Принцип работы светодиодная лампа – это, принцип работы, виды устройства, как работают сверхяркие, как устроен, из чего состоит, от чего зависит яркость свечения

Содержание

Лампочка светодиодная. Принцип работы и преимущества :: SYL.ru

Одной из основных причин, почему на правительственном уровне было обращено внимание на необходимость замены ламп накаливания светодиодными, является экономия электроэнергии. Но это не единственное их достоинство.

Преимущества светодиодов

Лампочка светодиодная Говоря об обычных лампах, люди сразу вспоминают о том, что они недолговечны. Правда, цена на них вполне приемлемая, а замена одного освещающего элемента другим чрезвычайно проста. Но не все знают, что, например, люминесцентные осветительные приспособления еще и вредны из-за постоянного мерцания, которое становится причиной раздражительности и повышенной утомляемости человека.

Лампочка светодиодная создана по другой технологии. Она вырабатывает свет, близкий к дневному. Это обеспечивает больший комфорт для глаз человека. Помимо удобства, также важна и экономия. Потребление электроэнергии в светодиодных лампах практически в 10 раз меньше, чем в обычных. Кроме того, они более долговечны.

Такие осветительные приборы предпочтительнее устанавливать в охраняемых помещениях, так как они не создают помех для камер ночного видения и других устройств.

Немаловажно и то, что лампочка светодиодная практически не греется. Благодаря этому у нее отсутствует тепловое излучение, и она является пожаробезопасной. К достоинствам можно отнести и то, что такие осветительные приспособления не требуют специальной утилизации.

Классификация

Сейчас производители выпускают разные светодиодные лампочки для дома. Они различаются по форме, способу вкручивания и мощности. Так, в продаже можно найти варианты с обычным цоколем, заменители для галогенных или люминесцентных ламп.

Каждая лампочка светодиодная должна проработать не менее 40-50 тыс. часов. В пересчете это получится 6 лет непрерывного освещения. При условии, что она будет работать около 8 часов, ее может хватить более чем на 15 лет. Преимущества становятся очевидными, если учесть тот факт, что привычные лампы накаливания рассчитаны на 1 тыс. часов работы, а люминесцентные – не более чем на 15 тыс.

Производители предлагают как обычные варианты для дома, рассчитанные на напряжение 220 вольт, так и автомобильные экземпляры, для которых достаточно двенадцати. Практически все изготовители дают на свою продукцию двухлетнюю гарантию.

Принцип работы

Светодиодные лампочки для домаГоворя о том, почему лампочка светодиодная предпочтительнее, надо разобраться, как именно она функционирует. Современные технологии позволили сделать так, что 90% тока преобразовывается в них в свет. В то время как в обычных лампах накаливания этот показатель составляет всего 5%, в люминесцентных вариантах – 25%.

Это достигается благодаря специальной технологии производства светодиодов. Они состоят из нескольких прослоек, в которые входит сапфировая подложка, буферный Gan, токопроводящий n-GaN, активный InGaN, еще один токопроводящий p-GaN слои. Также в каждый светодиод включен анод и катод. Активная часть состоит из тонких слоев полупроводников n- и p-типов. Это все позволяет преобразовывать электроны в фотоны. Правда, достигнуть 100% конверсии не под силу даже этой технологии.

Но для получения белого света необходимо его преобразование из других спектров, а это влечет за собой повышение себестоимости. Конечно, такие светодиодные лампочки для дома достаточно дороги. Но если высчитать себестоимость часа работы, то окажется, что они в разы экономичнее привычных ламп накаливания.

Лучшие варианты

Лучшие светодиодные лампочкиЕсли выбирать наиболее оптимальный вариант освещения, то желательно обратить внимание не на продукцию безымянных китайских производителей, а на зарекомендовавшие себя компании. На отечественном рынке можно найти лампы «Оптоган». Также в продаже часто встречается продукция российских производителей Radiy и SvetaLED. Кроме того, лучшие светодиодные лампочки выпускают такие компании, как Maxus, Intelite, Geen, Electrum, Delux, Eurolamp.

Принципы работы светодиодов и светодиодных светильников

Светодиод – полупроводниковый кристалл, генерирующий свет конкретного цвета. Диапазон спектра излучения светодиода в значительной степени зависит от химического состава использованных полупроводников. Он кардинально отличается от традиционных источников освещения (ламп накаливания, люминесцентных и газоразрядных ламп). В светодиоде нет нити накала и газа, а также отсутствуют хрупкая стеклянная колба и ненадежные подвижные детали.

 История развития светодиодов

Первый светодиод с красным спектром излучения создан в 1962 г. Ником Холоньяком в корпорации General Electric. Монохромные красные светодиоды в 60-е годы XX века применялись для производства маленьких световых индикаторов в различных электроприборах. Первые светодиоды испускали слабый свет, имели относительно высокое энергопотребление, однако, данное направление оказалось очень перспективным и получило бурное развитие. В 70-х годах XX века появились светодиоды, излучающие желтый и зеленый свет. Их начали применять в различной мелкой электронике — калькуляторах, часах, аварийных указателях и т.п. Световой поток светодиодов постоянно улучшался, и к 1990 году вырос до значения 1 люмен (Лм).

В 1993 году в японской компании Nichia инженер Суджи Накамура впервые создал первый синий светодиод повышенной яркости. Так как синий, красный и зеленый цвета — главные составляющими света, то после этого изобретения, можно было получить любой цвет излучения светодиодов, в том числе и белый. Первые белые светодиоды изготовлены в 1996 году. В конце 90-х годов

светодиодное освещение постепенно сменяет традиционные лампы с вольфрамовой нитью накала там, где необходим окрашенный свет.

В 2001 – 2005 годах световой поток светодиодов значительно увеличился и достиг значений в 100 лм и выше. Белые светодиоды обрели оттенки — теплые и холодные, приближенные к естественному освещению. Высокоэффективные светодиодные источники освещения составили конкуренцию традиционным практически во всех областях, уличное освещение в городах начали переводить на светодиодное. Получили распространение такие изделия как прожектор светодиодный и офисный светодиодный светильник. В настоящее время светодиодные источники освещения производятся различных форм, характеристик и назначения, например, светодиодные прожекторы, офисные светильники, светильники для бытового освещения, промышленные и уличные светодиодные светильники.

 

Принцип работы светодиодов

Светодиод состоит из одного полупроводникового p-n-перехода. В результате легирования, материал n-типа собирает отрицательные заряды, а материал р-типа – положительные. Атомы в материале n-типа обогащаются дополнительными электронами, а атомы в материале р-типа обогащаются вакантными местами на внешних электронных орбитах атомов.

При попадании диода в электрическое поле, электроны и дырки стремятся к p-n-переходу. При приближении носителей зарядов к p-n-переходу, электроны проникают в материал р-типа. При подключении отрицательного напряжения к материалу n-типа через диод протекает электрический ток в направлении от материала n-типа в материал р-типа, данный эффект назван прямым смещением.

Все светодиоды освещения схожи по строению. Они состоят из полупроводникового кристалла, установленного на подложку, контактов для подключения к сети, соединительных проводников для подсоединения контактов к кристаллу, теплоотводящего элемента, оптической линзы и корпуса.

Индикаторные светодиоды являются маломощными, поэтому все генерируемое в них тепло рассеивается внутри них самих. Осветительные же светодиоды выделяют значительно больше тепла, поэтому им дополнительно требуется корпус с прямым припаиванием к поверхности для обеспечения интенсивного отвода тепла (типичный пример массивного теплоотводящего корпуса — уличный светодиодный светильник)

 

Основные элементы и строение светодиодных приборов

Для использования в освещении, светодиоды должны быть объединены в единую систему, состоящую из драйвера, оптических линз, источника питания и теплоотводящего материала. Данные компоненты присутствуют в любом светодиодном светильнике.

Типовые светодиодные светильники включают в себя следующие составляющие:

  • Светодиодные элементы.

  • Блок питания, схемы управления и преобразователи напряжения.

  • Вентиляционные отверстия и радиаторы и другие устройства для отвода тепла.

  • Оптические линзы для смешивания, направления и рассеивания света.

 

 

Также светодиодные светильники включают в себя кабели для подключения к электропитанию. Линейные светильники, например, светильники для подсветки рабочей зоны на кухне, обычно снабжены соединительными элементами и перемычками для установки устройств в различной конфигурации.

 

Читайте также: Основные преимущества светодиодного освещения и светильников

Светодиод. Устройство, строение и принцип работы. Светодиодные лампы

Светодиод (также используется сокращение СИД — светоизлучающий диод; латинский эквивалент – LED: light-emitting diode) — это полупроводниковый прибор с электронно-дырочным р-n переходом, который продуцирует оптическое излучение, когда через него проходит электрический ток.

Принцип работы светодиода.

В основе работы Led светодиода лежит p-n-переход, так называемый электронно-дырочный переход. Работа светодиода построена на взаимодействии двух полупроводников p-типа и n-типа. P – positive, то есть положительный тип, или дырочный. N – negative, то есть отрицательный тип, или электронный. В результате пропускания электрического тока в месте соприкосновения двух полупроводников происходит переход от одного типа проводимости к другому.

Когда через полупроводники проходит электрический ток, отрицательный заряд электронов соединяются с ионами положительно заряженных дырок. В этот момент выделяется энергия, и мы видим излучение света.

Устройство светодиода.

Светодиоды имеют самые разные формы. Но самая распространенная конструкция светодиода — традиционный 5-миллиметровый корпус. У такого корпуса сверху расположена линза, а внизу рефлектор. Внутри корпуса располагается кристалл, который излучает свет при прохождении электрического тока.

Схема светодиода незамысловата: он имеет два вывода — анод и катод. На катоде как раз и расположен алюминиевый параболический рефлектор (отражатель). Он внешне выглядит, как чашеобразное углубление, на дно которого помещен кристалл. Полупроводниковый монокристалл – это основной элемент лед светодиода, в котором и происходит p-n-переход. Как правило, монокристалл имеет форму кубика размером 0,3×0,3×0,25 мм.

Кристалл соединен с анодом при помощи перемычки из золотой проволоки. Оптически прозрачный полимерный корпус являющийся одновременно фокусирующей линзой вместе с рефлектором определяют угол излучения светодиода и направленность пучка света.

Виды светодиодов, спектр и цвета.

Современные светодиоды бывают всех цветов радуги: красные, оранжевые, желтые, зеленые, синие, белые.

Свечение, которое излучает светодиод при подключении его к электрическому току, зависит не от цветовой окраски корпуса. Он зависит от материала, который используется при производстве полупроводника. Так, например, примеси алюминия, индия, гелия, фосфора вызывают свечение от красного до желтого цвета. Азот, галлий, индий придают излучаемому свету цвета от зеленого до голубого. Чтобы добиться белого свечения в кристалл добавляют люминофор, используемый для производства люминесцентных ламп.

Яркость и мощность светодиода.

Обычно светодиоды рассчитаны на силу тока в 20 мА. Производятся также, например, четырехъкристальные диоды, которые рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА.

Логично предположить, что яркость светодиода зависит от его мощности. Чем больше мощность, тем больше яркость. Но есть ограничения для силы тока, определенные сопротивлением полупроводникового материала. Иначе может произойти электрический пробой, и лед диод может сгореть.

Светодиодные светильники нельзя подключать в электрическую сеть напрямую. Например, для подключения светодиодной ленты используются специальные устройства-трансформаторы. Правильно подобрать трансформатор вам поможет наш электрик в Королеве или наш мастер электрик в Юбилейном. Если вы живете в других городах Подмосковья, то для подключения светодиодной ленты вы можете, например, вызвать электрика в Мытищи или заказать услуги электрика в Щелково.

Основные характеристики светодиодов.

  • Продолжительный ресурс работы: в зависимости от производителя и параметров от 30 000 до 100 000 часов. Для сравнения, срок службы электрических ламп накаливания составляет 1000 часов.
  • Энергосберегающие технологии – для работы диода необходимо около 10% энергии, требуемой для обычной лампочки накаливания.
  • Надежность и механическая прочность. Если изучить, почему перегорают электрические лампы накаливания, то можно увидеть, что одной из причин является простая вибрация. Для диода вибрация не страшна.
  • Разнообразная цветовая гамма, а также выбор направления светового излучения.
  • Лед светодиоды производятся из экологически чистых материалов, не содержат ртуть.

К сожалению, сегодня полки магазинов зачастую наводнены низкокачественными китайскими светодиодными лампами. И потому не всегда они являются настолько долговечными и надежными, как это заявлено производителями и номинальной технологией. Поэтому при покупке светодиодных ламп следует внимательно изучить их характеристики и отзывы. Выбирайте только качественные светодиодные светильники, и тогда они будут вас радовать долгие годы.

Если материал этой статьи был для вас интересен и полезен, поделитесь им со своими знакомыми в социальных сетях. Возможно, кому-то эта информация очень пригодится. C уважением, электрик Королёв.

Виды и принцип работы современных электрических бытовых ламп освещения

 

Виды ламп освещенияСовременные виды ламп, которые применяются для освещения жилых, офисных, хозяйственно-бытовых помещений на сегодняшний день впечатляют своим разнообразием. Отличаются они друг от друга не только мощностью освещения, но и принципом действия, как следствие – разнообразием оттенков света, долговечностью и потребляемым количеством электроэнергии.

 

Соответственно, бывают виды ламп освещения, которые потребляют небольшое количество электроэнергии и при этом излучают яркое освещение и минимум тепла – эти лампы классифицируются, как энергосберегающие лампы, виды их по конструкции также разнообразны.

 

Нового поколения виды электрических ламп бывают таковыми, которые являются устойчивыми к перепадам напряжения в сети и имеют большее количество часов работы и циклов включения/выключения, что в сочетании с низким энергопотреблением значительно отличает их от традиционных ламп накаливания.

 

Однако, современные лампы освещения не ограничиваются этим, они имеют не только показатели светоотдачи, потребления электроэнергии и количество часов работы, существует и множество и других нюансов, как частота мерцания, экологичность, наличие/отсутствие встроенных выпрямителей тока, и многое другое.

 

Посему рассмотрим, какие бывают виды ламп на сегодняшний день, в первую очередь – основные положения, затем — рассмотрим принцип действия электрических ламп освещения из такого существующего их перечня:

 

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

 

Лампы накаливания являются наиболее распространенными на территории стран СНГ, и, пожалуй, самым древним видом ламп. Они не имеют ни каких особенных преимуществ, выделяют много тепла, потребляют много электричества, не имеют защиты от перепадов напряжения.

 

Единственное преимущество – теплое, подобное натуральному, солнечное освещение, которое, по мнению многих, не сравнится с явно искусственным освещением других видов ламп. Кроме того, они являются экологически чистыми в отличие от следующего вида ламп.

 

Мощности современных ламп освещенияГазоразрядные лампы, а также их разновидность — люминесцентные лампы хороши тем, что имеют множество разновидностей, каждая из которых имеет определенное лучшее качество.

 

Ранее на территории СНГ были распространены классические, ртутные лампы дневного освещения, но на сегодня они в большей степени ушли в небытие и на их место пришли новые их разновидности.

 

Виды современных газоразрядных ламп применяются не только как обыкновенные источники электрического освещения в быту; они имеют декоративные разновидности, приемлемые для подсветки потолков, ниш и т. д.

 

Светодиодные лампы являются ничем иным, как современной альтернативой предыдущим двум видам ламп. Эти лампы – нового поколения энергосберегающие, экологичные и долговечные (стойкие к перепадам напряжения) осветительные электрические элементы.

 

Они имеют явное преимущество перед остальными видами ламп, но единственный недостаток – стоимость, так как технология их производства на сегодня новая и довольно дорогостоящая. Но их долговечность и экономичность, по мнению производителей, окупит разовые затраты на их приобретение.

 

Виды и принцип работы современных ламп накаливания

 

Принцип работы современных ламп накаливанияПринцип работы лампы накаливания основан на нагреве металлической спирали, находящейся в вакууме (лампы мощностью до 25Вт) или газе аргон или аргон+азот (средней мощности и высокомощные лампы) в герметично запаянной стеклянной колбе.

 

При прохождении через спираль, ток разогревает ее до температуры, равной впредь до 3000 градусов по Цельсию, вместе с этим происходит и излучение света, инфракрасных лучей.

 

Сама спираль выполнена из особо прочного и весьма тугоплавкого металла – вольфрама, а степень яркости освещения прямо пропорционально зависит от температуры нагрева; кроме того, газовая среда, в которой находится спираль, может содержать в себе частицы галогенов – соединений 17-ой гр. Таб. Менделеева (F, Cl, Br, I).

 

Современные лампы накаливания производятся из стекла с металлическим плафоном, имеющим резьбу, по средствам которой происходит фиксация в патроне, но имеются разновидности с контактно-зажимными и штыревыми типами соединений.

 

Виды ламп накаливания могут иметь четыре модификации, четыре условных обозначения, указывающих на тип спирали и окружающей ее среды в лампе накаливания: В (вакуумная), Б (биспиральная с аргоновым напылением), БО (биспиральная с аргоновым наполнением в опаловой колбе), Г (моноспиральная с аргоновым напылением).

 

Виды современных ламп накаливания

 

Отдельным видом наиболее современных ламп накаливания являются галогенные лампы накаливания, отличие которых от вышеописанных обусловлено содержанием галогенных частиц в газовой среде лампы накаливания (частиц йода, хлора, брома), которые вступают в реакцию с испарившемся металлом с поверхности спирали.

 

После этого процесса металл возвращается на поверхность спирали по средствам температурного разложения получившегося соединения. Таким образом, они имеют больший КПД, срок годности и другие характеристики.

 

Что касается бытового назначения ламп накаливания, то они являются лампы общего назначения и обозначаются аббревиатурой ЛОН.

 

Виды и принцип работы современных газоразрядных ламп

 

Принцип работы современных газоразрядных ламп освещенияПринцип работы газоразрядных ламп состоит в том, что видимое излучение света происходит вследствие возникновения разряда электричества в герметичной среде газа (неон, аргон, криптон, ксенон) или пара металлов (натрий, ртуть).

 

Таким образом, среда газа/пара металла – это и есть проводник тока, который от вольфрамового электрода с большим потенциалом (фазы, «+») проводит его к вольфрамовому электроду с меньшим потенциалом (нуля, «-»), излучая минимум тепла при высокой степени светоотдачи.

 

Ртутные, люминесцентные лампыПри этом в составе среды газа/пара могут применяться и галогены (фтор/F, хлор/Cl, бром/Br, йод/I), которые улучшают светоотдачу и остальные показатели газоразрядных ламп.

 

Существует также и газоразрядные люминесцентные лампы – лампы, в которых в результате разряда в парах ртути образуется невидимое для человеческого глаза ультрафиолетовое излучение (тепловое излучение), которое преобразуется в видимый свет при помощи находящегося на внутренних стенках колбы напыления люминофора (соединений галофосфата).

 

Виды газоразрядных ламп подразделяются на лампы низкого и высокого давления – по давлению внутри колбы.

 

Лампы высокого давления имеют в качестве основного преимущества высшую степень светоотдачи, и подразделяются в свою очередь по типу наполнителя на:

 

  • ртутные;
  • натриево-ртутные;
  • иодидо-металло-ртутные;
  • инертно-газовые.

 

Ртутные газоразрядные лампы высокого давления имеют напыление люминофора, является Люминесцентной лампой высокого давления и обозначается аббревиатурой ДРЛ.

 

Натриево-ртутные газоразрядные лампы высокого давления именуются также как просто натриевые и обозначаются аббревиатурой ДНаТ.

 

Виды газоразрядных лампИодидо-металло-ртутные газоразрядные лампы, а точнее лампы высокого давления с наполнителем — иодидами редкоземельных металлов с вмещением ртутных паров, именуются как металлогалогенные лампы и носят аббревиатуру ДРИ.

 

Инертно-газовые газоразрядные лампы высокого давления являются сугубо газовыми лампами, в которых применяются аргон, ксенон, неон, криптон или же их смеси и носят названия соответственно содержания газа.

Лампы низкого давления имеют преимущества только при освещении помещений, не нуждающихся в высокой мощности осветительных приборов; чаще всего – это декоративного освещения источники света, которые в зависимости от наполнителя бывают такие:

 

  • ртутные с инертным газом;
  • натриевые.

 

Лампы низкого давления с наполнителем паров ртути с примесью разновидностей инертного газа, именуемые как обыкновенные люминесцентные лампы (ЛЛ) и содержат еще слой люминесцена (см. принцип работы газоразрядных ламп).

 

Лампы низкого давления с наполнителем паров натрия – не являются таковыми, как предыдущие из-за совсем иного принципа действия, обозначаются аббревиатурой ДнаС.

 

Прочитав вышеописанные виды и принцип работы, Вы уже догадались, что по источнику света эти лампы подразделяются на газоразрядные и люминесцентные, а что касается низкого давления таких ламп, он на сегодняшний день их производят в качестве энергосберегающих.

 

Виды и принцип работы современных светодиодных ламп

 

Принцип работы современных светодиодных лампПринцип работы светодиодных ламп состоит в излучении света от находящихся в этих лампах одиночных светодиодов или групп светодиодов, связанных специальной микросхемой, вмещающей в себе преобразователь сетевого тока в рабочий ток, на котором работают данные элементы.

 

Сам же светодиод представляет собой полупроводниковый аналоговый элемент, ранее использовавшийся для индикации в микроэлектронике. Этот элемент семейства диодов перерабатывает электрический ток в свет по средствам прохождения его (тока) через полупроводниковый кристалл. Кроме того, он имеет свойство пропускать ток только в одном направлении.

 

Если подробнее о принципе действия светодиода лампы, то он состоит из анода и катода, которые расположены по противоположным сторонам светоизлучающего кристалла, который легирован с этих сторон примесями: с одной – акцепторными, со второй — донорскими. В свою очередь кристалл находится на подложке из различного материала: кремния, силикона или находится в стеклянной оболочке.

 

Виды современных светодиодных лампПри прохождении электрического тока от источника с большим потенциалом (анода, «+»), он движется через кристалл в направлении электрода с меньшим потенциалом (катод, «-»). Эту область перехода тока называют p-n переходом, в котором, собственно и возникает свечение при рекомбинации электронов и дырок в его области.

 

Виды светодиодных ламп как таковые, различные по конструкции, по составу внутренней среды и остальным техническим параметрам, присущим лампам накаливания и газоразрядным лампам, не существуют.

 

Имеются различия по форме плафонов (стандарты соответствуют остальным лампам), цветовой отдаче, и по рабочему питанию, что мы рассмотрим подробнее. Касаемо последнего, светодиодные лампы различают:

 

  • питание 4В;
  • питание 12В;
  • питание 220В.

 

Светодиодные лампы с питанием 4В применяются для слабомощных источников освещения, часто применяются в декоративных светильниках — «свечках». Соответственно, применяются как вспомогательное локальное, часто-густо декоративное освещение.

 

Светодиодные лампы 12В являются заменой современных ламп накаливания, также и галогенных ламп, а также разновидностей газоразрядных/люминесцентных ламп. Они имеют достойную мощность освещения при невысокой теплоотдачи, что делает их не только хорошими источниками общего, но и мебельного встроенного освещения.

 

Светодиодные лампы 220В – используются для высокомощного освещения, входное питание 220В преобразуется в меньшее по средствам встроенного трансформатора и питает светоизлучающие элементы (светодиоды). Единственный вид светодиодных ламп, которые не требуют отдельного подключения трансформатора.

 

 

устройство, принцип работы, советы мастеров

Светодиодные лампы постепенно вытесняют иные осветительные приборы с рынка. Это экономичные, долговечные приборы, которые могут создавать световой поток разных оттенков. Они отличаются более сложным устройством, чем лампы накаливания. У них предусмотрен в конструкции блок питания. Он может быть разным. Как устроен блок питания для светодиодных ламп, какую разновидность выбрать, будет рассмотрено далее.

Источник питания для светодиодов

Чтобы выполнить ремонт блока питания светодиодной лампы, нужно понимать принцип работы такого элемента системы.

блок питания для светодиодной лампы 12в

Источник питания подобного осветительного прибора должен соответствовать ряду требований. Основные из них следующие:

  • энергоэффективность;
  • надежность;
  • электромагнитная совместимость;
  • безопасность.

Только обеспечив светодиоды источником питания с перечисленными качествами, можно добиться правильной работы прибора, продлить срок его эксплуатации.

Стоит отметить, что продолжительность эксплуатации представленных осветительных приборов составляет не менее 50 тыс. часов. Соответственно и блок питания должен проработать не меньшее количество времени. При этом нужно помнить, что основной причиной, по которой светодиодные лампы вытесняют все другие разновидности осветительных приборов, являются энергосберегательные технологии. Поэтому блок питания также должен обладать высоким КПД. В противном случае из-за блока питания экономия энергии будет незначительной.

Стоит также отметить, что представленная деталь является единственным источником помех электромагнитного типа. Поэтому от блока питания зависит совместимость светодиодного светильника с электросетью.

Единственным элементом в представленном осветительном приборе, к которому подводится напряжение от бытовой сети, является блок питания светодиодных ламп. 220В в этом элементе системы трансформируется, снижаясь до 12 В на выходе. По этой причине электробезопасность устройства полностью зависит от этого прибора.

Кроме того, блок питания влияет на светотехнические характеристики лампы, на то, какой ток будет протекать через светодиод. Если он будет пульсировать, то и световой поток будет отличаться низким качеством, плохо влиять на зрение.

Устройство лампы и драйвера

Блок питания для светодиодной лампы 12В является самой распространенной разновидностью. В зависимости от характеристик лампы он может выдавать на выходе 5, 12, 24, 48 В. При этом ток из переменного преобразовывается в постоянный. Это обязательное условие правильной работы системы.

блок питания светодиодных ламп 220в

Прежде чем рассмотреть устройство этого элемента лампы, нужно обратить внимание на его место в конструкции. Это позволит при необходимости выполнить ремонт. Лампы светодиодного типа имеют одинаковое устройство. Если демонтировать корпус, можно увидеть внутри драйвер. Это печатная плата, на которую напаяны радиоэлементы.

Цоколь представленных приборов чаще всего имеет размер G4. Блок питания для светодиодных ламп следует сразу после него. Электричество подается на контакты патрона, передаваясь на выводы цоколя. К нему подведено два провода, по которым напряжение подается на драйвер (блок питания). Здесь происходит трансформация тока до заданных параметров. Оно поступает на плату, к которой припаяны светодиоды.

Драйвер – это электронный блок, который представляет собой генератор тока. Он, в свою очередь, также имеет несколько основных компонентов. Напряжение от бытовой сети попадает сначала на фильтр. Он устраняет электромагнитные помехи. Далее ток попадает на выпрямитель. Здесь он становится постоянным. Следующая ступень блока питания предназначена для коррекции коэффициента мощности. Последней стадией, которую проходит в этом устройстве электрический ток, является импульсный стабилизатор тока. К его выходу подсоединены светодиоды.

Такое устройство имеет любая светодиодная лампа. Если нужно собрать блоки питания светодиодных ламп аварийного или основного назначения, придерживаются указанной схемы.

Особенности питания светодиодов

Блок питания светодиодных ламп на 220В имеет некоторые особенности работы. Это нужно обязательно учесть, собираясь сделать или отремонтировать этот прибор. Светодиод имеет нелинейную зависимость напряжения и тока. Этой особенностью обладают все осветительные приборы представленного типа.

блок питания из светодиодной лампы своими руками

Так, при увеличении номинального напряжения ток на светодиоде резко возрастает. Это может привести к поломке. Поэтому в недорогих лампах (часто китайского происхождения) последовательно со светодиодом устанавливается ограничивающий резистор. Если произойдет скачок напряжения, он не позволит току увеличиться. Но при этом на резисторе упадет мощность. КПД недорогого светильника по этой причине уменьшается.

Блок питания обеспечивает нормальное напряжение для питания светодиодов. Именно этот прибор чаще всего включается в схему ламп представленного типа. Блок питания для светодиодной лампы 12В или с иным значением исходящего напряжения, называется драйвером. Это маркетинговое обозначение подобных приборов. Источник постоянного напряжения для светодиодов, которые работают от напряжения 12 В, принято называть блоком питания. Если же устройство еще и стабилизирует входной ток, то это драйвер. Можно сказать, что это разновидность блока питания, которая устанавливается в качественных лампах.

Разновидности блоков питания

Рассмотрев устройство блока питания светодиодной лампы, нужно обратить внимание на разновидности подобных приборов. Они могут быть трансформаторными или импульсными. Они отличаются устройством и принципом работы.

блок питания для светодиодной лампы 220

Так, в основе трансформаторного блока применяется трансформатор. Это прибор понижающего типа. Напряжение для любой лампы светодиодного типа нужно понижать с 220 В до 12 В или иного нужного значения. Только после этого ток подается на выпрямитель. Любая светодиодная лампа работает от постоянного тока.

Преимуществом трансформаторных разновидностей приборов является простота их конструкции. Они способны выдержать нагрузку в режиме холостого хода и имеют развязку от бытовой сети. Однако у представленной разновидности блока имеются и недостатки. Основными из них являются малый КПД (50-70%), а также чувствительность системы к перегрузкам.

Импульсный блок питания для светодиодных ламп также имеет в своей конструкции трансформатор. Но в этом случае он работает на более высоких частотах. Поэтому его вес и размер в несколько раз меньше. Обычный трансформаторный блок питания работает на частоте 50 Гц. Он значительно габаритнее. КПД импульсного прибора составляет 70-80%.

В импульсных разновидностях прибора также присутствует развязка от сети. Этот прибор также чувствителен к перегрузкам, но при этом может перестать функционировать даже при холостом ходе. Такой прибор при значительной перегрузке может воспламеняться.

Особенности драйвера

Выбирая блок питания для светодиодной лампы 220 В, нужно обратить внимание на особенности приборов, которые принято называть драйверами. Это импульсные разновидности источников питания. Они стабилизируют исходящее напряжение, которое подается на светодиоды. Такие приборы бывают одно- и двухкаскадными. Второй вариант предпочтительнее. Двухкаскадные драйверы устанавливают в подавляющем большинстве схем. Они обладают особым принципом действия.

блоки аварийного питания светодиодных ламп

Так, первый каскад является корректором коэффициента мощности. Второй элемент системы является стабилизатором напряжения на выходе. Блок корректора необходим, так как драйвер представляет собой импульсный тип устройства. Он должен соответствовать требованиям, оговоренным в ГОСТ, которые касаются подавления гармоник входящего напряжения.

Двухкаскадный драйвер соответствует нормам и требованиям, которые выдвигаются к качеству светового потока. Такой блок питания для светодиодных ламп 12 вольт способен обеспечить пульсацию, равную 1%. Это хороший показатель. Подобное освещение не будет негативно воздействовать на зрение и нервную систему человека. При этом коэффициент мощности двухкаскадного прибора составляет 0,92-0,96.

Стоит отметить, что представленная схема драйвера довольно дорогая. Поэтому производители дешевых ламп устанавливают однокаскадную схему драйвера. Такие системы больше подходят для создания освещения в кладовке, техническом помещении, подвале или подъезде. В квартире или доме нужно применять двухкаскадные схемы.

Еще несколько слов о драйверах

Стоит отметить, что в отличие от блока питания у драйвера нет такой характеристики как «исходящее напряжение». Для этого прибора характерны только такие показатели, как выходной ток и мощность. Это означает, что представленная разновидность источника питания не выдаст ток с большим значением, чем было рассчитано производителем.

импульсный блок питания для светодиодных ламп

Существуют драйверы, рассчитанные на определенное количество светодиодов (например, 5 шт.). В этом случае подключить можно и меньше осветительных элементов, но не больше.

Иные типы представленных элементов электросхемы лампы могут работать с любым количеством светодиодов. Однако их суммарная мощность не должна быть больше установленного производителем значения. Стоит отметить, что у универсальных драйверов КПД будет меньше. Это объясняется спецификой работы импульсной схемы.

Разновидности драйверов

блок питания светодиодной лампы ремонт

В продаже представлено несколько типов представленных источников питания для светодиодных ламп. Основные из них следующие:

  • конденсаторная схема;
  • резистор;
  • драйвер со входом низковольтного типа;
  • микросхема HV9910;
  • сетевой драйвер;
  • микросхема LM317.

Выбор зависит от особенностей прибора, параметров его эксплуатации.

Советы специалистов

Выбирая блок питания для светодиодных ламп, нужно знать, чем отличаются существующие их виды. Специалисты в области светотехники дают несколько советов. Мастера утверждают, что при использовании в схеме драйвера светодиоды могут работать на полную мощность. Это объясняется отсутствием необходимости понижать напряжение. В этом случае светодиоды не выйдут из строя из-за повышения мощности.

Если же питание осуществляется при помощи блока питания, часть напряжения будет расходоваться из-за нагрева резисторов. Последние отвечают за ограничение напряжения при скачке показателей тока. Поэтому, запитав систему при помощи драйвера, можно значительно продлить срок службы светодиодов. Ток в этом случае никогда не превысит допустимое значение.

Стоит учесть, что драйвер представляет собой прибор, который предназначен для тока с определенными характеристиками, заданной мощности. Поэтому желая собрать или отремонтировать блок питания из светодиодной лампы своими руками, нужно подбирать его в соответствии с количеством и типом светодиодов. Их мощность должна соответствовать выбранному питающему устройству.

Обычный блок питания можно применять для любых электрических приборов, а драйвер специально предназначен для светодиодов. Это обязательно учитывают при покупке прибора. Существует ряд факторов, которые влияют на выбор типа питающего устройства.

Какой тип устройства выбрать?

Блок питания для светодиодных ламп, а также драйверы нужно выбирать в соответствии с особенностями эксплуатации прибора. Опытные мастера дают несколько советов, какую разновидность питающего устройства лучше приобрести в том или ином случае.

Драйвер предпочтительнее применять в схеме со светодиодами, если в схеме не предусмотрены резисторы. Такое случается, если нужно запитать отдельные диоды. Также представленную разновидность приборов применяют в том случае, если не надо периодически отключать часть светодиодов от драйвера.

Также в специализированных магазинах проще подобрать стабилизатор входного напряжения. Драйвер подбирается в соответствии с количеством светодиодов и их мощностью. В этом должен помочь квалифицированный консультант-продавец. Поэтому, приобретая необходимое оборудование в магазине, лучше остановить свой выбор на драйвере.

Если же в схеме предусмотрены светодиоды со встроенными резисторами, лучше приобрести блок питания. Это решение будет правильным и в случаях, когда требуется иногда отключать часть светодиодов.

Советы по выбору

Специалисты советуют подходить к выбору блока питания для светодиодных ламп комплексно. Обратившись в специализированный магазин, нужно сначала определиться с типом источника питания. Решив, нужен ли драйвер или блок питания, можно переходить к следующему этапу. Определяется суммарная мощность светодиодов. Блок питания должен не только соответствовать этому значению, но и иметь запас около 20%. Чтобы рассчитать мощность, нужно заглянуть в техпаспорт лампы.

Драйвер должен соответствовать номинальной мощности и току светодиодов. Источник питания, который выдает на выходе 12 вольт не подойдет для осветительного прибора на 48 вольт.

Дальше нужно обратить внимание на показатель защиты корпуса от внешних погодных условий. Нужно решить, для каких целей нужна лампа. Если она будет смонтирована на улице, во влажном или запыленном помещении, класс защиты должен быть высоким. Этот показатель обозначается буквами IP в маркировке. Для домашнего применения можно выбирать блок питания с самым низким классом защиты. Приборы типа IP65 предназначены для уличного монтажа или в помещении ванны, бани или душа. Такой блок питания не боится прямого попадания струи воды на корпус. Стоимость защищенных устройств на порядок выше.

Как работает светодиодный светильник? Описание принципов функционирования и преимуществ.

Светодиодный светильник представляет собой электрический прибор, который обеспечивает яркое освещение. При этом, не стоит забывать о том, что светодиод является самым экономичным источником освещения.

Приобрести светодиодные светильники по наиболее доступным ценам вы сможете на http://www.feron.ua/svetodiodnye-svetilniki/. В данной публикации подробно расскажем о том, как осуществляется функционирование светодиодного светильника.

Принцип работы светодиодного светильника

По сути, светодиодный светильник представляет собой электрическую дугу, которая зажигается в вакууме. При этом означенный процесс возникает на границе p-n перехода. Управляя напряжением, можно регулировать свет электрической дуги.

Ниже представлены преимущества светодиодных светильников:

  • доступная цена;
  • простота монтажа;
  • абсолютная доступность;
  • широкие возможности использования в дизайне.

Кроме того, светодиодные светильники обладают невероятным ресурсом. Они выигрывают у любых аналогов. По большому счёту, конкурентов для светодиодных светильников сегодня нет.

Стоит ли говорить о том, что светодиодные светильники используются не только в бытовом освещении, но и в освещении промышленных объектов. Помимо этого, светодиодные светильники могут быть использованы для освещения улицы. Для этого они должны быть определённым образом защищены.

Речь идет не только об антивандальной защите, но и о защите от агрессивных проявлений окружающей среды.

Что такое диммер и для чего он нужен?

Сегодня многие светодиодные светильники оснащаются диммером. Немногие знают о том, что это устройство позволяет управлять световым потоком светодиодного светильника.

При этом управление осуществляется по току. Если изменять напряжение питающее светодиодный светильник, то он будет изменять цвет. Как уже было сказано выше, светодиодные светильники обладают колоссальным ресурсом.

Если нет возможности заменить все осветительные приборы в доме на светодиодные, не беда. Можно поступить следующим образом. На рынке присутствуют светодиодные лампы. Преимущества их использования заключается в том, что они вкручиваются в обыкновенный патрон.

Таким образом, все имеющиеся осветительные приборы в доме могут быть преобразованы в светодиодные.

Смотрите также:

В видео будут представлены классические встраиваемые светодиодные светильники:

Твитнуть

Подробное устройство и принцип работы светодиода

С момента открытия красного светодиода (1962 г.) развитие твердотельных источников света не останавливалось ни на миг. Каждое десятилетие отмечалось научными достижениями и открывало для ученых новые горизонты. В 1993 году, когда японским ученым удалось получить синий свет, а затем и белый, развитие светодиодов перешло на новый уровень. Перед физиками всего мира стала новая задача, суть которой заключалась в использовании светодиодного освещения в качестве основного.

В наше время можно сделать первые выводы, свидетельствующие об успехах становления светодиодного освещения и продолжающейся модернизации светодиода. На прилавках магазинов появились светильники со светодиодами, изготовленными по технологии COB, COG, SMD, filament.

Как устроен каждый из перечисленных видов, и какие физические процессы вынуждают полупроводниковый кристалл светиться?

Что такое светодиод?

Перед разбором устройства и принципа работы, кратко рассмотрим, что светодиод из себя представляет.

Светодиод – это полупроводниковый компонент с электронно-дырочным переходом, создающий оптическое излучение при пропускании электрического тока в прямом направлении.

В отличие от нити накала и люминесцентных источников света, испускаемый свет светодиодом лежит в небольшом диапазоне спектра. То есть кристалл светоизлучающего диода испускает конкретный цвет (в случае со светодиодами видимого спектра). Для получения определенного спектра излучения в светодиодах используют специальный химический состав полупроводников и люминофора.

Устройство, конструкция и технологические отличия

Существует много признаков, по которым можно классифицировать светодиоды на группы. Одним из них является технологическое отличие и небольшое различие в устройстве, которое вызвано особенностью электрических параметров и будущей сферой применения светодиода.

DIP

DIP светодиодЦилиндрический корпус из эпоксидной смолы с двумя выводами стал первым конструктивом для светоизлучающего кристалла. Закругленный цветной или прозрачный цилиндр служит линзой, формируя направленный пучок света. Выводы вставляются в отверстия печатной платы (DIP) и с помощью пайки обеспечивают электрический контакт.

Излучающий кристалл располагается на катоде, который имеет форму флажка, и соединяется с анодом тончайшим проводом. Существуют модели с двумя и тремя кристаллами разного цвета в одном корпусе с количеством выводов от двух до четырёх. Кроме этого, внутри корпуса может быть встроен микрочип, управляющий очередностью свечения кристаллов либо задающий чистоту его мигания.[block id=”6″]светодиоды "пиранья" Светодиоды в DIP корпусе относятся к слаботочным, используется в подсветке, системах индикации и гирляндах.

В попытках нарастить световой поток, появился аналог с усовершенствованным устройством в DIP корпусе с четырьмя выводами, известный как «пиранья». Однако увеличенная светоотдача нивелировалась размерами светодиода и сильным нагревом кристалла, что ограничило область применения «пираньи». А с появлением SMD технологии их производство практически прекратилось.

SMD

SMD светодиодПолупроводниковые приборы с креплением на поверхность печатной платы коренным образом отличаются от предшественников. Их появление расширило возможности конструирования систем освещения, позволило снизить габариты светильника и полностью автоматизировать монтаж. Сегодня SMD-светодиод – это самый востребованный компонент, используемый для построения источников света любых форматов.

Основа корпуса, на которую крепится кристалл, является хорошим проводником тепла, что в разы улучшило отвод тепла от светоизлучающего кристалла. В устройстве белых светодиодов между полупроводником и линзой присутствует слой люминофора для задания нужной цветовой температуры и нейтрализации ультрафиолета. В SMD-компонентах с широким углом излучения линза отсутствует, а сам светодиод имеет форму параллелепипеда.

COB

cob-matricaChip-On-Board – одно из новейших практических достижений, которое в ближайшем будущем займет лидерство по производству белых светодиодов в искусственном освещении. Отличительная черта устройства светодиодов по технологии COB заключается в следующем: на алюминиевую основу (подложку) через диэлектрический клей крепят десятки кристаллов без корпуса и подложки, а затем полученную матрицу покрывают общим слоем люминофора. В результате получается источник света с равномерным распределением светового потока, исключающий появление теней.

Разновидностью COB является Chip-On-Glass (COG), которая подразумевает размещение множества мелких кристаллов на поверхности из стекла. В частности, широко известны филаментные лампы на 220 В, в которых излучающим элементом служит стеклянный стержень со светодиодами, покрытыми люминофором.

Принцип работы светодиода

Несмотря на рассмотренные технологические особенности, работа всех светодиодов базируется на общем принципе действия излучающего элемента. Преобразование электрического тока в световой поток происходит в кристалле, который состоит из полупроводников с разным типом проводимости. Материал с n­-проводимостью получают путем его легирования электронами, а материал с p-проводимостью – дырками. Таким образом, в сопредельных слоях создаются дополнительные носители заряда противоположной направленности. принцип работы LED [block id=”7″]В момент подачи прямого напряжения начинается движение электронов и дырок к p-n-переходу. Заряженные частицы преодолевают барьер и начинают рекомбинировать, в результате чего протекает электрический ток. Процесс рекомбинации дырки и электрона в зоне p-n-перехода сопровождается выделением энергии в виде фотона.

Вообще, данное физическое явление применимо ко всем полупроводниковым диодам. Но в большинстве случаев длина волны фотона находится за пределами видимого спектра излучения. Чтобы заставить элементарную частицу двигаться в диапазоне 400-700 нм ученым пришлось провести немало экспериментов с подбором подходящих химических элементов. В результате появились новые соединения: арсенид галлия, фосфид галлия и более сложные их формы, каждая из которых характеризуется своей длиной волны, а значит, и цветом излучения.

Кроме полезного света, испускаемого светодиодом, на p-n-переходе выделяется некоторое количество теплоты, которая снижает эффективность полупроводникового прибора. Поэтому в конструкции мощных светодиодов должна быть продумана возможность реализации эффективного отвода тепла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *