Применение резонанса – Определение механического резонанса: амплитуда, период, частота колебаний.

Что такое резонанс и как его использовать с пользой для организма

Резонанс – это резкий рост амплитуды вынужденных колебаний, который наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам), определяемым свойствами колебательной системы. Увеличение амплитуды происходит при совпадении внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы. При помощи резонансных явлений можно выделить и/или усилить даже совсем слабые гармонические колебания. Резонанс – явление, заключающееся в том, что колебательная система оказывается особенно отзывчивой на воздействие определённой частоты вынуждающей силы.

 

В нашей жизни довольно много ситуаций, в которых проявляется резонанс. Например, если к струнному музыкальному инструменту поднести звенящий камертон, то акустическая волна, исходящая от камертона, вызовет вибрацию струны настроенной на частоту камертона, и она сама зазвучит.

 

Еще один пример, всем известный эксперимент с тонкостенным бокалом. Если измерить частоту звука, с которой звенит бокал, и, подать звук с такой же частотой от генератора частот, но с большей амплитудой, через усилитель и динамик обратно на бокал, его стенки входят в резонанс с частотой звука идущего от динамика и начинают вибрировать. Увеличение амплитуды этого звука до определенного уровня приводит к разрушению бокала.

 

Биорезонанс: с Древней Руси и до наших времен

Наши православные предки, ещё за десятки тысяч лет до прихода христианства на Русь хорошо знали о силе колокольного звона и старались в каждой деревне установить колокольню! Благодаря чему в средневековье Русь, богатая церковными колоколами, избегала опустошительных эпидемий чумы в отличии от Европы (Галлии), в которой святые инквизиторы на кострах сожгли не только всех учёных и ведающих, но и все древние «еретические» книги, написанные на глаголице, хранившие уникальные знания наших предков, в том числе и о силе резонанса!

 

Таким образом, все православные знания, накопленные веками, были запрещены, уничтожены и подменены новой христианской верой. При этом по сей день данные о биорезонансе находятся под запретом. Даже спустя века любая информация о методах лечения, не приносящих прибыль фармацевтической промышленности, умалчивается. В то время как ежегодный многомиллиардный оборот фармацевтики растет с каждым годом.

 

Яркий пример применения резонансных частот на Руси, и это факт, от которого нельзя отвертеться. Когда в Москве в 1771 году (1771 г.) вспыхнула эпидемия чумы, Екатерина II отправила из Петербурга графа Орлова с четырмя лейб-гвардиями и огромным штатом врачей. Вся жизнь в Москве была парализована. Дабы отогнать «моровые поветрия» миряне окуривали жилища, на улицах разводили огромные костры, и вся Москва была окутана черным дымом, так как тогда считалось, что чума распространяется по воздуху, но это мало помогало. А ещё изо всех сил били в набат (самый большой колокол) и во все колокола меньшего размера в течении 3-х дней подряд, так как свято верили, что колокольный звон отведёт от города страшную беду. Через несколько дней эпидемия стала отступать. «В чем секрет?» — спросите Вы. На самом деле ответ лежит на поверхности.

 

Сегодня всем известно, что чуму вызывает бактерия Иерсиния пестис. По всей видимости, низкие звуковые частоты колокольного звона, вызывая резонанс в биологически активных точках организмов больных, настраивали его на исцеление, а высокочастотный и неслышимый ухом ультразвуковой спектр звучания колоколов вызывал эффект биорезонанса, нарушая метаболизм у паразитов и их гибель, а также снижение популяции крыс и мышей – основных переносчиков чумы. Видимо по этому принципу и использовали колокола наши предки, оберегая Русь от эпидемий чумы и прочих эпидемий, свирепствовавших в Европе с ХІІІ по ХVIII века (3-8 век от рождества Христова).

 

А теперь рассмотрим небезызвестный пример использования биорезонанса в наше время. С целью соблюдения чистоты эксперимента, медики в палату с онкологическими больными поставили металлические пластины, наподобие тех, что использовались в древних монастырях, чтобы колокола у пациентов не могли ассоциироваться с церковью, и, рождаемое поневоле самовнушение, не могло существенно повлиять на результаты исследований. При подборе индивидуальных частот для каждого больного использовалось множество титановых пластин различного размера. Итог превзошел все ожидания!

 

После воздействия акустических волн определённой частоты на биологически активные точки пациентов у 30% больных прекратился болевой синдром, и они смогли уснуть, а ещё у 30% больных прекратились боли, не снимавшиеся самыми сильными наркотическими анестетиками!

 

«Кстати, помимо основного резонанса, пластины и колокола также излучают звуковые волны на высших гармониках от основной частоты f, например, 2f, 3f, 4f, …10f и т. д., которые можно с успехом применять для уничтожения паразитов, если наступает эффект резонанса с их структурами»

 

В настоящее время, для достижения эффекта резонанса нет необходимости использовать огромные колокола, а есть уникальная возможность, применять достижения науки и техники, созданные электронные приборы на основе частотного резонанса, иными словами приборы биорезонансной терапии Smart Life.

 

Эффект резонанса в биологических структурах можно вызвать при помощи:

— акустических волн

— механического воздействия

— электромагнитных волн видимого и радиочастотного диапазонов

— импульсов магнитного поля

— импульсов слабого электрического тока

— импульсного теплового воздействия

 

То есть, эффект резонанса в биологических структурах можно вызывать внешним воздействием и любыми физическими явлениями, возникающими в процессе биохимических реакций внутри живой клетки. Причём каждая биологическая структура имеет свой уникальный частотный спектр, сопровождающий биохимические процессы и откликается на внешнее воздействие, как основной резонансной частоты, так и высших или низших гармоник от основной частоты, с амплитудой во столько раз большей, на сколько эти гармоники отстоят от частоты основного резонанса.

 

Как в повседневной жизни можно использовать силу резонанса, и какой же метод воздействия выбрать?

Акустические волны

Угадайте, что происходит с зубным камнем во время его удаления, при помощи ультразвука в кабинете у стоматолога или при разрушении камней в почках? Ответ очевиден. И без сомнения, акустическое воздействие – это прекрасная возможность для исцеления организма, если бы не одно «но». Колокола много весят, дорого стоят, создают сильный шум, и могут использоваться исключительно стационарно.

 

Магнитное поле

Чтобы вызвать хотя бы сколь-нибудь ощутимый эффект от воздействия пульсирующего магнитного поля на всё тело, необходимо изготовить электромагнит огромных размеров и массой пару тонн, он будет занимать пол комнаты и потреблять очень много электроэнергии. Инертность системы не позволит использовать его на высоких частотах. Маленькие электромагниты можно использовать лишь локально из-за малого радиуса действия. Также нужно точно знать зоны на теле и частоту воздействия. Вывод неутешителен: использовать магнитное поле для терапии заболеваний экономически не целесообразно в домашних условиях.

 

Электрический ток

Применение слабого электрического тока при резонансной терапии сопряжено с некоторыми негативными явлениями, особенно при длительном использовании. Во-первых, если это высокочастотный электрический ток, то он течёт в основном по поверхности тела, не попадая в зоны локализации паразитов во внутренних органах. При этом низкочастотный ток может вызывать электролиз жидкостей, повреждение нервных волокон, металлизацию костей, вносит излишнюю энергию в организм. Во-вторых, человек, использующий резонансную терапию с помощью электротока, постоянно привязан проводами к устройству, а людям с кардиостимулятором этот метод вообще противопоказан.

 

Электромагнитные волны
Для метода частотного резонанса можно использовать радиоволны с несущей частотой от 10 кГц до 300 МГц, так как в этом диапазоне самый низкий коэффициент поглощения ЭМВ нашим телом и оно для них прозрачно, а также электромагнитные волны в видимом и инфракрасном спектре. Видимый красный свет с длиной волны от 630 нм до 700 нм проникает в ткани на глубину до 10 мм, а инфракрасный свет от 800 нм до 1000 нм проникает на глубину до 40 мм и глубже, вызывая ещё и некоторое тепловое воздействие при торможении в тканях. Для воздействия на биологически активные зоны на поверхности кожи, можно использовать радиоволны с несущей частотой до ~ 50 ГГц

 

Резонанс токов — описание явления и области применения

токовый резонанс

Резонанс токов, хорошо известный как естественный токовый «параллельный резонанс» — процесс или явление, которое протекает в условиях параллельного типа колебательного контура и наличия напряжения.

В данном случае частота источника напряжения должна иметь совпадение с аналогичными резонансными показателями контура.

Что такое резонанс?

Токовым резонансом называется особый вид состояния цепи, когда общие токовые показатели совпадают по фазным параметрам с уровнем напряжения, а реактивная мощность равняется нулю и цепью потребляется исключительно активная мощность.

Данный вариант является характерным преимущественно для схем с переменными показателями токовых величин и обладает не только положительными свойствами, но и некоторыми совершенно нежелательными качествами, которые в обязательном порядке учитываются еще в процессе проектирования.

Положительное резонансное действие — явление из области радиотехники, автоматики и проволочной телефонии. Резонанс напряжений относится к категории нежелательных явлений, обусловленных перенапряжениями. При этом добротным электрическим контуром принято считать величину:

Достижение токового резонанса осуществляется подбором необходимого индуктивного или емкостного значения, а также показателей частотности питающих сетей.

Токовый резонанс получается подбором параметров электроцепи в условиях заданной частоты источника питания, а также посредством выбора обратных показателей.

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.
резонансный ток

Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Принцип резонанса токов

Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:

  • включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
  • отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
  • токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
  • максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
  • весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
  • катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.
цепь переменного тока

Резонанс в параллельной цепи (резонанс токов)

Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.

Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.

Резонанс токов в цепи с переменным током

Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.

Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.

В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.

Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.

В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.

Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.

Расчет резонансного контура

Необходимо помнить, что явление, представленное токовым резонансом, нуждается в очень грамотном и тщательном расчете резонансного контура. Особенно важно выполнить правильный и точный расчет при наличии параллельного соединения, что позволит предотвратить развитие помех внутри системы. Чтобы расчет был правильным, требуется определиться с показателями мощности электрической сети. Среднюю стандартную мощность, которая рассеивается в условиях резонансного контура, можно выразить среднеквадратичными показателями тока и напряжения.

В условиях резонанса стандартный коэффициент мощности составляет единицу, а формула расчета имеет вид:

формула резонанса

Формула расчета

С целью правильного определения нулевого импеданса в условиях резонанса потребуется использовать стандартную формулу:

графики

Резонансные кривые

Резонанс колебательной частоты аппроксимируется по следующей формуле:

колебательный контур

Резонанс колебательного контура

Чтобы получить максимально точные данныепо формулам, все получаемые в процессе расчетов значения рекомендуется не подвергать округлению. Некоторыми физиками расчеты значений резонансного контура осуществляются в соответствии с методом векторной диаграммы активных токовых величин. В таком случае грамотный расчет и правильная настройка приборов гарантирует достойную экономию при условии переменного тока.

Резонансные цепи применяются преимущественно для выделения сигнала на нужных частотах в результате фильтрования других сигналов, поэтому самостоятельные расчеты контура должны быть предельно точными.

Заключение

Резонанс токовых величин в физике — это естественное явление, сопровождающееся резким возрастанием амплитуды колебания внутри системы, что обусловлено совпадением показателей собственных и внешних возмущающих частот.

Подобный вариант явлений характеризует электрические схемы с наличием элементов, представленных нагрузками активного, индуктивного и емкостного типа. Таким образом, токовый резонанс — один из наиважнейших параметров, широко используемых в настоящее время в целом ряде современных отраслей, включая промышленное электрическое снабжение и радиосвязь.

Применение резонанса и борьба с ним

Явление резонанса используется в музыкальных инструментах для усиления звука. Резонанс применяется во многих приборах, в том числе и измерительных. Его часто используют также, когда нужно сдвинуть с места что-нибудь тяжелое, например, застрявший автомобиль.

В таком случае выбирают частоту толчков так, чтобы она совпала с собственной частотой системы, в результате амплитуда колебаний возрастает и в конце концов становится настолько большой, что тело уже не возвращается в прежнее состояние.

Случается, что резонанс приводит даже к разрушению зданий и мостов. Опасно резонанс и при работе любых машин, у которых есть части, вращающимися и движущимися периодически (а такие части есть практически во всех машинах). Например, «разбалансировки» вала станка или двигателя проявляется в том, что при вращении вала возникает периодическая сила, действующая на основе механизма, а через нее — на здание. Если частота этой силы окажется близкой к собственной частоте здания, амплитуда колебаний здания может возрасти настолько, что это приведет к разрушениям.

Чтобы избежать нежелательных проявлений резонанса, действуют двумя способами:

1) «розузгоджують» частоты, совпадение которых может привести к резонансу. Для этого изменяют или частоту внешней силы, или собственную частоту системы;

2) увеличивают затухание колебаний, например, ставят двигатель на резиновую подкладку или пружины.

Вопрос к ученикам во время изложения нового материала

1. Что такое механическая энергия?

2. Что такое потенциальная и кинетическая энергии?

3. В каких точках траектории колеблющегося тело имеет только кинетическую энергию?

4. В какие моменты движения колеблющейся тело имеет лишь потенциальную энергию?

5. По какой причине затухают колебания?

6. Приведите примеры вынужденных колебаний.

7. Приведите примеры полезного использования резонанса.

8. В каких случаях необходимо избегать резонанса?


Резонанс токов и его полезное применение в электротехнике :: SYL.ru

Резонансом в физике называют явление, при котором амплитуды колебания системы резко возрастают. Это происходит при совпадении собственной и внешней возмущающей частот. В механике примером может служить маятник часов. Подобное поведение характерно и для электрических схем, включающих в себя элементы активной, индуктивной и емкостной нагрузки. Резонанс токов и напряжений очень важен, это явление нашло применение в таких областях науки, как радиосвязь и промышленное электроснабжение.

резонанс токов

Векторы и теория

Для понимания смысла процессов, происходящих в цепях, включающих катушки индуктивности, конденсаторы и активные сопротивления, следует рассмотреть схему простейшего колебательного контура. Подобно тому, как обычный маятник попеременно переводит энергию из потенциального в кинетическое состояние, электрический заряд в RCL-цепочке, накапливаясь в емкости, перетекает в индуктивность. После этого процесс происходит в обратном направлении, и все начинается сначала. При этом векторная диаграмма выглядит следующим образом: ток емкостной нагрузки опережает на угол π/2 направление напряжения, индуктивная нагрузка отстает на такой же угол, а активная совпадает по фазе. Результирующий вектор имеет наклон по отношению к абсциссе, обозначаемый греческой буквой φ. Резонанс в цепи переменного тока наступает тогда, когда φ=0, соответственно, cos φ = 1. В переводе с языка математики эта выкладка означает, что ток, проходящий по всем элементам, по фазе совпадает с током в активной составляющей электросхемы.

резонанс в цепи переменного тока

Практическое применение в системах электроснабжения

Теоретически все эти выкладки понятны, но что они значат для практических вопросов? Очень многое! Всем известно, что полезная работа в любой схеме выполняется активной составляющей мощности. При этом большая часть потребления энергии приходится на электродвигатели, которых на любом предприятии немало, а они содержат в своей конструкции обмотки, представляющие собой индуктивную нагрузку и создающие угол φ, отличный он нуля. Для того чтобы возник резонанс токов, необходимо скомпенсировать реактивные сопротивления таким образом, чтобы их векторная сумма стала нулевой. На практике это достигается включением конденсатора, который создает противоположный сдвиг вектора тока.

резонанс токов и напряжений

Резонанс токов в радиоприемных устройствах

Резонанс токов имеет и другое, радиотехническое применение. Колебательный контур, составляющий основу каждого приемного устройства, состоит из катушки индуктивности и конденсатора. Меняя величину электрической емкости, можно добиться того, что сигнал с требуемой несущей частотой будет приниматься избирательно, а остальные всеволновые составляющие, принимаемые на антенну, включая и помехи, окажутся подавленными. На практике такой переменный конденсатор выглядит как два набора пластин, один из которых при вращении входит или выходит из другого, увеличивая или уменьшая при этом электрическую емкость. При этом создается резонанс токов, а радиоприемник оказывается настроенным на нужную частоту.

Ответы@Mail.Ru: Для чего нужен резонанс?

Для подробного объяснения нужна не одна лекция! Кратко. Резонанс-совпаденине частот собственных и вынуждающих колебаний! ПРИМЕНЕНИЕ: настройка музыкальных инструментов, настройка приемников на передающую станцию и т. д. ВРЕДНОЕ ПРОЯВЛЕНИЕ: разрушение конструкций при совпадение частот (разрушение зданий, мостов, самолетов и т. д.) (Подробнее : ФИЗИКА. КОЛЕБАТЕЛЬНЫЕ ПРОЦЕССЫ,).

ой мы это по биологиии щас проходили ток я извини не помню! что то со скрещиванием кажется

??? как это «для чего нужно природное явление»? Что, бог сидел, кропал вселенную, потом понял, что без резонанса не бует работать и сляпал резонанс? В природе нет «нужно».

Прежде чем понять для чего нужно? Нужно знать значение этого слова. Словарь иностранных слов. РЕЗОНАНС (фр. resonanse < лат. resonans дающий отзвук) 1. усиление колебаний (звуковых, электрических, механических) , происходящих в какой-л. колебательной системе под влиянием внешнего воздействии; 2. отзвук, отголосок; 3. резонансы — неустойчивые, короткоживущие элементарные частицы, возникающие в процессе ядерной реакции.

Важно то — не для чего он нужен, а важно что он страшен. Как уже отвечено выше — это совпадение частот. Приведу пример: Взвод солдат маршеруя по мосту создаёт колебания, причем каждый в один момент. Мост улавливает эти колебания и совершает те же колебания своей массой. Короче — он может рухнуть. А реально может выдержать во много раз больше солдат, если они будут идти не маршеруя.

Вопрос задан не совсем верно, т. е скорее «Где используется резонанс» в электронике самое частое использование, в различной чуствительной и сверхчуствительной аппаратуре для усиления очень слыбых эл маг сигналов определённой частоты ( радио волн -вся беспроводная связь ) !!!

Ответы@Mail.Ru: применение механического резонанса

Зомбирование солдат…

Если частота колебаний совпадет с собственной частотой тела, то тело войдет в резонанс, и как следствие, разрушения тела, помню был такой ПК вирус, с которым я сталкивался, он заставлял головку дергаться с частотой 8 герц в результате происходило физическое разрушение диска, это самый яркий пример резонанса, с каким я сталкивался в жизни

Явление механического резонанса используется в акустике для анализа звуков и их усиления. Однако в различных сооружениях и машинах, подвергающихся периодически изменяющимся нагрузкам, резонанс весьма опасен. Он может вызвать их разрушение вследствие значительного возрастания амплитуды колебаний. Так, например, шатуны двигателя внутреннего сгорания действуют на коленчатый вал с периодически изменяющимися силами. Период их изменения связан с угловой скоростью вращения вала. Эти силы вызывают колебания коленчатого вала и при скорости вращения, соответствующей резонансу, могут привести к поломке вала. Следовательно, они также испытывают переменную нагрузку и совершают вынужденные колебания. При проектировании современных машин и других сооружений, подвергающихся переменным нагрузкам, производят специальные расчеты и принимают меры для исключения возможности возникновения резонанса. [1] Максимальные динамические од ш и статические ост напряжения при изгибе в функции частоты собственных колебаний. | Изменение напряжения изгиба при резонансе ( / с 100 Гц в функции времени. Максимальные динамические од ш и статические ост напряжения при изгибе в функции частоты собственных колебаний. | Изменение напряжения изгиба при резонансе ( / с 100 Гц в функции времени. Явление механического резонанса при определенных параметрах ошиновки может привести к значительному превышению напряжения ( сверх допустимого) в металле шин, в результате чего при к. [2] Учет явлений механического резонанса очень важен, так как электронная аппаратура часто подвергается воздействию удара и вибраций. [3] С явлениями механического резонанса сталкивался нередко каждый из нас. Может быть, вы только не обращали на него внимания. Хотя иногда резонанс бывает очень надоедливым. Мимо ваших окон проехал трамвай, а в буфете зазвенела посуда. Колебания почвы передались зданию, а с ним вместе и полу вашей комнаты, пришел в колебание буфет и посуда в нем. Так далеко и через столько предметов распространилось колебание. [4] В технике явление механического резонанса играет в одних случаях отрицательную, в других — положительную роль. [5] Вместе с тем явление механического резонанса используется в технике, например, при конструировании частотомеров — приборов для измерения частоты колебаний. [6] Вместе с тем явление механического резонанса используется в технике, например, при конструировании частотомеров — приборов для измерения частоты колебаний. В подобных приборах чувствительным элементом является резонатор с легко изменяемой собственной частотой. Явление резонанса используется и в других областях техники, где оно играет положительную роль — в акустике, в оптике, радиотехнике. [7] В чем заключается явление механического резонанса. [8] Действие электромеханических фильтров основано на явлении механического резонанса вибрирующих пластин, струн или камертона. [9] Принцип работы вибрационного частотомера основан на использовании явления механического резонанса, возникающего в тонких стальных пластинках — язычках. [10] В большинстве случаев частота измеряется вибрационными частотомерами, основанными на явлении механического резонанса. Конструктивная схема такого частотомера показана на фиг. В общей колодке 1 закреплены концы ряда стальных пластин 2 с разными, последовательно нарастающими собственными частотами колебаний. [11] Резкое возрастание амплитуды вынужденных механических колебаний при приближении циклической частоты возмущающей силы к значению Ц, называется явлением механического резонанса. Соответственно графики зависимости А от Q, изображенные на рис. 28.4, называются резонансными кривыми. [12] Номограмма для определения отношения / V7T для шин прямоугольного сечения. | Номограмма для определения величины коэффициента k в зависимости от част

Применение резонанса напряжений — КиберПедия

Явление резонанса напряжений используют в электрических фильтрах разного рода, например если необходимо устранить из передаваемого сигнала составляющую тока определенной частоты, то параллельно приемнику ставят цепочку из соединенных последовательно конденсатора и катушки индуктивности, чтобы ток резонансной частоты этой LC-цепочки замкнулся бы через нее, и не попал к бы приемнику.

Тогда токи частоты далекой от резонансной частоты LC-цепочки будут проходить в нагрузку беспрепятственно, и только близкие к резонансу по частоте токи — будут находить себе кротчайший путь через LC-цепочку.

Или наоборот. Если необходимо пропустить только ток определенной частоты, то LC-цепочку включают последовательно приемнику, тогда составляющие сигнала на резонансной частоте цепочки пройдут к нагрузке почти без потерь, а частоты далекие от резонанса окажутся сильно ослаблены и можно сказать, что к нагрузке совсем не попадут. Данный принцип применим к радиоприемникам, где перестраиваемый колебательный контур настраивают на прием строго определенной частоты нужной радиостанции.

Вообще резонанс напряжений в электротехнике является нежелательным явлением, поскольку он вызывает перенапряжения и выход из строя оборудования.

В качестве простого примера можно привести длинную кабельную линию, которая по какой-то причине оказалась не подключенной к нагрузке, но при этом питается от промежуточного трансформатора. Такая линия с распределенной емкостью и индуктивностью, если ее резонансная частота совпадет с частотой питающей сети, просто будет пробита и выйдет из строя. Чтобы предотвратить разрушение кабелей от случайного резонанса напряжений, применяют вспомогательную нагрузку.

Но иногда резонанс напряжений играет нам на руку и не только в радиоприемниках. Например, бывает, что в сельской местности напряжение в сети непредсказуемо упало, а станку нужно напряжение не менее 220 вольт. В этом случае явление резонанса напряжений спасает.

Достаточно последовательно со станком (если приводом в нем является асинхронный двигатель) включить по несколько конденсаторов на фазу, и таким образом напряжение на обмотках статора поднимется.

Здесь важно правильно подобрать количество конденсаторов, чтобы они точно скомпенсировали своим емкостным сопротивлением вместе с индуктивным сопротивлением обмоток просадку напряжения в сети, то есть слегка приблизив цепь к резонансу — можно поднять упавшее напряжение даже под нагрузкой.



Резонанс токов

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой параллельно, то резонанс в такой цепи называется параллельным резонансом или резонансом токов. Характерная черта резонанса токов — значительные токи через емкость и индуктивность, по сравнению с током источника.

Причина появления такой картины очевидна. Ток через активное сопротивление по закону Ома будет равен U/R, через емкость U/XC, через индуктивность U/XL, и составив отношение IL к I можно найти величину добротности Q. Ток через индуктивность будет в Q раз больше тока источника, такой же ток будет течь каждые пол периода в конденсатор и из него.

То есть резонанс токов приводит к возрастанию тока через реактивные элементы в Q раз, а резонансная ЭДС будет ограничена ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, на резонансной частоте сопротивление параллельного колебательного контура максимально.

Применение резонанса токов

Аналогично резонансу напряжений, резонанс токов применяется в различных фильтрах. Но включенный в цепь, параллельный контур действует наоборот, чем в случае с последовательным: установленный параллельно нагрузке, параллельный колебательный контур позволит току резонансной частоты контура пройти в нагрузку, поскольку сопротивление самого контура на собственной резонансной частоте максимально.

Установленный последовательно с нагрузкой, параллельный колебательный контур не пропустит сигнал резонансной частоты, поскольку все напряжение упадет на контуре, а на нагрузку придется мизерная доля сигнала резонансной частоты.

Так, основное применение резонанса токов в радиотехнике — создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.



В электротехнике резонанс токов используется с целью достижения высокого коэффициента мощности нагрузок, обладающих значительными индуктивными и емкостными составляющими.

Например, установки компенсации реактивной мощности (КРМ) представляют собой конденсаторы, подключаемые параллельно обмоткам асинхронных двигателей и трансформаторов, работающих под нагрузкой ниже номинальной.

К таким решениям прибегают как раз с целью достижения резонанса токов (параллельного резонанса), когда индуктивное сопротивление оборудования делается равным емкостному сопротивлению подключаемых конденсаторов на частоте сети, чтобы реактивная энергия циркулировала между конденсаторами и оборудованием, а не между оборудованием и сетью; чтобы сеть отдавала энергию только тогда, когда оборудование нагружено и потребляет активную мощность.

Когда же оборудование работает в холостую, сеть оказывается подключена параллельно резонансному контуру (внешние конденсаторы и индуктивность оборудования), который представляет для сети очень большое комплексное сопротивление и позволяет снизитьсякоэффициенту мощности.

 

ЛитератураПравить

§ Власов В. Ф. Курс радиотехники. М.: Госэнергоиздат, 1962. С. 928.

§ Изюмов Н. М., Линде Д. П. Основы радиотехники. М.: Госэнергоиздат, 1959. С. 512.

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *