Принцип действия тзнп: Токовая защита нулевой последовательности: принцип действия и применение – ТЗНП принцип действия — Электрик

Содержание

Токовая защита нулевой последовательности

При появлении в трансформаторе внешнего короткого замыкания в действие вступает токовая защита нулевой последовательности. То же самое происходит и при замыкании в самом трансформаторе. Этот вид защиты нашел свое применение в повышающих и автоматических трансформаторах. Установка данного вида производится со стороны обмоток высокого и среднего напряжения.

Принцип действия токовой защиты

На приведенной схеме видно, что пусковое реле тока КА, соединенное с фильтром токов с нулевой последовательностью, реагирует на короткое замыкание на землю. С помощью реле мощности KW производится фиксация направления мощности замыкания. Данное действие обладает селективностью, то есть работа защиты осуществляется в том случае, когда мощность замыкания направляется от шин трансформаторной подстанции на защищаемую электрическую линию. Подводка напряжения производится от обмотки трансформатора при разомкнутом треугольнике на реле мощности с помощью специальных шинок EV.HиEV.K. Необходимая выдержка времени, по условиям селективности, создается при помощи реле времени КТ.

Токовая защита направленного действия

На следующей схеме представлена токовая защита нулевой последовательности направленного действия. Данный вид работает при нейтралях, заземленных по обеим сторонам защищаемого участка. Выдержки во времени работают по графику, построенному на основе встречно ступенчатого действия. Защита каждого участка отстраивается друг от друга с помощью временных ступеней. Ток срабатывания в пусковом токовом реле определяется исходя из надежности действия этого реле при коротком замыкании на следующем участке сети.

При погрешностях в трансформаторах тока, в реле появляются токи небаланса, которые могут иметь преимущественное значение. Для недопущения срабатывания токового пускового реле, значение тока срабатывания определяется выше, чем ток небаланса. Значение самого тока небаланса определяется при нормальном рабочем режиме, в соответствии с временной выдержкой защиты.

Если в защищаемой сети автоматических трансформаторов, связывающих цепи с двумя различными напряжениями, происходит короткое замыкание и появляется ток в линиях с высшим напряжением. Чтобы предупредить ложные срабатывания в защите линий с высшим напряжением уставки защиты согласуются в соответствии с защитами сетей среднего напряжения.

Кроме токовой защиты нулевой последовательности, в сетях с напряжением 110 киловольт и более, применяются отсечки направленного действия и различные ступени защиты. Четырех-ступенчатые системы считаются наиболее совершенными, при этом, на первой ступени отсутствует выдержка во времени.

Токовая защита нулевой последовательности принцип действия

Принцип действия ТЗНП, защита нулевой последовательности

Токовая защита нулевой последовательности принцип действия

Одним из устройств, применяемых для защиты ЛЭП с напряжением 110 кВ, является

токовая направленная защита нулевой последовательности (сокращенно – ТНЗНП).

Эти линии электропередач выполняются с эффективно заземленной нейтралью. В отличие от сетей 6-35кВ, у которых нейтраль изолирована, токи замыкания на землю достаточно большие, что вызывает необходимость фиксировать их и отключать с минимально возможной выдержкой времени. Но для этого нужно не просто определить факт наличия в системе замыкания на землю, но и найти линию, на которой оно произошло. Для этого такие защиты и делаются направленными.

Токи нулевой последовательности

Систему трехфазных токов и напряжений можно представить в виде векторной диаграммы, где векторы этих токов (напряжений) в нормальном режиме сдвинуты друг относительно друга в пространстве на одинаковый угол,

равный 120 градусов.

При этом полученная диаграмма является еще и вращающейся относительно условного наблюдателя: сначала мимо него проходит вектора фазы «А», затем «В», потом «С». И так – по кругу.

Эту диаграмму принято называть системой токов (напряжений) прямой последовательности.

Если поменять порядок прохождения векторов с А-В-С на С-В-А, получается обратная последовательность. В обоих случаях неизменным остается одно: между векторами разных фаз сохраняется угол в 120 градусов.

Ток или напряжение нулевой последовательности получается, если все эти векторы сложить между собой. Для этого, если вспомнить геометрию, нужно начало второго вектора совместить с концом первого, затем так же добавить к нему третий. Поскольку угол между ними остается равным 120 градусов, то получим равносторонний треугольник, система замкнется. Результирующий вектор, определяющий сумму всех слагаемых, будет равен нулю. Он должен быть проведен от начала первого суммируемого вектора к концу последнего.

Но так будет только при отсутствии в системе замыканий на землю. При междуфазных КЗ увеличиваются векторы токов одновременно в двух фазах, а то и во всех трех. Сложение их между собой даст все тот же ноль. Поэтому такие КЗ еще называют симметричными.

Интересное видео о работе ТЗНП смотрите ниже:

Защита на токах нулевой последовательности

Но при наличии замыкания на землю нулевая последовательность токов выходит из равновесия. Появляется результирующий ток, на который и реагирует релейная защита.

В системах с изолированной нейтралью для выделения этих токов используется специальный трансформатор, надеваемый на кабель.

На ЛЭП — 110 кВ это выполнить невозможно и токи замыкания на землю определяются по другому принципу. Для этого на обычных трансформаторах тока, использующихся для релейной защиты, выделяется отдельная обмотка на каждой фазе. Обмотки фаз соединяются между собой последовательно особым способом: начало следующей соединяется с концом предыдущей. В эту же цепь включаются и токовые обмотки реле.

Обычно защищаемый участок разделяется на участки (зоны), примерно, как у дистанционной защиты. Сама защита выполняется многоступенчатой. Ток срабатывания первой ступени максимальный, выдержка времени – минимальна или равна нулю. Следующая ступень срабатывает при меньшем токе, но с большей выдержкой по времени. И так далее.

На другом конце линии установлена такая же защита. А линий может быть много. Наличие ступеней позволяет обеспечить отключение именно участка с повреждением, а также – резервировать другие защиты в случае их отказа.

Напряжение нулевой последовательности

Имея в наличии только информацию о токах нулевой последовательности, невозможно определить, где произошло КЗ: в самой линии, или «за спиной». В противоположном от линии конце находится либо распределительное устройство с другими подключенными к нему ЛЭП, либо трансформаторы. У них есть своя собственная защита, которая лучше разберется в ситуации.

Для того, чтобы определить направление на замыкание на землю, потребуется информация о напряжении нулевой последовательности. Оно берется с особых обмоток трансформаторов напряжения, соединенных в разомкнутый треугольник.

Это тоже векторная сумма, но не токов, а фазных напряжений. Она равна нулю в нормальном режиме и при симметричных КЗ, но при однофазных КЗ имеет определенную величину.

Далее в дело вступает реле направления мощности. На одну его обмотку подается напряжение нулевой последовательности, а на другую – ток, использующийся для работы земляной защиты. Срабатывание происходит при таком угле между этими величинами, когда мощность КЗ направлена в линию. В других случаях, при КЗ «за спиной», отсутствие срабатывания этого реле блокирует работу защиты.

Токи небаланса

 Правильное сложение токов возможно только в случае полной идентичности характеристик трансформаторов тока. На этапе проектирования для защиты обязательно выбираются одинаковые обмотки трансформаторов с одинаковым классом точности, кратностью насыщения.

Кроме того, в цепи этих обмоток не должны быть включены другие устройства или приборы, нарушающие симметрию их нагрузки.

Но и этого может оказаться недостаточно. Если при всем при этом характеристики намагничивания оказываются разными, ток небаланса все-таки появляется. Если в нормальном режиме он не приводит к ложному срабатыванию защиты, то при симметричных КЗ, когда токи становятся в несколько раз большими, ток небаланса существенно возрастет.

Поэтому при замене трансформаторов тока, если не удается подобрать аналог для одного из них с полным соответствием вольт-амперных характеристик, то лучше сменить не один или два, а все три.

Реализация защит ТЗНП

Широко применялись еще с советских времен панели защит ЛЭП-110 кВ на базе электромеханических реле, например ЭПЗ-1636. В ее состав, кроме ТЗНП входит еще дистанционная защита и токовая отсечка.

Однако электромеханические реле эксплуатирующихся панелей давно выработали свой ресурс, а точечная их замена не всегда приводит к надежным результатам.

Поскольку со времен разработки данной релейной техники прогресс уже ушел далеко вперед, старое оборудование целиком меняется на панели или шкафы, включающие в себя микропроцессорные терминалы релейных защит.

Источник: http://pue8.ru/relejnaya-zashchita/935-printsip-dejstviya-tznp-zashchita-nulevoj-posledovatelnosti.html

Токовая защита нулевой последовательности: принцип действия и применение

В высоковольтных сетях из-за каких-либо повреждений может нарушаться нормальная работа электроустановок. Достаточно частое повреждение – замыкание на землю, при котором возникает угроза как человеческой жизни за счет растекания потенциала, так и оборудованию за счет нарушения симметрии в сети. Чтобы предотвратить возможные последствия от таких повреждений на подстанциях и в других устройствах применяют токовую защиту нулевой последовательности (ТЗНП).

Что такое нулевая последовательность?

Преимущественное большинство сетей получают  питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю.

Это означает, что в системах 110, 10 и 6 кВ,  для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать.

Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Рис. 2. Прямая, обратная и нулевая последовательность

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º.

Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку.

Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов  нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения  реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения.

  При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

В случае междуфазных повреждений симметрия не нарушиться, а лишь измениться  величина токов. А ТТ будут продолжать компенсировать токи, стекающиеся в нулевой провод. Преимущество такой схемы заключается в том, что при максимальных рабочих токах, все равно не будет срабатывать защита, поскольку будет сохраняться симметрия.

Но при существенном отличии в магнитных параметрах измерительных трансформаторов, произойдет дисбаланс в системе, и по нулевому проводнику будет протекать ток небаланса. Что может обуславливать ложные срабатывания токовой защиты даже в тех сетях, где соблюдается номинальный режим питания.

Правила подборки трансформаторов тока.

С целью снижения небаланса, влияющего на правильность срабатывания токовой защиты, подбирают такие ТТ, у которых вторичные токи не создадут перетоков. Для чего они должны соответствовать таким требованиям:

  • Обладать идентичными кривыми гистерезиса;
  • Одинаковая нагрузка вторичных цепей;
  • Погрешность на границе участков сети не должна превышать 10%.

К их вторичным цепям запрещено подключать еще какую-либо нагрузку, приводящую к искажению кривой намагничивания хотя бы в одном ТТ. Поэтому на практике при возникновении токов срабатывания от симметричной системы рекомендуют подвергать замене не один и не два, а все три трансформатора одновременно.

Область применения

Токовая защита, способная отреагировать на появление нулевой последовательности, нашла достаточно широкое применение  в линиях с заземленной нейтралью. Так как в них  токи коротких замыканий достигают наибольших величин. А вот при изолированной нейтрали ее установка нецелесообразна, поэтому ТЗНП в них не используют. Сегодня установки ТЗНП находят широкое применение:

  • на шинах районных подстанций для защиты силового оборудования;
  • в распределительных устройствах трансформаторных, переключающих и комплектных подстанций;
  • в токовых цепях крупных промышленных объектов с трехфазным силовым оборудованием.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания.

Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка.

Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени.

В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt.

А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой  из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле. В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства. Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем  классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв. Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности. Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты. При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты. В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650  или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и  пусковое реле для возобновления питания.

в дополнение к написанному

Источник: https://www.asutpp.ru/tokovaya-zaschita-nulevoy-posledovatelnosti.html

Что такое токовая защита нулевой последовательности

Наиболее частой неисправностью в трёхфазной сети является замыкание на землю. Межфазные замыкания встречаются реже. В сетях 110 кВ от однофазных замыканий на землю используется токовая защита нулевой последовательности, сокращенно ТЗНП. В этой статье мы рассмотрим её устройство, принцип действия и назначение.

Что такое нулевая последовательность

Для того чтобы разобраться как работает ТЗНП, сначала нужно вспомнить что такое трехфазная сеть. Трехфазная сеть — это сеть переменного синусоидального тока. В трёхфазной цепи фазы сдвинуты друг относительно друга на 120 градусов. Вот так это выглядит на графике:

Интересно! Основные идеи и положения трехфазных сетей электроснабжения были разработаны Михаилом Осиповичем Доливо-Добровольским. Он разработал трёхфазный асинхронный двигатель с КЗ ротором типа беличья клетка, с фазным ротором и пусковым реостатом, искрогасительную решетку, фазометр, стрелочный частотомер.

Если изобразить это на векторной диаграмме, то изображение будет напоминать трехлучевую звезду. При условии равенства токов и напряжений между фазами такая система будет называться симметричной. Геометрическая сумма этих векторов равна нулю.

Важно! Различают прямую и обратную последовательность чередования фаз. Фазы обозначаются буквами A, B и C. Тогда последовательность A B C — прямая, C B A — обратная. При этом угол сдвига фаз в обоих случаях составляет 120 градусов. При нулевой последовательности вектора всех фаз направлены в одном направлении, соответственно результирующий вектор значительно превышает таковой (в 3 раза, по сравнению с нулевой последовательностью) в нормальном состоянии системы.

В случае межфазного замыкания токи во всех фазах возрастут, система все равно останется симметричной. А напряжения и токи нулевой последовательности равны нулю, как и в нормальном состоянии цепи.

В результате однофазного замыкания на землю система станет несимметричной и будут наблюдаться токи нулевой последовательности I0 и U0. Допустим замкнула фаза C, тогда токи фаз A и B устремятся к нулю, а в фазе C к трети от Iкз.

Тогда:

I0=1/3(Ik+0+0)

Отсюда Iк=I0*3. Эти токи возникают под воздействием напряжения КЗ или Uк0 между выводом обмотки трансформатора или генератора и точкой, в которой произошло замыкание.

Область применения на практике

Теоретическая часть без предварительной подготовки воспринимается достаточно сложно, поэтом перейдем к практике и ответим на вопрос, где применяется ТЗНП.

Как уже было сказано токовая защита нулевой последовательности используется в ВВ сетях напряжением 110 кВ с заземленной нейтралью. В сетях среднего напряжения 6, 10 кВ и больше с изолированной нейтралью не используется. Это связано с тем, что в сетях с заземленной нейтралью токи КЗ на землю очень большие.

Важно! Так как ТЗНП защищает от КЗ на землю, ее иногда называют земляной защитой (ЗЗ).

Как это работает

Принцип работы ТЗНП заключается в отключении коммутационной аппаратуры в случае однофазных замыканий с определенной выдержкой времени. Задержка времени нужна для организации селективности защит на разных трансформаторных подстанциях.

Пример схемы токовой защиты нулевой последовательности изображен на рисунке ниже:

В ней используется токовое реле КА и реле мощности KW. Для контроля тока по фазам в ТЗНП используются трансформаторы тока (ТТ). Это специальные измерительные трансформаторы надеваются на шину или провод. На его обмотках наводится ЭДС пропорциональное току, протекающему через жилу или шину.

Одним из главных условий корректной работы ТЗНП является то, чтобы у ТТ были одинаковые кривые намагничивания. Это значит, что они должны быть не просто одинаковы по входным и выходным характеристикам, но и быть одной марки. Кроме того, стоит отметить, что погрешности их выходных параметров не должны быть больше 10 процентов. Их вы видите на картинке ниже.

Чтобы получить токи выведенной из баланса системы сигнал пропускают через фильтр. В реальном применении соединяют обмотки трансформаторов между собой. Это называют фильтром токов нулевой последовательности.

В нормальном состоянии электросети токи нулевой последовательности равны нулю, соответственно Iвыходные фильтра ТЗНП тоже равны нулю. В аварийном режиме, при КЗ, выходной ток отличен от нуля. Остальные части ТЗПН настраиваются таким образом, чтобы исключить ложные срабатывания под определенный ток КЗ.

Если ранее токовая защита нулевой последовательности представляла собой релейные схемы, то в настоящее время выпускаются микропроцессорные терминалы для защитных цепей. То есть, современная ТЗНП может выполняться на микроконтроллерных схемах.

Рассмотренная система используется в качестве резервной защиты. Благодаря её свойствам можно достичь селективность срабатывания, где РЗиА каждой последующей ТП срабатывает быстрее, чем на предыдущей. Защита нужна чтобы минимизировать дальнейшие повреждения ЛЭП, трансформаторов, генераторов, а также, чтобы обезопасить окружающую среду и людей, которые могут попасть в опасную зону.

Напоследок рекомендуем просмотреть полезное видео по теме статьи:

Источник: https://samelectrik.ru/chto-takoe-tokovaya-zashhita-nulevoj-posledovatelnosti.html

Специальная токовая защита нулевой последовательности

Страница 23 из 24

Глава девятая
СПЕЦИАЛЬНАЯ ТОКОВАЯ ЗАЩИТА НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ ОТ ОДНОФАЗНЫХ К. 3. НА ЗЕМЛЮ НА СТОРОНЕ ИН (0,4 кВ)
1. Принцип действия и область применения
Специальная токовая защита нулевой последовательности от однофазных к.з. на землю устанавливается на трансформаторах с соединением обмотки НН в звезду с заземленной нейтралью Y» Измерительным органом защиты является одно максимальное реле тока То, включенное через трансформатор
Схемы включения максимального реле тока
Рис. 9-1. Схемы включения максимального реле тока (Г0) специальной токовой защиты нулевой последовательности от однофазных к. з. на землю трансформаторов Y/Y* и ДЛ^: а — через ТТ в заземленную нейтраль трансформатора; б — в нулевой провод схемы соединения трех трансформаторов тока в полную
звезду
7’—токовые реле максимальной токовой защиты от междуфазных к. з.; ТТНП—трансформатор тока нулевой последовательности кабельного типа (ТЗР, ТЗЛ) для включения реле Г0 защиты нулевой последовательности от однофазных к. з. на землю, выполняемой на отходящих элементах НН
тока в заземленную нейтраль (рис. 9-1, а). В нормальном режиме работы трансформатора с симметричной нагрузкой в заземленной нейтрали проходит только ток небаланса, меньший, чем рабочие токи в фазах. От этого тока рассматриваемая защита должна быть надежно отстроена (§ 9-3). При к.з. на землю на шинах или в сети НН через заземленную нейтраль проходит ток однофазного к.з.  (рис. 1-5 и 1-6), вызывающий срабатывание этой защиты. Ток однофазного к.з. в сети с глухозаземленной нейтралью называют утроенным током нулевой последовательности (/к* = 3/0), поэтому и защита от к. з. на землю называется защитой нулевой последовательности. Она относится к группе так называемых фильтровых защит, реагирующих на симметричные составляющие обратной или нулевой последовательностей токов (напряжений) к. з. По сравнению с токовыми защитами, реагирующими на полные фазные токи (например, максимальной токовой защитой) фильтровые токовые защиты всегда имеют более высокую чувствительность к несимметричным к. з., поскольку их не нужно отстраивать от сверхтоков при самозапусках и перегрузках, которые являются симметричными режимами и не сопровождаются появлением токов обратной и нулевой последовательностей.
Специальная защита нулевой последовательности устанавливается в соответствии с Правилами [1] в тех случаях, когда максимальная токовая защита на стороне ВН недостаточно чувствительна к однофазным к. з. на Землю за трансформатором. Практически это имеет место на трансформаторах со схемой соединения обмоток Y/У» У которых <С /jf* (§ 2-7). Если нагрузка трансформатора состоит из электродвигателей, участвующих в самозапуске, ток срабатывания максимальной защиты на стороне ВН по условиям (8-1) и (8-2) оказывается равным (3 — 4) /НОм гр и коэффициент чувствительности при однофазном к. з. получается меньшим, чем требуют Правила [1], даже если применяется трехрелейная схема защиты (рис. 8-5,6).
На трансформаторах со схемой соединения обмоток Д/У для которых
= (§ 2-7), максимальная токовая защита на стороне ВН, как правило, имеет достаточную чувствительность к однофазным к. з. на выводах НН. Однако и на этих трансформаторах целесообразно устанавливать специальную токовую защиту нулевой последовательности в качестве резервной к максимальной токовой защите трансформатора (ближнее резервирование) и к защитным аппаратам элементов сети НН (дальнее резервирование). Такое решение применяется, например, Теплоэлектропроектом [29].

2. Схемы защиты

Измерительный орган специальной токовой защиты нулевой последовательности от однофазных к. з. выполняется в настоящее время электромагнитным максимальным реле тока РТ-40. Применение индукционного реле РТ-80 не рекомендуется, поскольку при малых кратностях тока это реле срабатывает со значительным замедлением (рис. 8-4), что может привести к серьезным повреждениям в резервируемой кабельной сети 0,4 кВ. Реле тока Т0 включается либо по схеме рис. 9-1, а, либо 9-1,6, где реле.2 включены в нулевой провод схемы соединения трех трансформаторов тока в полную звезду. Нулевой провод полной звезды является фильтром токов нулевой последовательности, так как в нормальном симметричном режиме нагрузки геометрическая сумма одинаковых по значению токов трех фаз равна нулю и в нулевом проводе проходит лишь незначительный ток небаланса, а при однофазном к. з. на землю — полный ток однофазного к. з. Применение той или другой схемы включения реле Т0 зависит только от первичной схемы.
Выдержка времени защиты осуществляется с помощью реле времени, которое срабатывает и начинает отсчитывать время после замыкания замыкающего контакта реле Т0 (по типу схемы на рис. 8-6, а). Таким образом, эта защита имеет независимую от тока характеристику.

3. Расчет параметров срабатывания (уставок)

Расчет параметров срабатывания состоит из выбора тока срабатывания защиты /с. з, тока срабатывания реле /с. р [см. выражение (5-2)] и времени срабатывания защиты /с. з.
Ток срабатывания защиты выбирается по следующим условиям, обеспечивающим:
несрабатывание (отстройку) от токов, которые могут проходить по заземленной нейтрали обмотки НН трансформатора при несимметрии нагрузки в нормальном режиме;
согласование по току и по времени с защитами элементов, отходящих от сборки НН (на рис. 9-1, а показаны автоматический выключатель АВ со встроенной защитой и плавкий предохранитель Пр)1 необходимые [1] значения коэффициента чувствительности при однофазном к. з. в основной зоне действия (на сборке НН) и в зоне резервирования (на элементах сети НН при отказе их собственной защиты).
Максимально допустимый в нормальном режиме ток в заземленной нейтрали обмотки НН для трансформаторов YIY- равен 0,25 /ном гр, для трансформаторов А/У — 0,75 /ном гр. Для обеспечения несрабатывания защиты при появлении таких токов в нейтрали ее ток срабатывания должен быть примерно в 1,5—2 раза выше [5].
Согласование рассматриваемой защиты трансформатора с защитами элементов, отходящих от сборки на стороне НН (рис. 9-1, а), по Правилам [11 не считается обязательным. Это объясняется тем, что выполнение условия согласования с защитными характеристиками автоматов и предохранителей относительно мощных элементов 0,4 кВ приводит к загрублению защиты трансформатора [5]. Однако отсутствие согласования по чувствительности между последующей защитой трансформатора и предыдущими защитами отходящих элементов достаточно часто вызывает неселективное отключение питающего трансформатора при таких к. з., когда защита предыдущего элемента оказывается недостаточно чувствительной (например, к. з. в обмотке электродвигателя или на удаленной сборке). Наилучшие условия для согласования обеспечиваются в тех случаях, когда на относительно мощных элементах 0,4 кВ устанавливается дополнительная токовая защита нулевой последовательности без выдержки времени, действующая на отключение автоматического выключателя (автомата) данного элемента (защита / на рис. 9-1,6). Такая защита предусматривается, например, Теплоэлектропроектом для электродвигателей 0,4 кВ начиная с мощности примерно 100 кВт.
При токе срабатывания, выбранном только по первому условию, рассматриваемая защита всегда имеет достаточный коэффициент чувствительности при однофазных к. з. на сборке НН и, как правило, в зоне резервирования, если, разумеется, первичная схема сети НН создана с учетом требований дальнего резервирования.
Время срабатывания защиты нулевой последовательности от к. з. на землю выбирается по возможности минимальным. Если на элементах сети
4 кВ имеется дополнительная защита нулевой последовательности без выдержки времени (реле / на рис. 9-1,6), то защиты нулевой последовательности на вводах 0,4 кВ трансформатора могут иметь tc. з = 0,4 с [14], а в нейтрали — на ступень селективности выше, т. е. 0,8 с (соответственно защиты 2 и 3 на рис. 9-1,6). Примеры расчета уставок защит трансформаторов этого класса напряжения приведены в работе [5].

ТЗНП: вопросы (Страница 1) — Спрашивайте

Здравствуйте, возникло еще несколько вопросов по ТЗНП.

1) Органы направления мощности бывают блокирующие и разрешающие. Я понимаю их принцип действия и для чего они нужны, но вот закономерность их применения ясна не очень.
К примеру, на картинке снизу видно (это логика ЭКРЫ), что 3я ступень ТЗНП может быть включена по такой системе, что будет срабатывать при срабатывании разрешающиего органа ИЛИ при несрабатывании блокирующего. А может быть и не включена (допустим, работа просто от разрешающего органа). Когда какой вариант выбирается, и с чем это связано?

2) Вычисление тока и напряжения срабатывания органа направления мощности
Для напряжения есть вот такая формула: 3U0=(Котс/Кв)*(3U0нб+3U0нр), где 3U0нб — первичное напряжение небаланса в рассчитываемом режиме (как я понял, определяется погрешностями ТН), 3U0нр — напряжение, обусловленное несимметрией в системе. Как я понимаю, 3U0нр бывает, если в сети есть ОАПВ. Я правильно понимаю, что нужно какую-то линию из смежных вырубить и посмотреть?

И, главное, вот откуда берется 3U0нб? Если бы речь шла о погрешностях замера ТН в нормальном режиме, то множим номинальное напряжение на погрешность (3 или 6 %), и все окей, а тут брать сколько?  Какой тут будет «номинал» по нулевой последовательности, 100 вторичных вольт, что ли?

При расчете всего этого хозяйства в АРМС РЗА программа сама берет эти уставки, как бы от балды ( 4 В и 0,2*JВТ А), JВТ=1 или 5 А — номинальный вторичный ток. Можно ли их оставить их в проектных расчетах, или все же следует ломать голову с вычислением?

Дистанционная защита линий (ДЗЛ): принцип работы, ступени, схема

Дистанционная защита линий, принцип работы, ступени, формула Для защиты тупиковых кабельных или воздушных линий с односторонним питанием достаточно максимально-токовой защиты или токовой отсечки. Но, если эти линии подключены последовательно друг за другом или соединяют между собой несколько источников питания, невозможно выполнить такие защиты селективными.

Представим, что от шин подстанции №1 отходит линия, питающая другую подстанцию — №2. А с шин этой следующей подстанции уходит еще одна линия.

При использовании МТЗ на подстанции №1 она должна срабатывать при КЗ на первой линии, но давать возможность подействовать защите подстанции №2 при КЗ на следующей.

Но при этом она должна еще и резервировать защиту второй подстанции, для чего должна подействовать и при КЗ на линии 2. Для этого время действия защит нужно установить так, чтобы на первой подстанции выдержка была больше. К тому же придется разделить логику работы МТЗ на две или более ступеней, выставив для первой из них ток срабатывания, равный расчетному току КЗ в конце первой линии.

dz linii 1
А теперь предположим, что с противоположной стороны линию №2 питает еще один источник энергии, не зависимый от первого. Теперь задача усложняется: токи короткого замыкания изменяются. К тому же МТЗ линий потребуется выполнить направленными.

Есть еще один вид защит, который может помочь эффективно отключить именно линию с повреждением – дифференциальная защита. Но для ЛЭП большой протяженности ее выполнить очень непросто.

При использовании же МТЗ и токовых отсечек устройства защиты получаются сложными, к тому же – недостаточно эффективными. Выход из ситуации – применение дистанционных защит.

Принцип действия защиты

Дистанционная защита (ДЗ) – название, говорящее о том, что она реагирует на расстояние до точки короткого замыкания. А если говорить точнее: логика ее работы зависит от места расположения точки замыкания, которое и определяет защита.

Делает она это с помощью устройств, называемых реле сопротивления.

Их задача: косвенным образом измерить сопротивление от места расположения защиты до точки короткого замыкания. А для этого, по закону Ома, ей требуются не только ток, но и напряжение, получаемое от установленного на шинах подстанции трансформатора напряжения.

Реле сопротивления срабатывает при условии:

dz linii 2

Здесь Zуст – уставка сопротивления срабатывания реле. Измеряемая величина является фиктивной, так как в некоторых режимах работы (например, при качаниях) ее физический смысл, как сопротивления, теряется.

Уставок срабатывания, а, следовательно, и реле сопротивления у ДЗ, как правило, не менее трех.

Защищаемая область делится на участки, называемые зонами. Время срабатывания для каждой из зон свое. А уставка реле сопротивления равна сопротивлению до точки КЗ в конце соответствующей зоны. Для пояснения вспомним пример с подстанциями и линиями.

Дистанционная защита линий, принцип работы, ступени, формула

Уставка первой зоны ДЗ

Рассчитывается так, чтобы она защищала только свою отходящую линию. Но не до самого конца, а с учетом погрешности измерения сопротивления – 0,7-0,85 ее длины. При срабатывании первой зоны ДЗ линия отключается с минимально возможной выдержкой времени, так как КЗ находится гарантированно на ней.

Вторая зона ДЗ

Резервирует отказ защиты следующей подстанции. Для чего она реагирует на КЗ в конце линии №2. И первая зона ДЗ для выключателя второй линии от подстанции №2 выставлена на сопротивление до той же самой точки КЗ, но уже от шин этой подстанции. Но выдержка времени 2 зоны ДЗ подстанции №1 больше, чем 1 зоны ДЗ подстанции №2.

Этим обеспечивается требуемая селективность: выключатель второй линии от подстанции №2 отключится раньше, чем отработает реле времени защиты на подстанции №1.

Третья зона ДЗ

Необходима для резервирования защиты следующей линии, если она есть в наличии. Дополнительного количества зон не предусматривается.

Интересное видео о настройке дистанционной защиты смотрите ниже:

Устройство и работа комплекта дистанционной защиты.

Тем не менее, на одних реле сопротивления и реле времени такую защиту не выполнить. На практике она включает в себя несколько функциональных блоков.

Пусковые органы ДЗ

Это токовые реле или реле полного сопротивления. Их задача: определить наличие КЗ в защищаемой цепи и запустить работу остальных устройств защиты.

Дистанционные органы.

Набор реле сопротивления для определения зоны срабатывания и дистанции до места КЗ. Устройство, формирующее выдержки времени для зон защиты. Это – обычные реле времени.

Реле направления мощности

На самом деле он применяется редко, так как реле сопротивления конструктивно обладают собственной диаграммой направленности, не позволяющей срабатывать защите при КЗ «за спиной». В итоге исключается срабатывание защиты при замыканиях в направлении, противоположном защищаемой линии.

Органы блокировок

Одно из которых — защита от исчезновения напряжения. При неисправностях цепей ТН ДЗ выводится из действия. Следующая блокировка работает при качаниях в системе. При их возникновении обычно происходит снижение напряжения на шинах и увеличение тока в защищаемых линиях. Эти изменения воспринимаются дистанционными органами защиты как уменьшение сопротивления, из-за чего также не исключена ложная работа защиты.

Дистанционная защита линий, принцип работы, ступени, формула

Применение дистанционной защиты

Дистанционная защита используется в сетях с питанием от двух и более источников.

Это линии связи напряжением 35, 110 кВ и выше, по которым осуществляется транзит электроэнергии.

Особенно эффективна и незаменима ДЗ в кольцевых схемах энергоснабжения, применение которых очень часто для единой энергетической системы страны.

Для всех сетей, где установлена ДЗ, она является основной защитой.

Конструкция ДЗ на электромеханической базе предполагает наличие большого количества элементов: обычных реле, трансформаторов. Для ее размещения выделяется целая панель. Современные же варианты микропроцессорных защит умещаются в одном терминале, соседствуя с другими их видами, а также – возможностью фиксирования срабатываний защит, работы блокировок, запись осциллограмм аварийных процессов. Совмещением нескольких устройств в одном терминале обеспечивается не только компактность, но и удобство в эксплуатации релейной защиты линии.

Ещё одно интересное короткое видео об анализе работы дистанционной защиты:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *