Принцип работы магнетрона микроволновой печи – что это, принцип работы микроволновой печи и как выбрать микроволновку для дома

Содержание

Магнетрон — Википедия

Магнетрон — электронный прибор, генерирующий микроволны при взаимодействии потока электронов с электрической составляющей сверхвысокочастотного поля в пространстве, где постоянное магнитное поле перпендикулярно постоянному электрическому полю[1].

В 1912 году швейцарский физик Генрих Грайнахер изучал способы вычисления массы электрона. Он собрал установку, в которой внутрь магнита был помещен электровакуумный диод с цилиндрическим анодом вокруг стержневидного катода. Ему не удалось измерить массу электрона из-за проблем с получением достаточного уровня вакуума в лампе, однако в ходе работы были разработаны математические модели движения электронов в электрических и магнитных полях.[2][3]

Альберт Халл (США) использовал данные модели при попытках обойти патенты Western Electric на триод. Халл планировал использовать для управления потоком электронов между катодом и анодом изменяющееся магнитное поле вместо постоянного электрического. В исследовательских лабораториях General Electric (Schenectady, New York) Халл создал лампы, переключавшие режим через изменение соотношения магнитных и электрических полей. В 1921 году он предложил термин «магнетрон», опубликовал несколько статей об их устройстве и получил патенты.

[4] Магнетрон Халла не был предназначен для получения высокочастотных электромагнитных волн. В 1924 году чехословацкий физик А. Жачек[5] и германский физик Эрих Хабан (нем. Erich Habann, Йенский университет) независимо обнаружили возможность генерации магнетроном дециметровых волн (порядка 100 МГц — 1 ГГц).

В 1920-е годы исследованиями в области генерирования СВЧ колебаний с применением магнитных полей занимались также А. А. Слуцкин и Д. С. Штейнберг (1926—1929, СССР), К. Окабе и Х. Яги (1928—1929, Япония), И. Ранци (1929, Италия).

Действующие магнетронные генераторы радиоволн были созданы независимо и почти одновременно в трёх странах: в Чехословакии (Жачек, 1924 г.), в СССР (А. А. Слуцкин и Д. С. Штейнберг, 1925 г.), в Японии (Окабе и Яги, 1927 г.).

К 1936—1937 годам мощность генераторов на базе магнетрона была повышена в несколько раз (до сотен Вт на волне с длиной 9 см) путём создания многорезонаторного магнетрона (с использованием массивного медного анода с несколькими резонаторами и охлаждением; М. А. Бонч-Бруевич, Н. Ф. Алексеев, Д. Е. Маляров)[6][7].

Французский учёный Морис Понт с сотрудниками из парижской фирмы «КСФ» в 1935 году создали электронную лампу с вольфрамовым катодом, окружённым резонаторными анодными сегментами. Она была предшественницей магнетронов с резонаторными камерами.

Конструкция многорезонаторного магнетрона Алексеева — Малярова, обеспечивающего 300-ваттное излучение на волне 10 сантиметров, созданного в 1936—1939 годах, стала известна мировому сообществу благодаря публикации 1940 года.[8]

Своим появлением на свет многорезонаторный магнетрон Алексеева — Малярова обязан радиолокации. Работы по радиолокации были развернуты в СССР почти одновременно с началом радиолокационных работ в Англии и США. По признанию зарубежных авторов, к началу 1934 года СССР продвинулся в этих работах более, чем США и Англия.[9]

В 1940 году британские физики Джон Рэндалл и Гарри Бут (англ. Harry Boot) изобрели резонансный магнетрон[10]. Новый магнетрон давал импульсы высокой мощности, что позволило разработать радар сантиметрового диапазона. Радар с короткой длиной волны позволял обнаруживать более мелкие объекты[11]. Кроме того, компактный размер магнетрона привёл к резкому уменьшению размеров радарной аппаратуры[12], что позволило устанавливать её на самолетах[13].

В 1949 году в США инженерами Д. Уилбуром и Ф. Питерсом были разработаны методы изменения частоты магнетрона с помощью управления напряжением (прибор «митрон» — mitron).

[14][15]

Начиная с 1960-х годов магнетроны получили применение в СВЧ-печах для домашнего использования[16].

Магнетроны могут работать на различных частотах от 0,5 до 100 ГГц, с мощностями от нескольких Вт до десятков кВт в непрерывном режиме, и от 10 Вт до 5 МВт в импульсном режиме при длительностях импульсов главным образом от долей до десятков микросекунд.

Магнетроны обладают высоким КПД (до 80 %).

Магнетроны бывают как неперестраиваемые, так и перестраиваемые в небольшом диапазоне частот (обычно менее 10 %). Для медленной перестройки частоты применяются механизмы, приводимые в движение рукой, для быстрой (до нескольких тысяч перестроек в секунду) — ротационные и вибрационные механизмы.

Магнетроны как генераторы сверхвысоких частот широко используются в современной радиолокационной технике (хотя их начинают вытеснять активные фазированные антенные решётки) и в микроволновых печах. По состоянию на 2017 год, магнетрон — последний тип массово производимого радиотехнического электровакуумного прибора после свёртывания производства кинескопов в начале 2010 годов.

Магнетрон в продольном разрезе Схема конструкции магнетрона

Резонансный магнетрон состоит из анодного блока, который представляет собой, как правило, металлический толстостенный цилиндр с прорезанными в стенках полостями, выполняющими роль объёмных резонаторов. Резонаторы образуют кольцевую колебательную систему. К анодному блоку закрепляется цилиндрический катод. Внутри катода закреплён подогреватель. Магнитное поле, параллельное оси прибора, создаётся внешними магнитами или электромагнитом.

Для вывода СВЧ энергии используется, как правило, проволочная петля, закреплённая в одном из резонаторов, или отверстие из резонатора наружу цилиндра.

Резонаторы магнетрона образуют кольцевую колебательную систему, около них происходит взаимодействие пучка электронов и электромагнитной волны. Поскольку эта система в результате кольцевой конструкции замкнута сама на себя, то её можно возбудить лишь на определённых видах колебаний, из которых важное значение имеет π-вид. Среди нескольких резонансных частот системы (при N резонаторах в системе возможно существование любого целого количества стоячих волн в диапазоне от 1 до N/2) чаще всего используется π-вид колебаний, при котором фазы в смежных резонаторах различаются на π. При наличии рядом с рабочей частотой (ближе 10 %) других резонансных частот возможны перескоки частоты и нестабильная работа прибора. Для предотвращения подобных эффектов в магнетронах с одинаковыми резонаторами в них могут вводиться различные связки либо применяться магнетроны с разными размерами резонаторов (чётные резонаторы с одним размером, нечётные — с другим).

Отдельные модели магнетронов могут иметь различную конструкцию. Так, резонаторная система выполняется в виде резонаторов нескольких типов: щель-отверстие, лопаточных, щелевых и т. д.

Схема работы магнетрона

Электроны эмиттируются из катода в пространство взаимодействия, где на них воздействует постоянное электрическое поле анод-катод, постоянное магнитное поле и поле электромагнитной волны. Если бы не было поля электромагнитной волны, электроны бы двигались в скрещённых электрическом и магнитном полях по сравнительно простым кривым: эпициклоидам (кривая, которую описывает точка на круге, катящемся по наружной поверхности окружности большего диаметра, в конкретном случае — по наружной поверхности катода). При достаточно высоком магнитном поле (параллельном оси магнетрона) электрон, движущийся по этой кривой, не может достичь анода (по причине действия на него со стороны этого магнитного поля силы Лоренца), при этом говорят, что произошло магнитное запирание диода. В режиме магнитного запирания некоторая часть электронов движется по эпициклоидам в пространстве анод-катод. Под действием собственного поля электронов, а также статистических эффектов (дробовой шум) в этом электронном облаке возникают неустойчивости, которые приводят к генерации электромагнитных колебаний, эти колебания усиливаются резонаторами. Электрическое поле возникшей электромагнитной волны может замедлять или ускорять электроны. Если электрон ускоряется полем волны, то радиус его циклотронного движения увеличивается, и он отклоняется в направлении катода. При этом энергия передаётся от волны к электрону. Если же электрон тормозится полем волны, то его энергия передаётся волне, при этом циклотронный радиус электрона уменьшается, центр окружности вращения смещается ближе к аноду, и он получает возможность достигнуть анода. Поскольку электрическое поле анод-катод совершает положительную работу только если электрон достигает анода, энергия всегда передаётся в основном от электронов к электромагнитной волне. Однако, если скорость вращения электронов вокруг катода не будет совпадать с фазовой скоростью электромагнитной волны, один и тот же электрон будет попеременно ускоряться и тормозиться волной, в результате эффективность передачи энергии волне будет небольшой. Если средняя скорость вращения электрона вокруг катода совпадает с фазовой скоростью волны, электрон может находиться непрерывно в тормозящей области, при этом передача энергии от электрона к волне наиболее эффективна. Такие электроны группируются в сгустки (так называемые «спицы»), вращающиеся вместе с полем. Многократное, в течение ряда периодов, взаимодействие электронов с ВЧ-полем и фазовая фокусировка в магнетроне обеспечивают высокий коэффициент полезного действия и возможность получения больших мощностей.

Предупреждающий знак «Опасно. Радиоизлучение»

В радарных устройствах волновод подсоединён к антенне, которая может представлять собой как щелевой волновод, так и конический рупорный облучатель в паре с параболическим отражателем (так называемая «тарелка»). Магнетрон управляется короткими высокоинтенсивными импульсами подаваемого напряжения, в результате чего в пространство излучается короткий импульс микроволновой энергии. Небольшая порция этой энергии отражается от объекта радиолокации обратно к антенне, попадает в волновод, которым она направляется к чувствительному приёмнику. После дальнейшей обработки сигнала он, в конце концов, появляется на электронно-лучевой трубке (ЭЛТ) в виде радарной карты А1.

В микроволновых печах волновод заканчивается отверстием, прозрачным для радиочастот (непосредственно в камере для готовки). Важно, чтобы во время работы печи в ней находились продукты. Тогда микроволны поглощаются вместо того, чтобы отражаться обратно в волновод, где интенсивность стоячих волн может вызвать искрение. Искрение, продолжающееся достаточно долго, может повредить магнетрон. Если в микроволновой печи готовится небольшое количество пищи, лучше поставить в камеру ещё и стакан воды для поглощения микроволн.

  1. ↑ Кулешов, 2008, с. 353.
  2. ↑ H. Greinacher (1912) «Über eine Anordnung zur Bestimmung von e/m» (нем.) (Об аппарате для определения e/m), Verhandlungen der Deutschen Physikalischen Gesellschaft, 14 : 856—864.
  3. ↑ «Invention of Magnetron» (англ.).
  4. ↑ Albert W. Hull (1921) «The effect of a uniform magnetic field on the motion of electrons between coaxial cylinders», Physical Review, 18 (1) : 31—57. Также: Albert W. Hull, «The magnetron», Journal of the American Institute of Electrical Engineers, vol. 40, no. 9, p. 715—723 (September 1921).
  5. ↑ Biographical information about August Žáček:
    • R. H. Fürth, Obituary: «Prof. August Žáček», Nature, vol. 193, no. 4816, p. 625 (1962).
    • «The 70th birthday of Prof. Dr. August Žáček», Czechoslovak Journal of Physics, vol. 6, no. 2, p. 204—205 (1956). Available on-line at: Metapress.com Архивная копия от 12 марта 2012 на Wayback Machine.
  6. ↑ Моuromtseeff J. Е. Proc. Natl.-Electr. Conf., 1945, № 33, p. 229—233.
  7. М. М. Лобанов. Расширение исследований по радиообнаружению (неопр.). Развитие советской радиолокационной техники. Дата обращения 27 января 2016.
  8. ↑ Alexeev Н. F., Malyarov Д. Е. Getting powerful vibrations of magnetrons in centimeter wavelength range // Magazine of Technical Physics. 1940. Vol. 10. No. 15, P. 1297—1300.
  9. ↑ Brown, Louis. A Radar History of World War II. Technical and Military Imperatives. Bristol: Institute of Physics Publishing, 1999. ISBN 0-7503-0659-9.
  10. ↑ The Magnetron (неопр.). Bournemouth University (1995—2009). Дата обращения 23 августа 2009. Архивировано 23 августа 2011 года.
  11. ↑ Я. З. Перпя. Как работает радиолокатор. Оборонгиз, 1955.
  12. Schroter, B. How important was Tizard’s Box of Tricks? (неопр.) // Imperial Engineer. — 2008. — Spring (т. 8). — С. 10.
  13. ↑ Who Was Alan Dower Blumlein? (неопр.) (недоступная ссылка). Dora Media Productions (1999—2007). Дата обращения 23 августа 2009. Архивировано 23 августа 2011 года.
  14. ↑ The Mitron-An Interdigital Voltage-Tunable Magnetron / Proceedings of the IRE (Volume: 43, Issue: 3, 1955) p. 332—338, doi:10.1109/JRPROC.1955.278140.
  15. ↑ 62. Mitrons (англ.) / V. N. Shevchik, Fundamentals of Microwave Electronics: International Series of Monographs on Electronics and Instrumentation, Elsevier, 2014 ISBN 9781483194769, p. 239.
  16. ↑ В. Коляда. Прирученные невидимки. Всё о микроволновых печах // Наука и Жизнь, № 10, 2004.
  • Кулешов В. Н., Удалов Н. Н., Богачев В. М. и др. Генерирование колебаний и формирование радиосигналов. — М.: МЭИ, 2008. — 416 с. — ISBN 978-5-383-00224-7.

принцип работы, устройство, электрическая схема, магнетрон

Микроволновая печь, более известная как микроволновка – полезный кухонный прибор, который в разы упрощает повседневную жизнь. Имея ее в своем арсенале, не придется подолгу возиться на кухне, подогревая пищу. Микроволновую печь еще называют СВЧ-печью.

Задача этого бытового электроприбора – быстрое приготовление или быстрый подогрев приготовленной пищи, размораживание продуктов. Если сравнивать с классической печью, например, духовкой, микроволновка разогревает продукты не с поверхности, а по всему объему.

Как работает микроволновка

Микроволны, глубоко проникая практически в любую пищу, в разы сокращают время разогрева. В статье пойдет речь о принципе работы и устройстве этой техники, незаменимой на кухне.

Принцип работы микроволновой печи

Чтобы разобраться с этим, необходимо немного вводных данных. Большинство продуктов питания в своем составе содержат следующие вещества: соли, жиры, сахар, воду. Чтобы микроволны «работали», то есть грели пищу, в продуктах должны быть дипольные молекулы.

С одной стороны у них положительный электрический заряд, с другой – отрицательный. В пище этих молекул достаточно – это жиры и сахар, но главный диполь – молекула воды.

В овощах, мясе, фруктах и рыбе содержится большое число дипольных молекул, количество которых достигает миллионов. Если электрического поля нет, молекулы располагаются в хаотическом порядке.

Научное подтверждение

В СВЧ-печах микроволны имеют частоту 2450 Мгц

При наличии электромагнитного поля, они начинают «выстраиваться»: «плюс» направлен в одну сторону, «минус» в другую. Когда поле меняет полярность, молекулы «разворачиваются» на 180 градусов.

В СВЧ-печах микроволны имеют частоту 2450 Мгц. 1 герц = 1 колебанию за секунду. Мегагерц – миллион колебаний. Полярность меняется дважды за один период волны.

Когда на продукты воздействует микроволновое излучение, молекулы в них начинают вращаться чаще, буквально стираясь друг о друга. При этом выделяется тепло, которое и служит источником нагрева продуктов.

Нагрев пищи микроволнами можно сравнить с тем, как греются ладони, если тереть ими одна об другую. «Волны» воздействуют только на поверхностный слой пищи, проникая не глубже 1 – 3 см.

Но, тепло «идет» дальше – включается физика теплопроводности. Отсюда же следует совет: если нужно разогреть большой кусок мяса, лучше выставить микроволновую печь на среднюю мощность. Так он прогреется лучше, хоть на это и уйдет больше времени. Тепло из наружных слоев начнет проникать внутрь.

Аналогично дела обстоят и с супами: их лучше периодически вынимать из печи и перемешивать, помогая теплу пробиться внутрь.

В выпускаемых сейчас моделях печей может быть функция «Двойного излучения» — это говорит о раздвоенном источнике излучения. Благодаря этому разделению продукты прогреваются равномернее, а СВЧ-печь имеет повышенный КПД.

Схема СВЧ печи

Наглядным примером послужит модель микроволновки Samsung RE290D. Принципиальная электрическая схема поможет понять, как работают печи от любых производителей. Отличаться они могут разве что специфическими модификациями. Сама схема представлена на фото.

Схема СВЧ печи

В левой части заметно, что заземляющий контакт вилки соединяется с корпусом, а тот подключен от средней точки конденсаторной развязки фильтра, снижающего помехи высокочастотного излучения.

В области входа питания находится предохранитель плавного типа – FU1. Для проверки его состояния пользуются электрическими методами – прозванивают цепь мультиметром, работающим в режиме омметра.

Есть второй предохранитель, защищающий микроволновку от работы в аварийном режиме, например, когда неисправны микровыключатели дверцы.

Чтобы магнетрон – источник излучения, начал «работать», контакты исправности дверцы размыкаются, а все остальные – замыкаются. Если их отключить, причем любой, то с высоковольтного трансформатора снимется питающее напряжение.

В схеме есть термические предохранители-датчики (2 шт.), которые, в зависимости от температуры корпуса магнетрона и рабочей камеры, размыкаются и замыкаются. У первого – периодическая работа. Он защищает магнетрон от перегрева. Второй срабатывает, если неисправен вентилятор или засорились вентиляционные отверстия.

Samsung RE290D

СВЧ Samsung RE290D

Контакт страхующего реле обеспечивает подключение электродвигателей таймера и охлаждающего вентилятора. Если предохранитель «Monitor Fuse» перегорит, обмотка реле выходит из строя.

Переключатель, отвечающий за выбор мощности, находится на таймере. Он, следуя алгоритмам, снимает напряжение со схемы магнетрона.

Резистор R1 кратковременно снижает пусковой ток трансформатора. Для этого требуется работоспособный релейный контакт «Inrush Relay».

Его задача – ограничение импульса, вызванного разрядом конденсатора (он может получить заряд до того, как включится). Это обеспечивает плавный запуск микроволновой печи.

Силовая схема этой печи от Самсунг проста для тех, кто в этом разбирается. Главное различие в СВЧ-печах – электронные блоки, с разной конструкцией и функциональными возможностями.

Устройство микроволновки

Внутри микроволновки есть несколько обязательных деталей, поэтому не лишним будет знать, какова их роль. Внутреннее строение имеет следующую конструкцию: металлическая камера, в которой происходит нагрев пищи и дверца, предотвращающая выход излучения наружу.

Чтобы продукты питания разогревались равномернее, для этого в камере предусмотрен вращающийся столик, работающий от мото-редуктора (мотора). Но есть и другие ответственные детали.

Блок управления

Блок управления

Блок управления СВЧ

Панель управления бывает:

  • механической;
  • электронной.

Блок управления поддерживает заданную мощность и выключает устройство по истечении заданного времени.

Внутри электронного блока – микроЭВМ с богатым потенциалом, поэтому в ходе производства печей ему находят другое применение. Например, встраивают часы или отрывки мелодий, которые сигнализируют об окончании работы.

Блок управления – схема, с которой напрямую взаимодействует человек. Рабочими органами выступают: кнопки, механические переключатели, регуляторы, при помощи которых выставляются параметры работы. Посредством них задается мощность, выбирается режим, программа.

Сама схема устроена по-разному. Простейшая представляет собой круговые регуляторы, один из которых – таймер. Бывает и гибридная система – с кнопками. Она, по сравнению с «механикой» более функциональна.

Все чаще встречается блок управления в виде сенсорной панели. Принципом работы она аналогична механическим кнопкам, только надежнее. Продвинутые схемы поддерживают «программирование» — настраивается мощность и время выдачи излучения.

Блок генерации СВЧ излучения

Блок генерации СВЧ излучения

Это «сердце» микроволновой печи. Выглядит элемент как вакуумная лампа, которую можно было встретить в старых кинескопных телевизорах.

Его задача – генерирование интенсивной электромагнитной волны высокой частоты. Когда электроны проходят через магнитное поле – образуется волна, длина которой бывает разной.

Блок генерации включает не единственный СВЧ-источник. Чтобы волны поступали в рабочую зону печи, в ней предусмотрены волноводы. Расположены они за слюдяной пластиной, которая «прячется» за боковой стенкой.

Системы основной и вторичной защиты

Контрольные датчики следят за тем, чтобы ключевые электронные и аппаратные части работали исправно, а не в аварийном режиме. Их функция – обеспечение безаварийной работы микроволновой печи и предотвращение опасных сбоев.

Контрольный датчик

Контрольный датчик

Чтобы защитить человека от воздействия микроволн, в СВЧ-печах есть запорный механизм, состоящих из нескольких выключателей:

  • Primary Switch;
  • Secondary Switch;
  • Door Switch;
  • Monitor Switch.

Блок, генерирующий СВЧ-излучение, начнет работать только тогда, когда замкнутся контакты первичного и вторичного выключателей (закроется дверца).

Задача дверного (door) выключателя – блокировать работу реле регулировки мощности. Устанавливается он преимущественно в технике с электронным блоком управления.

Функции микроволновки

Функции микроволновки

Разогрев пищи в СВЧ

Микроволновую печь большинство используют просто для нагрева пищи. Но эта техника способна на большее. С ее помощью можно даже готовить шашлык, курицу-гриль, выпекать картошку и так далее.

Единственное, режим «гриль» требует мощности в 1500 Вт, значит света «тянуть» печь будет немало. Да и магнетрон – блок, генерирующий излучение, не вечен.

Поэтому, чем реже пользоваться печью, тем дольше она прослужит. Сейчас редко кто полностью отказывается от традиционных плит в пользу микроволновок.

Перечь функций, доступных в СВЧ-печах и их назначение:

  • подвижный гриль. Позволяет менять угол наклона. Те, кто предпочитает курицу-гриль, выбирают печи с этой функцией;
  • конвекция. Обдув продуктов питания горячим воздухом. Как заявляют производители, эта функция предназначена для выпекания. Правда, модели печей с нею дорогие, тяжелые и громоздкие. Неудивительно, так как сзади техники ставится немаленький вентилятор, нагнетающий воздух;
  • биопокрытие. Иначе – керамическое покрытие, хотя производители именуют их по-разному. Его преимущества: стойкость, прочность, биологическая инертность (микробы не будут размножаться внутри печи, даже если долго ее не мыть). Чем дороже модель микроволновки, тем «навороченней» в ней покрытие;
  • автоприготовление. Это функция, встречающаяся в технике компании LG. Есть программы, полностью автоматизированные, предназначенные для готовки определенного блюда. К примеру, готовится каша. С этим режимом остается только выбрать вес продукта, а мощность и время зададутся автоматически;
  • размораживание. Все просто – печь работает на минимальной мощности, необходимой для разморозки продуктов;
  • Intellowave. Система, позволяющая равномерно прогреть еду, например, большой кусок мяса. Встроенные датчики «наблюдают» за отдельными участками продукта, определяя температуру поверхности и регулируя мощность;
  • подача пара. Дополнительная возможность, предотвращающая пересушивание пищи в ходе приготовления;
  • проветривание рабочей камеры. Полезно, если хочется, чтобы новое блюдо не пропиталось оставшимися запахами.

Это основные функции, но они постоянно дополняются новыми.

Что такое магнетрон

Магнетрон в микроволновке – это элемент, генерирующий высокочастотное излучение в рабочей камере. Излучаемые электромагнитные волны воздействуют на молекулы, содержащиеся в пище, из-за чего она разогревается. То есть для подогрева не требуется внешнее тепловое воздействие.

Именно по этой причине температура в микроволновках не превышает отметку в +100 градусов Цельсия. Магнетрон – основная деталь, которая иногда выходит из строя. Ее можно заменить на новую, но для этого учитывается полная совместимость по мощности, частоте, расположению клемм.

Принцип работы магнетрона

Микроволновая печь работает так: она преобразует электроэнергию в высокочастотное электромагнитное излучение. В результате, молекулы воды, содержащиеся в пище, начинают «двигаться», что приводит к разогреву. Устройство, генерирующее микроволны, называется магнетроном.

Принцип работы магнетрона

Магнетрон СВЧ

Нередко магнетрон сравнивают с электровакуумным диодом, который работает за счет явления термоэлектронной эмиссии. Явление образуется, если нагревается поверхность катода или эмиттера.

Высокая температура «вынуждает» активные электроны покинуть поверхность. Но для этого на анод должно подаваться напряжение.

Образуемое электрическое поле приводит электроды в движение, которые по силовым линиям направляются к аноду. Электрон, оказавшийся в области магнитного поля, меняет свою траекторию.

Анод магнетрона выполнен в форме цилиндра с полостями. Внутри него расположен катод с нитью накаливания. По краям анода находятся кольцевые магниты, образуемые магнитное поле. Из-за них электроны не способны напрямую двигаться от катода к аноду.

Их траектория нарушается, и они начинают вращаться вокруг катода. Электроны, проходящие около резонаторов, отдают им часть собственной энергии (взаимозаменяемость). В результате в полости образуется мощное сверхвысокочастотное поле, выводимое наружу посредством проволочной петли.

Магнетрон «запускается», когда на анод подается высокое напряжение – 3000 – 4000 В. По этой причине в бытовых электросетях магнетрон должен подключаться через высоковольтный трансформатор.

Устройство магнетрона

Магнетрон – элемент, ответственный за генерацию высокочастотных колебаний. Есть устройства с похожим принципом действия – клистроны и платинотроны, но они не получили должного распространения.

Магнетрон

Впервые магнетрон задействовали в СВЧ-печи в 1960 году. Сейчас используется многорезонаторный элемент. Его компоненты и их описания:

  • анод. Цилиндр из меди, состоящий из нескольких секторов. В нем есть полости-резонаторы, которые создают кольцевую систему колебаний;
  • катод. Цилиндр с нитью накаливания, расположенный в центре магнетрона. Эта часть ответственна за эмиссию электронов;
  • кольцевые магниты. Расположены на торцах печи. Они создают магнитное поле, направленное параллельно они магнетрона. Электроны движутся в том же направлении;
  • проволочная петля. Находится в резонаторе, соединяется с катодом и выводится к антенне-излучателю. Задача петли – вывод высокочастотного излучения в волновод. Оттуда оно поступает в рабочую камеру микроволновки.

У магнетронов простая конструкция, поэтому применяются они не только в микроволновых печах, но и в радиолокации.

Подключение магнетрона

Схема включения – однополупериодное выпрямление высоковольтного напряжения. Выход трансформатора работает в режиме короткого замыкания выходной обмотки (не дольше 5 минут).

Подключение магнетрона

Испорченный магнетрон нет смысла нести в ремонт – даже хорошо оснащенные мастерские этим не занимаются. Поэтому приобретают новую деталь.

Извлекая ее из микроволновки, помечают контакты разъемов, чтобы не перепутать их при переустановке. При неправильном подключении выводов магнетрон работать не будет.

С заменой справится любой, кто хоть раз держал в руках отвертку и умеет прозванивать диоды. Знания касаемо принципа работы, устройства и коэффициента полезного действия элемента не потребуются. Не всегда можно отыскать такой же магнетрон, что и был

.

Но подойдет аналогичная деталь. Мощность выбирается та же или выше, крепления и разъемы подключения должны совпадать.

Независимо от производителя, магнетроны имеют единое устройство, отличается только конструкция. Поэтому, заменяя деталь, нужно убедиться, что аналог плотно прилегает к волноводу.

Благодаря серийному изготовлению СВЧ блоков микроволновка становится простой, но полезной в условиях кухни техникой, которая в разы облегчает процедуру приготовления или разогрева пищи. Обслуживать ее легко, а конструкция не предполагает незаменимых деталей, что повышает надежность. Бытует мнение, что излучения от микроволн – вредны, но это не более чем миф.

Принцип работы микроволновой печи и устройство магнетрона

Микроволновые печи (СВЧ-печи) уже давно стали самым обыденным бытовым прибором, с помощью которого можно очень быстро разморозить продукты, разогреть уже приготовленную пищу или приготовить блюдо по оригинальному рецепту, и даже продезинфицировать кухонные моющие губки и тряпочки, не содержащие металла.

Наличие удобного, интуитивно понятного интерфейса, а также многоуровневой защиты позволяют даже ребенку справиться с управлением такого сложного и высокотехнологичного устройства, как микроволновка. Некоторые блюда можно легко и быстро приготовить по встроенным программам. А возможные неисправности вполне можно устранить, сделав ремонт СВЧ-печи своими руками.

На чём основан принцип работы СВЧ-печи

Разогрев продуктов, помещенных в камеру микроволновки, происходит за счет воздействия на них мощного электромагнитного излучения дециметрового диапазона. В бытовых приборах применяют частоту 2450 МГц. Радиоволны такой высокой частоты проникают вглубь продуктов, и воздействую на полярные молекулы (в продуктах в основном это вода), заставляя их постоянно сдвигаться и выстраиваться вдоль силовых линий электромагнитного поля.

Такое движение повышает температуру продуктов, и нагрев идет не только снаружи, но и до той глубины, на которую проникают радиоволны. В бытовых СВЧ-печах волны проникают вглубь на 2,5—3 см, они разогревают воду, а та, в свою очередь, весь объем продуктов.

Устройство магнетрона — основная составляющая

Радиоволны частотой 2450 МГц генерируются специальным прибором – магнетроном, представляющим собой электровакуумный диод. Он имеющий массивный медный цилиндрический анод круглый в сечении и разделенный на 10 секторов, имеющих такие же стенки из меди.

Устройство магнетрона

В центре этой конструкции расположен стержневой катод, внутри которого есть нить накала. Катод служит для эмиссии электронов. По торцам магнетрона расположены мощные кольцевые магниты, создающее магнитное поле внутри магнетрона, необходимое для генерации СВЧ-излучения.

К аноду прикладывается напряжение в 4000 Вольт, а к нити накала 3 Вольта. Происходит интенсивная эмиссия электронов, которые подхватываются электрическим полем высокой напряженности. Геометрия резонаторных камер и напряжение анода определяют генерируемую частоту магнетрона.

Съем энергии происходит при помощи проволочной петли, соединенной с катодом и выведенной в излучатель-антенну. С антенны СВЧ-излучения попадает в волновод, а от него в камеру микроволновки. Стандартная выходная мощность магнетронов, применяемых в бытовых микроволновках, составляет 800 Вт.

Если для приготовления блюд требуется меньшая мощность, то это достигается тем, что магнетрон включают на определенные промежутки времени, за которыми следует пауза.

Для получения мощности 400 Вт (или 50% от выходной мощности) можно в течение 10-секундного интервала на 5 секунд включить магнетрон, а на 5 секунд выключить. В науке это называется широтно-импульсной модуляцией.

Магнетрон в процессе работы выделяет большое количество тепла, поэтому его корпус помещен в пластинчатый радиатор, который при работе всегда должен обдуваться воздушным потоком из встроенного в микроволновку вентилятора. При перегреве магнетрон очень часто выходит из строя, поэтому его оснащают защитой – термопредохранителем.

Термопредохранитель и зачем он нужен

ТермопредохранительДля защиты магнетрона от перегрева, а также гриля, которым оснащены некоторые модели СВЧ-печей, применяются специальные устройства, называемые термопредохранителем или термореле. Они выпускаются на разные номиналы температуры, указанные на их корпусе.

Принцип действия термореле очень прост. Его корпус из алюминия прикрепляется при помощи фланцевого соединения к месту, где необходимо контролировать температуру. Так обеспечивается надежный тепловой контакт. Внутри термопредохранителя находится биметаллическая пластинка, имеющая настройки на определенную температуру.

При превышении температурного порога пластинка изгибается и приводит в действие толкатель, который размыкает пластины контактной группы. Питание СВЧ-печи прерывается. После остывания геометрия биметаллической пластины восстанавливается и происходит замыкание контактов.

Назначение вентиляторов СВЧ-печи

Вентилятор является важнейшим компонентом любой микроволновки, без которого ее работы будет невозможной. Он выполняет ряд важнейших функций:

  • Во-первых, вентилятор обдувает главную деталь СВЧ-печи – магнетрон, обеспечивая его нормальную работу.
  • Во-вторых, другие компоненты электронной схемы тоже выделяют тепло и требуют вентиляции.
  • В-третьих, некоторые микроволновки оборудованы грилем обязательно вентилируемым и защищенным термореле.
  • И, наконец, в камере приготовляемые продукты тоже выделяют большое количество тепла и водяного пара. Вентилятор создает в камере небольшое избыточное давление, в результате чего воздух из камеры вместе с нагретым водяным паром выходит наружу через специальные вентиляционные отверстия.

В микроволновке от одного вентилятора, который расположен у задней стенки корпуса и засасывает воздух снаружи, организована система вентиляции при помощи воздуховодов, направляющий воздушный поток на пластины магнетрона, а затем в камеру. Двигатель вентилятора представляет собой простой однофазный асинхронный двигатель переменного тока.

Система защиты и блокировки микроволновой печи

Любая СВЧ-печь имеет внутри мощное радиоизлучающее устройство – магнетрон. СВЧ-излучение такой мощности может нанести непоправимый вред здоровью человека и всех живых существ, поэтому необходимо принять ряд мер по защите.

Микроволновка имеет полностью экранированную металлическую рабочую камеру, которая снаружи дополнительно защищена металлическим корпусом, не позволяющим высокочастотному излучению проникать наружу.

Прозрачное стекло в дверце имеет экран из металлической сетки с мелкой ячейкой, которая не пропускает наружу излучение 2450 Гц, длиной волны 12,2 см, генерируемое магнетроном.

лампы галогеновые для домаВопрос экономии энергопотребления всегда был актуальным. одним из видов осветительных приборов, которые в значительной мере помогут снизить расход электричества в быту, являются галогенные лампы для дома. Чтобы сделать оптимальный выбор, нужно просто разобраться в преимуществах и недостатка каждого вида таких ламп.

Двойные выключатели в виду своих особенностей получили широкое применение в домашних условиях. Как правильно подключать такие выключатели и что необходимо знать для предотвращения ошибок при этом, можно прочитать в полезной статье.

Дверца микроволновой машины плотно прилегает к корпусу и очень важно чтобы этот зазор сохранял свои геометрические размеры. Расстояние между металлическим корпусом камеры и специальным пазом дверцы должно быть равно четверти длины волны СВЧ-излучения: 12,2 см/4=3.05 см.

В этом зазоре образуется стоячая электромагнитная волна, которая именно в месте прилегания дверцы к корпусу имеет нулевое амплитудное значение, поэтому волна наружу не распространяется. Вот таким элегантным способом решается вопрос защиты от СВЧ излучения при помощи самих СВЧ-волн. Такой способ защиты в науке называется СВЧ дроссель.

Для предотвращения включения СВЧ-печи с открытой камерой существует система микропереключателей, контролирующих положение дверцы. Обычно таких переключателей не менее трех: один выключает магнетрон, другой включает лампочку подсветки даже при неработающем магнетроне, а третий служит для того, чтобы «информировать» блок управления о положении дверцы.

Микропереключатели расположены и настроены так, что они срабатывают только при закрытой рабочей камере микроволновки.

Микропереключатели на дверце также часто называют конечными выключателями.

Блок управления — мозг прибора

Блок управленияБлок управления есть у любой микроволновой печи и он выполняет две главные функции:

  • Поддержание заданной мощности микроволновой печи.
  • Отключение печи после истечения заданного времени работы.

На старых моделях электропечей блок управления представляли два электромеханических переключателя, один из которых как раз задавал мощность, а другой промежуток времени. С развитием цифровых технологий стали применяться электронные блоки управления, а сейчас уже и микропроцессорные, которые кроме выполнения двух главных функций могут еще и включать множество нужных и ненужных сервисных.

  • Встроенные часы, которые, безусловно, могут быть полезны.
  • Индикация уровня мощности.
  • Изменение уровня мощности при помощи клавиатуры (кнопочной или сенсорной).
  • Приготовление блюд или размораживание продуктов при помощи специальных программ, «зашитых» в память блока управления. При этом учитывается вес, а нужную мощность печь подберет сама.
  • Сигнализация окончания программы выбранным звуковым сопровождением.

Кроме этого, у современных моделей есть верхние и нижние грили, функция конвекции, которыми также «руководит» блок управления.

В блоке управления есть свой источник питания, обеспечивающий работу блока и в дежурном, и в рабочем режиме. Важным компонентом является релейный блок, который коммутирует по командам силовые цепи магнетрона и гриля, а также цепи вентилятора, встроенной лампы и конвектора. Блок управления связан шлейфами с клавиатурой и панелью индикации.

Занимательное видео с рассказом о принципе работы СВЧ-печей

Посмотрите как просто объясняется то, благодаря чему работает этот удивительный прибор.

Устройство микроволновки.

Устройство и конструкция СВЧ-печи

Главная деталь в любой СВЧ печи – это магнетрон. Магнетрон – это такая специальная вакуумная лампа, которая создаёт СВЧ-излучение. СВЧ-излучение весьма интересным образом воздействует на обычную воду, которая содержится в любой пище.

При облучении электромагнитными волнами частотой 2,45 ГГц молекулы воды начинают колебаться. В результате этих колебаний возникает трение. Да, обычное трение между молекулами. За счёт трения выделяться тепло. Оно то и разогревает пищу изнутри.  Вот так вкратце можно объяснить принцип действия микроволновки.

Конструкция микроволновки.

Конструктивно микроволновая печь состоит из металлической камеры, в которой приготавливается пища. Камера снабжена дверцей, которая не позволяет излучению выйти наружу. Для равномерного разогрева пищи внутри камеры установлен вращающийся столик, который приводится в движение мото-редуктором (мотором), который сокращённо называется T.T.Motor (Turntable motor).

Конструкция микроволновой печи

СВЧ-излучение генерируется магнетроном и через прямоугольный волновод подаётся в камеру. Для охлаждения магнетрона во время работы служит вентилятор F.M (Fan motor), который прогоняет холодный воздух через магнетрон. Далее нагретый воздух от магнетрона через воздуховод направляется в камеру и также используется для нагрева пищи. Через специальные неизлучающие отверстия часть нагретого воздуха и водяной пар выводится наружу.

В некоторых моделях СВЧ-печей для формирования равномерного нагрева пищи используется диссектор, который устанавливается в верхней части камеры микроволновки. Внешне диссектор напоминает вентилятор, но он предназначен для создания определённого типа СВЧ-волны в камере так, чтобы осуществлялся равномерный прогрев пищи.

Электрическая схема микроволновки.

Давайте взглянем на упрощённую электрическую схему рядовой микроволновки (кликните для увеличения).

Схема СВЧ-печи

Как видим, схема состоит из управляющей части и исполнительной. Управляющая часть, как правило, состоит из микроконтроллера, дисплея, кнопочной или сенсорной панели, электромагнитных реле, зуммера. Это «мозги» микроволновки. На схеме всё это изображено отдельной платой с надписью Power and Control Curcuit Board. Для питания управляющей части микроволновки используется небольшой понижающий трансформатор. На схеме он отмечен как L.V.Transformer (показана только первичная обмотка).

Микроконтроллер через буферные элементы (транзисторы) управляет электромагнитными реле: RELAY1, RELAY2, RELAY3. Они включают/выключают исполнительные элементы СВЧ-печи в соответствии с заданным алгоритмом работы.

Исполнительные элементы и цепи — это магнетрон (Magnetron), мото-редуктор столика T.T.Motor (Turntable motor), охлаждающий вентилятор F.M (Fan Motor), ТЭН гриля (Grill Heater), лампа подсветки O.L (Oven Lamp).

Особо отметим исполнительную цепь, которая является генератором СВЧ-излучения.

Начинается эта цепь с высоковольтного трансформатора (H.V.Transformer). Он самый здоровый в микроволновке. Собственно, это и не удивительно, ведь через него нужно прокачать мощность в 1500 — 2000 Вт (1,5 — 2 kW), необходимых для магнетрона. Выходная же (полезная) мощность магнетрона 500 — 850 Вт.

Внешний вид магнетрона и элементы его конструкции

К первичной обмотке трансформатора подводится переменное напряжение сети 220V. С одной из вторичных обмоток снимается переменное напряжение накала 3,15V. Оно подводится к накальной обмотке магнетрона. Накальная обмотка необходима для генерации (эмиссии) электронов. Стоит отметить, что ток, потребляемый этой обмоткой, может достигать 10A.

Другая вторичная обмотка высоковольтного трансформатора, а также схема удвоения напряжения на высоковольтном конденсаторе (H.V.Capacitor) и диоде (H.V. Diode) создаёт постоянное напряжение в 4kV для питания анода магнетрона. Ток анода небольшой и составляет где-то 300 мА (0,3A).

В результате электроны, эмитированные накальной обмоткой, начинают своё движение в вакууме.

Особая траектория движения электронов внутри магнетрона создаёт СВЧ-излучение, которое и нужно нам для нагрева пищи. СВЧ-излучение отводится из магнетрона с помощью антенны и поступает в камеру через отрезок прямоугольного волновода.

Вот такая несложная, но весьма изощрённая схема является неким СВЧ-нагревателем. Не стоит забывать, что сама камера СВЧ-печи является элементом данного СВЧ-нагревателя, так как представляет, по сути, резонатор, в котором возникает электромагнитное излучение.

Кроме этих элементов в схеме микроволновой печи есть множество защитных элементов (см. термовыключатели KSD и аналоги.). Так, например, термовыключатель контролирует температуру магнетрона. Его штатная температура при работе где-то 800 – 1000C. Этот термовыключатель крепится на магнетроне. По умолчанию он не показан на упрощённой схеме.

Другие защитные термовыключатели подписаны на схеме, как OVEN THERMAL CUT-OUT (устанавливается на воздуховоде), GRILL THERMAL CUT-OUT (контролирует температуру гриля).

Элементы микроволновой печи

При наличии нештатной ситуации и перегреве магнетрона термовыключатель размыкает цепь, и магнетрон перестаёт работать. При этом термовыключатель выбирается с небольшим запасом — на температуру отключения 120 – 1450С.

Расположение термовыключателей на элементах СВЧ-печи

Весьма важными элементами микроволновой печи являются три переключателя, которые встроены в правый торец камеры СВЧ-печи. При закрытии передней дверцы два переключателя замыкают свои контакты (PRIMARY SWITCH – главный выключатель, SECONDARY SWITCH– вторичный выключатель). Третий – MONITOR SWITCH (контрольный выключатель) – размыкает свои контакты при закрытии дверцы.

Пример расположения переключателей

Неисправность хотя бы одного из этих выключателей приводит к неработоспособности микроволновки и срабатыванию плавкого предохранителя (Fuse).

Чтобы снизить помехи, которые поступают в электросеть при работающей СВЧ-печи, имеется сетевой фильтр — NOISE FILTER.

Сетевой фильтр в корпусе микроволновки

Дополнительные элементы микроволновки.

Кроме базовых элементов конструкции, микроволновка может быть оснащена грилем и конвектором. Гриль может быть выполнен в виде нагревательного элемента (ТЭН’а) или инфракрасных кварцевых ламп. Эти элементы микроволновки очень надёжны и редко выходят из строя.

Нагревательные элементы гриля: металло-керамический (слева) и инфракрасный (справа).

Металло-керамический и кварцевый нагреватели

Инфракрасный нагреватель представляет собой 2 последовательно включенные инфракрасные кварцевые лампы на 115V (500 — 600W).

В отличие от микроволнового нагрева, который происходит изнутри, гриль создаёт тепловое излучение, которое разогревает пищу снаружи внутрь. Гриль разогревает пищу медленнее, но без него невозможно приготовить поджаристую курочку Металло-керамический и кварцевый нагреватели.

Конвектор — это, не что иное, как вентилятор внутри камеры, который работает в паре с нагревателем (ТЭН’ом). Вращение вентилятора обеспечивает циркуляцию горячего воздуха в камере, что способствует равномерному прогреву пищи.

Про фьюз-диод, высоковольтный конденсатор и диод.

Элементы в цепи питания магнетрона обладают интересными свойствами, которые нужно учитывать при ремонте микроволновки.

  • Так, по умолчанию, высоковольтный конденсатор (H.V.Capacitor) имеет встроенный резистор.

    Параллельное включение резистора на 10МОм и конденсатора

    Он служит для разряда конденсатора. Дело в том, что конденсатор находится под высоким напряжением (2 кВ), и поэтому после выключения СВЧ-печи требуется его разряд. Это предохранительная мера. Также бывает, что резистор внутри конденсатора перегорает, и конденсатор не разряжается. Поэтому перед проведением ремонта микроволновки рекомендуется принудительно разряжать конденсатор на корпус.

    Высоковольтный конденсатор для СВЧ

    Внешний вид высоковольтного конденсатора 1.0µF * 2100V AC.

  • Высоковольтный диод (H.V. Diode) является комбинированным элементом и состоит из целой вереницы последовательно включенных диодов. Это позволяет составному диоду работать с высоким напряжением. Но в этом кроется подвох. Дело в том, что протестировать такой диод стандартной методикой проверки не удастся. Мультиметр просто не сможет «открыть» такой диод из-за того, что пороговое (прямое) напряжение отпирания (VF) диодов складываются. В результате в прямом и обратном включении высоковольтный диод будет иметь высокое сопротивление.

    Так, например, для диода HVR-1X3 максимальное прямое напряжение (VF) составляет 11V. Если учесть, что обычно падение напряжения на переходе в прямом включении (VF) у кремниевых диодов составляет 1 — 1.1V, то получается, что в диоде HVR-1X3 ориентировочно смонтировано 10 последовательно включенных диодов.

    Высоковольтный диод

    Максимальное постоянное обратное напряжение такого диода — 12kV!

  • В некоторых микроволновых печах параллельно высоковольтному конденсатору устанавливается фьюз-диод (защитный диод). По сути, фьюз-диод — это двунаправленный высоковольтный супрессор. Он служит для того, чтобы защитить конденсатор от завышенного рабочего напряжения, которое чревато выходом из строя последнего. Но на практике чаще бывает так, что он сам и выходит из строя. В таком случае ремонтники просто удаляют его из цепи, как ненужный аппендикс. На деле оказалось, что микроволновки прекрасно работают и без такого диода.

Для тех, кто желает более детально разобраться в устройстве СВЧ-печей, подготовлен архив с сервисными инструкциями микроволновых печей (Daewoo, SANYO, Samsung, LG). В инструкции приведены принципиальные схемы, схемы разборки, рекомендации по проверке элементов, список комплектующих.

Также рекомендуем ознакомиться с книгой «Ремонт микроволновых печей».

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

Что такое магнетрон, принцип его работы

Микроволновую печь в наше время можно встретить практически на каждой кухне. Однако не многие знают, как она работает, и что такое магнетрон. Чтобы понять, что представляют собой микроволны и как они образуются, необходимо разобраться с устройством этого прибора.

Как выглядит магнетронКак выглядит магнетрон

Назначение и принцип работы магнетрона

Магнетроном называют электронное устройство большой мощности, которое с помощью изменения потока электронов генерирует высокочастотные микроволны. Молекулы воды, которые обязательно присутствуют в продуктах, имеют хорошую электропроводность. Под действием сверхвысокочастотных магнитных колебаний, создаваемых магнетроном, они начинают двигаться с высокой скоростью, нагревая при этом пищу.

В бытовых приборах используется многорезонаторная разновидность магнетрона, в которой на электроны одновременно воздействуют три поля:

  1. сверхвысокочастотное;
  2. электрическое;
  3. магнитное.

Видео: что такое магнетрон

Магнетрон генерирует СВЧ колебания, обеспечивая высокую мощность на выходе, не смотря на небольшой вес и компактные габариты. В непрерывном режиме мощность устройства может достигать десятков киловатт. Максимальная мощность при импульсном режиме работы составляет – 5МВт. Мощность магнетронов, установленных в большинстве микроволновых печей, составляет 650-850 Вт.

Питание маломощных магнетронов осуществляется переменным током. Для более мощных устройств необходим выпрямленный оперативный ток. Магнетроны работают на различных частотах в диапазоне 0,5 – 100 ГГц.

Упрощенная схема работы магнетронаУпрощенная схема работы магнетрона

Из чего состоит магнетрон

Все приборы, генерирующие СВЧ волны, независимо от их выходных характеристик, имеют идентичную конструкцию. Схема магнетрона состоит из следующих частей:

  • анодного блока, представляющего собой толстостенный цилиндр из металла, в стенках которого имеются отверстия (резонаторы), необходимые для образования кольцевой колебательной системы;
  • цилиндрического катода, во внутренней полости которого встроен подогреватель;
  • электромагнита или внешнего магнита, создающего магнитное поле;
  • проволочной петли, которая крепится к резонатору и служит для вывода энергии.

Резонаторы устройства выполняют замедляющую функцию. В них происходит столкновение электромагнитных волн с пучком электронов. В результате этого взаимодействия высокочастотное поле получает от электронов часть их энергии, вывод которой осуществляется посредством петли связи, закрепленной на анодном блоке.

Устройство будет работать бесперебойно только при условии, что разница между рабочей и резонансной частотами составит как минимум 10%. При небольшой разнице частот применяется разнорезонаторная колебательная система, в которой четные и нечетные резонаторы различаются по размеру.

Сферы применения магнетронов

Помимо обычных микроволновых печей магнетроны применяются в различных областях промышленности, а также при производстве радиолокационных систем. В зависимости от сферы применения магнетроны имеют определенные особенности:

  • Для работы в радарных установках устройство прикрепляется к антенне конической формы с параболическим отражателем. Управление осуществляется с помощью коротких импульсов высокой интенсивности. Излучаемая микроволновая энергия улавливается чувствительным приемником. Отображение обработанного сигнала происходит на электронно-лучевой трубке.
  • Для функционирования радиолокационных станций применяются коаксиальные магнетроны, характеризующиеся быстрым изменением частот. Их целесообразно использовать для расширения тактико-технических качеств локаторов.
  • В магнетронах, установленных в бытовых микроволновых печах, имеется прозрачное отверстие, которое выходит в рабочую камеру прибора. Использование пустой печи может способствовать поломке прибора, так как микроволны будут не отражаться, а поглощаться волноводом.

В промышленности магнетроны применяются для обеззараживания, сушки зерновых культур. СВЧ-технологии используются при пастеризации и стерилизации молока и других жидких продуктов. Они эффективны для поддержания технологического режима при сушке лекарственных трав или древесины. В химической промышленности магнетроны применяются при получении различных кислот и разложении нитратов.

Видео: как работает магнетрон

Основные преимущества магнетронов

Поскольку рабочие частоты микроволновых излучателей на несколько порядков ниже инфракрасных или световых источников, глубина проникновения излучаемых ими волн существенно выше. При высоких значениях частот объект, подвергающийся обработке, нагревается только снаружи, а остальной объем прогревается за счет процесса теплопроводности, что ведет к ухудшению качественных характеристик.

Использование микроволн предпочтительнее теплового излучения, когда требуется быстрый разогрев, варка или сушка продуктов. Использование магнетрона не влияет на их вкусовые характеристики и внешний вид, а содержание витаминов и других полезных веществ практически не изменяется.

Применение микроволновых печей помогает снизить затраты на электроэнергию. Это объясняется следующими преимуществами СВЧ-технологий:

  • точная регулировка температуры;
  • высокая плотность энергии и мощности;
  • хорошая фокусировка;
  • мгновенное отключение и включение.

МагнетронМагнетрон

Возможные неисправности магнетрона и его замена

Поскольку магнетрон является основной деталью СВЧ-печи, необходимо знать основные причины его выхода из строя. Существует несколько видов поломок излучателя, после которых он не подлежит восстановлению:

  • короткое замыкание;
  • повреждение нити накаливания;
  • нарушение герметичности;
  • отсутствие генерации колебаний.

В некоторых случаях магнетрон можно вернуть в рабочее состояние. Например, можно устранить пробой конденсаторов на участке между корпусом и магнитным излучателем. Такое может произойти во время перепадов напряжения в сети. Для диагностики прибора необходимо отключить прибор от сети и провести проверку с помощью специального тестера.

Если СВЧ-печь долгое время работала без продуктов, ее мощность может значительно снизиться. Для ее восстановления можно добавить напряжение на накал. Однако конструкция некоторых микроволновых печей не позволяет этого сделать.

При возникновении СВЧ-разряда между корпусом микроволновой печи и излучателем, необходима срочная замена колпачка. Новая деталь должна быть абсолютно идентична сгоревшей.

Если восстановить вышедший из строя магнетрон не удалось, то его можно заменить. Перед покупкой нового излучателя необходимо внимательно изучить маркировку и технические характеристики устройства.

Видео: устройство и принцип работы микроволновой печи

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 8 чел.
Средний рейтинг: 4.9 из 5.

Как проверить магнетрон в микроволновке мультиметром

Микроволновые печи активно используются в каждом доме для приготовления и разогрева пищи. Однако владельцы совершенно не понимают, как именно устроена данная техника. Поэтому при выходе из строя устройства возникают сложности с ремонтом. Магнетрон для микроволновки – источник СВЧ-волн, который, собственно, и обеспечивают нагрев продуктов питания. Поломка этой комплектующей – один из самых распространённых типов неисправностей СВЧ-печей. Сейчас подробно рассмотрим, из чего состоит магнетрон микроволновки, как он работает и способы восстановления этой детали.

Принцип действия и конструкция магнетрона

Слово «magnetis» дословно переводится с греческого, как «магнит». Устройство магнетрона микроволновой печи выглядит следующим образом:

  • медная деталь в форме цилиндра – это анод-резонатор;
  • элемент, внутри которого расположена нить накала – катод;
  • кольцевидные комплектующие, находящиеся на торцах магнетрона для микроволновой печи, являются магнитами.

magnetron-dlya-mikrovolnovki_2magnetron-dlya-mikrovolnovki_2

Ключевой принцип работы магнетрона в микроволновке – это торможение электронных потоков, которые пересекаются под углом 90 градусов. Происходит данный процесс в магнитном и электрическом полях. Кольцевые магниты образуют поле. В качестве проводника выступает специальный кожух, оборудованный фланцем. Именно с помощью этого элемента деталь крепится к волноводу.

СВЧ-волны появляются в результате взаимодействия электронного потока, образованного эмитированным катодом, и магнитного поля. Проволочная петля идентифицирует эти волны, а потом передаёт их наружу с помощью специальной антенны. Данный излучатель расположен внутри цилиндра, сделанного из керамики. Теперь вы знаете, что такое магнетрон, и как работает эта комплектующая.

magnetron-dlya-mikrovolnovki_1magnetron-dlya-mikrovolnovki_1

Как было сказано ранее, в качестве излучателя волны выступает антенна – это небольшая труба, которую принято называть штенгелем. Антенна также обеспечивает выкачку воздуха из лампы. На данном элементе надёжно зафиксирован колпак, сделанный из металла. В процессе работы магнетрон в микроволновке необычайно сильно нагревается. Вероятность перегрева исключается благодаря особой конструкции.

Рассматриваемая комплектующая дополнена пластинчатым радиатором. Этот элемент постоянно обдувается вентилятором, что заметно снижает температуру. Дополнительный уровень защиты от перегрева обеспечивают температурные предохранители. Неотъемлемым компонентом также выступает высокочастотный фильтр, который препятствует проникновению излучения. Данная деталь создаётся при помощи специальных конденсаторов и выходов.

Теперь вы знаете, как работает магнетрон в микроволновке. Очевидно, что это электронный прибор с необычайно сложной и многоуровневой конструкцией. Разобрать и не повредить деталь по силам только опытному мастеру. Поэтому после диагностики выхода из строя комплектующей целесообразней обратиться в сервис-центр, чтобы исключить вероятность усугубления неисправности.

Впрочем, наличие специального оборудования и поверхностных знаний в радиоэлектронике позволяет отремонтировать СВЧ-печь самостоятельно в домашних условиях. Есть только одно условие – придерживайтесь экспертных рекомендаций и действуйте чётко в соответствии с пошаговыми инструкциями.

magnetron-dlya-mikrovolnovki_magnetron-dlya-mikrovolnovki_

Причины неисправностей магнетрона

Экспертами принято выделять несколько основных причин поломки магнетрона микроволновой печи:

  1. Выход из строя колпака, закреплённого на вакуумной трубке. Эту комплектующую владельцам СВЧ-печи заменить самостоятельно по силам. Найдите аналогичный колпачок на любом другом магнетроне. Места для установки этой детали имеют стандартную конфигурацию.
  2. Оборвался подогреватель. Комплектующая может перегреться и выйти из строя. Происходит это вследствие нарушения правил эксплуатации техники. Например, категорически запрещено включать пустую СВЧ-печь. Чтобы проверить микроволновку на работоспособность, а именно её нить накаливания, измерьте уровень сопротивления между элементами конденсатора. Об исправности комплектующей будет свидетельствовать показатель – от 5 до 7 Ом.
  3. Повреждён проходной конденсатор. Для диагностики этой поломки используйте тестер. Если он показывает бесконечное значение сопротивления контактов, тогда незамедлительно поменяйте конденсатор.

magnetron-dlya-mikrovolnovki_3magnetron-dlya-mikrovolnovki_3

Именно вследствие этих причин магнетрон в микроволновке перестаёт работать. Теперь подробно рассмотрим, как именно проявляется данная неисправность.

Возможные неисправности

Перечислим основные поломки:

  1. В процессе работы появляются искры, свидетельствующие о перегорании колпачка. Заменить эту комплектующую не составит особого труда, поскольку все колпачки имеют одинаковую конфигурацию.
  2. Произошло пробитие высоковольтного диода.
  3. Напряжение на магнетрон не подаётся.
  4. Отсутствует контакт в предохранителе, который контролирует температуру и уровень нагрева.
  5. Сгорели нити накаливания.
  6. Магнетрон для микроволновой печи разгерметизировался вследствие комплексного перегрева.
  7. Не работает высоковольтный конденсатор или перегорел предохранитель.

magnetron-dlya-mikrovolnovki_6magnetron-dlya-mikrovolnovki_6

Проверьте магнетрон для микроволновой печи, чтобы выявить тип неисправности. Абсолютно все перечисленные поломки можно устранить самостоятельно в домашних условиях, кроме разгерметизации. Теперь вы знаете, как проверить высоковольтный диод в микроволновке. Напоминаем, что ремонтом стоит заниматься только тем людям, которые хотя бы поверхностно разбираются в радиоэлектронике.

Как определить поломку

Чтобы определить неисправность, обесточьте технику, вынув штекер кабеля питания из розетки. Начните с визуального осмотра внутреннего отдела СВЧ-печи. Как проверить магнетрон и понять, что является источником проблемы? Выход из строя этой комплектующей сопровождается появлением следов горения. Такой тип диагностики позволит узнать, возможно, сгорел предохранитель.

Перед тем как проверить магнетрон в микроволновке мультиметром, обязательно делайте визуальный осмотр. Ведь это также действенный тип диагностики.

Впрочем, скрытые аппаратные неисправности выявить без специального оборудования невозможно. Запомните, что сначала необходимо отсоединить комплектующую, а уже потом проводить тест на её работоспособность. Обязательно придерживайтесь простой пошаговой инструкции:

  1. Подсоедините щупы мультиметра к клеммам детали. Бесконечное значение на экране тестера свидетельствует о поломке комплектующей.
  2. Проверьте целостность печатной платы, ведь в неё интегрировано множество важных элементов: диоды, варистор и резисторы. Все детали выпаивать не придётся, просто протестируйте плату.
  3. Прозвоните предохранитель при комнатной температуре. В таких условиях он должен дать соответствующий сигнал.
  4. Проверьте высоковольтный конденсатор на предмет возможного пробоя. В рабочем состоянии он выдаёт мультиметру бесконечное значение. Если деталь сломана, тогда на экране появится практически нулевое сопротивление.
  5. Тест высоковольтного диода. Главной преградой диагностике выступает последовательное соединение. Осмотр невозможен, а внутреннее сопротивление – слишком высокий показатель для измерения. Поэтому удостоверьтесь в отсутствии пробоя в данной части, используя мегомметр.

magnetron-dlya-mikrovolnovki_8magnetron-dlya-mikrovolnovki_8

Используйте эту инструкцию, а также следите за появлением характерных симптомов, чтобы своевременно обнаружить поломку техники.

Ремонт магнетрона

Некоторые аппаратные комплектующие не поддаются восстановлению. Если сгорел магнетрон в микроволновке, то его придётся поменять. Отремонтировать эту комплектующую невозможно. Стоимость оригинальной запчасти для СВЧ-печки необычайно высока. Иногда выгодней купить новую технику. Поэтому крайне важно провести тщательную проверку магнетрона тестером, измерив напряжение.

magnetron-dlya-mikrovolnovki_4magnetron-dlya-mikrovolnovki_4

Далее рассмотрим, как проверить магнетрон на микроволновке с помощью специальных измерительных приборов. Предоставим подробную пошаговую инструкцию. Не исключено, что повреждены лишь отдельные элементы комплектующей, что даёт возможность произвести ремонт без серьёзных капиталовложений.

С аппаратным ремонтом справится каждый, кто хотя бы немного разбирается в радиоэлектронике, а также имеет доступ к обычному тестеру и мегомметру. Если сомневаетесь в своих силах, тогда лучше обратитесь за помощью в сервис-центр, в котором работают опытные мастера.

Диагностика блока управления

Проверка СВЧ-печи будет изменяться в зависимости от конструкции устройства. Принято выделять несколько основных видов блоков управления:

  • механический;
  • электронный;
  • сенсорный.

Магнетрон для микроволновой печи проверяется мультиметром. Диагностика БУ осуществляется аналогичным образом. Используя данный инструмент, удостоверьтесь в том, что напряжение подаётся на трансформатор. Если вы включаете таймер, предварительно выбрав рабочий режим, но напряжение отсутствует, то это свидетельствует о выходе из строя блока управления.

magnetron-dlya-mikrovolnovki_16magnetron-dlya-mikrovolnovki_16

 

Проще всего отремонтировать модели, оборудованные механическим таймером и ручными регуляторами рабочих режимов. Начните с визуального осмотра, а потом измерьте тестером уровень тока на контактах переключателей. Такая диагностика позволяет определить: обгоревшие контакты, вышедшие из строя детали, окисленные шлейфы. Замените неработоспособные детали.

Микроволновку, имеющую электронный БУ, починить сложней. Проведите первичный осмотр с помощью дисплея. При появлении неисправностей на дисплее будет отображаться некорректная информация. Если экран и вовсе не загорается, тогда обязательно удостоверьтесь в том, что встроенный предохранитель цел.

Электронный блок управления хорош тем, что каждый пользователь сможет запустить процесс автоматической диагностики. Сверьте код обнаруженной ошибки со значениями, которые указаны в специальной таблице. Этого достаточно для получения необходимой информации. Подключение мультиметра не требуется.

Блок управления – радиоэлектронный модуль с довольно сложной структурой. Для восстановления работоспособности данного узла потребуются специальные измерительные приборы. Если у вас нет доступа к ним, обратитесь в Москве или любом другом городе в авторизированный сервисный центр.

Проверка системы излучения радиоволн

Некорректная работа аппаратных узлов, включая БУ, а также магнетрон для микроволновой печи, свидетельствует о необходимости проверки состояния элементов системы СВЧ-излучения. В её состав входит высоковольтный трансформатор, а также компоненты цепи сдвига напряжения. Современные печи оборудованы высоковольтными трансформаторами MOT. Их конструкция включает три уровня обмотки:

  • первичный – 220 В;
  • понижающий – 3 В;
  • повышающий – 2 кВ.

magnetron-dlya-mikrovolnovki_17magnetron-dlya-mikrovolnovki_17

Чтобы определить сгоревший элемент, нужно последовательно проверить тестером каждую обмотку. Самый низкий уровень сопротивления имеет именно понижающая обмотка, которая обеспечивает накал магнетрона для микроволновой печи. Наивысшее сопротивление – высоковольтная обмотка. Если поломка микроволновой печи обнаружена, а пользователь определил обрыв одного или нескольких слоёв обмотки, замените трансформатор.

Ни в коем случае нельзя исключать межвитковое замыкание, которое наблюдается в высоковольтной обмотке. Признаком появления этой неисправности станет низкий уровень температуры. Возможно, значительно возрастёт шум во время работы СВЧ-печи. Обычным мультиметром нельзя измерить напряжение на выходных клеммах данной обмотки. Поэтому придётся использовать профессиональные измерительные инструменты. Если опасения подтвердились, и было обнаружено замыкание, поменяйте трансформатор.

magnetron-dlya-mikrovolnovki_15magnetron-dlya-mikrovolnovki_15

Обязательно проведите проверку всех деталей, образующих систему умножителя напряжения. Магнетрон для микроволновой печи – ключевой элемент этой схемы, но далеко не единственный. В неё также включены конденсаторы и диоды. Уровень внутреннего сопротивления высоковольтного диода очень высок, а измерить его пробой мультиметром нельзя. Поэтому придётся снова воспользоваться мегомметром. Если деталь неисправна, тогда установите новый диод.

Обязательно проверьте конденсатор на пробой. Исправная комплектующая продемонстрирует сопротивление, приближённое к нулю. Оно буквально за несколько секунд увеличится в разы. Сопротивление у неисправных конденсаторов резко не изменяется, поскольку отсутствует контакт с обложкой.

magnetron-dlya-mikrovolnovki_18magnetron-dlya-mikrovolnovki_18

Вполне вероятно, что печь начала греть пищу заметно слабей из-за появления утечки между обкладками. Определить источник утечки можно также с помощью мегомметра. Неисправные радиоэлементы следует поменять.

Замена магнетрона

Если пользователь уверен, что сломан магнетрон для микроволновой печи, замените этот элемент. Преимущественно выполнением этой процедуры занимаются квалифицированные специалисты. Впрочем, всё можно сделать и своими руками. Главное, немного разбираться в радиоэлектронике, а также знать, как замеряется напряжение тока.

magnetron-dlya-mikrovolnovki_10magnetron-dlya-mikrovolnovki_10

Процедура замены в микроволновой печи предполагает, что предварительно пользователь купит новую комплектующую. Чтобы выбор оказался удачным, необходимо придерживаться нескольких простых рекомендаций:

  1. Уровень мощности магнетрона для микроволновой печи полностью соответствует аналогичному показателю сломанного устройства. Вся необходимая информация прописана в техническом паспорте.
  2. Новая деталь имеет идентичные отверстия для крепления, а все контакты подходят.
  3. Габариты сломанной комплектующей полностью соответствуют размерам новой запчасти.

Установить новый магнетрон для микроволновой печи не составит особого труда. Однако пользователь должен добиться максимально плотного прилегания комплектующей к волноводу. Не забудьте проверить конденсатор.

Как проверить магнетрон СВЧ-печи на исправность

Чтобы правильно определить неисправность микроволновки, нужно разобрать устройство и провести тщательную диагностику. Некоторые аппаратные узлы стоят необычайно дорого, поэтому во избежание лишних финансовых растрат, внимательно отнеситесь к первичному осмотру. Как подключить магнетрон к микроволновке, разберётся каждый, куда больше сложностей вызывает ремонт данной детали, поскольку он невозможен. Единственный выход – замена комплектующей.

magnetron-dlya-mikrovolnovki_12magnetron-dlya-mikrovolnovki_12

Диагностика проводится следующим образом:

  1. Обесточьте СВЧ-печь, вынув штекер сетевого кабеля из розетки.
  2. Демонтируйте защитный кожух устройства.
  3. Найдите сломанную деталь, а потом снимите клеммы с выводов комплектующей.
  4. Используйте мультиметр, чтобы замерить напряжение магнетрона, а именно его контактов. Оно должно быть несущественным. Если показатель слишком велик, то это свидетельствует о перегорании нити накала.
  5. Измерьте напряжение между выводом и корпусом устройства.

На этом проверка завершена. Теперь вы знаете, как нужно действовать.

В микроволновой печи скрывается мощное и опасное СВЧ оружие / Habr

Добрый день, уважаемые хабровчане.

Этот пост будет про недокументированные функции микроволновой печи. Я покажу, сколько полезных вещей можно сделать, если использовать слегка доработанную микроволновку нестандартным образом.

В микроволновке находится генератор СВЧ волн огромной мощности

Мощность волн, которые используются в микроволновке, уже давно будоражит моё сознание. Её магнетрон (генератор СВЧ) выдаёт электромагнитные волны мощностью около 800 Вт и частотой 2450 МГц. Только представьте, одна микроволновка вырабатывает столько излучения, как 10 000 wi-fi роутеров, 5 000 мобильных телефонов или 30 базовых вышек мобильной связи! Для того, что бы эта мощь не вырвалась наружу в микроволновке используется двойной защитный экран из стали.

Вскрываю корпус

Сразу хочу предупредить, электромагнитное излучение СВЧ диапазона может нанести вред вашему здоровью, а высокое напряжение вызвать летальный исход. Но меня это не остановит.
Сняв крышку с микроволновки, можно увидеть большой трансформатор: МОТ. Он повышает напряжение сети с 220 вольт до 2000 вольт, что бы питать магнетрон.

В этом видеоролике я хочу показать, на что способно такое напряжение:

Антенна для магнетрона

Сняв магнетрон с микроволновки я понял, что включать просто так его нельзя. Излучение распространится от него во все стороны, поражая всё вокруг. Не долго думая я решил смастерить направленную антенну из кофейной банки. Вот схема:

Теперь всё излучение направленно в нужную сторону. На всякий случай я решил проверить эффективность этой антенны. Взял много маленьких неоновых лампочек и выложил их на плоскости. Когда я поднёс антенну с включенным магнетроном, то увидел, что лампочки загораются как раз там где нужно:

Необычные опыты

Сразу хочу отметить, СВЧ значительно сильнее влияет на технику, чем на людей и животных. Даже в 10 метрах от магнетрона, техника давала сильные сбои: телевизор и муз-центр издавали страшный рычащий звук, мобильный телефон вначале терял сеть, а потом и вовсе завис. Особо сильное влияние магнетрон оказывал на wi-fi. Когда я поднёс магнетрон близко к музыкальному центру, с него посыпались искры и к моему удивлению он взорвался! При детальном осмотре обнаружил, что в нём взорвался сетевой конденсатор. В этом видео я показываю процесс сборки антенны и влияние магнетрона на технику:

Используя не ионизирующее излучение магнетрона можно получить плазму. В лампе накаливания, поднесённой к магнетрону, зажигается ярко светящийся желтый шар, иногда с фиолетовым оттенком, как шаровая молния. Если вовремя не выключить магнетрон, то лампочка взорвётся. Даже обычная скрепка, под воздействием СВЧ превращается в антенну. На ней наводится ЭДС достаточной силы, что бы зажечь дугу и расплавить эту скрепку. Лампы дневного света и «экономки» зажигаются на достаточно большом расстоянии и светятся прямо в руках без проводов! А в неоновой лампе электромагнитные волны становятся видимыми:

Хочу вас успокоить, мои читатели, ни кто из моих соседей не пострадал от моих опытов. Все ближайшие соседи сбежали из города, как только в Луганске начались боевые действия.

Техника безопасности

Я настоятельно не рекомендую повторять описанные мною опыты потому, что при работе с СВЧ требуется соблюдать особые меры предосторожности. Все опыты выполнены исключительно с научной и ознакомительной целью. Вред СВЧ излучения для человека ещё не до конца изучен. Когда я близко подходил к рабочему магнетрону я чувствовал тепло, как от духовки. Только изнутри и как бы точечно, волнами. Больше ни какого вреда я не ощутил. Но всё же настоятельно не рекомендую направлять рабочий магнетрон на людей. Из-за термического воздействия может свернуться белок в глазах и образоваться тромб в крови. Так же ведутся споры о том, что такое излучение может вызвать онкологические и хронические заболевания.

Необычные применения магнетрона

1 — Выжигатель вредителей. СВЧ волны эффективно убивают вредителей, и в деревянных постройках, и на лужайке для загара. У жучков под твёрдым панцирем есть влагосодержащее нутро (какая мерзость!). Волны его в миг превращают в пар, при этом не причиняя вреда дереву. Я пробовал убивать вредителей на живом дереве (тлю, плодожорок), тоже эффективно, но важно не передержать потому, что дерево тоже нагревается, но не так сильно.
2 — Плавка металла. Мощности магнетрона вполне хватает для плавки цветных металлов. Только нужно использовать хорошую термоизоляцию.
3 — Сушка. Можно сушить крупы, зерно и т. п. Преимущество этого метода в стерилизации, убиваются вредители и бактерии.
4 — Зачистка от прослушки. Если обработать магнетроном комнату, то можно убить в ней всю нежелательную электронику: скрытые видеокамеры, электронные жучки, радиомикрофоны, GPS слежение, скрытые чипы и тому подобное.
5 — Глушилка. С помощью магнетрона легко можно успокоить даже самого шумного соседа! СВЧ пробивает до двух стен и «успокаивает» любую звуковую технику.

Это далеко не все возможные применения испытанные мной. Эксперименты продолжаются и вскоре я напишу ещё более необычный пост. Всё же хочу отметить, что использовать так микроволновку опасно! Поэтому лучше так делать в случаях крайней необходимости и при соблюдении правил безопасности при работе с СВЧ.

На этом у меня всё, соблюдайте осторожность при работе с высоким напряжением и микроволнами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *