Примеры источники тока – Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.

Содержание

Хими́ческий исто́чник то́ка

Хими́ческий исто́чник то́ка (аббр. ХИТ) — источник ЭДС, в котором энергия протекающих в нём химических реакций непосредственно превращается в электрическую энергию.

Классификация

  • гальванические элементы (первичные ХИТ), которые из-за необратимости протекающих в них реакций невозможно перезарядить;

  • электрические аккумуляторы (вторичные ХИТ) — перезаряжаемые гальванические элементы, которые с помощью внешнего источника тока (зарядного устройства) можно перезарядить;

  • топливные элементы (электрохимические генераторы) — устройства, подобные гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне, а продукты реакций удаляются из него, что позволяет ему функционировать непрерывно.

Некоторые виды химических источников тока

Гальванический элемент — химический источник электрического тока, названный в честь Луиджи Гальвани. Принцип действия гальванического элемента основан на взаимодействии двух металлов через электролит, приводящем к возникновению в замкнутой цепи электрического тока.

Электрический аккумулятор — химический источник тока многоразового действия (то есть в отличие от гальванического элемента химические реакции, непосредственно превращаемые в электрическую энергию, многократно обратимы). Электрические аккумуляторы используются для накопления энергии и автономного питания различных устройств.

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

В современных химических источниках тока используются:

  • в качестве восстановителя (материал анода) — свинец Pb, кадмий Cd, цинк Zn и другие металлы;

  • в качестве окислителя (материал катода) — оксид свинца(IV) PbO2, гидроксооксид никеля NiOOH, оксид марганца(IV) MnO2 и другие;

  • в качестве электролита — растворы щелочей, кислот или солей[2].

Характеристики гальванических элементов

Гальванические элементы характеризуются: э.д.с., емкостью, энергией, которую он может отдать во внешнюю цепь, сохраняемостью.

  • Электродвижущая сила (ЭДС) гальванического элемента зависит от материала электродов и состава электролита. ЭДС описывается термодинамическими функциями, протекающих электрохимических процессов, в виде уравнения Нернста.

  • Ёмкость элемента — это количество электричества, которое источник тока отдает при разряде. Ёмкость зависит от массы запасенных в источнике реагентов и степени их превращения, снижается с понижением температуры или увеличением разрядного тока.

  • Энергия гальванического элемента численно равна произведению его ёмкости на напряжение. С увеличением количества вещества реагентов в элементе и до определенного предела, с увеличением температуры, энергия возрастает. Энергию уменьшает увеличение разрядного тока.

  • Сохраняемость — это срок хранения элемента, в течение которого его характеристики остаются в заданных пределах. Сохраняемость элемента уменьшается с ростом температуры хранения.

Классификация гальванических элементов

Гальванические первичные элементы — это устройства для прямого преобразования химической энергии, заключенных в них реагентов (окислителя и восстановителя), в электрическую.Реагенты, входящие в состав источника, расходуются в процессе его работы, и действие прекращается после расхода реагентов. Примером гальванического элемента является элемент Даниэля -Якоби.

Широкое распространение получили марганцево-цинковые элементы, не содержащие раствора электролита (сухие элементы, батарейки). Так, в солевых элементах Лекланше цинковый электрод служит катодом, электрод из смеси диоксида марганца с графитом служит анодом, графит служит токоотводом. Электролитом является паста из раствора хлорида аммония с добавкой муки или крахмала в качестве загустителя.

Щелочные марганцево-цинковые элементы, в которых в качестве электролита используется паста на основегидроксида калия, обладают целым рядом преимуществ, в частности существенно большей ёмкостью, лучшей работой при низких температурах и при больших токах нагрузки.

Солевые и щелочные элементы широко применяются для питания радиоаппаратуры и различных электронных устройств.

Вторичные источники тока (аккумуляторы) — это устройства, в которых электрическая энергия внешнего источника тока превращается в химическую энергию и накапливается, а химическая — снова превращается в электрическую. Одним из наиболее распространенных аккумуляторов является свинцовый (или кислотный). Электролитом является 25—30 % раствор серной кислоты. Электродами кислотного аккумулятора являются свинцовые решетки, заполненные оксидом свинца, который при взаимодействии с электролитом превращается в PbSO

4.

Также существуют щелочные аккумуляторы. Наибольшее применение получили никель-кадмиевые и никель-металлгидридные аккумуляторы, в которых электролитом служит KOH.

В различных электронных устройствах (мобильные телефоны, планшеты, ноутбуки), в основном, применяютсялитий-ионные и литий-полимерные аккумуляторы, характеризующиеся высокой ёмкостью и отсутствием эффекта памяти.

Электрохимические генераторы (топливные элементы) — это элементы, в которых происходит превращение химической энергии в электрическую. Окислитель и восстановитель хранятся вне элемента, в процессе работы непрерывно и раздельно подаются к электродам. В процессе работы топливного элемента электроды не расходуются. Восстановителем является водород (H

2), метанол (CH3OH), метан (CH4) в жидком или газообразном состоянии. Окислителем обычно является кислород воздуха или чистый. В кислородно-водородном топливном элементе со щелочным электролитом происходит превращение химической энергии в электрическую. Энергоустановки применяются на космических кораблях, они обеспечивают энергией космический корабль и космонавтов.

Применение

  • Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.

  • Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.

  • Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

Электри́ческий аккумуля́тор — источник тока многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве и в других сферах

История

Первый прообраз аккумулятора, который, в отличие от батареи Алессандро Вольты, можно было многократно заряжать, был создан в 1803 году Иоганном Вильгельмом Риттером. Его аккумуляторная батарея представляла собой столб из пятидесяти медных кружочков, между которыми было проложено влажное сукно. При пропускании через данное устройство тока от вольтова столба оно само стало вести себя как источник электричества[

Характеристики

Ёмкость аккумулятора

Максимально возможный полезный заряд аккумулятора называется зарядной ёмкостью, или просто ёмкостью. Ёмкость аккумулятора — это заряд, отдаваемый полностью заряженным аккумулятором при разряде до наименьшего допустимого напряжения. В системе СИ ёмкость аккумуляторов измеряют в кулонах, на практике часто используется внесистемная единица — ампер-час. 1 А⋅ч = 3600 Кл. Ёмкость аккумулятора указывается производителем. Не путать с электрической ёмкостью конденсатора.

В настоящее время всё чаще на аккумуляторах указывается энергетическая ёмкость — энергия, отдаваемая полностью заряженным аккумулятором при разряде до наименьшего допустимого напряжения. В системе СИ она измеряется в джоулях

, на практике используется внесистемная единица — ватт-час. 1 Вт⋅ч = 3600 Дж.

Плотность энергии

Плотность энергии — количество энергии на единицу объёма или единицу веса аккумулятора.

Саморазряд

Саморазряд — это потеря аккумулятором ёмкости после полной зарядки при отсутствии нагрузки. Саморазряд проявляется по-разному у разных типов аккумуляторов, но всегда максимален в первые часы после заряда, а после замедляется.

Для Ni-Cd аккумуляторов считают допустимым не более 10% саморазряда за первые 24 часа после проведения зарядки. Для Ni-MH саморазряд чуть меньше. У Li-ion он пренебрежимо мал и значительно себя проявляет в течение месяцев.

В свинцово-кислотных герметичных аккумуляторах саморазряд составляет около 40% за 1 год при условии 20°С и 15% при 5°С. Если температуры хранения более высокие, то саморазряд возрастает: батареи при 40°С теряют ёмкости 40% всего за 4-5 месяцев.

Температурный режим

Берегите аккумуляторы от огня и воды, чрезмерного нагревания (охлаждения), резких перепадов температур.

Не используйте аккумуляторы при температурах выше +40°С и ниже -25°С.

Нарушение температурного режима может привести к сокращению срока службы или потере работоспособности.

Методы заряда аккумуляторов

Для заряда аккумуляторов применяется несколько методов. Как правило, метод заряда зависит от типа аккумулятора и обеспечивается зарядным устройством

Медленный заряд постоянным током

Заряд постоянным током величиной 0.1 С или 0.2 С в течение примерно 15 или 6-8 часов соответственно.

Самый длительный и безопасный метод заряда. Подходит для большинства типов аккумуляторов.

Быстрый заряд

Заряд постоянным током, равным 1/3 С в течение примерно 3-5 часов

Ускоренный или дельта V заряд

Заряд с начальным током заряда, равным величине номинальной емкости аккумулятора, при котором постоянно измеряется напряжение аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда — примерно час-полтора. Возможен разогрев аккумулятора и даже его разрушение.

Реверсивный заряд

Выполняется чередованием длинных импульсов заряда с короткими импульсами разряда. Реверсивный метод наиболее полезен для заряда NiCd и NiMH аккумуляторов, для которых характерен так называемый «эффект памяти».

Топливный элемент — электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне — в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

История

Первые открытия

Принцип действия топливных элементов был открыт в 1839 г. английским ученым У. Гроувом, который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества[4]. Свой прибор, где удалось провести эту реакцию, ученый назвал «газовой батареей», и это был первый топливный элемент. Однако в последующие 100 лет эта идея не нашла практического применения.

