Постоянный электрический ток: Законы постоянного тока – FIZI4KA – Постоянный электрический ток. Направление тока, формула

Содержание

Постоянный электрический ток

 на главную   

 

Официальный сайт АНО ДО Центра «Логос», г.Глазов

http://logos-glz.ucoz.net/

 

ГОТОВИМСЯ К УРОКУ

Кинематика

Динамика

МКТ

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

постоянный электрический ток                                                      немного о физике:   

 

Что называют электрическим током?

 

Электрический ток — упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

 

Условия существования постоянного электрического тока.

 

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока — устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают  при движении проводника в магнитном поле, в фотоэлементах — при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

 

Основные понятия.

 

Сила тока — скалярная физическая величина, равная отношению заряда, прошедшего через проводник, ко времени, за которое этот заряд прошел.

где I — сила тока, q — величина заряда (количество электричества), t

— время прохождения заряда.

Плотность тока — векторная физическая величина, равная отношению силы тока к площади поперечного сечения проводника.

где j плотность токаS площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

где A — полная работа сторонних и кулоновских сил,  q — электрический заряд.

Электрическое сопротивление — физическая величина, характеризующая  электрические свойства участка цепи.

где ρ — удельное сопротивление проводника, l — длина участка проводника,  S — площадь поперечного сечения проводника.

 

Проводимостью называется величина, обратная сопротивлению

где  G — проводимость.

 

 

Законы Ома.

 

Закон Ома для однородного участка цепи.

Сила тока в однородном участке цепи прямо пропорциональна напряжению при постоянном сопротивлении участка  и обратно пропорциональна сопротивлению участка при постоянном напряжении.

где U — напряжение на участке,  R — сопротивление участка.

 

 

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

где   φ1— φ2 + ε = U напряжение на заданном участке цепи, R — электрическое сопротивление  заданного участка цепи.

 

 

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

где R — электрическое сопротивление внешнего участка цепи,  r — электрическое сопротивление внутреннего участка цепи.

 

Короткое замыкание.

Из закона Ома для полной цепи следует, что сила тока в цепи  с заданным источником тока зависит только от сопротивления внешней цепи R.

Если к полюсам источника тока подсоединить проводник с сопротивлением  R<< r, то тогда только  ЭДС источника тока и его сопротивление будут определять  значение силы тока в цепи. Такое значение силы тока будет являться предельным для данного источника тока и называется током короткого замыкания. 

 

Последовательное и параллельное

соединение проводников.

 

Электрическая цепь включает в себя источника тока и проводники (потребители, резисторы и др), которые могут соединятся  последовательно или параллельно.

 

При последовательном соединении конец предыдущего проводника соединяется с началом следующего.

 

 

Во всех  последовательно соединенных проводниках сила тока одинакова:

I1= I2=I

 

Сопротивление всего участка равно сумме сопротивлений всех отдельно взятых проводников:

R = R1+ R2

 

 

 

Падение напряжения на всем участке равно сумме паданий напряжений на всех отдельно взятых проводниках:

U= U1 +U2

 

Напряжения на последовательно соединенных проводниках пропорциональны их сопротивлениям.

При параллельном соединении проводники подсоединяются к одним и тем же точкам цепи.

Сила тока в неразветвленной части цепи равна сумме токов, текущих в каждом проводнике:

I = I1+ I2

 

Величина, обратная сопротивлению разветвленного участка,  равна сумме обратных величин обратных сопротивлениям каждого отдельно взятого проводника:

 

    

Падение напряжения во всех проводниках одинаково:

U= U1 = U2

 

 

Силы тока в проводниках обратно пропорциональны их сопротивлениям

 

 

Смешанное соединение — комбинация  параллельного и последовательного  соединений.

 

 

Правила Кирхгофа.

Для расчета разветвленных цепей, содержащих неоднородные участки, используют правила Кирхгофа. Расчет сложных цепей состоит в отыскании токов в различных участках цепей.

Узел — точка разветвленной цепи, в которой сходится более двух проводников.

1 правило Кирхгофа: алгебраическая сумма сил токов, сходящихся в узле, равна нулю;

где n — число проводников, сходящихся в узле, Ii— сила тока в проводнике.

токи, входящие в узел считают положительными, токи, отходящие из узла — отрицательными.

2 правило Кирхгофа: в любом произвольно выбранном замкнутом контуре разветвленной цепи алгебраическая сумма произведений сил токов и сопротивлений каждого из участков этого контура равна алгебраической сумме ЭДС в контуре.

 

Чтобы учесть знаки сил токов и ЭДС выбирается определенное направление обхода контура(по часовой стрелке или против нее). Положительными считают токи, направление которых совпадает с направлением обхода контура, отрицательными считают  токи противоположного направления. ЭДС источников  электрической энергии считают положительными если они создают токи, направление которых совпадает с направлением обхода контура, в противном случае — отрицательными.

 

Порядок расчета сложной цепи постоянного тока.

  1. Произвольно выбирают направление токов во всех участках цепи.

  2. Первое правило Кирхгофа  записывают  для  (m-1)  узла, где m — число узлов в цепи.

  3. Выбирают произвольные замкнутые контуры, и после выбора направления обхода записывают второе правило Кирхгофа.

  4. Система из составленных уравнений должна быть разрешимой: число уравнений должно соответствовать количеству неизвестных.

Шунты и добавочные сопротивления.

Шунт — сопротивление, подключаемое параллельно к амперметру (гальванометру), для расширения его шкалы при измерении силы тока.

Если  амперметр рассчитан на силу тока I0, а с помощью него необходимо измерить силу тока, превышающую в n раз допустимое значение, то сопротивление, подключаемого шунта должно удовлетворять следующему условию:

 

 

Добавочное сопротивление — сопротивление, подключаемое последовательно с вольтметром (гальванометром),  для расширения его шкалы при измерении напряжения.

Если  вольтметр рассчитан на напряжение U0, а с помощью него необходимо измерить напряжение, превышающее в n раз допустимое значение, то добавочное сопротивление должно удовлетворять следующему условию:

 

 

Постоянный электрический ток. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Электрический ток — упорядоченное (направленное) движение заряженных частиц Направленное движение свободных зарядов (носителей тока) в проводнике возможно под действием внешнего электрического поля

За направление тока принимается направление движения положительно заряженных частиц.

Электрический ток — упорядоченное (направленное) движение заряженных частиц Направленное движение свободных зарядов (носителей тока) в проводнике возможно под действием внешнего электрического поля

За направление тока принимается направление движения положительно заряженных частиц.

Сила тока в данный момент времени — скалярная физическая величина, равная пределу отношения величины электрического заряда, прошедшего сквозь поперечное сечение проводника, к промежутку времени его прохождения

Единица силы тока (основная единица СИ) — ампер (1 А) 1 А = 1 Кл/с

Постоянный электрический ток — ток, сила которого не изменяется с течением времени

Источник тока — устройство, разделяющее положительные и отрицательные заряды

Сторонние силы — силы неэлектростатического происхождения, вызывающие разделение зарядов в источнике тока

ЭДС— скалярная физическая величина, равная отношению работы сторонних сил по перемещению положительного заряда от отрицательного полюса источника тока к положительному к величине этого заряда:

ЭДС равна напряжению между полюсами разомкнутого источника тока.

Закон Ома для однородного проводника (участка цепи): сила тока в однородном проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника

Сопротивление проводника прямо пропорционально его удельному сопротивлению и длине и обратно пропорционально площади его поперечного сечения

Единица сопротивления — ом (1 Ом) 1 Ом = 1 В/А

Резистор — проводник с определенным постоянным сопротивлением

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.

Единица удельного сопротивления — ом-метр (1 Ом • м).

Удельное сопротивление металлического проводника линейно возрастает с температурой:

где ρ0— удельное сопротивление при T0 = 293 К, ΔТ= Т- T0, α — температурный коэффициент сопротивления. Единица температурного коэффициента сопротивления К-1. Удельное сопротивление полупроводника уменьшается при увеличении температуры из-за увеличения числа свободных зарядов, способных переносить электрический ток.

Дырка — вакантное электронное состояние в кристаллической решетке, имеющее избыточный положительный заряд.

Сверхпроводимость — физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Критическая температура — температура скачкообразного перехода вещества из нормального состояния в сверхпроводящее.

Изотопический эффект — зависимость критической температуры от массы ионов в кристаллической решетке.

Электрический ток в сверхпроводнике обусловлен согласованным движением пар электронов, связанных между собой взаимодействием с кристаллической решеткой

При последовательном соединении резисторов общее сопротивление цепи равно сумме их сопротивлений При параллельном соединении резисторов проводимость цепи равна сумме их проводимостей Закон Ома для замкнутой цепи: сила тока в замкнутой цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи:

где R и r — внешнее и внутреннее сопротивления цепи.

Закон Ома для замкнутой цепи с несколькими последовательно соединенными источниками тока:

сила тока в замкнутой цепи с последовательно соединенными источниками тока прямо пропорциональна алгебраической сумме их ЭДС и обратно пропорциональна полному сопротивлению цепи:

Амперметр измеряет силу электрического тока, включается в цепь последовательно

Шунт — проводник, присоединяемый параллельно амперметру для увеличения предела его измерений*

где RA — сопротивление амперметра, n — кратность изменения предела измерений.

Вольтметр измеряет электрическое напряжение. Включается в цепь параллельно

Дополнительное сопротивление — проводник, присоединяемый последовательно с вольтметром для увеличения предела его измерений.

где Rv — сопротивление вольтметра Количество теплоты, выделяющееся в проводнике, равно работе электрического тока.

Закон Джоуля—Ленца: количество теплоты, выделяемое в проводнике с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения по нему тока:

Мощность электрического тока — работа, совершаемая в единицу времени электрическим полем при упорядоченном движении заряженных частиц в проводнике

Потребителю передается максимальная мощность, если сопротивление нагрузки равно суммарному сопротивлению источника тока и подводящих проводов

Жидкости, как и твердые тела, могут быть проводниками электрического тока

Электролиты — вещества, растворы и расплавы которых обладают ионной проводимостью.

Электролитическая диссоциация — расщепление молекул электролита на положительные и отрицательные ионы под действием растворителя

Электролиз — выделение на электродах веществ, входящих в состав электролита, при протекании через его раствор (или расплав) электрического тока

Закон Фарадея: масса вещества, выделившегося на электроде, прямо пропорциональна заряду, прошедшему через раствор (расплав) электролита. где k— электрохимический эквивалент вещества.

Единица электрохимического эквивалента — килограмм на кулон (1 кг/Кл).

Объединенный закон Фарадея:

где М — молярная масса, n — валентность химического элемента; постоянная Фарадея F = 9,65- 104Кл/моль.

Постоянный электрический ток — это что такое?

Постоянный электрический ток – это непрерывное движение электронов из области отрицательных (-) в область положительных (+) зарядов через проводящий материал, такой как металлическая проволока. Хотя статические разряды и представляют собой спонтанные движения заряженных частиц от отрицательно к положительно заряженной поверхности, непрерывного движения частиц через проводник не происходит.

Для создания потока электронов необходима цепь постоянного электрического тока. Это источник энергии (например, батарея) и проводник, идущий от положительного полюса к отрицательному. В цепь могут быть включены различные электрические устройства.

Непрерывное движение электронов

Постоянный ток представляет собой непрерывное движение электронов через проводящий материал, такой как металлическая проволока. Заряженные частицы движутся к положительному (+) потенциалу. Для создания потока электроэнергии требуется электрическая цепь, состоящая из источника питания постоянного тока и провода, образующего замкнутый контур. Хорошим примером такой цепи является фонарик.

Хотя отрицательно заряженные электроны движутся через провод к положительному (+) полюсу источника питания, движение тока указывается в противоположном направлении. Это является следствием неудачного и путающего соглашения. Ученые, экспериментировавшие с токами, посчитали, что электричество движется от (+) к (-), и это стало общепринятым еще до открытия электронов. В действительности отрицательные заряженные частицы движутся к положительному полюсу, противоположно направлению, указанному как направление движения тока. Это сбивает с толку, но после того, как соглашение было принято, уже трудно что-то исправить.

постоянный электрический ток это

Напряжение, ток и сопротивление

Электричество, проходящее через провод или другой проводник, характеризуется напряжением U, током I и сопротивлением R. Напряжение является потенциальной энергией. Ток представляет собой поток электронов в проводнике, а сопротивление – силу его трения.

Хороший способ представить постоянный электрический ток – это провести аналогию с водой, текущей по шлангу. Напряжение представляет собой потенциал, нарастающий на одном конце провода из-за избытка отрицательно заряженных электронов. Это похоже на повышенное давления воды в шланге. Потенциал заставляет электроны двигаться через провод в область положительного заряда. Эта потенциальная энергия называется напряжением и измеряется в вольтах.

Постоянный электрический ток – это поток электронов, измеряемый в амперах. Он подобен скорости движения воды по шлангу.

Ом является единицей измерения электрического сопротивления. Атомы проводника расположены так, что электроны будут проходить с небольшим трением. В изоляторах или плохих проводниках атомы оказывают сильное сопротивление или препятствуют перемещению заряженных частиц. Это аналогично трению воды в шланге при прохождении через него.

Таким образом, напряжение подобно давлению, расход – току и гидравлическое сопротивление – электрическому.

электрическая схема постоянного тока

Создание постоянного тока

Хотя статическое электричество может быть разряжено через металлическую проволоку, оно не является источником постоянного тока. Им являются батареи и генераторы.

В батареях для создания электроэнергии постоянного тока используются химические реакции. Например, автомобильный аккумулятор состоит из свинцовых пластин, помещенных в раствор серной кислоты. Когда пластины получают заряд от сети или генератора автомобиля, они изменяются химически и удерживают заряд. Этот источник постоянного тока может затем использоваться для питания фар автомобиля и т. д. Проблема заключается в том, что серная кислота очень едкая и опасная.

Другую батарею можно сделать самостоятельно из лимона. Она не требует зарядки, но зависит от кислотной реакции разных металлов. Медь и цинк работают лучше всего. Можно использовать медную проволоку или монету. В качестве другого электрода можно использовать оцинкованный гвоздь. Железный тоже будет работать, но не так хорошо. Достаточно воткнуть медный провод и гальванизированный гвоздь в обычный лимон и измерить напряжение между ними вольтметром. Некоторым с помощью этой батареи даже удавалось зажечь лампочку фонарика.

Надежным источником является генератор, который сделан из проволоки, намотанной между северными и южными полюсами магнита.

Таким образом, постоянный электрический ток – это непрерывное движение электронов от отрицательного к положительному полюсу проводника, такого как металлическая проволока. Для прохождения заряженных частиц необходима цепь. В ней направление движения тока противоположно потоку электронов. Цепь характеризуется такими величинами, как напряжение, ток и сопротивление. Источниками постоянного тока являются аккумуляторы и генераторы.

постоянный электрический ток источники постоянного тока

Электрические цепи

Электрическая схема постоянного тока состоит из источника, к полюсам которого подсоединены проводники, соединяющие приемники в замкнутый контур. Это обязательное условие для прохождения тока. Цепи могут быть последовательными, параллельными или комбинированными.

Если взять источник постоянного тока, например аккумулятор, и подсоединить его положительный и отрицательный полюсы проводами к нагрузке, например лампочке, то образуется электрическая цепь. Иными словами, электроэнергия течет от одного контакта батареи к другому. Последовательно с лампой можно установить выключатель, который при необходимости будет регулировать подачу постоянного электрического тока.

электрическое напряжение постоянного тока

Источники постоянного тока

Цепь требует наличия источника питания. Как правило, для этого используется батарея или аккумулятор. Другим источником энергии служит генератор постоянного тока. Кроме того, можно пропустить переменный ток через выпрямитель. Обычный адаптер, используемый с некоторыми портативными устройствами (например, смартфонами), преобразует 220 В переменного тока в постоянный напряжением 5 В.

Проводники

Провода и нагрузка должны проводить электричество. Медь или алюминий являются хорошими проводниками и имеют низкое сопротивление. Вольфрамовая нить в лампе накаливания проводит ток, но имеет высокое сопротивление, которое заставляет ее нагреваться и накаляться.

мощность постоянного электрического тока

Последовательное и параллельное подключение

В электроцепи несколько устройств, таких как лампочки, могут соединяться в одну линию между положительным и отрицательным полюсами батареи. Такое подключение называется последовательным. Одной из проблем такой компоновки является то, что в случае перегорания одной лампочки она действует как выключатель и отключает всю цепь.

Приемники также могут соединяться параллельно, так что, если какая-либо лампа погаснет, цепь не будет обесточена. Параллельная схема включения используется не только в елочных гирляндах — электропроводка в домах тоже проводится параллельно. Поэтому освещение и приборы можно включать и выключать независимо друг от друга.

постоянный и переменный электрический ток

Закон Ома

К законам постоянного электрического тока относится закон Ома, который является самой фундаментальной формулой для электрических цепей. Согласно ему, ток, проходящий через проводник, прямо пропорционален разности потенциалов на нем. Закон был впервые сформулирован в 1827 году немецким физиком Георгом Омом, когда он исследовал проводимость металлов. Закон Ома лучше всего описывает простые электрические цепи постоянного тока. Хотя он также применим к переменному току, в этом случае следует учитывать другие возможные переменные. Соотношение между током, напряжением и сопротивлением позволяет вычислить одну физическую величину, если известны значения двух других.

Закон Ома показывает зависимость между напряжением, током и сопротивлением в простой электрической цепи. В простейшем виде записывается уравнением U = I × R. Здесь U – напряжение в вольтах, I – ток в амперах и R – сопротивление в омах. Таким образом, если известны I и R, можно вычислить U. При необходимости формулу можно изменять методами алгебры. Например, если известны U и R и нужно найти I, то следует использовать уравнение I = U / R. Или, если даны U и I и необходимо вычислить R, то применяется выражение R = U / I.

Важность Закона Ома заключается в том, что если значение двух переменных в уравнении известно, то можно определить третье. Любую из этих физических величин можно измерить с помощью вольтметра. Большинство вольтметров или мультиметров измеряют U, I, R постоянного и переменного электрического тока.

законы постоянного электрического тока

Вычисление U, I, R

Электрическое напряжение постоянного тока при известных токе и сопротивлении можно найти по формуле U = I × R. Например, если I = 0,2 А и R = 1000 Ом, то U = 0,2 А * 1000 Ом = 200 В.

Если известны напряжение и сопротивление, ток можно вычислить с помощью уравнения I = V / R. Например, если U = 110 В и R = 22000 Ом, то I = 110 В / 22000 Ом = 0,005 А.

Если известны напряжение и ток, то R = V / I. Если V = 220 В и I = 5 А, то R = 220 В / 5 А = 44 Ом.

Таким образом, закон Ома показывает зависимость между напряжением, током и сопротивлением в простой электрической цепи. Он может применяться к цепям как постоянного, так и переменного тока.

Мощность постоянного электрического тока

Заряд, движущийся в цепи (если это не сверхпроводник), расходует энергию. Это может привести к нагреву или вращению двигателя. Электрическая мощность – это скорость, с которой электроэнергия преобразуется в другую форму, такую как механическая энергия, тепло или свет. Она равна произведению тока и напряжения: P = U × I. Измеряется в ваттах. Например, если U = 220 В и I = 0,5 А, то P = 220 В * 0,5 А = 110 Вт.

Постоянный электрический ток | РАЗМЫШЛЯЕМ

Лекция № 16 Постоянный  электрический ток. Сила тока, плотность тока.

1 Постоянный электрический ток

Электрический ток обеспечивает комфортом жизнь современного человека. Технологические достижения цивилизации — это:

  • энергетика;
  • транспорт;
  • радио и телевидение;
  • компьютеры;
  • мобильная связь.

И все они основаны на использовании электрического тока.

Электрический ток — это направленное движение заряженных частиц, при котором происходит перенос заряда из одних областей пространства в другие.

Электрический ток может возникать в самых различных средах: твёрдых телах, жидкостях, газах. Порой и среды никакой не нужно — ток может существовать даже в вакууме! Мы поговорим об этом в своё время, а пока приведём лишь некоторые примеры.

  • Замкнём полюса батарейки металлическим проводом. Свободные электроны провода начнут направленное движение от «минуса» батарейки к «плюсу». Это — пример тока в металлах.
  • Бросим в стакан воды щепотку поваренной соли NaCl. Молекулы соли диссоциируют на ионы, так что в растворе появятся свободные заряды: положительные ионы Na+ и отрицательные ионы Cl−. Теперь засунем в воду два электрода, соединённые с полюсами батарейки. Ионы Na+ начнут направленное движение к отрицательному электроду, а ионы Cl− — к положительному. Это — пример прохождения тока через раствор электролита.
  • Грозовые тучи создают столь мощные электрические поля, что оказывается возможным пробой воздушного промежутка длиной в несколько километров. В результате сквозь воздух проходит гигантский разряд — молния.

Это — пример электрического тока в газе.

Во всех трёх рассмотренных примерах электрический ток обусловлен движением заряженных частиц внутри тела и называется током проводимости.

  • Вот несколько иной пример. Будем перемещать в пространстве заряженное тело. Такая ситуация согласуется с определением тока! Направленное движение зарядов — есть, перенос заряда в пространстве — присутствует. Ток, созданный движением макроскопического заряженного тела, называется конвекционным.

Заметим, что не всякое движение заряженных частиц образует ток. Например, хаотическое тепловое движение зарядов проводника — не направленное (оно совершается в каких угодно направлениях), и потому током не является.

Не будет током и поступательное движение электрически нейтрального тела: хотя заряженные частицы в его атомах и совершают направленное движение, не происходит переноса заряда из одних участков пространства в другие.

1.1 Направление постоянного электрического тока

Направление движения заряженных частиц, образующих ток, зависит от знака их заряда. Положительно заряженные частицы будут двигаться от «плюса» к «минусу», а отрицательно заряженные — наоборот, от «минуса» к «плюсу». В электролитах и газах, например, присутствуют как положительные, так и отрицательные свободные заряды, и ток создаётся их встречным движением в обоих направлениях. Какое же из этих направлений принять за направление электрического тока?

Направлением тока принято считать направление движения положительных зарядов. Попросту говоря, по соглашению ток течёт от «плюса» к «минусу» (рис. 1; положительная клемма источника тока изображена длинной чертой, отрицательная клемма — короткой).

Рис. 1 Направление тока

Данное соглашение вступает в некоторое противоречие с наиболее распространённым случаем металлических проводников. В металле носителями заряда являются свободные электроны, и двигаются они от «минуса» к «плюсу». Но в соответствии с соглашением мы вынуждены считать, что направление тока в металлическом проводнике противоположно движению свободных электронов. Это, конечно, не очень удобно.

Тут, однако, ничего не поделаешь — придётся принять эту ситуацию как данность. Так уж исторически сложилось. Выбор направления тока был предложен Ампером  в первой половине XIX века, за 70 лет до открытия электрона. К этому выбору все привыкли, и когда в 1916 году выяснилось, что ток в металлах вызван движением свободных электронов, ничего менять уже не стали.

1.2 Действие электрического тока

Как мы можем определить, протекает электрический ток или нет? О возникновении электрического тока можно судить по следующим его проявлениям.

  1. Тепловое действие тока. Электрический ток вызывает нагревание вещества, в котором он протекает. Именно так нагреваются спирали нагревательных приборов и ламп накаливания. Именно поэтому мы видим молнию. В основе действия тепловых амперметров лежит тепловое расширение проводника с током, приводящее к перемещению стрелки прибора.
  2. Магнитное действие тока. Электрический ток создаёт магнитное поле: стрелка компаса, расположенная рядом с проводом, при включении тока поворачивается перпендикулярно проводу. Магнитное поле тока можно многократно усилить, если обмотать провод вокруг железного стержня — получится электромагнит. На этом принципе основано действие амперметров магнитоэлектрической системы: электромагнит поворачивается в поле постоянного магнита, в результате чего стрелка прибора перемещается по шкале.
  3. Химическое действие тока. При прохождении тока через электролиты можно наблюдать изменение химического состава вещества. Так, в растворе CuSO4 положительные ионы Cu2+ двигаются к отрицательному электроду, и этот электрод покрывается медью.

(Договорённость о направлении тока понадобилась Амперу для того, чтобы дать чёткое правило определения направления силы, действующей на проводник с током в магнитном поле. Сегодня эту силу мы называем силой Ампера, направление которой определяется по правилу левой руки).

1.3 Сила и плотность тока

Электрический ток называется постоянным, если за равные промежутки времени через поперечное сечение проводника проходит одинаковый заряд. Постоянный ток наиболее прост для изучения. С него мы и начинаем.

Количественной характеристикой электрического тока является сила тока. В случае постоянного тока абсолютная величина силы тока есть отношение абсолютной величины заряда q, прошедшего через поперечное сечение проводника за время t, к этому самому времени:

I = q/t .                                           (1)

Измеряется сила тока в амперах (A). При силе тока в 1 А через поперечное сечение проводника за 1 с проходит заряд в 1 Кл.

Подчеркнём, что формула (1) определяет абсолютную величину, или модуль силы тока. Сила тока может иметь ещё и знак! Этот знак не связан со знаком зарядов, образующих ток, и выбирается из иных соображений. А именно, в ряде ситуаций (например, если заранее не ясно, куда потечёт ток) удобно зафиксировать некоторое направление обхода цепи (скажем, против часовой стрелки) и считать силу тока положительной, если направление тока совпадает с направлением обхода, и отрицательной, если ток течёт против направления обхода.

В случае постоянного тока сила тока есть величина постоянная. Она показывает, какой заряд проходит через поперечное сечение проводника за 1 с.

(Вообще-то, единица силы тока определяется через магнитное взаимодействие проводов с током.  А именно, пусть имеются два параллельных провода, очень длинных и тонких, расположенных в вакууме на расстоянии 1 м друг от друга. По этим проводам течёт одинаковый ток. Мы говорим, что сила тока равна 1 A, если сила взаимодействия проводов равна 2 · 10-7 Н на каждый метр провода. Сравните с тригонометрическим кругом: углы считаются положительными, если отсчитываются против часовой стрелки, и отрицательными, если по часовой стрелке.)

 

Часто бывает удобно не связываться с площадью поперечного сечения и ввести величину плотности тока:

j = I/S ,                                      (2)

где I — сила тока, S — площадь поперечного сечения проводника (разумеется, это сечение перпендикулярно направлению тока). С учётом формулы (1) имеем также:

j = q/St .

Плотность тока показывает, какой заряд проходит за единицу времени через единицу площади поперечного сечения проводника. Согласно формуле (2), плотность тока измеряется в А/м2 .

1.4 Скорость направленного движения зарядов

Когда мы включаем в комнате свет, нам кажется, что лампочка загорается мгновенно. Скорость распространения тока по проводам очень велика: она близка к 300000 км/с (скорости света в вакууме). Если бы лампочка находилась на Луне, она зажглась бы через секунду с небольшим.

Однако не следует думать, что с такой грандиозной скоростью двигаются свободные заряды, образующие ток. Оказывается, их скорость составляет всего-навсего доли миллиметра в секунду.

Почему же ток распространяется по проводам так быстро? Дело в том, что свободные заряды взаимодействуют друг с другом и, находясь под действием электрического поля источника тока, при замыкании цепи приходят в движение почти одновременно вдоль всего проводника. Скорость распространения тока есть скорость передачи электрического взаимодействия между свободными зарядами, и она близка к скорости света в вакууме. Скорость же, с которой сами заряды перемещаются внутри проводника, может быть на много порядков меньше. Итак, подчеркнём ещё раз, что мы различаем две скорости.

  • Скорость распространения тока. Это — скорость передачи электрического сигнала по цепи она близка к 300000 км/с.
  • Скорость направленного движения свободных зарядов. Это — средняя скорость перемещения зарядов, образующих ток. Называется ещё скоростью дрейфа.

Мы сейчас выведем формулу, выражающую силу тока I через скорость v направленного движения зарядов проводника.

Пусть проводник имеет площадь поперечного сечения S (рис. 2). Свободные заряды проводника будем считать положительными; величину свободного заряда обозначим e (в наиболее важном для практики случая металлического проводника это есть заряд электрона). Концентрация свободных зарядов (т. е. их число в единице объёма) равна n.

Рис. 2 К выводу формулы I = envS

Какой заряд q пройдёт через поперечное сечение AB нашего проводника за время t? С одной стороны, разумеется,

q = It.                                     (3)

С другой стороны, сечение AB пересекут все те свободные заряды, которые спустя время t окажутся внутри цилиндра ABCD с высотой vt. Их число равно:

N = nVABCD = nSvt.

Следовательно, их общий заряд будет равен:

q = eN = enSvt.                        (4)

Приравнивая правые части формул (3) и (4) и сокращая на t, получим:

I = envS.                                    (5)

Соответственно, плотность тока оказывается равна:

j = env.

Давайте в качестве примера посчитаем, какова скорость движения свободных электронов в медном проводе при силе тока 1 A.

Заряд электрона известен: e = 1,6 · 10-19 Кл.

Чему равна концентрация свободных электронов? Она совпадает с концентрацией атомов меди, поскольку от каждого атома отщепляется по одному валентному электрону. Ну а концентрацию атомов мы находить умеем:

Это порядка одной десятой миллиметра в секунду.

1.5 Стационарное электрическое поле

Мы всё время говорим о направленном движении зарядов, но ещё не касались вопроса о том, почему свободные заряды совершают такое движение. Почему, собственно, возникает электрический ток?

Для упорядоченного перемещения зарядов внутри проводника необходима сила, действующая на заряды в определённом направлении. Откуда берётся эта сила? Со стороны электрического поля!

Чтобы в проводнике протекал постоянный ток, внутри проводника должно существовать стационарное электрическое поле. Иными словами, между концами проводника нужно поддерживать постоянную разность потенциалов.

Стационарное электрическое поле должно создаваться зарядами проводников, входящих в электрическую цепь. Однако заряженные проводники сами по себе не смогут обеспечить протекание постоянного тока.

Рассмотрим, к примеру, два проводящих шара, заряженных разноимённо. Соединим их проводом. Между концами провода возникнет разность потенциалов, а внутри провода — электрическое поле. По проводу потечёт ток. Но по мере прохождения тока разность потенциалов между шарами будет уменьшаться, вслед за ней станет убывать и напряжённость поля в проводе. В конце концов, потенциалы шаров станут равны друг другу, поле в проводе обратится в нуль, и ток исчезнет. Мы оказались в электростатике: шары плюс провод образуют единый проводник, в каждой точке которого потенциал принимает одно и то же значение; напряжённость поля внутри проводника равна нулю, никакого тока нет.

То, что электростатическое поле само по себе не годится на роль стационарного поля, создающего ток, ясно и из более общих соображений. Ведь электростатическое поле потенциально, его работа при перемещении заряда по замкнутому пути равна нулю. Следовательно, оно не может вызывать циркулирование зарядов по замкнутой электрической цепи — для этого требуется совершать ненулевую работу.

Кто же будет совершать эту ненулевую работу? Кто будет поддерживать в цепи разность потенциалов, и обеспечивать стационарное электрическое поле, создающее ток в проводниках? Ответ — источник тока, важнейший элемент электрической цепи.

Чтобы в проводнике протекал постоянный ток, концы проводника должны быть присоединены к клеммам источника тока (батарейки, аккумулятора и т. д.).

Клеммы источника — это заряженные проводники. Если цепь замкнута, то заряды с клемм перемещаются по цепи — как в рассмотренном выше примере с шарами. Но теперь разность потенциалов между клеммами не уменьшается: источник тока непрерывно восполняет заряды на клеммах, поддерживая разность потенциалов между концами цепи на неизменном уровне.

В этом и состоит предназначение источника постоянного тока. Внутри него протекают процессы неэлектрического (чаще всего — химического) происхождения, которые обеспечивают непрерывное разделение зарядов. Эти заряды поставляются на клеммы источника в необходимом количестве.

Количественную характеристику неэлектрических процессов разделения зарядов внутри источника — так называемую ЭДС — мы изучим позже, в соответствующем листке.

А сейчас вернёмся к стационарному электрическому полю. Каким же образом оно возникает в проводниках цепи при наличии источника тока?

Заряженные клеммы источника создают на концах проводника электрическое поле. Свободные заряды проводника, находящиеся вблизи клемм, приходят в движение и действуют своим электрическим полем на соседние заряды. Со скоростью, близкой к скорости света, это взаимодействие передаётся вдоль всей цепи, и в цепи устанавливается постоянный электрический  ток. Стабилизируется и электрическое поле, создаваемое движущимися зарядами.

Стационарное электрическое поле — это поле свободных зарядов проводника, совершающих направленное движение.

Стационарное электрическое поле не меняется со временем потому, что при постоянном токе не меняется картина распределения зарядов в проводнике: на место заряда, покинувшего данный участок проводника, в следующий момент времени поступает точно такой же заряд. По этой причине стационарное поле во многом (но не во всём) аналогично полю электростатическому.

А именно, справедливы следующие два утверждения, которые понадобятся нам в дальнейшем (их доказательство даётся в вузовском курсе физики).

  1. Как и электростатическое поле, стационарное электрическое поле потенциально. Это позволяет говорить о разности потенциалов (т. е. напряжении) на любом участке цепи.

Потенциальность, напомним, означает, что работа стационарного поля по перемещению заряда не зависит от формы траектории. Именно поэтому при параллельном соединении проводников напряжение на каждом из них одинаково: оно равно разности потенциалов стационарного поля между теми двумя точками, к которым подключены проводники.

  1. В отличие от электростатического поля, стационарное поле движущихся зарядов проникает внутрь проводника. Это объясняется тем, что свободные заряды, участвуя в направленном движении, не успевают должным образом перестраиваться и принимать «электростатические» конфигурации.

Линии напряжённости стационарного поля внутри проводника параллельны его поверхности, как бы ни изгибался проводник. Поэтому, как и в однородном электростатическом поле, справедлива формула U = El, где U — напряжение на концах проводника, E — напряжённость стационарного поля в проводнике, l — длина проводника.

Постоянный электрический ток

Эти заряженные частицы в теории часто называют носителями тока. В проводниках и полупроводниках носителями тока являются электроны, в электролитах заряженные ионы. В газах носителями заряда могут быть и электроны и ионы. В металлах, например, могут перемещаться только электроны. Следовательно, электрический ток в них — есть движение электронов проводимости. Надо отметить, что результат прохождения электрического тока в металлах и электропроводящих растворах существенно отличается. В металлах не происходит химических процессов при прохождении тока. Тогда как в электролитах под воздействием тока идет выделение ионов вещества на электродах (явление электролиза). Различие в результатах действия тока объясняется тем, что носители зарядов в металле и электролите принципиально различны. В металлах — это свободные электроны, которые отделились от атомов, в растворах — это ионы, то есть атомы или их группы, которые имею заряд.

Так, первым необходимым условием существования электрического тока, в каком — либо веществе является наличие носителей тока.

Для того чтобы заряды находились в равновесии необходимо, чтобы разность потенциалов между любыми точками проводника была равна нулю. В том случае, если это условие нарушается, то равновесия нет, тогда заряд перемещается. Следовательно, вторым необходимым условием существования электрического тока в проводнике является создание напряжения между некоторыми точками.

Упорядоченное движение свободных зарядов, которое возникает в проводнике как результат воздействия электрического поля, называют током проводимости.

Однако отметим, что упорядоченное движение заряженных частиц возможно в том случае, если заряженный проводник или диэлектрик перемещать в пространстве. Подобный электрический ток называют конвекционным.

Механизм осуществления постоянного тока

Для того чтобы ток в проводнике шел постоянно, необходимо, чтобы к проводнику (или совокупности проводников — цепь проводников) было присоединено какое — либо устройство, в котором постоянно происходил процесс разделения электрических зарядов и тем самым поддерживалось напряжение в цепи. Это устройство называют источником тока (генератором). Силы, которые разделяют заряды, называют сторонними силами. Они носят неэлектрическое происхождение и действуют только внутри источника. При разделении зарядов сторонние силы создают разность потенциалов между концами цепи.

В том случае, если электрический заряд перемещается по замкнутой цепи, то работа электростатических сил равна нулю. Значит, суммарная работа сил ($A$), которые действуют на заряд равна работе сторонних сил ($A_{st}$). Физическая величина, которая характеризует источник тока — это ЭДС источника (${\mathcal E}$), она определена как:

\[{\mathcal E}=\frac{A}{q}\left(1\right),\]

где $q$ — положительный заряд. Движение заряда идет по замкнутому контуру. ЭДС — не является силой в буквальном смысле. Единица измерения $\left[{\mathcal E}\right]=В$.

Природа сторонних сил может быть различна, так например, в гальваническом элементе сторонние силы являются результатом электрохимических процессов. В машине постоянного тока такой силой является сила Лоренца.

Основные характеристики тока

Направлением тока условно считают направление движения положительных частиц. Значит, направление тока в металлах имеет противоположное направление по отношению к направлению движения частиц.

Электрический ток характеризуют силой тока. Сила тока ($I$) — скалярная величина, которая равна производной от заряда ($q$) по времени для тока, который течет через поверхность S:

\[I=\frac{dq}{dt}\left(2\right).\]

Ток может быть постоянным и переменным. В том случае, если сила тока и его направление не изменяется во времени, то такой ток называют постоянным и для него выражение для силы тока можно записать в виде:

\[I=\frac{q}{t}\left(3\right),\]

где сила тока определена, как заряд, который проходит через поверхность S в единицу времени.

В системе СИ основной единицей измерения силы тока является Ампер (А).

\[1A=\frac{1Кл}{1с}.\]

Векторной локальной характеристикой тока является его плотность. Вектор плотности тока ($\overrightarrow{j}$)- характеризует каким образом распределен ток по сечению S. Этот вектор направлен в сторону, в которую движутся положительные заряды. По модулю вектор плотности тока равен:

\[j=\frac{dI}{dS’}\left(4\right),\]

где $dS’$ — проекция элементарной поверхности $dS$ на плоскость, которая перпендикулярна вектору плотности тока, $dI$ — элемент силы тока, который течет через поверхности $dS\ и\ dS’$.

Плотность тока в металле может быть представлена как:

\[\overrightarrow{j}=-n_0q_e\left\langle \overrightarrow{v}\right\rangle \ \left(5\right),\]

где $n_0$ — концентрация электронов проводимости, $q_e=1,6{\cdot 10}^{-19}Кл$ — заряд электрона, $\left\langle \overrightarrow{v}\right\rangle $ — средняя скорость упорядоченного движения электронов. При максимальных плотностях токов $\left\langle \overrightarrow{v}\right\rangle ={10}^{-4}\frac{м}{с}$.

Закон сохранения заряда

Закон сохранения заряда

Рис. 1

Фундаментальным физическим законом является закон сохранения электрического заряда. Если выбрать произвольную замкнутую неподвижную поверхность S (рис.1), которая ограничивает объем V, то количество электричества, которое вытекает за секунду из объема V, определяется как $\oint\limits_S{j_ndS.}$ То же количество электричества можно выразить через заряд: $-\frac{\partial q}{\partial t}$, то есть мы имеем:

\[\frac{\partial q}{\partial t}=-\oint\limits_S{j_ndS\left(6\right),}\]

где $j_n$ — проекция вектора плотности тока на направление нормали к элементу поверхности $dS$, при этом:

\[j_n=jcos\alpha \ \left(7\right),\]

где $\alpha $ — угол между направлением нормали к dS и вектором плотности тока. В уравнении (6) употребляется частная производная для того, чтобы подчеркнуть, что поверхность S неподвижна.

Уравнение (6) — есть закон сохранения заряда в макроскопической электродинамике. В том случае, если ток постоянен во времени, то закон сохранения заряда запишем в виде:

\[\oint\limits_S{j_ndS=0\left(8\right).}\]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *