изменять усилие основной пружины. Практически это осуществляют ручкой терморегулятора, при повороте которой изменяется натяжение пружины.
Основные элементы терморегулятора.
В бытовых холодильниках применяют терморегуляторы различных конструкций, однако отдельные их элементы выполняют вполне определенные функции, одинаковые для всех конструкций.
Узел резкого размыкания контактов предохраняет контакты терморегулятора от обгорания при размыканиях. В приведенной выше принципиальной схеме терморегулятора с целью упрощения подвижный контакт помещен на силовом рычаге, на который непосредственно действуют сильфон и основная пружина. При таком расположении подвижного контакта неизбежно сильное обгорание контактов и быстрый выход их из строя. Объясняется это тем, что разрыв электроцепи при размыкании контактов будет происходить медленно в соответствии с перемещением рычага, что, в свою очередь, определяется, медленным изменением температуры и, соответственно, давления паров фреона в термочувствительной системе. Кроме того, при подобном расположении подвижного контакта, незначительный поворот силового рычага будет сразу же размыкать или замыкать контакты, т.е. часто разрывать цепь. Узел резкого размыкания контактов ликвидирует эти недостатки. В этом случае подвижный контакт расположен на другом рычаге (пластинке), соединенным с силовым рычагом специальной перекидной пружиной. При поворотах силового рычага до определенных положений рычаг с контактом будет оставаться неподвижным, а затем перекидная пружина резко изменит его положение и контакты резко разомкнутся (или замкнутся).
Узел изменения температуры представляет собой устройство, при помощи которого изменяют натяжение основной пружины. В одних терморегуляторах натяжение пружины изменяют вращением винта, который перемещает гайку, упирающуюся в торец пружины, в других – вращением валика с напрессованным на него профильным кулачком, действующим на пружину. Винт (валик) вращают ручкой, имеющей указатель для установки ее в определенное положение на шкале прибора.
Термочувствительная система является датчиком, реагирующим на изменение температуры в контролируемом объекте и действующем на контактную систему прибора.
Конечная часть трубки, чувствительная к изменению температуры, у разных терморегуляторов, может несколько отличаться, что зависит, в основном, от уровня жидкой фазы фреона в ней. При малом внутреннем диаметре трубки или относительно большом количестве фреона в трубке, когда уровень его жидкой фазы превышает 80….100 мм, обеспечить на такой длине плотное прилегание трубки к стенке испарителя трудно. В этих случаях конец трубки завивают в спираль, изгибают в колено или припаивают баллончик с большим, чем у трубки, внутренним диаметром.
Узел настройки дифференциала служит для регулирования величины дифференциала. Дифференциалом терморегулятора называют разность между температурой размыкания и замыкания контактов (при определенном натяжении основной пружины). Чем меньше величина дифференциала прибора, тем более в узких пределах будет поддерживаться заданная температура. В терморегуляторах бытовых холодильников этот узел используют только для заводской установки прибора. Во многих конструкциях он отсутствует.
Дифференциал изменяют при помощи винта, который, являясь ограничителем для перемещения силового рычага, приближает или удаляет момент перебрасывания перекидной пружиной рычага с подвижным контактом.
Узел полуавтоматического оттаивания испарителя создает удобства при удалении снежного покрова. Узел применяется в отдельных конструкциях терморегуляторов. Принцип его действия и устройство зависит от способа удаления снежного покрова, принятого в том или ином холодильнике.
1 – термочувствительная система ; 2, 7 – рычаги, 3-корпус, 4,5 – пружины, 5-ползун, 6- гайка, 7,10,14- винт настройки, 8-колодка, 9-дополнительные контакты, 11- основные контакты, 12 рычаг, 13-пружина, 16-ось, 17-рычагТерморегуляторы
МЕТОДЫ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ В ХОЛОДИЛЬНИКЕ
Применяются прямой и косвенный методы регулирования температуры в камере холодильника. Прямой метод заключается в поддержании постоянной температуры воздуха, датчик регулятора температуры размещается в охлаждаемой камере и измеряет температуру воздуха. Косвенный — в поддержании постоянной температуры
1 2 3 4 5 6 7 8 9 10
«Холодильники от А до Я» С.Л. Корякин-Черняк «Холодильная техника и технологии» О.А. Цурканов, А.Г. Крысин