В 1937 г. профессор Ф.Бэкон начал работы над своим топливным элементом. К концу 1950-х он разработал батарею из 40 топливных элементов, имеющую мощность 5 кВт. Такую батарею можно было применить для обеспечения энергией сварочного аппарата или грузоподъемника[5]. Батарея работала при высоких температурах порядка 200°С и более и давлениях 20-40 бар. Кроме того, она была весьма массивна.

Примеры применения топливных элементов

Область применения

Мощность

Примеры использования

Стационарные установки

5-250 кВт и выше

Автономные источники тепло- и электроснабжения жилых, общественных и промышленных зданий, источники бесперебойного питания, резервные и аварийные источники электроснабжения

Портативные установки

1-50 кВт

Дорожные указатели, грузовые и железнодорожные рефрижераторы, инвалидные коляски, тележки для гольфа, космические корабли и спутники

Транспорт

25-150 кВт

Автомобили и другие транспортные средства, военные корабли и подводные лодки

Портативные устройства

1-500 Вт

Мобильные телефоны, ноутбуки, карманные компьютеры, различные бытовые электронные устройства, современные военные приборы

Преимущества водородных топливных элементов

Топливные элементы обладают рядом ценных качеств, среди которых

Высокий КП

  • У топливных элементов нет жёсткого ограничения на КПД, как у тепловых машин (КПД цикла Карно является максимально возможным КПД среди всех тепловых машин с такими же минимальной и максимальной температурами).

  • Высокий КПД достигается благодаря прямому превращению энергии топлива в электроэнергию. Если в обычных генераторных установках топливо сначала сжигается, полученный пар или газ вращает турбину или вал двигателя внутреннего сгорания, которые в свою очередь вращают электрический генератор. Результативный максимум КПД составляет 53 %, чаще же он находится на уровне порядка 35-38 %. Более того, из-за множества звеньев, а также из-за термодинамических ограничений по максимальному КПД тепловых машин, существующий КПД вряд ли удастся поднять выше. У существующих топливных элементов КПД составляет 60-80 %

  • КПД почти не зависит от коэффициента загрузки.

Экологичность

pro: В воздух выделяется лишь водяной пар, который не наносит вреда окружающей среде.

contra: водород просачиваясь как из баллона так и топливного элемента, будучи легче воздуха безвозвратно покидает атмосферу Земли, что при массовом применении технологий на водороде, способно привести к глобальной потере воды, если водород будет производиться электролизом воды.

Компактные размеры

Топливные элементы легче и имеют меньшие размеры, чем традиционные источники питания. Топливные элементы производят меньше шума, меньше нагреваются, более эффективны с точки зрения потребления топлива. Это становится особенно актуальным в военных приложениях. Например, солдат армии США носит 22 различных типа аккумуляторных батарей. Средняя мощность батареи 20 ватт. Применение топливных элементов позволит сократить затраты на логистику, снизить вес, продлить время действия приборов и оборудования.

Химические источники тока. Виды и особенности. Устройство и работа

Химические источники тока (ХИТ) — эта тема имеет высокое практическое значение. Это кардиостимуляторы, электромобили, которые пытаются сохранить экологию, портативные устройства, включая фото и видеотехнику, компьютерную технику, навигаторы. За последние годы прогресс химических источников тока произошел большой, от известных свинцовых аккумуляторов, которые постепенно вытесняются литий-ионными, литий-полимерными и другими аккумуляторами.

В этой области борьба идет за мощность, емкость, которая позволяет максимально долго использовать источники тока. Дополнительным стимулом к их развитию является создание гибких источников тока. Научная составляющая в этой области лежит в плане разработки материалов для таких химических элементов.

Устройство и работа

Химические источники тока состоят из электродов и электролита, который находится в емкости. Электрод, на котором окисляется восстановитель, называется анодом. Электрод, на котором восстанавливается окислитель, называется катодом. В общем получается электрохимическая система.

Попутным результатом такой реакции стало возникновение тока. Восстановитель передает электроны на окислитель, который восстанавливается. Электролит, который находится между электродами, нужен для прохождения реакции. Если перемешать порошки различных двух металлов, то электричество не возникнет, энергия появится в виде теплоты. Электролит необходим для упорядочения процесса движения электронов. Электролит состоит обычно из раствора соли или расплавленного вещества.

Электроды имеют вид решеток или пластин из металла. При помещении их в раствор электролита получается разность потенциалов пластин. Анод отдает электроны, а катод их принимает. На поверхности возникают химические реакции. Когда цепь размыкается, то реакции прекращаются. Если реагенты закончились, то реакция также больше не идет. Если удалить один из электродов, то цепь размыкается.

Из чего состоят химические источники тока

В качестве окислителей применяются соли и кислородосодержащие кислоты, а также нитроорганические вещества, кислород. В качестве восстановителей применяются металлы, оксиды, углеводороды.

Электролит может состоять из:
  • Соли, щелочи и кислоты, растворенные в воде.
  • Соли в растворе, с возможностью электронной проводимости.
  • Расплавленные соли.
  • Твердые вещества с подвижным ионом.
  • Электролиты в виде матрицы. Это растворы жидкости, расплавы, которые находятся в порах электроносителя.
  • Электролиты с ионным обменом. Твердые вещества с закрепленными ионогенными группами, с одним знаком. С другим знаком ионы подвижны. Эта характеристика позволяет создать однополярную проводимость.

Гальванические элементы

Напряжение на ячейке составляет 0,5-4 вольта. В химических образцах источника применяют гальваническую батарею, которая состоит из элементов. Может использоваться параллельная схема нескольких элементов. При последовательной схеме в цепь включены одинаковые батареи. Они должны обладать одинаковыми свойствами, с одной конструкцией, технологией, типоразмером. Для схемы параллельного соединения подойдут элементы с различными свойствами.

Классы
Химические источники тока делятся по следующим свойствам:
  • Размерности.
  • Конструктивным особенностям.
  • Применяемым химическим веществам.
  • Источнику реакции.

Эти свойства создают эксплуатационные параметры источников, которые подходят для определенной области использования.

Деление на классы электрохимических источников основывается на отличии в способе действия устройства. По этим свойствам их различают:
  • Первичные источники – для однократного применения. В них заключен определенный запас веществ, который будет израсходован при реакции. Когда произойдет разряд, ячейка исчерпывает свою способность к работе. Первичные источники, основанные на химических реакциях, называются элементами. Наиболее простой элемент – это батарейка типа АА.
  • Химические источники тока, которые имеют возможность перезаряжаться, называются аккумуляторами, это вторичные многоразовые элементы. Израсходованные химические элементы могут регенерироваться и снова накопить энергию, путем подключения к ним тока. Это называется зарядкой элементов. Такие элементы применяют длительное время, так как их легко зарядить. В процессе разряда вырабатывается электрический ток. К таким источникам можно причислить элементы питания различных видов приборов и устройств, таких как смартфоны, ноутбуки и т.д.
  • Тепловые химические источники тока – это приборы постоянного действия. В результате их работы постоянно поступает новая порция веществ и удаляется использованный продукт реакции.
  • В смешанных элементах находится запас реагента. Другой реагент поступает в устройство снаружи. Время действия устройства имеет зависимость от резерва первого вещества. Комбинированные элементы применяются в качестве аккумуляторов, когда имеется возможность регенерации их заряда через прохождение тока от внешнего питания.
  • Химические источники тока, которые могут возобновлять заряд, заряжаются разными способами. В них можно заменять израсходованные реагенты. Такие источники действуют не постоянно.
Свойства
Основные характеристики ХИТ можно перечислить в таком виде:
  • Разрядное напряжение. Это свойство имеет зависимость от определенной электрохимической системы. А также оказывает влияние процент концентрации электролита, температура, ток.
  • Мощность.
  • Разрядный ток, зависящий от сопротивления цепи.
  • Емкость, наибольшее количество энергии, которое источник выдает при общем разряде.
  • Запас энергии – наибольшая энергия, которая получена при полном разряде устройства.
  • Энергетические свойства и характеристики. Для батарей аккумуляторов это число циклов заряда и разряда, без уменьшения емкости и напряжения (ресурс).
  • Температурный интервал работы.
  • Сохраняемый срок – наибольший допускаемый период времени от изготовления до первого разряда элемента.
  • Время службы – наибольший допускаемый срок работы и хранения. Для элементов на топливе имеют значение сроки работы при постоянной и периодической работе.
  • Полная энергия, отданная за все время работы.
  • Механическая, вибрационная прочность.
  • Возможность функционирования в любом положении.
  • Надежная работа.
  • Простота в уходе.
Сахарная батарея

Чтобы произвести литий-ионные аккумуляторы в Японии закупают материалы в других странах. Это негативно сказывается на экономическом положении страны. Поэтому ученые ищут способы изготовления аккумуляторов из того сырья, которое имеется в наличии. Таким сырьем в Японии стал сахар. Аккумулятор на сахаре в Японии по свойствам имеет надежность и энергоемкость выше обычных аналогов, и стоимость его ниже.

Большой спрос на литий, который вызван резким распространением переносных аккумуляторов, озаботил производителей аккумуляторов, так как этот элемент добывается только в странах с политической нестабильностью. Это явилось вторым фактором поиска альтернативных материалов для недорогих аккумуляторов с высокой надежностью. Сахароза легко преобразуется в дешевый материал для анодного сырья в литий-ионных батареях.

Сахар нагревают в условиях вакуума под давлением до 1500 градусов. Он превращается в порошок, состоящий из углерода, который может повысить заряд на 20% больше аналогичных изделий. Это явилось первым шагом в разработке дешевых батарей. Пока такие виды батарей не составляют конкуренции современным аккумуляторам. Но ученые предполагают, что в будущем подобные разработки вытеснят дорогие изделия.

Требования

Конструктивные особенности химических источников тока должны создавать условия, которые способствовали бы максимальной эффективности химических реакций.

К таким условиям можно отнести:
  • Недопущение утечек тока.
  • Постоянная работа.
  • Герметичность.
  • Раздельное помещение реагентов.
  • Качественное контактирование электролита с электродами.
  • Хороший отвод тока из объекта химической реакции до наружного вывода с наименьшими потерями.
К химическим элементам предъявляются требования:
  • Повышенные значения свойств.
  • Максимальный диапазон температуры работы.
  • Наибольшее напряжение.
  • Минимальная себестоимость электричества.
  • Постоянное значение напряжения.
  • Хорошее сохранение заряда.
  • Безопасное функционирование.
  • Простое обслуживание, или ее отсутствие.
  • Долговременная работа.
Эксплуатация источников тока

Основное достоинство первичных элементов состоит в отсутствии надобности обслуживания. Перед работой нужно просто осмотреть их, определить срок годности. При включении в цепь нельзя путать полярность и допускать повреждения контактов. Сложные конструкции источников требуют особого ухода. Цель его заключается в удлинении срока службы до максимума.

Уход за аккумуляторами требует выполнения следующих мероприятий:
  • Обеспечение чистоты.
  • Контроль параметра напряжения отключенной цепи.
  • Обеспечение необходимого уровня электролита, доливки дистиллированной воды.
  • Проверка концентрации электролита ареометром.

При использовании батареек (гальванических элементов) нужно выполнять требования, которые относятся к применению электрических приборов.

Сфера использования
В современное время химические источники тока используются в:
  • Транспорте.
  • Переносных устройствах.
  • Космической технике.
  • Оборудовании научных исследований.
  • Медицинских приборах.
Применяются в бытовой сфере:
  • Батарейки (сухие).
  • Батареи аккумуляторов электроники.
  • Аккумуляторы на автомобилях.

Большое распространение нашли литиевые химические источники тока. Это обусловлено наличием у лития максимальной удельной энергии. Он отличается наиболее отрицательным потенциалом электрода из металлов. Батареи литий ионного типа опередили все другие источники по размеру значений удельной энергии. В настоящее время ученые разрабатывают различные усовершенствования литиевых аккумуляторов. Разработки ведутся в направлении получения конструкций корпуса сверхмалой толщины, которые будут использоваться для питания смартфонов и подобных им гаджетов, а также создание сверхмощных батарей аккумуляторов.

В последнее время серьезные работы ученых ведутся по изобретению и модернизации топливных батарей – устройств, которые создают электрическую энергию, за счет проведения химических реакций веществ, постоянно подающихся к электродам снаружи. Для окисления берут кислород, а в качестве топлива пытаются использовать водород. На основе таких батарей уже действуют некоторые опытные образцы на электростанциях.

Похожие темы:

Генератор тока (источник тока). Различия и сходства стабилизаторов тока и напряжения.

3 300

      Бурыкин Валерий Иванович

      Генератор тока и генератор напряжения. В чём разница? Что такое Генератор тока и каковы области его применения.

      ***

      По работе нужно было найти какое либо внятное описание того, что собой представляет генератор тока (стабилизатор тока, источник тока), его области применения и примеры расчёта. Ничего приемлемого найти не удалось.

      Пришлось самому приступить к написанию статьи отвечающей на эти вопросы.

      И ещё, пришлось заменить общепринятые обозначения «дельта» и «бесконечность» на слова. К сожалению, вместо них при попытке считать текст отображаются вопросительные знаки.

      28.02.2012г.

      

      ***

      

      Первое, что нам необходимо понять — это то в чём различия генератора тока и стабилизатора напряжения.

Стабилизатор напряжения.

       Другие названия:

       — источник напряжения;

       — генератор напряжения;

       — источник опорного напряжения (в схемах его обычно обозначают как ИОН).

      Основное требование:

      Uвых. = const.

      Ток в нагрузке подключенной к выходу стабилизатора напряжения изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора напряжения соответствует Rнагр. = бесконечности.

      Идеальный генератор напряжения создаёт на сопротивлении нагрузки напряжение стабильной величины. При этом его внутреннее сопротивление равно нулю (Ru = 0). Ток в нагрузке определяется по формуле:

      Iнагр. = U / Rнагр.

      Из этого можно сделать вывод:

      — так как напряжение стабильно, то при изменении Rнагр. будет изменяться ток, протекающий через нагрузку, Рис. 1.


Рис. 1 Схема идеального источника напряжения.

      Идеальный источник напряжения при уменьшении Rнагр. до нуля способен создавать ток бесконечно большой величины.

      Но в жизни ничего идеального не существует, все источники напряжения имеют некоторое внутреннее сопротивление — Ru.

      Это приводит к тому, что напряжение источника делится между внутренним сопротивлением Ru и сопротивлением нагрузки Rнагр, Рис. 2



Рис. 2 Функциональная схема реального источника напряжения.

      Поэтому ток в нагрузке вычисляется по формуле:

      Iнагр. = U / (Ru + Rнагр.)

      Максимальный ток возникает при Rнагр. = 0.

      Из формулы видно — ток в нагрузке зависит от напряжения развиваемого источником, а также от величины суммы сопротивлений Rнагр. и Ru.

      Как правило, внутреннее сопротивление источника напряжения (Ru) выбирается как минимум в 100 раз меньше минимально возможного значения сопротивления нагрузки (Rнагр. min). В этом случае напряжение на выходе источника при изменении сопротивления нагрузки от бесконечности до Rнагр. min будет изменяться не более чем на 1%.

      Т.е. желательно, чтобы соблюдалось условие:

      Rнагр. min => 100*Ru

      В данном случае мы не рассматриваем вопрос о мощности источника напряжения. Мощность зависит от принципа построения источника, реализуемой схемы и применяемых компонентов.

      Теперь посмотрим, что собой представляет генератор тока

Генератор тока.

      Другие названия:

       — источник тока;

       — стабилизатор тока.

      Основное требование:

      Iвых. = const.

      При этом напряжение на нагрузке изменяется в зависимости от величины Rнагр.

      Идеальный режим работы стабилизатора тока возникает при Rнагр. = 0

      Идеальный источник тока создаёт в нагрузке стабильный ток, то есть — ток, величина которого не зависит от сопротивления нагрузки, Рис. 3.



Рис. 3 Функциональная схема идеального источника тока.

      Так как ток источника не зависит от величины сопротивления нагрузки то при изменении Rнагр. пропорционально будет изменяться и Uнагр.

      Uнагр. = Rнагр. * Iист.

      Идеальным генератором тока считается такой источник, через который протекает ток неизменной величины и не зависящий от Rнагр.

      В таком случае если Rнагр стремится к бесконечности, то Uнагр. так же стремится к бесконечности. Такая ситуация на практике неосуществима. Реальные генераторы тока поддерживают стабильный ток в нагрузке только в пределах от Rнагр. = 0 до некоторой величины Rнагр. max.

      Эквивалентные схемы генераторов тока, приводимые в академической литературе малопонятны, а формулы, описывающие их работу, вряд ли когда-либо понадобятся в практических расчетах.

      Поэтому я начну сразу с практических схем.

      Наиболее доступная и простая как в понимании, так и в расчётах схема выглядит так:



Рис. 4 Практические схемы простых генераторов тока на биполярных транзисторах.

      На рисунке изображены две одинаковые схемы простых генераторов тока. Разница состоит только в том, что применены транзисторы разной проводимости. Другое отличие это то, к какому полюсу источника питания подключена нагрузка.

      В обоих случаях применена схема включения транзистора с общим коллектором (эмиттерный повторитель). Эмиттерным повторителем она названа за то, что изменение напряжения на эмиттере (Uэ) повторяет изменение напряжения на базе, в нашем случае это Uстаб.

      Повторяет именно изменение напряжения, а не само напряжение так как существует падение напряжения на эмиттерном переходе транзистора. Поэтому в случае усилителя постоянного тока напряжение Uэ будет определяться по формуле:

      Uэ = Uстаб. — Uбэ

      где Uбэ — падение напряжения на переходе база — эмиттер транзистора.

      Поскольку Uэ зависит только от напряжения стабилизации стабилитрона и от напряжения Uбэ, а значения этих напряжений можно считать константами, то в идеальном случае Uэ не будет зависеть от изменения Uпит. и Rн.

      Ток протекающий через Rэ является одновременно и током протекающим через нагрузку, то есть IRэ = Iист.

      Соответственно Iист. вычисляется по формуле:

      Iист. = Uэ / Rэ

      где: Uэ и Rэ константы, следовательно и Iист. — так же константа.

      На самом деле стабильность напряжения Uэ зависит от того насколько стабилитрон VD чувствителен к изменению протекающего через него тока и к воздействию окружающей температуры.

      То же самое относится и к переходу база — эмиттер транзистора.

      Пока будем считать, что эти факторы нас не касаются.

      В этом случае мы будем находиться в счастливом заблуждении, что наши расчёты абсолютно точны.

       Основные параметры источника (генератора) тока:

      1. Величина требуемого СТАБИЛЬНОГО тока — (Iист.).

       Т. е. тока, который питает нагрузку и не изменяется под воздействием внешних факторов.

      2. Максимальное сопротивление нагрузки — (Rнагр. max).

      3. Минимально возможное напряжение источника питания для нашей схемы — (Uпит. min).

Что нужно для расчёта источника тока.

      Самый тяжёлый вариант входных условий.

      Здесь вас пытаются уложить в Прокрустово ложе тем, что лишают манёвра.

      Требования заказчика:

      а. Ток источника тока (генератора тока) = Iист.

      б. Сопротивление нагрузки, которое меняется от Rнагр. min до Rнагр. max.

      Замечу — нижний предел сопротивления нагрузки (Rнагр. min) для генератора тока всегда можете смело принимать за ноль.

      Rнагр. max. — определяется из характеристик питаемого оборудования и важен для расчёта.

      в. Напряжение питания = Uпит.

      Методика расчёта генератора тока.

      Первое, что нужно определить это то какое максимальное напряжение необходимо развить на Rнагр.

      Uнагр. max = Iист. * Rнагр. max

      Далее определить то, каким запасом по напряжению мы располагаем.

      Uзап. = Uпит. — Uнагр. max

      Нужно понимать, что напряжение запаса должно поделиться между Uкэ. и Uэ.

      Значение напряжения Uкэ. которое снижается до минимального значения при максимальном значении Rнагр. желательно принять не менее 3 Вольт. Конечно чем больше, тем лучше

      Далее можем вычислить с каким максимальным напряжением стабилизации при заданных условиях можно выбрать стабилитрон.

      Uстаб. max = Uзап. — Uкэ + Uбэ

      Сопротивление Rэ рассчитываем по формуле:

      Rэ = (Uстаб. — Uбэ) / Iист.

      

      Из этой формулы видно, что током генератора тока мы можем управлять двумя способами:

      — изменяя Uстаб.;

      — изменяя Rэ.

      Uбэ — константа и изменению не подлежит.

      Есть ещё один подводный камень, это соотношение напряжений Uбэ и Uстаб.

      Из последней формулы видно, что если Uстаб. окажется меньше или равно Uбэ, то в этом случае Rэ должно быть либо равным нулю, либо отрицательным. И то, и другое невозможно.

      Таким образом, если Uстаб. получится меньше или равно Uбэ то схема окажется неработоспособной, так как в этом случае мы не сможем открыть транзистор и создать хоть какое либо падение напряжения на Rэ.

      Желательно получить Uстаб. в шесть — семь раз превышающее Uбэ.

      Если Uстаб. получается близким по значению к Uбэ то необходимо изменять входные условия. Если вы не можете повлиять на параметры нагрузки: (уменьшить Rнагр. max) или согласовать уменьшение тока от генератора тока, остается только один вариант — увеличить напряжение питания. Если и это невозможно согласовать…. Тогда пошлите заказчика к чёрту, а расчёты выкиньте в корзину.

      

Пример расчета простого генератора тока на биполярном транзисторе

      Тяжёлый вариант.

      Требования заказчика:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Это и есть то самое Прокрустово ложе.

      Простейшая для понимания схема будет такова:



Рис. 5

Пример расчета:

      Первое что нужно сделать, это проверить возможность создания такого генератора тока.

      Попробуем произвести расчёт.

      Uнагр. max = Iист. * Rнагр. max. = 0.02 * 3 000 = 60В

      Видим неприятную картину.

      Заданное Uпит. меньше требуемого Uнагр. max. Следовательно мы не сможем обеспечить требуемый ток в нагрузке при максимальном сопротивлении Rнагр.

      Что делать?

      Самое удобное для нас это уменьшить ток генератора тока. Как было сказано ранее этого можно добиться либо уменьшая Uстаб., либо увеличивая Rэ.

      Ток при этом определяется по формуле:

      Iист. = (Uстаб. — Uбэ) / Rэ

      Допустим, нам удалось согласовать изменение величины тока.

      Посмотрим, какая величина Iист. нас устроит.

      Как уже говорилось Uстаб. желательно выбрать не менее 6* Uбэ. Среднее значение Uбэ для кремниевых транзисторов составляет 0,65 В. Оно может изменяться в зависимости от выбранного транзистора, но ненамного (если конечно вы не выберете составной транзистор). Рассчитаем величину Uстаб.

      Uстаб. = Uбэ * 6 = 0,65 * 6 = 3,9В

      Обращаемся к справочнику по диодам, находим там раздел «Стабилитроны». И о чудо! Есть такой стабилитрон! И зовут его 2С139А.

      Он обладает следующими параметрами:


      Uст — напряжение стабилизации стабилитрона

      Uст ном — номинальное напряжение стабилизации стабилитрона

      Iст — ток стабилизации стабилитрона

      Iст ном — номинальный ток стабилизации стабилитрона

      Рmax — максимально-допустимая рассеиваемая мощность на стабилитроне

      rст — дифференциальное сопротивление стабилитрона

      aст — температурный коэффициент стабилизации стабилитрона

      Тк max — максимально-допустимая температура корпуса стабилитрона

      Далее определим необходимый запас по напряжению.

      Uзап. = Uстаб. — Uбэ + Uкэ = 3,9 — 0,65 + 3 = 6,25 В

      Вычитаем из величины питающего напряжения напряжение запаса и получаем максимально возможное напряжение на нагрузке.

      Uнагр. = Uпит. — Uзап. = 50 — 6,25 = 43,75 В

      Полученную величину Uнагр. делим на Rнагр. max. и получаем то значение тока, которое нас устроит.

      Iист. = Uнагр / Rнагр. max = 43.25 / 3000 = 0.0144 А

      Итак, нам удалось изменить требования заказчика, теперь они выглядят так:

      а. Iист. = 14,4мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Значит, мы можем приступить к окончательному расчёту элементов схемы.

      Rбал. = (Uпит. — Uстаб.) / Iст ном = (50 — 3,9) / 0,01 = 4610 Ом

          Где: Iст ном — взято из справочника.

      Выбираем ближайшее значение Rбал. (желательно в меньшую сторону):

      Rбал. = 4,3кОм.

      

      Определим величину сопротивления Rэ.

      Rэ = (Uстаб. — Uбэ) / Iист. = (3,9 — 0,65) / 0.0144 = 225,694444444444…….Ом.

      Опять же принимаем ближайшее значение и снова в меньшую сторону.

      Rэ = 220 Ом.

      В итоге получаем окончательную схему.



Рис. 6 Результат расчёта.

      Какой выбрать транзистор VT1?

      Да любой биполярный npn транзистор.

      Нужно помнить только, что у нас задано Uпит = 50 В. А это говорит о том, что допустимое напряжение Uкэ должно быть не менее этого значения (лучше раза в полтора больше). Максимальную мощность, рассеиваемую на корпусе транзистора можно рассчитать исходя из предельного режима, когда Rнагр. = 0.

      В этом случае Uкэ будет равно Uпит.-Uэ.

      Значит, мощность рассеяния можно определить из формулы:

      Pк max = (Uпит. — (Uстаб. — Uбэ)) * Iист. = (50 — (3,9 — 0,65)) * 0,0144 = 0,673 W

      где Pк — мощность рассеиваемая на коллекторе транзистора и выбирается она из справочника. (Надеюсь нет смысла объяснять почему нужно выбрать транзистор с несколько большим Pк?).

      В этом расчёте мы исходим из условия короткого замыкания в нагрузке.

      Можно конечно произвести расчёт из условия Rнагр = Rнагр. min, т.е. то минимальное сопротивление которое задано заказчиком. В этом случае Pк max. получится меньше, но в тоже время источник может оказаться слишком чувствительным к короткому замыканию в нагрузке.

      Может случиться так, что заказчик не пойдет на то чтобы изменить входные параметры.

      В этом случае нужно понять: какую сумму он готов заплатить за готовое изделие.

      Физика есть физика и против её законов не попрёшь.

      Если заказчик готов раскошелиться, то в схему можно ввести дополнительный источник питания, позволяющий входное напряжение 50В преобразовать в то напряжение, которое позволит нам вписаться в исходные условия.

      Рассчитаем какое минимальное Uпит. нам необходимо для удовлетворения первоначальных условий. Вот эти условия:

      а. Iист. = 20мА;

      б. Rнагр. max. = 3кОм;

      в. Uпит. = 50В.

      г. нагрузка привязана к + Uпит.

      Uэ и Uкэ можно оставить прежними, к ним у нас претензий быть не должно.

      То, какое максимальное напряжение на нагрузке при данных условиях мы должны развить уже было рассчитано (Uнагр. max = 60 В).

      В этом случае (если мы снова возьмём стабилитрон 2С139А) минимальное значение напряжения питания можно определить из формулы:

      Uпит. min = Uнагр. max + Uэ + Uкэ = 60 + 3,25 + 3 = 66,25 В

      где Uэ = Uстаб. — Uбэ.

      Для ровного счёта примем Uпит. min = 67 В.

      В этом случае схема примет следующий вид:



Рис. 7 Генератор тока с внутренним источником напряжения.

      Есть одно НО! Добавление этого квадратика может увеличить стоимость схемы в сотню раз. Хотя желание заказчика мы при этом удовлетворим.

      Иногда в схему генератора тока вводят операционный усилитель (другое название — дифференциальный усилитель). Это позволяет создать большой коэффициент усиления в цепи отрицательной обратной связи и исключить влияние Uбэ транзистора на стабильность выходного тока.

      Пример такой схемы приведён на Рис. 8.

      Расчёт такой схемы отличается только тем, что нужно забыть об Uбэ.



Рис. 8 Генератор тока с дифференциальным усилителем.

      Можно пойти дальше и создать стабилизатор тока с регулируемым значением Iист.

      В этом случае желательно заменить стабилитрон на маломощный линейный стабилизатор напряжения. Обычно такие стабилизаторы напряжения в схемах обозначаются как ИОН (источник опорного напряжения).

      Вот пример такой схемы:



Рис. 9 Регулируемый генератор тока.

      Ну вот, кажется всё основное, то что касается построения и расчёта генераторов тока я изложил.

      Теперь встаёт вопрос…. А на кой чёрт нам всё это нужно?

      Ну, стабилизаторы напряжения… — тут всё понятно!

      Широко применяются в бытовой и промышленной электронике. Ни одно современное электронное устройство не обходится без них.

      А зачем нужно устройство, которое не может поддерживать стабильное напряжение на нагрузке, и это напряжение постоянно «гуляет», а величина этого напряжения будто привязана к величине Rнагр.?

      Рассмотрим некоторые области применения генераторов тока (стабилизаторов тока, источников тока).

      Первая и наверное самая распространённая область — это источники стабильного напряжения, как раз то без чего не обходится практически ни одно современное электронное устройство.

      В простейшем случае общая схема стабилизатора напряжения выглядит так:



Рис. 10 Функциональная схема стабилизатора напряжения.

      Обозначения в схеме:

      

      ИОН — источник опорного напряжения;

      Уош. — усилитель ошибки;

      Uоп. — опорное напряжение;

      Uдел. — напряжение снимаемое с делителя подключенного к выходному напряжению стабилизатора напряжения.

      Uош. — напряжение ошибки, оно вычисляется как Uоп. — Uдел.

      

      Напряжение на выходе стабилизатора зависит от величины Uоп. и коэффициента деления делителя.

      Uстаб. = Uоп * (Rдв + Rдн) / Rдн

      Усилитель ошибки сравнивает два напряжения Uоп. и Uдел., его главная задача поддерживать Uош. близким к нулю, а следовательно следить за тем, чтобы Uстаб. оставалось неизменным.

      Допустим мы имеем почти идеальный Уош., способный удерживать Uош. в десятки тысяч раз меньшим чем Uоп. (такие дифференциальные каскады сейчас существуют)

      В этом случае мы можем пренебречь влиянием элементов схемы Уош. на величину Uстаб. и главным виновником в нестабильности выходного напряжения при изменении Uпит. будет ИОН.

      

      Простейший источник опорного напряжения выглядит так:



Рис. 11 Простой источник опорного напряжения.

      Допустим, в процессе эксплуатации, Uпит. может изменяться от 18 до 36 Вольт.

      Мы располагаем всё тем же стабилитроном 2С139А (учтите, буквы русские).

      Первое что нужно сделать это рассчитать Rбал. Оно рассчитывается исходя из минимальной величины Uпит, при этом следует задаться минимальным током стабилитрона Iстаб. min.

      Из справочных данных следует что рабочий диапазон токов стабилитрона лежит в пределах 3 — 70 mA. Номинальный ток — 10 mA. Подбираться слишком близко к нижнему пределу не стоит, так как при этом слишком сильно возрастает Rст. Определимся с минимальным током стабилитрона равным 7mA.

      Тогда:

      Rбал. = (Uпит. min — Uстаб.) / Iстаб. min = (18 — 3.9) / 7 = 2.014 кОм.

      Ближайшее значение 2 кОм.

      При Rбал. = 2 кОм и дельта Uпит. = 18 В, дельта Uоп. составит 0,53 В.

      Разделив дельту на номинальное напряжение стабилитрона, определим величину нестабильности напряжения такого ИОН:

      0,53 / 3,9 = 0,135

      Т.е. нестабильность ИОН будет равна 13,5%.Понятно, что напряжение на выходе стабилизатора напряжения будет изменяться по такому же закону. И его нестабильность так же составит 13,5%.

      Посмотрим на сколько при таком изменении напряжения питания изменится ток протекающий через стабилитрон.

      Изменение тока протекающего через стабилитрон можно вычислить по следующей формуле:

      дельта Iстаб. = (Uпит. max — Uпит. min) / Rбал. = (36 — 18) / 2000 = 9 mA.

      Изменение тока составило 129% так как:

      дельта Iстаб. / Iстаб. min = 9 / 7 = 1,29

      Но нестабильность по напряжению в 13,5% нас не устраивает. Что делать?

      Вот здесь нам и придёт на помощь его величество Генератор Тока.

      Давайте запитаем стабилитрон, с которого будем снимать опорное напряжение, через это самое величество:



Рис. 12 Схема ИОН с повышенной стабильностью Uоп.

      Допустим VD1 иVD2 будут всё те же 2С139А. В этом случае Rбал. так же будет равно 2 кОм.

      Зададимся током через VD2. По справочнику номинальный ток этого стабилитрона 10 mA. Не мудрствуя лукаво примем это за истину.

      Вычислим величину Rэ.

      Rэ = (UVD1 — Uбэ.) / IVD2 = (3.9 — 0.65) / 10 = 0.325 кОм.

      Принимаем ближайшее значение 330 Ом.

      Изменение тока протекающего через Rэ, а значит и через VD2 при изменении Uпит. на 18 Вольт будет таким же как и изменение напряжения на VD1 рассчитанное ранее, т.е. 13,5%.

      Абсолютная величина изменения тока VD2 составит: 10mA * 13.5% = 1,35mA, в отличии от 9 mA в VD1. Это приведёт к изменению напряжения на стабилитроне VD2 на 0,081V. Нестабильность опорного напряжения снизится до 2,1%.

      Вместо 13,5% на VD1!

      И это притом, что я выбрал довольно паршивый стабилитрон. Хотите получить меньшую нестабильность выбирайте стабилитрон с меньшим Rст.

      

      Ну вот, с одной областью применения генераторов тока кажется разобрались.

      Что же ещё? Где ещё нам может понадобиться источник стабильного тока?

      Да там где используются резистивные датчики.

      Фоторезисторы, термосопротивления, резистивные тензодатчики и т.д. и т.п.



Рис. 13 Один из вариантов подключения датчиков к генератору тока.

      Сопротивление таких датчиков является функцией какого либо внешнего параметра — температуры, освещённости, давления. Обозначим зависимость Rдат. от величины параметра (P) как f(P).

      Как правило, сопротивление связано с измеряемым параметром определённой математической формулой. Ток протекающий через датчик в случае использования идеального источника тока не зависит от Uпит.

      Падение напряжения на Rдат будет определяться по формуле:

       Uдат. = Iист. * f(P).

      Так как Iист. = const, то Uдат. будет изменяться по тому же закону что и Rдат. Вот здесь нам и пригодилось то, что напряжение на выходе генератора тока «привязано» к Rнагр.

      А дальше всё просто: берём контроллер на основе микропроцессора, закладываем в него софт состоящий из многих программ предназначенных для расчёта различных f(P), программу опроса множества датчиков, величины критических значений измеряемых параметров и подключаем всё это к центральному компьютеру межзвёздного корабля.

      Теперь дежурная вахта в любой момент может получить информацию о величине температуры, освещения и давления в сотнях, а может и тысячах отсеках корабля, и даже о том, с каким ускорением летит корабль.

      Лифт сможет сообщить о том, каков вес груза находящегося в кабине.

      Вот кажется и всё то основное, что я хотел рассказать о генераторе тока.

      Теперь вернёмся к началу статьи. В чём всё-таки сходства и различия генераторов (стабилизаторов, источников) тока от устройств поддерживающих на своём выходе стабильное напряжение (стабилизаторов напряжения)?

      Составим таблицу сравнительных характеристик.


      Отсюда видно, что генератор тока и стабилизатор напряжения представляют собой зеркальное отражение друг друга.

      Я описал лишь некоторые области применения источников тока. На самом деле их намного больше.

      Дерзайте.

      Если вы заметили в статье я постоянно «путал» названия: генератор, источник, стабилизатор.

      Это сделано специально. Т.к. в различной литературе по электронике и электротехнике вы можете столкнуться с любым из них.

      

       И ещё.

      Часто производители в описании своей продукции делают большую ошибку.

      Вот пример:

      

       С сайта «FG Wilson (Engineering) Ltd» :

      

       Схема стабилизатора напряжения R438 обеспечивает управление по замкнутому циклу для выходного напряжения генератора переменного тока регулированием тока поля возбудителя. R438 может получать питание от поля системы с бесщеточным самовозбуждением или ПМГ и, как вариант, устанавливается на следующих генераторах переменного тока:

      Генераторы переменного тока серии 1000*

      Генераторы переменного тока серии 2000

      Генераторы переменного тока серии 3000

      

      В стабилизаторе напряжения R438 предусмотрена возможность проведения следующих регулировок (перед проведением регулировок необходимо внимательно ознакомиться с руководством по установке и техническому обслуживанию генератора переменного тока)

      

      Я не буду воспроизводить всю статью, но и из этой выдержки видно, что для того, кто писал описание этого устройства нет разницы между генератором напряжения и генератором тока.

       На самом деле это совершенно разные устройства.

      Если мы говорим о генераторе тока, то это означает, что нормирован ток.

      Если мы говорим о генераторе напряжения, то это означает, что нормировано напряжение.

      Дополнительно о стабилизаторах тока и напряжения читайте в статье «Стабилизатор тока и стабилизатор напряжения» этого раздела.


Источник питания — Википедия

Материал из Википедии — свободной энциклопедии

Источник питания — электрическое оборудование, предназначенное для производства, аккумулирования электрической энергии или изменения ее характеристик.[1]

В электроэнергетике:

  • первичные цепи;
  • вторичные цепи.

Электронное оборудование:

  • К первичным относят преобразователи различных видов энергии в электрическую, примером может служить аккумулятор[2], преобразующий химическую энергию в электрическую.
  • вторичные источники сами не генерируют электроэнергию, а служат лишь для её преобразования с целью обеспечения требуемых параметров (напряжения, тока, пульсаций напряжения и т. п.)
  • третичный источник питания (tertiary supply) — источник электропитания оборудования, подключаемый к вторичному источнику электропитания.[3]

Химические источники тока[править | править код]

Прочие первичные источники тока[править | править код]

(также, как Блок питания)
  • Хрусталев Д.А. Аккумуляторы. — М.: Изумруд, 2003. — 224 с. — ISBN 5-98131-001-4.
  • Герасимов В.Г., Князьков О.М. и др. Основы промышленной электроники. — М.: Высшая школа, 1986. — С. 224 — 272. — 336 с.
  • Розанов Ю.К. Основы силовой электроники. — М.: Энергоатомиздат, 1992. — 296 с. — ISBN 5-283-00681-6.
  1. ↑ ГОСТ 30331.1-2013 (IEC 60364-1:2005) Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения
  2. ↑ ГОСТ 29284-92 Источники тока химические первичные. Методы контроля электрических параметров
  3. ↑ ГОСТ Р 55266-2012 (ЕН 300 386-2010) Совместимость технических средств электромагнитная. Оборудование сетей связи. Требования и методы испытаний п.3.31

Химический источник тока: принцип действия, классификация

Основные химические источники электроэнергии

Химические источники тока — это устройства и приборы которые в процессе химической окислительно-восстановительной реакции выделяют напряжение. Также они называются электрохимическими, гальваническими элементами. Основной принцип действия их основан на взаимодействии химических реагентов которые вступая, в реакцию друг с другом вырабатывают электроэнергию, в виде постоянного тока. Этот процесс происходит без механического или теплового воздействия, что является основными факторами играющими превосходящую роль среди других генераторов постоянного напряжения. Химические источники тока, сокращённо ХИТ, уже давно нашли применение не только в быту, но и на производстве.

Немного истории создания ХИТ

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.Батарея Вольта

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

Принцип действия

Принцип действия химического источника питанияУстройства вырабатывающее электрический ток содержит два электрода, которые помещаются между электролитом. Именно на их границе соприкосновения и появляется небольшой потенциал. Один из них называют катодом, а другой анодом. Все эти элементы вместе образуют электрохимическую систему.
Во время возникновения окислительно-восстановительной реакции между электродами один элемент отдаёт мельчайшие частицы электроны другому. Поэтому она и не может происходить вечно, а со временем просто теряются свойства каждого элемента этой цепи.
Электроды могут быть представлены в виде пластин или решёток из металла. После погружения их в среду с электролитом меду их выводами возникает разность потенциалов, которая именуется напряжением разомкнутой цепи. Даже при удалении хотя бы одного из электродов с электролита процесс генерации напряжения прекращается.

Состав электрохимических систем

В качестве электролита используются следующие химические вещества:

  1. Водные растворы на основе щелочей, кислот, солей и т. д.;
  2. Растворы с ионной проводимостью на неводной основе, которые получены при растворении солей в неорганических или органических растворителях;
  3. Твердые соединения, содержащие ионную решетку, где один из ионов является подвижным;
  4. Матричные электролиты. Это особый вид жидких растворов и расплавов, которые находятся в порах твёрдого непроводящего элемента — электроносителя;
  5. Расплавы солей;
  6. Ионообменные электролиты с униполярной системой проводимости. Твёрдые тела с фиксированной ионогенной группой одного знака.

Классификация гальванических элементов и их подбор

Генераторы электрического тока получающегося во время химической реакции разделяются по:

  • Размерам;
  • Конструктивным особенностям;
  • Способу и реагенту, за счёт которого, и получается электроэнергия.

Все элементы вырабатывающее ток во время химической реакции делятся на:

  1. Заряжаемые, которые в процессе эксплуатации могут неоднократно заряжаться от источника постоянного тока, они называются аккумуляторами;
  2. Не заряжаемые, то есть источники одноразового использования которые после завершения химической реакции просто приходят в негодность и должны быть утилизированы. Попросту это гальванический элемент или батарейка.

Для того чтобы подобрать источник электроэнергии, основанный на химической реакции, нужно понимать его характеристики, к которым относятся:

  • Напряжение между анодом и катодом при разомкнутой цепи. Этот показатель чаще всего зависит от выбранной электрохимической системы, а также концентрации и вылечены всех составляющих;
  • Мощность источника;
  • Показатель силы тока;
  • Емкость;
  • Электротехнические показатели, то есть количество циклов заряда и разряда;
  • Диапазон рабочих температур;
  • Срок хранения между тем временем как элемент был создан и до начала его эксплуатации;
  • Полный срок службы;
  • Прочность, то есть защита корпуса от различных механических повреждений и влияний, а также вибраций;
  • Положение работы, некоторые из них работают только в горизонтальных положениях;
  • Надёжность;
  • Простота в эксплуатации и обслуживании. В идеале отсутствие необходимости малейшего вмешательства в работу в течение всего срока эксплуатации.

При выборе нужной батареи или аккумулятора обязательно нужно учесть его электрические номиналы такие как напряжение и ток, а также ёмкость. Именно она является ключевой для сохранения работоспособности, подключаемого к источнику прибора.

Современные химические источники тока и их применение

Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Современный источник токаСферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда.
В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами.
В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике.
Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.

Способы утилизации химических источников энергии

БатарейкаПроблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов.
Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.

Видео о химических источниках тока

Источник тока: типы, принцип работы, особенности

Источник тока – элемент питания электрической цепи, обеспечивающий постоянное потребление, измеренное амперами, либо заданную форму закона изменения параметра. Так работают сварочные аппараты, каждой толщине металла соответствует номер (диаметр) электрода. Процесс обеспечен постоянным током. В противном случае начинается срыв дуги, происходят другие неприятные эффекты.

Отличие реального источника от идеального

Известно, мощность источника питания электрической цепи ограничена. В результате увеличение нагрузки вызывает изменение параметров. Общеизвестны скачки напряжения гаражных кооперативов, дач, прочих специфичных объектов. Подстанция выделяет ограниченный ресурс, потребление бывает немаленьким. В первую очередь, подразумеваются нагревательные приборы (воды), сварочные аппараты.

Таким образом, розетка выступает источником напряжения. Вольтаж сильно зависит от поведения потребителей. Замечено, утренние часы подстанции перегружают, соответствующим образом учитывается областями при тарификации. Что касается идеальных источников, подразумевается, параметры постоянные. До некоторых пор встретить подобное оборудование представлялось невозможным, современные технологии рамки ограничений сильно расширили.

Инвертор сварочный

Инвертор сварочный

Сварочный инвертор IWM 220 сохраняет работоспособность в диапазоне питающих напряжений 180 – 250 вольт, выдавая постоянное действующее значение тока на зажимы. Электронные блоки питания достигают столь высоких показателей путем гибкого регулирования режимов работы. Брать инверторы, принцип действия основан на выпрямлении, фильтрации напряжения 220 вольт, последующей нарезкой пачками импульсов. Варьированием скважности посылок, длиной достигается изменение тока.

Измерительный датчик Холла влияет, напрямую или опосредованно, на напряжение смещения силового ключа. Возможны другие, процессорные, схемы управления выходными параметрами приборов. В последнем случае заботы забирает процессор, несущий соответствующую программу, заложенную в память цифровым кодом.

Для сварки используются переменный и постоянный токи, для черных и цветных металлов. Важно понимать: источник способен поддерживать любой закон изменения параметров. Это признаётся отличительной особенностью, предназначением. Обеспечивает правильное функционирование потребителей.

Работа источника тока

Требования к факторам питания

В учебниках физики приводятся в качестве примеров источников тока:

  1. Батарейки.
  2. Аккумуляторы.

Несложно заметить, сплошь гальванические источники питания химического принципа действия. Автоводитель знает: аккумулятор бессилен выдать постоянный ток, напряжение. Мощность ограничена скоростью протекания химических реакций на пластинах, обкладках. В результате параметры не остаются постоянными.

Лучший пример источника питания тока, напряжения – инвертор. Электроника гибко изменяет параметры устройства, добиваясь достижения нужного эффекта. На выходе переменные, постоянные напряжения, токи. В зависимости от возникающих потребностей. В персональном компьютере уйма питающих напряжений: для жестких дисков, процессора, DVD-приводов. 5, 12, 3,3 В. У каждого предназначение, несколько предназначений.

Протекание тока в цепи

Протекание тока в цепи

Таким образом, потребитель определяет, нужен постоянный ток, либо требуется напряжение, сформированное по определенному закону. Если брать сварку, скорость протекания через плазму зарядов определяет рабочую температуру процесса, напрямую предопределяет условия существования дуги, глубину плавления металла. Технологи давно просчитали условия, определили экспериментально, руководство сварочного аппарата пишет следующее:

  • толщина листа – 3 мм;
  • диаметр электрода – 3,2 мм;
  • рабочий ток процесса 100 – 140 А.

Сварщик молниеносно выставляет указанные параметры на корпусе IWM 220, берет электрод нужного диаметра, обжимает ухватом, заводит второй выход на землю. Потом надевает маску, начинает легонько постукивать детали, получая искру. Не слишком обеспокоен результатами труда, отраслевое пособие промышленности сообщает, с какой скоростью двигаться вдоль шва, под каким углом наблюдать результат процесса. Сварщик твердо знает, чего делать не нужно. Чтобы удостовериться, специальная комиссия по результатам тестов (выполнение определенных швов) присваивает рабочему разряд (ощутимо влияет на спектр полномочий, заработную плату).

Итак, род тока определяют потребности идущего процесса. В большинстве случаев требуется напряжение, часто приборы первоначально требовали постоянства тока. Прежде это обогреватели различного толка, основывающие принцип действия законом Джоуля-Ленца. Мощность, преобразующаяся в тепло, определяется размером сопротивления, протекающим током.

В бытовых целях удобнее поддерживать напряжение. Помимо обогревателей имеется множество других приборов. Прежде всего электроника. Напряжение на активном сопротивлении проводника линейно зависит от тока. Нет разницы, что поддерживать постоянным. Отчего тогда при сварочном процессе приходится стабилизировать.

Рука сварщика неспособна двигаться с достаточной твердостью, флуктуации воздуха постоянно меняют длину дуги. Имеются другие помехи. Напряжение на участке непостоянно. Следовательно, ток менялся бы (согласно закону Ома). Недопустимо по причинам описанным выше: изменится температура, технологический процесс пойдет неправильным путем. Приходится поддерживать постоянным ток, не напряжение.

Как практики получают ток заданной формы

Исторически первыми открыты гальванические источники тока. Произошло в 1800 году. Гением, подарившим человечеству первый источник питания, является Алессандро Вольта. Последовала плеяда открытий. Первым измерителем стал гальванометр – прибор, регистрирующий силу электрического тока. Принцип действия новинки, представленной миру Швейггером, основывался на взаимодействии магнитных полей проводника, стрелки компаса.

Вопрос важен по простой причине, для поддержания нужного закона тока нужно измерить физическую величину. Первые гальванометры оценивали параметр по силе магнитного поля, создаваемого проводником. В дальнейшем заложило основу действия первых тестеров. Как работает современное оборудование?

В зарядных устройствах поддерживается постоянным напряжение. Ток измеряется с целью оценки полноты наполненности батареи. Благодаря продуманному подходу, телефон способен сигнализировать мнемонически о ходе процесса. Когда батарея полна, полоса зарядки полностью закрашивается (первые сотовые телефоны), либо исчезает (на многих смартфонах в выключенном состоянии). Ход процесса регистрируется датчиком Холла: только исчезают импульсы, считается, устройство не нуждается в дальнейшей подзарядке.

На основе указанного эффекта первое время было возможным регистрировать наличие/отсутствие тока. С развитием науки, техники появились преобразователи на основе соединений индия, отличающиеся неплохими метрологическими качествами. По величине выходного напряжения способные оценивать параметры тока. Современные аналого-цифровые преобразователи измерения позволят перевести разницу потенциалов в цифры, понятные процессору. Последний выполняет необходимые операции по управлению устройством, способствуя получению тока заданной формы.

Инвертор действует схожим образом. Последовательности импульсов, нарезаемые ключом, проходят малогабаритный параметр в неизменном виде (форма графика), с измененными характеристиками. Остается только измерить нужные величины, произвести интегрирование на некотором участке. В результате современный сварочный аппарат по определению защищен против залипания: при резком возрастании тока питания отключается. Имеются у инверторов некоторые другие полезные качества, обеспечиваемые электроникой. Вот почему сварщикам нравятся аппараты.

В мощных цепях ток контролируется трансформаторами. Датчики Холла с десятками, сотнями амперов не работают напрямую. Типичный лимит составляет десятки мА. Используется принцип, схожий с имеющим место быть в цифровых мультиметрах: из потока движущихся по электрической цепи зарядов вычленяется некоторая малая часть. Далее пропорцией оценивается полная величина. Трансформаторы тока действуют аналогичным образом. Не имея первичной обмотки, путем электромагнитной индукции передают малую часть энергии поля измерительному средству (например, счетчику, аппаратуре контроля).

Отличительные особенности

Из сказанного понимаем следующее:

  1. Физика под источником тока понимает агрегат, формирующий на выходе постоянный параметр. Практика часто предъявляет иные требования. Хотя чаще ток требуется постоянный.
  2. На схемах источник тока обозначают по-другому, нежели источник ЭДС. Круг с двумя галками. Иногда рядом стоит латинская литера I. Сие помогает решать согласно уравнениям Кирхгофа задачи нахождения условий элементов электрической цепи.
  3. Форма закона генерируемого тока определяется нуждами потребителя. Большинство бытовых приборов питается напряжением. Постоянство тока, особая форма не нужны, даже приносят вред. Мясорубка при заклинивании вала костью требует больше энергии. На это настроена регулирующая и защитная электроника.
  4. Мощность, отдаваемая идеальным источником, растет пропорционально активному сопротивлению нагрузки. В реальности видим некий лимит, выше которого параметры начнут отличаться от заданных.

Проще говоря, исторически с точки зрения практики удобнее постоянным поддерживать напряжение, не ток. Термин, рассматриваемый разделом, вызывает много затруднений у людей посторонних, далеких электронике, вполне сведущих в технике. Итак, источник тока – отвечает за поддержание нужной формы тока. Чаще требуется постоянный.

Величина тока послужит целям регулирования. Искрение коллекторного двигателя сопровождается возрастанием нагрузки. Растет потребляемый ток, цепи контроля повышают напряжение на обмотках с целью преодолеть возникший «кризис». Приводит к необходимости контроля величины тока. В мясорубках задачу решает цепь обратной связи, формирующая угол отсечки ключом входного напряжения.

Пытаясь сохранить постоянной разность потенциалов, приборы варьируют потребление тока. В результате запрашиваемая от подстанции мощность меняется, эффект приводит к проседанию вольтажа. Визуально наблюдаем медленным миганием лампочек накала (энергосберегающие несут в цоколе драйвер для поддержания постоянства напряжения). Аналогичным образом устройства показали бы проседание тока при неизменном напряжении.

Источники тока — это… Что такое Источники тока?

        устройства, преобразующие различные виды энергии в электрическую. По виду преобразуемой энергии И. т. условно можно разделить на химические и физические. Сведения о первых химических И. т. (гальванических элементах и аккумуляторах) относятся к 19 в. (например, батарея Вольта, элемент Лекланше). Однако вплоть до 40-х гг. 20 в. в мире было разработано и реализовано в конструкциях не более 5 типов гальванических пар. С середины 40-х гг. вследствие развития радиоэлектроники (См. Радиоэлектроника) и широкого использования автономных И. т. создано ещё около 25 типов гальванических пар. Теоретически в И. т. может быть реализована свободная энергия химических реакции практически любого окислителя и восстановителя, а следовательно, возможна реализация несколько тысяч гальванических пар. Принципы работы большинства физических И. т. были известны уже в 19 в. В дальнейшем вследствие быстрого развития и совершенствования Турбогенераторы и Гидрогенераторы стали основными промышленными источниками электроэнергии. Физические И. т., основанные на других принципах, получили промышленное развитие лишь в 50—60-х гг. 20 в., что обусловлено возросшими и достаточно специфическими требованиями современной техники. В 60-х гг. технически развитые страны уже имели промышленные образцы термогенераторов, термоэмиссионных генераторов (СССР, ФРГ, США), атомных батарей (Франция, США, СССР).

         Технический прогресс, проникновение электротехники и электроники на транспорт, в быт, медицину и т. д. стимулировали разработку автономных источников электропитания, среди которых химические И. т. в количественном отношении заняли видное место, став продукцией массового потребления. Переносные осветительные приборы, магнитофоны и радиоприёмники, телевизоры и переносная медицинская аппаратура, средства ж.-д. транспорта, автомобили, тракторы, самолёты, искусственные спутники, космические корабли, средства связи и многое другое оснащены малогабаритными И. т.

         Теория И. т. предусматривает исследование всех стадий процесса генерирования электрического тока на основе современных представлений о физике твёрдого тела, жидкости и газа, о процессах переноса зарядов и электрохимических реакциях. Теория И. т. изучает также вопросы оптимизации, включающие как выбор исходных параметров, обеспечивающих оптимальные выходные характеристики И. т., так и разработку методов прогнозирования характеристик будущих И. т. К важнейшим характеристикам И. т. относятся: кпд, энергоёмкость (или удельная энергоёмкость), мощность (или удельная мощность, отнесённая к единице массы, объёма и т. д.), срок службы, качество генерируемой электроэнергии (частота, напряжение, способность к перегрузкам, стоимость, надёжность).

         Химическими источниками тока принято называть устройства, вырабатывающие электрический ток за счёт энергии окислительно-восстановительных реакций химических реагентов. В соответствии с эксплуатационной схемой и способностью отдавать энергию в электрическую сеть химические И. т. подразделяются на первичные, вторичные и резервные, а также электрохимические генераторы. Первичные И. т. (гальванические элементы и батареи) допускают, как правило, однократное использование энергии химических реагентов. Отдельные конструкции гальванических элементов и батарей разрешают кратковременное повторное использование энергии реагентов после электрической подзарядки. Положительный (катод) и отрицательный (анод) электроды, разделённые электролитом в жидком или пастообразном состоянии или же пористой мембраной-сепаратором с поглощённым в ней электролитом, электрически связаны (гальваническая связь) в течение всего срока службы И. т.

         Вторичные И. т. (отдельные Аккумуляторы и аккумуляторные батареи) допускают многократное (сотни и тысячи заряд-разрядных циклов) использование энергии составляющих химических реагентов. Электроды и электролит весь срок службы аккумуляторов находятся в электрическом контакте друг с другом. Для увеличения ресурса аккумуляторов в некоторых специфических условиях эксплуатации разработаны способы сухозаряженного хранения аккумуляторов. Такие аккумуляторы перед включением предварительно заливают электролитом.

         Резервные И. т. допускают только однократное использование энергии химических реагентов. В отличие от гальванических элементов и аккумуляторов, в резервных И. т. электролит при хранении никогда гальванически не связан с электродами. Он хранится в жидком состоянии (в стеклянных, пластмассовых или металлических ампулах) либо в твёрдом (но неэлектропроводном) состоянии в межэлектродных зазорах. При подготовке к работе резервных И. т. ампулы разрушают сжатым воздухом, взрывом, а кристаллы твёрдого электролита расплавляют с помощью электрического или пиротехнического разогрева. Резервные И. т. применяют для питания электрической аппаратуры, которая долгое время может (вынуждена) находиться в резервном (неработающем) состоянии. Срок хранения современных резервных И. т. превышает 10—15 лет.

         Электрохимические генераторы (топливные элементы (См. Топливный элемент)) представляют собой разновидность химических И. т. Электрохимические генераторы способны длительное время непрерывно генерировать электрический ток в результате преобразования энергии химических реагентов (газообразных или жидких), поступающих в генератор извне.          К 1970 в США и СССР были созданы промышленные образцы электрохимических генераторов. Ведутся интенсивные работы по созданию электрохимических генераторов для космических объектов, электромобилей, стационарных установок и т. д. Разрабатываются разновидности электрохимических генераторов (высоко-, средне- и низкотемпературные, на газообразных, жидких и твёрдых реагентах и т. д.), из которых наиболее перспективны генераторы, непосредственно преобразующие энергию природного топлива в электрическую. (Подробнее о химических И. т. см. в ст. Химические источники тока.)

         Физическими источниками тока называют устройства, преобразующие тепловую, механическую, электромагнитную энергию, а также энергию радиационного излучения и ядерного распада в электрическую. В соответствии с наиболее часто употребляемой классификацией к физическим И. т. относят: электромашинные генераторы, термоэлектрические генераторы, термоэмиссионные преобразователи, МГД-генераторы, а также генераторы, преобразующие энергию солнечного излучения и атомного распада.

         Электромашинные генераторы, преобразующие механическую энергию в электрическую, — наиболее распространённый вид источников электрической энергии, основа современной энергетики. Они могут быть классифицированы по мощности (от долей вт до сотен Мвт), по назначению и особенностям эксплуатации (стационарные, транспортные, резервные и т. д.), по роду первичного двигателя (дизель-генераторы, турбо- и гидрогенераторы), по рабочему телу (пар, вода, газ) и т. д. Благодаря длительному периоду теоретического, конструктивного и технологического совершенствования характеристики этого типа И. т. достигли значений, близких к предельным (см. Генератор электромашинный).          Работа термоэлектрического генератора (ТЭГ) основана на использовании Зеебека эффекта. Рабочим материалом в ТЭГ служат различные полупроводниковые соединения кремния, германия и т. п. (как правило, твёрдые растворы). Кпд ТЭГ от 3 до 15% в диапазоне температур от 100 до 1000°C. Исследования ТЭГ ведутся в СССР, США, Франции и др. Области возможного применения ТЭГ: автономные источники питания (на транспорте, в технике связи, медицине), антикоррозионная защита (на магистральных трубопроводах) и др. (см. Термоэлектрический генератор).          Принцип работы термоэмиссионного преобразователя (ТЭП) основан на использовании термоэмиссионного эффекта (испускание электронов поверхностью нагретого металла). Термоэмиссионный поток электронов зависит главным образом от температуры и свойств поверхности материала. Кпд отдельных лабораторных образцов ТЭП достигает 30%, а действующих энергетических установок 15% (при электрической мощности, снимаемой с единицы поверхности катода, — 30 вт/см2). Наиболее перспективно применение ТЭП в качестве автономных источников электроэнергии большой мощности (до 100 квт). Работы по ТЭП ведутся в СССР, США, ФРГ, Франции и др. (см. Термоэмиссионный преобразователь энергии).          Принцип действия И. т., преобразующих энергию солнечного излучения, основан на использовании внутреннего фотоэффекта (см. Фотоэлектрические явления). Фотоэлектрический генератор (Солнечная батарея) представляет собой совокупность вентильных фотоэлементов, преобразующих энергию солнечного излучения в электрическую. Практически прямое преобразование энергии солнечного излучения стало возможно лишь после создания в 1953 высокоэффективного фотоэлемента из монокристаллического кремния. Лучшие образцы кремниевых фотоэлементов имеют кпд около 15%; срок службы их практически неограничен. Солнечные батареи применяются главным образом в космической технике, где они занимают доминирующее положение как источники энергии на искусственных спутниках Земли, орбитальных станциях и космических кораблях, а также для снабжения электроэнергией удалённых от линии электропередачи районов с большим числом солнечных дней в году, например в Туркменской ССР, Индии, Пакистане (см. Гелиотехника).

         И. т., преобразующие энергию атомного распада (атомные батареи), используют кинетическую энергию электронов, образующихся при β-распаде. Эти И. т. находились к 1971 в стадии разработки, и их практическое использование требует решения многих конструкторских и технологических задач. Кпд атомных батарей невысок (до 1%), а область применения может быть определена лишь после накопления достаточного опыта их использования.

         Лит. см. при статьях с описанием конкретных типов источников тока.

         Н. С. Лидоренко.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *