Принцип работы индукционного нагревателя – описание простейшей схемы самодельного устройства. Как сделать индукционный нагреватель воды своими руками Простой индукционный нагреватель 12 в

Нагревательный индуктор — Википедия

Нагревательный индуктор — рабочий орган установок индукционного нагрева.

Индуктор нагревательный представляет собой один или несколько витков проводника, в котором с помощью мощного генератора переменного тока создаются электрические колебания высокой частоты (от нескольких кГц до 5 МГц). Внутрь витков помещают заготовку из электропроводящего материала.

При включении генератора вокруг индуктора возникает интенсивное электромагнитное излучение, которое поглощается заготовкой и разогревает её.

Система индуктор-заготовка представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху (либо по вакууму, по защитному газу, по жидкости и т. д.)

Трубчатые заготовки могут надеваться на спираль индуктора снаружи, плоские — размещаться у торца.

Также индуктор может выполняться в виде «змейки» для нагрева плоских поверхностей, трехлистного клевера для нагрева уголков, восьмерки для нагрева зубьев зубчатых колес, иметь другую причудливую форму.

Индукторы делятся на два класса:

  • низкочастотные (большое число витков и большой диаметр) — предназначены для разогрева как правило крупных заготовок либо плавления металла в индукционных печах. Имеют большую индуктивность, на них не подают напряжение с частотой выше нескольких десятков кГц.
  • высокочастотные (один виток небольшого диаметра) — в основном предназначены для разогрева мелких деталей. Имеют небольшую индуктивность, запитываются напряжением от сотен кГц до 5 МГц.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскаленной заготовки. По этой причине индукторы мощных установок изготавливаются из медных трубок, охлаждаемых проточной водой. Иногда в таких трубках со стороны подводимой заготовки сверлят небольшие отверстия — вода разбрызгивается на заготовку и одновременно с нагревом происходит поверхностная закалка.

Индукторы маломощных установок или установок, работающих в кратковременном режиме (секунды) не успевают сильно нагреваться. Их достаточно изготовить из достаточно массивного медного провода (возможно обычного изолированного).

Так как в индукторе наводится высокое напряжение, которое в мощных установках может достигать сотен вольт, индуктор представляет опасность для персонала. Опасны ТВЧ-ожоги — высокочастотный ток течет только по поверхности кожи (скин-эффект), которая представляет собой практически электролит. Внутренние органы не повреждаются, но кожа может получить сильный ожог. Также не до конца изучено воздействие на человеческий организм мощного электромагнитного излучения.

Индуктор может прогореть от жара раскаленной заготовки, повредиться от удара заготовки об индуктор, недопустимо изменить свою индуктивность от закорачивания витков расплавленным металлом в случае многовитковой конструкции. В связи с вышесказанным индукторы защищают заливкой огнеупорным цементом, обмоткой кварцевой или фторопластовой лентой, вставкой в индуктор тиглей и трубок из керамики или кварцевого стекла. Охлаждающая вода подаётся отсасыванием — этим обеспечивается безопасность в случае разгерметизации индуктора. Для охлаждения индуктор подсоединяется либо к местному охлаждающему агрегату — чиллеру, либо к водопроводной сети пхв-трубками настолько длинными, чтобы сопротивление «столба» воды в трубке было высоким и обеспечило «изоляцию» водопроводной сети от высокого напряжения индуктора.

Основой для проектирования индукторов является поверхностный эффект. Он заключается в следующем. Вторичный ток в заготовке имеет то же направление, что и ток в индукторе, который расположен рядом. При этом наведенный ток как бы «притягивается» к индуктору. Это связано с тем, что близко расположенные токи, текущие в одну сторону, притягиваются.

Если индуктор погружен в жидкий металл и на него подается большая мощность (десятки кВт), металл под действием МГД сил отжимается от индуктора и небольшие его количества могут даже зависнуть над индуктором в воздухе. Применяя индукторы специальной формы, можно провести сверхчистую плавку небольшого количества металла, левитирующего в вакууме или защитном газе.

Для увеличения кпд индуктора, необходимо как можно ближе расположить его рядом с заготовкой. На практике это от 2 мм до нескольких сантиметров.

Питание к индуктору подводится как правило с помощью высокочастотного трансформатора без сердечника (с воздушным сердечником), первичной обмоткой которого служит катушка колебательного контура, а вторичной — один широкий виток из медного листа (электромагнитный концентратор или концентратор вихревых токов). Индуктор должен быть согласован со вторичной обмоткой высокочастотного трансформатора, т.е иметь примерно такую же индуктивность. Чтобы уменьшить индуктивность многовитковых индукторов, их изготавливают из нескольких параллельных витков.


Для уменьшения рассеяния магнитного потока, индуктор снаружи обклеивают высокочастотными магнитопроводами (магнитодиэлектриками) — панельками из материала Fluxtrol или Ferrotron, который представляет собой мелкодисперсный порошок из магнитного материала, связанный эпоксидной смолой. Такие панельки способны концентрировать электромагнитное излучение на частотах до 3 МГц и выдерживать температуру до 250 С.

  • Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. -М.: Госэнергоиздат, 1948. С. 332.
  • Лозинский М. Г. Промышленное применение индукционного нагрева. -М.: Издательство АН СССР, 1948. С. 471.
  • Слухоцкий А. Е. Индукторы. -Л.: Машиностроение, 1989. С. 69.
  • Фогель А. А. Индукционный метод удержания жидких металлов во взвешенном состоянии. -Л.: Машиностроение, 1979. С. 104.

Индукционные нагреватели — варианты конструкций

За последние 10-15 лет индукционные нагреватели на токах промышленной частоты приобрели широкое распространение. Впрочем, заявляемые производителями высокие потребительские качества индукционных нагревателей, такие как надежность, неприхотливость, экономичность находят подтверждение в условиях реальной эксплуатации. Но при этом почти каждый производитель демонстрирует очередной патент и заявляет, что его индукционный нагреватель – «самый индукционный». Давайте попробуем разобраться, что объединяет, а что различает индукционные нагреватели разных производителей.

ИНДУКЦИОННЫЕ НАГРЕВАТЕЛИ: ЧТО ОБЩЕГО?

Как бы это банально ни звучало, но общее в индукционных нагревателях – это индукционный способ нагрева. Мы уже рассматривали подробно принцип работы индукционных нагревателей и их отличие от других типов электронагревателей.

Любой индукционный нагреватель будет состоять из первичной обмотки (катушки индуктивности) и вторичной обмотки – теплообменного устройства. Теплообменное устройство представляет собой короткозамкнутый виток, который разогревается под воздействием переменного магнитного поля, индуцируемого катушками индуктивности (отсюда, собственно, само название – «индукционный нагреватель»). В общем виде, принцип можно проиллюстрировать так:

Принципиальная схема нагрева индукционным нагревателем

Причем, что интересно, запатентовать этот принцип невозможно – он основан на элементарных физических законах и доступен каждому. Так, например, энергетикам известно такое свойство трансформатора как его разогрев в процессе работы. Только в случае с трансформатором выделение тепла – это головная боль для энергетиков, в конструкции же индукционного нагревателя это свойство возведено в абсолют, и сегодня производители заявляют о достижении ими КПД 98, а то и все 99%. Производители вообще любят показатель КПД, потому что этот показатель – относительный, а следовательно можно заявлять что угодно, и при этом не бояться ответственности: при определенных условиях можно заявить, что КПД вообще 100% — на то он и относительный коэффициент.

Индукционные нагреватели: единство и борьба противоположностей

Так в чем же тогда эти запатентованные различия? Оказывается, главным образом, в конструкции теплообменника. Конечно, есть различия и в конструкции магнитопроводов и в конструкции катушек – они могут быть вытянутыми, сплющенными, могут отличаться материалом провода и количеством витков, однако суть от этого не поменяется. Задача первичной обмотки – генерировать переменное магнитное поле, и в любом нагревателе она с этим справляется. Так что в способе нагрева различий у индукционных нагревателей разных производителей практически нет. Зато существенные различия заключаются в конструкциях теплообменников. Что интересно, общепринятой классификации в настоящее время не существует, поэтому возьмем на себя смелость предложить свою собственную, итак:

  1. Индукционный нагреватель кожухового типа
  2. Индукционный нагреватель с трубчатым теплообменником
  3. Индукционный нагреватель с объемным теплообменником (электронагреватель индуктивно-кондуктивного типа – именно так называет его сам производитель)

Индукционный нагреватель  кожухового типа

Начнем с первого – «индукционного нагревателя кожухового типа». Производители таких нагревателей называют их иначе, но в данной статье нам интересны не названия, а принцип нагрева.

ВИН Индукционный нагреватель кожухового типа

Мы назвали этот тип индукционных нагревателей «кожуховым» потому что внешне этот тип отличается от остальных тем, что производители помещают конструкцию нагревателя (т.е. индуктор и теплообменник) внутрь кожуха цилиндрической формы. Внешне он даже чем-то напоминает электродный котел, однако отличается от последнего способом нагрева теплоносителя.

Внутри кожуха размещен вытянутый индуктор, внутри и снаружи которого располагается теплообменник, нагревающийся под воздействием электромагнитного поля. Проходя через теплообменник, вода нагревается и подается в систему отопления.

Преимущества конструкции:

  1. Более компактен, имеет меньшие габариты и массу чем остальные типы индукционных нагревателей. Есть мнение, что эстетически он также выглядит лучше, но это спорно, во-первых, и не является определяющим для промышленного нагревателя – во-вторых.
  2. Менее материалоемок (теплообменное устройство состоит из «черного» металла марки Ст3сп) по сравнению с другими представителями класса, а потому у него ниже себестоимость и, соответственно, цена приобретения.
  3. Может размещаться на стене (другие индукционные нагреватели – только напольного исполнения)

Недостатки конструкции:

  1. Изготовление теплообменника из обычного металла удешевляет конструкцию, но делает ее элементы более подверженными коррозии, особенно в периоды профилактических работ и слива теплоносителя.
  2. Конструкция теплообменника такова, что она оказывает повышенное гидродинамическое сопротивление, вследствие чего снижается скорость теплоносителя, при поступлении его внутрь. Это может приводить сразу к двум неприятностям: во-первых, к осаждению загрязнений, имеющихся в теплоносителе, в нижней части нагревателя и, в дальнейшем, еще большему затруднению протока и, во-вторых, к снижению теплосъема с поверхности теплообменника. Вообще, конструкция таких нагревателей предполагает довольно высокую плотность теплового потока – 9-10 Вт/см
    2
     и ухудшение теплопередачи вызовет кипение в пограничном слое теплоносителя. Это чревато ускоренным осаждением накипи в таких местах (по сути – по всей площади теплообменника), а также к дальнейшему снижению теплопередачи и, в конце концов, к перегреву греющего контура.
  3. Недостаток из предыдущего пункта усугубляется тем, что конструкция неремонтопригодна – стоимость и сроки ремонта будут примерно такими же, как и стоимость, и сроки на приобретение нового нагревателя.
  4. Также вертикальное расположение теплообменника приводит к тому, что растворенные в теплоносителе газы и воздух, в процессе нагрева, будут собираться в верхней части теплообменника, вытесняя оттуда теплоноситель, что может привести к местному перегреву теплообменника из-за отсутствия необходимого теплосъема, а теплонагруженность нагревателя, как мы указывали выше, достаточно велика.
  5. Несмотря на то, что одним из главных преимуществ электронагревателей индукционного типа является обеспечение 2-го класса защиты от поражения электрическим током (т.е. практически абсолютная защита даже без заземления), к конструкции этого типа нагревателей эта особенность, увы, не относится, поскольку в случае нарушения изоляции обмоток индуктора, теплоноситель окажется под напряжением – точно так же, как и ТЭНовый котел.
  6. Индукционные нагреватели кожухового типа ограничены в мощности и температуре нагрева. Мощность единичного нагревателя, как правило, не превышает 70-100 кВт, а максимальная температура теплоносителя – 100-110 °С (впрочем, для обычной системы отопления этого достаточно). Ограничение по мощности приводит к необходимости параллельной установки нескольких нагревателей.

Вывод: конструкция индукционных нагревателей кожухового типа получила достаточно широкое распространение, главным образом, благодаря простоте изготовления, относительно низкой себестоимости (а, следовательно, отпускной цены) и системе распределения через дилеров (маржинальность продукта позволяет делиться ею с посредниками). Однако данный тип нагревателей лишь условно относится к нагревателям «трансформаторного» типа, и не всегда заслуженно использует в своих заявлениях те преимущества, которые присущи этому типу нагревателей.

 

Индукционный нагреватель  с трубчатым теплообменником

Если говорить откровенно, то первый коммерческий успех индукционных электронагревателей истинно трансформаторного типа, сопутствовал именно этой конструкции индукционных нагревателей, которые появились на рынке в середине 90-х годов прошлого века и получили довольно широкое распространение. В чем их особенность:

 

Схема трубчатого теплообменника в индукционном нагревателе

Во-первых, эти нагреватели уже не прячутся в кожух. Особенной красотой они, конечно, не блещут, но для покупателя важны другие их свойства. Во-вторых, здесь катушка индуктивности (первичная обмотка) полностью отделена от теплообменника (вторичной обмотки) что исключает поражение электрическим током: даже в случае нарушения изоляции обмоток электросеть не может замкнуться на теплоноситель, так что это настоящий 2-ой класс электробезопасности. И, наконец, в третьих, теплообменное устройство здесь представляет собой набор трубок, огибающих катушки индуктора.

В остальном, все так же как у всех остальных индукционных нагревателей – катушки возбуждают магнитное поле, которое, проходя через металл теплообменника, возбуждает в нем вихревые токи, которые его и разогревают, а потом тепло снимается теплоносителем с принудительной циркуляцией.

Преимущества конструкции:

  1. Конструкция приближена к «сухому» трансформатору, а, следовательно, при должном высоком качестве производства, обладает такими свойствами как долговечность (до 100 000 часов), электрическая безопасность и высокая надежность (во всяком случае, выше чем у «кожуховых нагревателей» и многократно выше, чем у ТЭНовых нагревателей).
  2. Доступность больших мощностей в единице оборудования (до 500 кВт мощности в одном нагревателе). Аналогично кожуховым индукционным нагревателям, трубчатые индукционные нагреватели также могут устанавливаться в параллель, и тогда необходимая мощность будет ограничиваться только доступностью электроэнергии и потребностью в тепловой энергии.
  3. Возможность обеспечения высоких температур нагрева (до 250-300 °С), что существенно расширяет области применения нагревателей. Она уже не ограничивается областью отопления и горячего водоснабжения. При помощи высокотемпературного жидкого теплоносителя есть возможность заменять паровые системы нагрева в промышленности (реакторы, пресса и т.д.) на жидкостные, что существенно повышает надежность, безопасность и управляемость процессами нагрева.
  4. Вообще, если сравнивать с ТЭНами и электродными котлами, преимуществ можно указать множество. Наша же основная задача – сравнить с другими типами конструкций индукционных нагревателей.

Недостатки конструкции:

  1. Вероятно неравномерное распределение теплового потока по сечению трубы теплообменника. Из-за неравномерного омического сопротивления и поверхностного эффекта наибольшая часть тепловой энергии (рассчетно, до 70%) может выделяться всего в 30% поверхности трубы со стороны обмотки. Плотность теплового потока в этих зонах соизмерима с плотностью теплового потока обычного ТЭНа. Что может привести к локальному перегреву, парообразованию в пограничном слое теплоносителя и отложению солей на стенках трубы, с последующим ухудшением теплопередачи и, как следствие, местным перегревам. Эффект накипеобразования многократно усиливается в местах сварки труб, в связи с высокими значениями плотности тока в этих соединениях.
  2. Несмотря на заявляемый коэффициент мощности 0,98, эффект повышенного рассеяния магнитных потоков вокруг трубчатых витков, скорее всего, снижает этот коэффициент до 0,9, иначе чем объяснить, что для обеспечения одной и той же тепловой мощности, нагреватели с трубчатым теплообменником имеют боле высокие потребляемые мощности и токи в обмотках? В свою очередь это приводит к повышению затрат у потребителя, поскольку ему приходится использовать провода увеличенного сечения, а также повышает себестоимость производителя (и, следовательно, цену приобретения для покупателя).
  3. Трубчатый теплообменник оказывает повышенное гидродинамическое сопротивление, что приводит к необходимости установки более мощных (и дорогих) циркуляционных насосов.
  4. Повышена масса нагревателя, т. к. трубчатая конфигурация теплообменника требует значительного промежутка между стержнями сердечника трансформатора. Это приводит к увеличению ярем магнитопровода трансформатора и удорожанию изделия в целом.
  5. Катушки индуктора хоть и надежно пропитаны изоляцией, однако же ничем не защищены от случайного или (того хуже) целенаправленного механического воздействия, что, конечно же, не повышает надежность нагревателя.
  6. Трубчатый теплообменник не ремонтопригоден, и в случае выхода из строя подлежит полной замене на заводе-производителе.

Вывод: индукционные нагреватели с трубчатым теплообменником – это в принципе первые коммерчески успешные индукционные нагреватели, и это действительно шаг вперед по сравнению с ТЭНовыми котлами и нагревателями кожухового типа и сразу два шага вперед по отношению к электродным котлам (за счет факторов безопасности). Применение трубчатого теплообменника изначально было продиктовано технологическими ограничениями и финансовыми вопросами, поскольку трубчатый теплообменник проще в производстве, чем объемный (о котором речь пойдет далее), однако он не лишен недостатков, исправить которые производителям не позволяют рамки патентных правоотношений.

 

Индукционный нагреватель  с объемным теплообменником

Объемный тип теплообменника, в виде опытных образцов, появился даже раньше, чем трубчатый. Однако первые конструкции были не очень удачны – пожалуй, даже нет смысла их описывать, поскольку сейчас они если и выпускаются, то кустарно. Нас будет интересовать последняя итерация конструкции, которую производитель называет также нагревателем индуктивно-кондуктивного типа. Конечно, это лишь способ позиционирования продукта, однако это название очень четко отражает сущность данного нагревателя.

Индукционные нагреватели с объемным теплообменником появились уже в XXI веке и при их создании, несомненно, были учтены недостатки всех прочих конструкций. Что же представляет собой конструкция индуктивно-кондуктивного электронагревателя с объемным теплообменником?

Схема цилиндрического теплообменника индукционного нагревателя

Как видим из рисунка, конструкция довольно сильно напоминает индукционный нагреватель с трубчатым теплообменником, однако вместо трубок здесь используется полый цилиндр, внутри которого находится индуктор. По мнению многих (и автора в том числе) индуктивно-кондуктивные индукционные нагреватели эстетически выглядят лучше, чем нагреватели с трубчатым теплообменником, поскольку объемный теплообменник выполняет и роль кожуха: внешний вид создает ощущение законченности и какой-то защищенности.

Это также полноценный индукционный нагреватель, конструкция которого роднит его с «сухим» трансформатором. И он, конечно, обладает всеми преимуществами, которые из этого вытекают: высокая надежность, долговечность, пожарная и электрическая безопасность, поскольку первичная обмотка, на которую подается напряжение, отделена от теплообменника, что исключает поражение электрическим током: это полноценный 2-ой класс электробезопасности.

Вихревые токи здесь возникают в толще металла, из которого сделан полый цилиндр. Надо сразу отметить, что само конструктивное решение повышает надежность нагревателя и его устойчивость к повреждениям. Судите сами: обмотки катушек индуктивности, которые можно легко повредить у нагревателя с трубчатым теплообменником, здесь надежно закрыты от внешнего воздействия. От упорного вредителя они, конечно, не спасут, а вот случайно повредить индуктор уже значительно сложнее.

Материал теплообменника здесь – нержавеющая сталь марки AISI-304, так что коррозия ей не грозит.

Единственное место, которое можно отнести к узким местам (и о котором любят упоминать конкуренты) – это сварные швы на теплообменнике, ведь отливать полые цилиндры без швов человечество еще, к сожалению, не научилось. Но зато человечество научилось хорошо сваривать детали. Случай с объемными теплообменниками здесь не исключение.

Преимущества конструкции:

  1. Индуктивно-кондуктивный электронагреватель максимально приближен к конструкции «сухого» трансформатора, а, следовательно, обладает такими свойствами как долговечность (до 100 000 часов или, в пересчете на годы, порядка 30 лет!), электрическая безопасность, высокая надежность и все прочие преимущества по сравнению с ТЭНовыми и электродными котлами.
  2. Доступность больших мощностей в единице оборудования (до 500 кВт мощности в одном нагревателе). Также существуют модификации высоковольтных индукционных котлов, которые могут обеспечить мощность нагрева свыше 6 МВт. Аналогично прочим индукционным нагревателям, индукционные нагреватели с объемным теплообменником также могут устанавливаться в параллель, и, тем самым, обеспечивать любую мощность нагрева.
  3. Возможность обеспечения высоких температур нагрева (до 200-250 °С), что существенно расширяет области применения нагревателей. Это немного ниже, чем у трубчатых теплообменников, что обусловлено как раз конструкцией. Трубки обеспечивают лучшую вентиляцию и охлаждение катушек. В индукционных нагревателях с объемным теплообменником катушки закрыты, однако и температур, обеспечиваемых этими нагревателями, достаточно для многих технологических процессов (обогрев реакторов, гальванических ванн, сушильных камер, прессов и т.д.).
  4. Равномерное распределение теплового потока по более развитой поверхности теплообменника гарантирует отсутствие явлений местного перегрева, отложения накипи и очень небольшой градиент температур между теплоносителем и теплообменником (не более 20 °С) что служит дополнительным аргументом в пользу надежности и пожарной безопасности нагревателя индуктивно-кондуктивного типа.
  5. «Честный» высокий коэффициент мощности 0,98-0,985 благодаря более равномерному поглощению магнитного поля цилиндрическим теплообменником.
  6. Более низкая масса нагревателей по сравнению с аналогичными по мощности нагревателями на трубках.

Недостатки:

  1. Более высокая себестоимость материалов и высокотехнологичность производства: высокое качество и отличные потребительские свойства дешевыми не бывают.
  2. Низкая маржинальность (наценка) делает продукт не интересным для посредников, поэтому продукцию необходимо заказывать только у производителя.
  3. Теплообменник в большинстве случаев не ремонтопригоден, однако, риск выхода его из строя самый низкий из всех типов индукционных нагревателей. Кроме того, его замена может быть произведена эксплуатирующей организацией, а не только заводом-изготовителем.

Вывод: если говорить о том, что индукционные нагреватели – это следующий шаг по отношению к ТЭНовым и электродным котлам, то индуктивно-кондуктивные нагреватели с объемным теплообменником – это пример дальнейшего развития конструкции, которая, пожалуй, как никогда близка к ожидаемому идеалу. Главное, при наличии очень хорошей и энергоэффективной конструкции, — это высокая культура и качество производства, которая бы неукоснительно следовала конструкторской документации и исполняла замысел инженеров и ученых, положивших годы в создание такого сложного, но такого простого оборудования, как индукционный электронагреватель.

Индукционный нагрев — это… Что такое Индукционный нагрев?

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Описание метода

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно — это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Формула для вычисления глубины скин-слоя в мм:

,

где μ0 = 4π·10−7 — магнитная постоянная Гн/м, а ρ — удельное электрическое сопротивление материала заготовки при температуре обработки.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение

  • Сверхчистая бесконтактная плавка, пайка и сварка металла.
  • Получение опытных образцов сплавов.
  • Гибка и термообработка деталей машин.
  • Ювелирное дело.
  • Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
  • Поверхностная закалка.
  • Закалка и термообработка деталей сложной формы.
  • Обеззараживание медицинского инструмента.

Преимущества

  • Высокоскоростной разогрев или плавление любого электропроводящего материала.
  • Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.
  • Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.
  • За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).
  • Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.
  • Удобство эксплуатации за счёт небольшого размера индуктора.
  • Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.
  • Легко провести местный и избирательный нагрев.
  • Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).
  • Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Недостатки

  • Повышенная сложность оборудования, необходим квалифицированный персонал для настройки и ремонта.
  • При плохом согласовании индуктора с заготовкой требуется бо́льшая мощность на нагрев, чем в случае применения для той же задачи ТЭНов, электрических дуг и т. п.

Установки индукционного нагрева

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:

  1. повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
  2. применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёхточки:

  1. Низкий кпд (менее 40 % при применении лампы).
  2. Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являютcя фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.
  3. При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.
  4. При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать
а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.
Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания — заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается — это может привести к «разносу» генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Замечания

  • Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).
  • Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).
  • При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.
  • При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).
  • Иногда в качестве генератора высокой частоты использовали списанные мощные радиопередатчики, где антенный контур заменяли на нагревательный индуктор.

См. также

Ссылки

Литература

  • Бабат Г. И., Свенчанский А. Д. Электрические промышленные печи. — М.: Госэнергоиздат, 1948. — 332 с.
  • Бурак Я. И., Огирко И. В. Оптимальный нагрев цилиндрической оболочки с зависящими от температуры характеристиками материала // Мат. методы и физ.-мех. поля. — 1977. — В. 5. — С. 26-30.
  • Васильев А. С. Ламповые генераторы для высокочастотного нагрева. — Л.: Машиностроение, 1990. — 80 с. — (Библиотечка высокочастотника-термиста; Вып. 15). — 5300 экз. — ISBN 5-217-00923-3
  • Власов В. Ф. Курс радиотехники. — М.: Госэнергоиздат, 1962. — 928 с.
  • Изюмов Н. М., Линде Д. П. Основы радиотехники. — М.: Госэнергоиздат, 1959. — 512 с.
  • Лозинский М. Г. Промышленное применение индукционного нагрева. — М.: Изд-во АН СССР, 1948. — 471 с.
  • Применение токов высокой частоты в электротермии / Под ред. А. Е. Слухоцкого. — Л.: Машиностроение, 1968. — 340 с.
  • Слухоцкий А. Е. Индукторы. — Л.: Машиностроение, 1989. — 69 с. — (Библиотечка высокочастотника-термиста; Вып. 12). — 10 000 экз. — ISBN 5-217-00571-8
  • Фогель А. А. Индукционный метод удержания жидких металлов во взвешенном состоянии / Под ред. А. Н. Шамова. — 2-е изд., испр. — Л.: Машиностроение, 1989. — 79 с. — (Библиотечка высокочастотника-термиста; Вып. 11). — 2950 экз. — ISBN 5-217-00572-6

Индукционный нагреватель. Огонь, вода, работающие люди, но не пожар!

Эту игрушку я ждал с нетерпением. Об индукционном нагреве я знал давно, со времен студенчества. Иногда видел ролики, как закаляют заготовки, припавают твердосплавные пластины на резцы и прочая-прочая. Но для меня все это было чем-то из области производства, грязных жарких и душных цехов.

Поэтому, когда в списке предлагаемых на обзор гаджетов я увидел данный нагреватель, колебаний не было. Я его просто возжелал!

Оговорка по Фрейду и п.18

Как и, наверное, большинство читателей, я интересуюсь разными вещами. Всегда есть соблазн и желание приобрести что-то для своего увлечения, либо просто хочется поиграть с приглянувшимся гаджетом, как известно с возрастом лишь меняется цена игрушек.

Обзоры — это совмещение приятного с полезным. Мне нравится делиться своим опытом взаимодействия с различными вещами, спонсорам нравится видимо, как я это делаю, и получается взаимовыгодное сотрудничество. Я никогда не беру на обзор вещи, которые мне не интересны, и с которыми я не хочу провести какое-то время. Как правило я беру вещи, предназначение и характеристики которых я себе неплохо представляю, так я избегаю своего и вашего, мои уважаемые читатели, разочарования в большинстве случаев.

Обзоры я делаю объективно, товары не рекламирую, и моя цель дать вам пищу для размышления, и поделиться своим опытом пользования данной вещи. Читайте, думайте, пишите свое мнение в комментариях — в общении и обмене мнениями рождается истина!

Недавно был обзор данного устройства от уважаемого dia. В этом обзоре dia даже выпаял часть деталей, чтобы лучше понять устройство этого гаджета и нарисовал его электрическую схему. Не буду дублировать его работу, можно сходить в тот обзор и все посмотреть. И не забудьте поставить dia плюсик пожалуйста.

В своем обзоре я бы хотел рассказать, что такое индукционные нагреватели, зачем они вообще нужны, и почему же я так радовался и ждал приезда этого гаджета. И самое интересное — что я с ним делал 🙂

Как обычно, начнем с небольшого экскурса в историю.

Явление электромагнитной индукции открыл Майкл Фарадей в 1831 году. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Без открытия Фарадея не было бы у нас трансформаторов, генераторов, радио и вообще электротехнической и электронной промышленности.

Индукционный нагрев — это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Т.е. создав переменное магнитное поле и поместив туда материал мы сможем его нагреть. И уже в 1900 г. шведская фирма «Benedicks Bultfabrik» построила и запустила первую индукционную сталеплавильную печь!

Для того, чтобы расплавить или хотя бы нагреть металл, нам необходимо создать колебательный контур и в поле, создаваемое данным контуром поместить металлический предмет.

Вот чертеж индукционной сталеплавильной печи. Как раз на нем видно, что тигель с расплавляемым металлом, окружен катушками, наводящими на него переменное магнитное поле.

А это печь в действии.

В общем случае схема индукционного нагрева выглядит следующим образом: У нас есть генератор и колебательный контур. Частота колебания в контуре зависит от индуктивности катушки и емкости конденсаторов. Различные материалы восприимчивы к различным частотам колебаний. Например, при частоте колебаний контура, при которой происходит плавления стали, например, цветные металлы могут даже не начать толком нагреваться. И наоборот.

Где же используется индукционный нагрев. На самом деле в огромном количестве мест. Он везде вокруг нас. Индукционные электроплиты, как самый яркий пример

Индукционные проточные водонагреватели

Портативные нагреватели, с их помощью например можно разогреть и открутить приржавевшую гайку.

А на производстве индукционный нагреватель используется для поверхностной закалки изделий. Это быстро, экономично и безопасно, с точки зрения отсутствия огня и горючих материалов.

И самое для меня наверное интересное, т.к. я обладатель небольших домашних токарного и фрезерного станков — напайка твердосплавных пластин на державки резцев.

Как я и говорил, для меня системы индукционного нагрева всегда были либо уделом промышленности, либо умельцев, паяющих огромные монструозные схемы с гигантскими блоками питания, которым место дома можно найти с огромной натяжкой. И какое же удивление вызвало обнаружение крохотного устройства из класса — «воткни в блок питания и получай удовольствие».

Переходим к герою нашего обзора. Состоит он из двух частей. Генератор построенный на основе обычного двухтранзисторного мультивибратора (за схемой можно сходить в обзор уважаемого dia), для тех кто разбирается в электронике, то ничего сложного, а для тех, для кого это незнакомые термины, то в двух словах — простая и надежная схема, работающая «из коробки». На плате генератора размещена сборка из емкостей. Вторая деталь — катушка колебательного контура. Соединяются обе детали винтовым разъемом.

Размер миниатюрный 5.5 см на 4 см и толщиной 2 см. Диаметр катушки 2.8 см, длина 7.5 см. Питание устройства 5-12В, ток до 5А.

Т.е. максимальная потребляемая мощность может составить 12В х 5А = 60Вт. Это потребление не самой яркой лампочки накаливания. Много это или мало? Давайте прикинем на пальцах. Современная сталелитейная промышленность в среднем тратит 650 кВтч на плавку 1 тонны стали, т.е. 650 Втч на 1 кг или 65 Втч на плавку 100 грамм. Таким образом наша малявка при должном подходе и минимизации теплопотерь в атмосферу за час может расплавить чуть меньше 100 грамм стали. Очень и очень недурственно. Казалось бы 60 Вт потребляемой мощности и 100 грамм расплавленной стали. Весьма полезно все считать, т.к. на глазок некоторые вещи совсем не очевидны, как например мне было в этом случае.

Давайте перейдем от слов к развлечениям делу.

У меня была целая куча идей, которые я хотел реализовать.

По всем идеям я снял подробное видео. Его можно будет посмотреть в конце обзора.

Идея номер 1. Закалка отверточных бит. Частенько, если приходится много закручивать шуруповертом винтов приходится наблюдать картину слизывания крестовины бит.

Есть способ продлить жизнь битам. Частенько биты продают чуть недозакалеными. Это делают видимо для избежания их раскалывания в процессе эксплуатации. Либо по каким-то другим неведомым причинам. Такие биты можно дозакалить. Этим мы и займемся.

Как же закаливают металлы? Существует огромное количество сплавов и индивидуальных режимов их термической обработки. Я не буду погружаться в рамках данного обзора в эти дебри. Если все предельно упростить, то для закалки в примитивных домашних условиях изделий из неопознанной стали можно (с кучей условностей разумеется) использовать следующий способ.

а. Нагрев до вишневого цвета (750 градусов по Цельсию).
б. Охлаждение в воде
в. Отпуск в духовке при температуре 180-190 градусов по Цельсию в течении 1 часа. Отпуск необходим для снятия внутренних напряжений, чтобы изделие не лопнуло у нас в руках в процессе эксплуатации

Привожу картинку с цветами металла и соответствующим им температурам

Соответственно, разогреваем биту

И охлаждаем ее в воде. Затем отпуск в духовке и… вуаля. Более прочная бита у нас в арсенале.

Идея номер 2. Из остатков ножовочного полотна сделать мини стамески по дереву. Подробный процесс в видео. Делюсь лишь фоткой конечных изделий

Выглядят они неказисто, но древесину режут исправно. Тест есть на видео.

Идея номер 3. Из подручных гвоздей и железяк сделать настоящее сверло. И сверло получилось! Оно успешно просверлило дерево, алюминий… и не только. Посмотрите на видео))) Заточка и закаленный кончик все выдержали, кроме тела сверла, которое я отпустил, но повторно не закалил. Вот что с ним стало после моих издевательств)))

Идея номер 4. Водонагреватель. Проверка концепции. Кладем гвоздь в трубочку, трубочку в спираль — вода кипит.

Можно сделать подогрев чего — либо, например воды в емкости. Туда поставить банку с молоком, подключить термодатчик, для контроля температуры и будет йогуртница))).

Вот видео моих издевательств над материей )))

Как резюме. Мне индукционный нагреватель понравился. Для домашнего использования мне лично пригодится однозначно. Я периодически нуждаюсь в необходимости закалить какую-либо небольшую деталь (ось накатки для токарника, например). И этот способ мне нравится больше горелки в домашних условиях. Также я получил большое удовольствие от процесса созидания из обломков пилки и ненужных ключей качественно новых вещей.

Хочу ли я нагреватель большей мощности? В квартиру — однозначно нет. Другие режимы, другая техника безопасности. В отдельную мастерскую — однозначно да.

Меня поражает скорость прогресса, если честно. И технологии. Устройство размером со спичечный коробок позволяет ощутить себя и кузнецом, и термистом и сантехником- отопителем))

Получайте удовольствие от жизни, выбирайте себе инструменты и игрушки по вкусу, и Удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Отправить ответ

avatar
  Подписаться  
Уведомление о