Понизить напряжение с 15 вольт до 12 вольт: Самый простой и дешёвый способ понизить напряжение с 12 вольт до 9 вольт

Содержание

Как повысить напряжение блока питания с 5 до 12 Вольт

У каждого дома наверняка валяется не один блок питания (зарядка) от различных моделей сотовых телефонов. Все они имеют выходное напряжение 5 В. Естественно, применить такой источник в хозяйстве можно, то порой столько целей нет, сколько есть в наличии таких источников с одинаковым напряжением. А можно ли как-то изменить напряжение этого блока? Тогда было бы больше возможностей его использовать.

На самом деле сделать это довольно просто, так как все зарядки от телефонов плюс-минус имеют одинаковую схему.

Как изменить напряжение блока?

Выходное напряжение можно не только уменьшить, но у увеличь в пределах 3-15 В. И в крации сначала расскажу как. На плате каждого импульсного источника питания, преимущественно в центре, расположен трансформатор. Визуально он делит высоковольтную часть блока и низковольтную. Эти части гальванически развязаны, но имеют обратную связь через оптрон. На низковольтной части платы в цепи оптрона стоит стабилитрон, который как раз и отвечает за уровень выходного напряжения.

Если вам нужно понизить напряжение до 3 В, достаточно просто заменить стабилитрон и пользоваться, а вот если повысить, то тогда потребуется заменить выходной фильтрующий конденсатор на другой с более высоким напряжением.

Я думаю, концепция внесения изменений вам понятна. Перейдем к делу.

Детали

Для изменения напряжения, конкретно в этом источнике, понадобятся следующие наименования деталей:
  • Стабилитрон 12 В.
  • Конденсатор 470 мкФ 25 В.

Повышаем напряжение импульсного источника своими руками

Вскрываем корпус. Находим стабилитрон. Он всегда расположен в низковольтной части блока.

Также рядом расположен фильтрующий конденсатор.

Предварительно можно включить блок в сеть и проверить, но конечно это лучше сделать заранее, пока крышка закрыта.

Выпаиваем стабилитрон и конденсатор.

Вместо них впаиваем новые. Самое главное не ошибиться с полярностью.

Как все будет готово, можно проверять.

Получились немного завышенные значения. Можно попробовать подобрать стабилитрон на более низкое напряжение, но для этого блока и так сойдет. Так как там, где он будет использоваться, превышение на 1-2 Вольта совсем не критично.

Смотрите видео

Резисторы, ток и напряжение

Как получить 12В из подручных средств

Самый простой способ получить напряжение 12В – это соединить последовательно 8 пальчиковых батареек по 1,5 В.

Или использовать готовую 12В батарейку с маркировкой 23АЕ или 27А, такие используются в пультах дистанционного управления. В ней внутри подборка из маленьких «таблеток», которые вы видите на фото.

Мы рассмотрели набор вариантов для получения 12В в домашних условиях. Каждый из них имеет свои плюсы и минусы, различную степень эффективности, надежности и КПД.

Какой вариант лучше использовать, вы должны выбрать самостоятельно исходя из возможностей и потребностей.

Также стоит отметить, что мы не рассмотрели один из вариантов. Получить 12 вольт можно и от блока питания для компьютера формата ATX. Для его запуска без ПК нужно замкнуть зеленый провод на любой из черных. 12 вольт находятся на желтом проводе. Обычно мощность 12В линии несколько сотен Ватт и ток в десятки Ампер.

Теперь вы знаете, как получить 12 Вольт из 220 или других доступных значений. Напоследок рекомендуем просмотреть полезное видео по теме:

Наверняка вы не знаете:

  • Как выпаивать радиодетали из плат
  • Как проверить диодный мост
  • Как определить емкость конденсатора
  • Маркировка резисторов по мощности и сопротивлению

Опубликовано:
08. 05.2018
Обновлено: 08.05.2018

Как уменьшить вольтаж трансформатора

Как уменьшить вольтаж на трансформаторе.

Привет коллеги!

В этой статье я расскажу вам, как из трансформатора с выходом 32 В, сделать трансформатор с выходом 12 В. Иными словами — уменьшить вольтаж трансформатора.

Для примера, возьму транс от китайского ч/б телевизора «Jinlipu».

Я думаю, очень многие встречались с ним или подобным.

Итак, для начала нам нужно определить первичную и вторичные обмотки. Чтобы это сделать, нужен обычный омметр. Замеряем сопротивление на выводах трансформатора.

На первичной обмотке сопротивление больше, чем на вторичной и составляет, обычно, не менее 85 Ом.После того, как мы определили эти обмотки, можно приступать к разбору трансформатора. Нужно отделить друг от друга Ш-образные пластины.

Для этого нам понадобятся некоторые инструменты, а именно: круглогубцы, плоскогубцы, маленькая отвёрточка для «подцепа» пластин, кусачки, нож.

Чтобы вытащить самую первую пластинку, придётся потрудиться, но потом остальные пойдут, как «по маслу»

Работать нужно очень осторожно, так как легко можно порезаться о пластины

Конкретно на этом трансформаторе нам известно, что на выходе у него 32 В.

В случае, когда мы этого не знаем, нужно перед разбором обязательно замерить напряжение, чтобы в дальнейшем мы смогли вычислить, сколько витков идёт на 1 В.

 После того, как пластины были извлечены, нужно снять с обмоток пластмассовый корпус. Делаем это смело, так как на работу трансформатора это никак не повлияет.

Затем находим на вторичной обмотке доступный для размотки контакт и кусачками «откусываем» его от места спайки. Далее начинаем разматывать обмотку, при этом обязательно считаем количество витков. Чтобы проволока не мешала, её можно наматывать на линейку или что-то подобное.

Так как на этом трансформаторе на вторичной обмотке 3 вывода (два крайних и один средний), то логично предположить, что напряжение на среднем выводе равняется 16В, ровно половина от 32В. Разматываем обмотку до среднего контакта, т.е. до половины, и подсчитываем количество витков, которое мы размотали.

(Если у трансформатора два вывода на вторичной обмотке, то разматываем «на глаз» до половины, считаем витки при этом, затем отрезаем размотанную проволоку, зачищаем её конец, припаиваем назад к контакту и собираем трансформатор, делая всё то же, что при разборке, только в обратном порядке.

Количество витков, которое вы размотали, равняется 105. Значит 105 витков приходится на 17В (35В-18В=17В). Отсюда следует, что на 1В приходится примерно 6,1 витков (105/17=6,176). Теперь, чтобы нам убавить напряжение ещё на 6В (18В-12В=6В), вам нужно размотать примерно 36,6 витков (6,1*6=36,6). Можно округлить эту цифру до 37.

Для этого вам нужно опять разобрать трансформатор и проделать эту «процедуру».). В нашем случае, дойдя до половины обмотки, у нас получилось 106 витков. Значит эти 106 витков приходятся на 16В. Вычисляем сколько витков приходится на 1В (106/16=6,625) и отматываем ещё примерно 26,5 витков (16В-12В=4В; 4В*6,625витков=26,5 витков).

Затем «откусываем» отмотанную проволоку, зачищаем от лака её конец, залуживаем и припаиваем к контакту на трансформаторе, от которого он был «откусан».

Остаётся замерить напряжение, которое у нас получилось:

Поздравляю вас, коллеги, всё получилось отлично!

В следующей статье я расскажу, как из этого трансформатора сделать блок питания постоянного тока на 12В.

Гасящий конденсатор вместо резистора

Иногда возникает задача понизить переменное напряжение сети 220 вольт до некоторого заданного значения, причем применение понижающего трансформатора (в таком случае) не всегда бывает целесообразным.

Скажем, низкочастотный понижающий трансформатор, выполненный традиционно на трансформаторном железе, способный преобразовать мощность 200 Ватт, весит больше килограмма, не говоря о высокой стоимости.

Следовательно в некоторых случаях можно применить гасящий резистор, который ограничит ток, однако при этом на самом гасящем резисторе выделится мощность в виде тепла, а это не всегда является приемлемым.

Например, если нужно запитать 200 Ваттную лампу только на половину ее наминала, потребовалось бы рассеять мощность в 100 Ватт на гасящем резисторе, а это крайне сомнительное решение.

Весьма удобной альтернативой, для данного примера, может служить применение гасящего конденсатора, емкостью около14мкф, (такой можно собрать из трех металлопленочных типа К73-17 по 4,7мкф, рассчитанных на 250в, а лучше – на 400в) это позволит получить нужный ток без необходимости рассеивать значительную мощность в виде тепла.

Рассмотрим физическую сторону этого решения. Как известно, конденсатор, включенный в цепь переменного тока, является реактивным элементом, обладающим емкостным сопротивлением, связанным с частотой переменного тока в цепи, а также с собственной емкостью.

Чем больше емкость конденсатора и чем выше частота переменного напряжения в цепи, тем больший ток проходит через конденсатор, значит емкостное сопротивление конденсатора обратно пропорционально его емкости, а также частоте переменного тока, в цепи, куда он включен.

Это видно и из формулы для емкостного сопротивления конденсатора:
Если в цепь переменного тока включены последовательно резистор (активная нагрузка) и конденсатор, то их общее сопротивление можно найти по формуле:

А посколькуито

Итак, зная напряжение на нагрузке, силу тока нагрузки и напряжение на гасящем конденсаторе, можно определить емкость гасящего конденсатора, который нужно включить последовательно нагрузке для получения требуемых параметров питания:
Рассмотрим пример: требуется запитать лампу накаливания мощностью 100 Ватт, рассчитанную на напряжение 110 вольт от розетки 220 вольт. В первую очередь найдем значение рабочего тока лампы:

Получим значение тока лампы равное 0,91 А. Теперь можно найти требуемое значение емкости гасящего конденсатора, она будет равна 15,2 мкФ.

Следует отметить, что этот расчет верен для чисто активной нагрузки, когда имеет место эффективное значение. При использовании же выпрямителя, необходимо учесть, что эффективное значение тока будет немного меньше в силу действия пульсаций. Также следует помнить, что в качестве гасящих конденсаторов, полярные конденсаторы применять ни в коем случае нельзя.

Лучшее сочетание вакуумных и          полупроводниковых характеристик — однотактный гибридный усилитель звука.

          Мы не создаём иллюзий,          Мы делаем звук живым!

Два простых способа снизить напряжение на электролампах

Если надоело постоянно менять перегоревшие лампы, воспользуйтесь одним из приведенных советов. Но во всех случаях успех достигается за счет существенного снижения напряжения.

В дневное и особенно в ночное время напряжение в сети нередко достигает 230-240В что приводит к ускоренному выгоранию нитей накала электроламп.

Подсчитано,что повышение напряжения всего лишь на 4% по сравнению с номинальным(то есть с 220 до 228В) сокращает срок службы электроламп на 40%, а при повышенном «питании» в 6% этот срок снижается более чем наполовину. 

В то же время уменьшение напряжения на лампах всего на 8%(до 200-202В) увеличивает «стаж» их работы в 3,5 раза, при 195В он возрастает почти в 5 раз

Разумеется с понижением напряжения, снижается и яркость свечения, но во многих случаях, в частности в служебных помещениях, и в местах общего пользования, это обстоятельство не так уж и важно

Как же снизить напряжение на электролампах? Существуют два простых способа.

Первый-включают последовательно две лампы (рис 1). А какую же лампу взять в качестве дополнительной?. Можно такую же, как и основная. Но тогда обе лампы будут светить слабо.

Лучше всего подбирать лампу так, чтобы мощности ламп отличались в 1,5-2 раза, например 40 и 75 Вт, 60 и 100 Вт и.т.д.

Тогда лампа меньшей мошности будет светиться достаточно ярко, а более мощная слабее, выполняя роль своеобразного балласта, гасящего избыточное напряжение (рис. 2.).

На первый взгляд выигрыша нет-ведь приходится использовать сразу две лампы вместо одной. Но вот что показывает простейший расчет; падение напряжения на лампах при последовательном соединении распределяется обратно пропорционально их мощности.

Поэтому при напряжении в сети 220В (возьмем пару ламп на 40 и 75 Вт) на 40- ваттной лампе напряжение будет около 145В, а на её 75-ваттной «партнерше»-чуть больше 75В.

Так как долговечность зависит от величины напряжения, понятно, что менять придется в основном лампу меньшей мощности. Да и та, как показывает практика, в худшем случае служит не менее года.

В обычных условиях за это же время приходится менять от 5 до 8 ламп (имеется в виду ежесуточная работа в течении 12 часов). Как видите, экономия весьма ощутима.

Другой способ-последовательное включение лампы и полупроводникового диода. Благодаря малым размерам его можно установить в конусе выключателя между клеммой и одним из подводящих проводов. При этом варианте происходит едва заметное мерцание ламп (за счет однополупериодического выпрямления переменного тока), а среднее значение напряжения на них составляет около 155В.Теперь о выборе типа диода. Он должен иметь определенный запас по допустимому току и быть рассчитан на напряжение не ниже 400В. Из миниатюрных диодов этому требованию отвечают серии КД150 и КД209. Однако диоды марки КД105 следует применять с лампами, у которых мощность не превышает 40Вт, а диоды КД209 (с любым буквенным индексом)-для совместной работы с 75-ватными осветительными приборами. Разумеется использовать можно и более мощные диоды других типов, но тогда их придется устанавливать вне выключателя. Правильно подобранный диод служит практически неограниченное время. Теперь разберем ещё один вопрос. Как быть тем, если в доме общий выключатель на весь подъезд? В этом случае устанавливают один диод большой мощности. Его крепят на металлическом уголке, привинчивают шурупами к стене рядом с выключателем, и закрывают кожухом с веньтиляционными отверстиями. Рекомендуемые типы диодов: КД202М, Н,Р или С, КД203, Д232-Д234, Д246-248 с любым буквенным индексом. При выборе типа диода помните, что его максимально допустимый  рабочий ток (указан в паспорте полупроводникового прибора) на 20-25% должен превышать суммарный  ток, потребляемый одновременно всеми  лампами, относящимися к данному выключателю. Если диод допускает ток всех лампочек (его нетрудно посчитать разделив общую мощность всех ламп на напряжение сети 220В ) не должен превышать 4А.

Как повышают и понижают напряжение?

Повышение и понижение напряжения осуществляют с помощью трансформаторов.

Трансформатор состоит из двух катушек изолированного провода, намотанных на общий стальной сердечник (рис. 16.4).

На одну катушку (называемую первичной обмоткой) подают переменный ток одного напряжения, а с другой катушки (вторичной обмотки) снимают переменный ток другого напряжения.

Рис. 16.4. Повышающий и понижающий трансформаторы.

Оно сосредоточено в основном внутри стального сердечника, поэтому обе обмотки пронизываются одним и тем же переменным магнитным потоком.

Поэтому вследствие явления электромагнитной индукции в каждом витке каждой обмотки возникает одна и та же ЭДС индукции.

Суммарная ЭДС в каждой из катушек равна сумме ЭДС во всех ее витках, так как витки соединены друг с другом последовательно. Поэтому отношение напряженийина вторичной и первичной обмотках равно отношению числа витков в них:Например, если во вторичной обмотке в 10 раз больше витков, чем в первичной, напряжение во вторичной обмотке будет в 10 раз больше, чем в первичной.

Если напряжение во вторичной обмотке трансформатора больше, чем в первичной, его называют повышающим, а если меньше, то понижающим.

Основными потребителями электроэнергии являются производство и транспорт. На бытовые нужды приходится не более 5-10% всей производимой электроэнергии.

Рис. 16.5. Основные этапы производства, передачи и потребления электроэнергии.

Статьи энциклопедии

Понижаем постоянное напряжение

При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.

Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.

А на плате он выглядит следующим образом:

На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.

На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.

Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.

Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.

Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.

Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:

Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!

КОДЫ ОШИБОК СТИРАЛЬНЫХ МАШИН ХАНСА.

КОДЫ ОШИБОК СТИРАЛЬНЫХ МАШИН ХАНСА.

 

Стиральные машины Ханса можно назвать самыми умными в своем классе. Плохо это или хорошо вопрос спорный. Машина контролирует все процессы во время стирки и в случае неисправности или отклонения по времени выполнения операции сразу высвечивает код ошибки. Если ошибка критичная то стирка останавливается.

Слишком умная машина для стирки, это тоже не очень хорошо. Например если немного превышен лимит времени слива воды на стиральной машине Ханса, например из за износа сливного насоса, машина останавливается выдавая ошибку. На другой машине этот сливной насос мог бы еще работать довольно долго, а на этой требуется его замена.

Далее мы рассмотрим расшифровку кодов ошибок, а также расскажем что значит каждая из них.

Расскажем также как простой обыватель может исправить простые сбои в стиралке, при этом не имея специального инструмента и опыта.

В зависимости от модели считывание ошибки происходит несколькими способами:

1) Ошибка высвечивается кодом на дисплее, например Е03 на серии РС comfort.

2) Ошибка считывается путем подсчета количества миганий, последующей паузой и повторением снова. Например на стиралках серии РА.

3) Ошибка высвечивается путем комбинации горящих светодиодов, например на серии РС optimum.

 

РАСШИФРОВКА ОШИБОК СТИРАЛЬНЫХ МАШИН ХАНСА СЕРИИ PA.

E-01 Не работает устройство блокировки люка. Ошибка возникает также если проблема с защелкой люка или не плотно закрыта дверь.

E-02 Стиральная машина не набирает воду. Время набора воды не должно превышать 3 минуты. На моделях серии PC 2 минуты. Необходимо проверить не закрыт ли кран не засорен ли фильтр клапана набора воды.На моделях с акваспреем проблема может быть в неисправном клапане переключения потоков или электронном блоке.

E-03 Слишком долго сливает воду. Машина считает время слива которое не должно превышать трех минут, на машинах серии PC полторы минуты. Если появляется такая ошибка то причина может быть в засоре фильтра, внутри машины, либо в снижении производительности сливного насоса. В таком случае требуется его замена.

E-04 Слишком высокий уровень воды в стиральной машине, датчик уровня показал перелив. Причин может быть много, например пропускает клапан налива воды, либо попадание воды в бак через канализацию.

E-05 Нет нагрева! Во время стирки стиральная машина ханса не греет воды. Причины неисправности в следующем. Неисправный ТЭН, датчик температуры, электронный модуль или электрические цепи.

E-07, E-08, E-11 Нет вращения двигателя, соответственно и барабана. Ошибка появляется при неисправности двигатель, электронного модуля или его электрических цепей.

E-10 Напряжение электро сети не соответствует рабочим параметрам. Ошибка появляется если напряжение в сети ниже 180 либо выше 260 вольт 50/60 гц.

E-12 Машина течет, сработал датчик на поддоне машины. Причиной может быть повреждение или любая не герметичность.

E-14, E-15 Неисправность электронного блока, причин может быть очень много.

 

РАСШИФРОВКА ОШИБОК СТИРАЛЬНЫХ МАШИН ХАНСА СЕРИИ PC.
E-01, E-11 (D4) Неисправность устройства блокировки люка. Причиной может быть как неисправность самого замка так и просто не плотно закрытая дверь.

E-02 (D2) Не может набрать воду за установленное время, 2 минуты. Причины могут быть в низком давлении в системе, либо в засоре клапана набора воды. Чаще всего помогает обычная чистка.

E-03 (D2, D3) Проблема со сливом воды, машина не может вылить воду за установленное время полторы минуты. Проблема кроется либо в засоре каналов слива, сливном фильтре, либо в снижении производительности сливного насоса. На стиральных машинах Ханса с системой акваспрей сливной насос приходится менять чаще, так как он работает не только при сливе, но и при работе акваспрея.

E-04 (D3,D4) Превышение уровня воды во время стирки. Необходимо разобраться в причинах поступления воды в бак. Может быть неисправный клапан налива воды, либо поступление через систему слива.

E-07 (D1) Сработал датчик в поддоне. Машина течет, причиной может быть любая не герметичность бака, шлангов или манжеты люка.

E-08 (D1,D2,D3,D4) Напряжение в сети не соответствует норме 160-253 вольт. 50/60 герц.

E-09 (D1,D3,D4) Слишком высокая пенность, необходимо уменьшить количество моющего средства для стирки. Важно применять только моющие средства предназначенные для стиральных машин автомат.

E-21, E-22 (D3) Ошибка по вращению, стиральная машина не крутит барабан. Причины чаще всего в двигателе, хотя могут быть и в электронном модуле.

E-31, E-32, E-33, E-34 Ошибка по нагреву воды в баке, точнее его отсутствии. Проблема может быть в элетро нагревателе. Датчике температуры или электронном модуле.

E-42 (D4) Время разблокировки люка после окончания стирки превысило две минут. Ошибка говорит о неисправности или изменения параметров устройства блокировки люка.

E-52 (D1,D2) Неисправность электронного модуля, требуется его ремонт или замена на новый.

 

Если все же возникли вопросы, будем рады на них ответить. Ну и конечно готовы устранить любые неисправности Вашей стиральной машины.

Преобразователь 12В в 5В | Понизить регулятор постоянного тока можно разными способами.

Если вы ищете источник питания 5 В постоянного тока для цифровой схемы. Но у вас есть источник 12В, аккумулятор. Я покажу вам понижающий стабилизатор преобразователя с 12 В на 5 В.

Во многом это зависит от имеющихся у вас деталей и другой пригодности.

Как выбрать преобразователь 5В

Мы должны использовать подходящую схему. Как? Экономия самая лучшая. Я использую эти рекомендации.

  • Экономьте деньги — если он есть в моем магазине, это очень хорошо.Кроме того, сэкономьте время на покупке, а не на долгое ожидание.
  • Простота сборки — простые и отработанные схемы всегда хороши.
  • Маленький размер — у некоторых проектов ограниченное пространство.

Сначала посмотрите на нагрузку!

Предположим, что нагрузка потребляет ток около 30 мА. Вы должны использовать преобразователь 5 В на 60 мА. Для этого случая достаточно. Когда ток небольшой, его легко построить. Кроме того, экономьте энергию.

Не следует использовать большую цепь источника тока 1А. Это похоже на езду на слоне, чтобы поймать кузнечика.Что это расточительно и ненужно.

Например, схемы

  • Токовый выход 3A — если у вас есть нагрузка, которая использует ток более 2A. Например, цифровая камера, GPS, Raspberry Pi, Arduino и другие.
  • Ниже 50 мА — Малая схема, например, цифровая КМОП
  • Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1 А
  • Схема преобразователя 12 В в 5 В 2 А

Стабилитрон 5 В — Нижний предел 50 мА

Некоторые схемы потребляют ток от 20 мА до 50 мА (0.05A) только. Можно схему стабилизатора напряжения на стабилитроне.


Стабилитрон поддерживает фиксированное напряжение 5 В. Ему нужен резистор, чтобы ограничить ток и нагрузку.

Как рассчитать прибор

Запитать его от источника 12 В. Вы снова смотрите на схему. Есть три тока.

  • IZ = Максимальный ток стабилитрона
  • IR = Ток через R1
  • IL = Максимальный ток нагрузки

IR является постоянным постоянным током.Даже IL изменится с 0 мА до запланированного максимального значения (50 мА). IZ нужно изменить, чтобы напряжение на выходе оставалось 5В.

Во-первых, используйте стабилитрон 5 В, потому что нам нужно 5 В, VZ. Тогда IR составляет около 50 мА.

R1 = (Vin — VZ) / IR
= (12 В — 5 В) / 50 мА
= 140 Ом
или около 150 Ом .

PR — Мощность R1.
PR = VR x IR
= 7 В x 50 мА
= 0,35 Вт или используйте 0,5 Вт.

Но мы забываем, мощность стабилитрона, PZ
PZ = VZ x IZ
Примечание: IZ составляет около IR, 50 мА.

PZ = 5 В x 50 мА
PZ = 0,25 Вт
Итак, мы используем стабилитрон 5 В 0,5 Вт .

Кроме того, C1 — это конденсатор фильтра для сглаживания постоянного напряжения.

100mA 5V схема преобразователя

В цифровых схемах, которые состоят из множества частей. Они могут использовать ток более 100 мА, но ниже 300 мА.

Мы можем использовать много схем. В предыдущей схеме он имеет слабый ток. Если хочешь 100мА. Вам нужно использовать стабилитрон с низким сопротивлением (R1) и большей мощностью.

Это лучшая идея.Если добавить в схему транзистор. Это увеличит более высокий ток больше. Но выходное напряжение составляет всего 4,4 В. Из-за некоторого падения напряжения на BE транзистора Q1 0,6В.

Нужно поменять стабилитрон 5,6В. Если у тебя его нет. Вы можете добавить диод и стабилитрон последовательно. Вы можете получить их как стабилитрон на 5,6 В.

Так как транзистор хорош для увеличения тока. Итак, мы можем изменить R1 на 1 кОм, как показано на схеме ниже. Для уменьшения тока смещения стабилитрон и база Q1.

200 мА, регулятор 5 В

Регулятор напряжения серии транзисторов 5 В

Если вы используете 2N2222 вместо BC548. Он может использовать 200 мА при нагрузке. Потому что 2N2222 имеет токоприемник (Ic) около 0,8А в таблице данных. Но в реальном использовании он может использовать максимум 0,5 А.

500 мА, регулятор 5 В от 12 В

500 мА, транзистор 5 В и стабилизатор напряжения Зенера

Если вам нужно использовать с нагрузкой от 300 мА до 500 мА. Следует сменить транзистор на BD139.

Он имеет Ic около 2 А макс. Но я могу получить только около 0,5А. Пока работает. Может быть тепло. Так часто лучше работать с радиатором.

Конденсаторы C1, C2 используются для уменьшения пульсаций на выходе. А C3 уменьшит скачок напряжения.

Как преобразовать 12 В постоянного тока в 5 В постоянного тока 1A

Многие друзья хотят преобразовать 12 В постоянного тока в 5 В постоянного тока при 1 А. Это популярная ставка в большинстве схем.

У меня есть два варианта на выбор. Это зависит от пригодности ваших деталей и времени.

Первый, 5V 1A транзисторный регулятор . Он аналогичен приведенным выше схемам.

Я использую силовой транзистор TIP41. Потому что он может получить максимум 4А в спецификации. Но при реальном использовании он может дать мне максимум около 2А. Кроме того, его корпус выполнен из TO-220, поэтому его легко использовать с радиаторами любого размера.

Раньше мне нравилась эта схема. Если у меня есть все комплектующие в моем магазине. Я сделаю это первым.

Но в последнее время мне нравится использовать этот компонент, Регулятор 7805.

Второй, 7805 Регулятор популярный .

Это так просто, быстрее, чем другие. Потому что его корпус такой же, как у TIP41, без стабилитрона и резистора смещения.

Преобразователь 12 В в 5 В 1A с использованием 7805

Кроме того, он имеет низкий уровень пульсаций на выходе около 10 мВ, с электролитическими конденсаторами (C1, C4) на входе и выходе. И оба фильтрующих конденсатора, C2, C3, для уменьшения всплесков напряжения.

Примечание : 7805 распиновка

Так как это линейный регулятор. Так что пока работает. Напряжение на входе и выходе IC1 составляет около 7 В.

При полной нагрузке ток 1А. Таким образом, выходная мощность составляет около 7 Вт. Жарко. Надо установить его на достаточном количестве радиатора.

Преобразователь 12 В в 5 В, выход 1,5 А

Иногда нам нужен выходной ток около 1,5 А. У нас есть 3 способа сделать это.

  • Подключение 7805 параллельно
  • Аккумулятор 12 В к преобразователю постоянного тока 5 В 1,5 А
  • Транзистор более высокого тока для регулятора 7805
  • Регулятор транзистора 2 А
Подключение 7805 параллельно

Если мы подключим 7805 параллельно.Это делает более высокий ток больше. Это подходит для тех, кто поддерживает или не имеет силовых транзисторов.

Но долго не годится. Можешь попробовать!
Оба IC-7805 должны быть абсолютно одинаковыми.

Аккумулятор 12 В на преобразователь постоянного тока 5 В 1,5 А

Если нам нужно использовать регулятор напряжения 12 В на 5 В. Это схема регулятора постоянного тока 5 В, 1500 мА.

Это простая схема с использованием IC-7805, фиксированного стабилизатора 5 вольт и силового транзистора TIP41-NPN для увеличения тока до 2А.

Пример эксперимента

Я использую источник питания 7805 с аккумулятором 12 В. Для уменьшения постоянного напряжения на 5 вольт.

Пробую использовать в нагрузке резисторы 4,7 Ом 5Вт. В качестве принципов он будет использовать ток около 5 В / 4,7 Ом = 1 А.

Я измеряю ток около 0,7 А и падение напряжения 4,9 В, но его можно использовать. Как показано на рисунке 1

Проверка чистого IC-7805 с током не более 1 А.

Требуется транзистор для увеличения выходного тока.

Использую транзистор TIP41. В принципе может подавать ток около 2А. Которого достаточно использовать.

На принципиальной схеме.

Схема простейшего регулятора 5 В, 1,5 А

Затем я тестирую схему примерно с нагрузкой, резистором 2,4 Ом. Затем измерьте ток примерно 1,3 А, а падение напряжения составит 4,9 В. Его можно использовать как захотим.

Испытания с сильноточной нагрузкой

Продолжайте читать: Четыре небольшие схемы регулятора постоянного тока на 5 В »

Я подавал напряжение диода-1N4007, чтобы компенсировать потерю транзистора между контактом BE.

Мы вставляем светодиод 1 для индикации включения питания этой цепи, а последовательный резистор R1 используется для ограничения тока до безопасного значения.

C1, C3 — это фильтрованные конденсаторы для сглаживания входной и выходной последовательности постоянного тока.
C2, C4 — искровой ток шумового фильтра.

Во время работы Q1 будет очень жарко, поэтому мы должны установить его с большим радиатором.

Примечание: Имеет минусы. Если это короткое замыкание. IC-7805 может быть поврежден.

Транзистор более высокого тока для регулятора 7805

Если вы хотите, чтобы ток был больше 1 А, используйте 7805 в более чем двух схемах, указанных выше.
Требуется помощь от силового транзистора PNP со схемой ниже.

Принципиальная схема преобразователя 12 В в 5 В 2A

Сильный ток будет протекать через силовой транзистор Q1, TIP42. В то время как 7805 получает меньший ток. Потому что R1 снижает этот ток.

Таким образом, 7805 поддерживает фиксированное регулируемое напряжение, только 5 В. Хорошо работает без радиатора.

Пока Q1 работает. Это так жарко. Нам нужно установить его с достаточным количеством радиатора.

Если есть готовые запчасти.Этой схемой можно пользоваться долгое время.

Тогда, если вам нужен ток 3А. Просто используйте MJ2955 вместо TIP42.

Хотя эту схему можно хорошо использовать. Но минусы все же есть.
При коротком замыкании силовой транзистор может быть поврежден.

Посмотрите на ниже.

Преобразователь 12В в 5В 5А

Если вам нужен выход 5В 5А. Вы можете изменить предыдущую схему. Используйте TIP2955 вместо TIP42.

Может пропускать ток до 5А.

Или, если у вас есть другой, TIP42.Можно добавить параллельно. Выходной ток тоже будет до 5А.

Токовый выход 3А, преобразователь 5В

Это преобразователь с 12В на 5В понижающий регулятор при нагрузке 3А.

Преобразователь 12В в 5В понижающий Регулятор

Цифровая камера также может снимать фотографии и видео. Но у него есть недостаток — долго не разряжается аккумулятор. При использовании на открытом воздухе. Нам приходилось часто подзаряжать аккумулятор. Это пустая трата времени.

При покупке дополнительных запасных аккумуляторов. Стоит дорого и все равно часто менять как то же самое.

На его боковой стороне находится разъем для подключения адаптера постоянного тока 5В, ток 2А. Если доработать свинцово-кислотный аккумулятор на 12В, чтобы снизить напряжение до 5 вольт. Это хорошая идея.

Потому что этот аккумулятор дешевле и долго используется. Например, аккумулятор 12В на 10Ач можно взять фотоаппарат на 5 часов.

Как это работает


У нас есть много способов сделать это. Но я покажу вам эту схему ниже.Мне нравится линейная схема, чем схема с переключением режимов.

В схеме много компонентов. Как указано выше, эта схема может питать ток до 3 А с увеличивающимся током Q3-MJ2955. Кроме того, в нем много интересных деталей.

При перегрузке или коротком замыкании нагрузки. Тогда напряжение на R2 составляет около 0,6 В. Итак, Q2 получает напряжение смещения, он работает. После этого VBE Q3 становится низким, Q3 работает ниже до остановки.

Пока Q1 работает для подключения тока через LED1. Это указывает на перегрузку.

Список компонентов регулятора напряжения от 12 В до 5 В

IC1: LM7805, регулятор постоянного тока 5 В IC
Q1: BC558, транзистор 40 В 0,4 А
Q2: BD140, транзистор PNP 1,5 А, 30 В
Q3: MJ2955 или TIP29 , 4A 50V PNP-транзистор
C1: 4700uF 25V, электролитический
LED1: светодиод любого цвета, как вам нравится
Резисторы
R1: 330 Ом 0,25 Вт
R2: 0,22 Ом 5 ​​Вт
R3: 470 Ом 0,5 Вт
R4: 47 Ом 1 Вт
R5: 18 Ом 1 Вт
Радиатор, провода и т. Д.

Приложение


У меня старый GPS, обычно использую его в машине. Нам нужна схема преобразователя постоянного тока в постоянный, которая может снизить напряжение с 12 В до 5 В при токе более 2 А.
Какая принципиальная схема может это сделать.

Мне нравится, что нужно покупать некоторые детали, так как они есть у меня в магазинах.

Как показано на рисунке 2, я собираю их на универсальной плате

Также, См. Другие в более простой схеме . Регулятор 3A 5V с использованием LM350

Простая защита от перенапряжения 5V

Обычно вы можете использовать вышеуказанную схему.Потому что это просто и недорого.

Вы просто добавляете предохранитель F1 для защиты от перегрузки более 2А. Также, если в цепи запитывается высокое напряжение более 5,1 В. У него слишком много токов через ZD1 и D1 в качестве сверхтока. Так что предохранитель внезапно сгорит.

Преобразователь 12 В в 5 В на 2 А с использованием 7805 и транзистора с защитой от перенапряжения

Источник питания 5 В 2 А с использованием 78S05

Другой способ, мой друг хочет схему источника питания 5 В 2 А . Чтобы модель была простой, используйте немного оборудования, собирайте легко.

Затем я выбрал для него эту схему.

Почему? В нем используется опорное оборудование, положительный стабилизатор напряжения 5В, / 2А в ТО220, 78S05. И мало деталей, видимых в схеме, качественная и малошумная.

Схема будет работать без дополнительных компонентов, но для защиты от обратной полярности , на входе предусмотрен диод 1N5402, дополнительное сглаживание обеспечивается за счет C1-220uF 50V.

Выходной каскад включает C2-47uF 25V для дополнительной фильтрации.

Загрузить это

Все полноразмерные изображения этого поста находятся в этой электронной книге: Elec Circuit vol. 1 ниже. Пожалуйста, поддержите меня. 🙂

Также адаптер 5 В постоянного тока

  1. Источник питания микропроцессорного регулятора постоянного тока 5 В 3 А от LM323K
  2. Импульсный источник питания 5 В 3 А от LM2576
  3. LM2673 -5 В 3A Регулятор напряжения переключения
  4. Верхний линейный источник питания 5V 5A с 7812 и LM723

Эффективное преобразование 12 В постоянного тока в 5 В для маломощной электроники, оценка шести модулей

В настоящее время я работаю над проектом Arduino, устанавливаемым на автомобиле.Устройство рассчитано на постоянное питание, и я решил использовать автомобильный аккумулятор в качестве источника постоянного питания. Я проектирую устройство с низким энергопотреблением, потребляющим 50 мА или меньше, потому что кто хочет застрять с разряженной батареей, верно?

Автомобильный аккумулятор обычно обеспечивает напряжение от 7 до 15 вольт, но в некоторых стандартах упоминается, что возможны скачки напряжения 40 В. Напряжение автомобильного аккумулятора обычно составляет около 12 В, но падает до ~ 7 В, когда вы запускаете двигатель, и до ~ 14 В, когда двигатель работает и аккумулятор заряжается.Поскольку мы не хотим, чтобы наше устройство перезагружалось во время пусков, мы хотели бы выполнить преобразование входного напряжения от 7 до 20 вольт в фиксированное выходное напряжение 5 вольт, которое ожидает Arduino Uno.

Регуляторы напряжения

На плате Arduino Uno есть стабилизатор напряжения, который мы могли бы использовать. Рекомендуется для напряжений от 7 до 12 вольт. Это означает, что нам нужно сначала снизить высокое напряжение автомобильного аккумулятора с помощью внешнего компонента, прежде чем мы сможем подключить его к плате Arduino Uno.К сожалению, одно это не решило бы наших проблем, поскольку не удовлетворило бы наши требования к эффективности.

Arduino Uno с обведенным регулятором напряжения. [Фото http://www.electricrcaircraftguy.com]

Проблема с использованием регулятора напряжения заключается в том, что регулятор расточителен. Любое дополнительное напряжение, которое необходимо сбросить, преобразуется в тепло. Формула эффективности: eff (reg) = Vout / Vin. Стабилизатор напряжения также имеет некоторые преимущества, одно из них — стабильность, что означает, что он может поддерживать очень стабильное и точное выходное напряжение.Еще одно преимущество — компактные размеры.

Чтобы выполнить эффективное преобразование, мы должны использовать импульсный источник питания, в частности понижающий преобразователь, который будет понижать для нас напряжение. Понижающий преобразователь будет включать и выключать вход настолько быстро, насколько это необходимо для обеспечения необходимого напряжения и мощности на выходе. В оставшейся части этой статьи будут сравниваться шесть различных понижающих (понижающих) модулей. Если вы не знакомы с принципом работы понижающего преобразователя с переключением режимов, прочтите эту статью, в которой также сравниваются некоторые модули при более высоких нагрузках.

Кандидатские модули

Одна реализация, которую я рассмотрел, — это понизить напряжение батареи примерно до 7 вольт, а затем запитать Arduino через его регулятор напряжения. Преимущество заключается в более стабильном напряжении для Arduino, однако будет потеря энергии 1-eff (reg) = 1-5 / 7 = 28%. Кроме того, каждый процесс преобразования требует некоторого запаса между Vin и Vout, поэтому при наличии двух этапов нам становится трудно поддерживать нижний предел диапазона напряжения автомобильного аккумулятора, что создает потенциальные проблемы со сбросами во время запуска двигателя.

Итак, я закончил поиск модулей, которые могут работать от автомобильного аккумулятора и выдавать 5 вольт. Это может быть регулируемый модуль или фиксированный на 5 вольт. Я бы подключил эти модули к USB-порту Arduino (предпочтительнее из-за присутствующей там дополнительной защиты) или напрямую к контакту Arduino 5V. Это означает, что предпочтение отдается модулям со встроенным выходным USB-портом типа «мама», хотя адаптеры или кабели преобразователя могут компенсировать его отсутствие.

Модули

Модули, которые я тестировал, происходят с Дальнего Востока, и большинство из них были куплены на eBay по цене от 1 до 2 долларов США (включая доставку).Это означает, что у большинства из них нет четкого номера модели или названия производителя. Я придумываю короткое название для каждого модуля, чтобы я мог легко их упомянуть. Я признаю, что качество фотографий могло быть лучше. Я старался изо всех сил с имеющимся у меня оборудованием. Также обратите внимание, что каждая фотография имеет собственный масштаб. Вот модули в произвольном порядке.

Сигара

Конвертер «Сигарный»

Этот адаптер имеет штекер прикуривателя на одном конце и предназначен для подключения к гнезду прикуривателя в автомобиле.Выходной разъем — это женский USB-порт. Такие модули продаются конечным пользователям для зарядки USB-устройств в автомобиле. Я понятия не имею, где я это взял, но я нашел его в своей корзине запчастей, разобрал и использовал в этом исследовании.

Поскольку такие преобразователи продаются конечным пользователям, их списки обычно не показывают фотографии печатной платы, так что это рулетка в отношении того, какой чип и эффективность вы получаете.

Регулируемый

«Регулируемый» преобразователь, передний

«Регулируемый» преобразователь, задний

Этот адаптер продавался на eBay как «Регулируемый понижающий модуль питания DC-DC LM2596 4.От 75-24В до 0,93-18В ». На самом деле чипа LM2596 там нет, что не должно быть большим сюрпризом для покупателей eBay. Это регулируемый понижающий модуль, который отлично подходит для создания прототипов. Вы регулируете выходное напряжение с помощью многооборотного потенциометра. Входные и выходные разъемы представляют собой винтовые клеммы, и вы можете видеть, что я подключил их к цилиндрической вилке для удобства использования.

Амперметр

Преобразователь амперметра, передний

Преобразователь «Амперметр», Задний

Этот модуль продавался на eBay как «Понижающий преобразователь постоянного тока 2А постоянного напряжения с вольтметром и амперметром».Он имеет регулируемое напряжение, ток и дисплей, который может отображать входное / выходное напряжение и выходной ток. Очень хорошо для прототипирования. Для некоторых людей это может быть даже альтернативой правильному настольному источнику питания. Этот модуль имеет разъемы, аналогичные модулю «Регулируемый», метод регулировки также аналогичен.

штраф

Преобразователь «Fine», передний

Преобразователь «Fine», задний

Этот модуль от QSKJ был внесен в список «Fine 6-24V 12V / 24V to 5V 3A CAR USB Charger Module DC Buck step down Converter».Это один из самых маленьких модулей в тесте. Он явно предназначен для интеграции в другие проекты, поскольку имеет две контактные площадки для ввода. На выходе получается довольно симпатичный женский USB-порт. В листинге упоминается множество дополнительных функций, таких как новейшая схема идентификации USB, схемы защиты, сверхнизкий статический ток (0,85 мА) и многое другое.

600 мА

Преобразователь «600 мА», передний

Преобразователь «600 мА», задний

Этот модуль с пометкой «DM01» на 100% предназначен для интеграции.Входы и выходы через контактные площадки. Похоже, этот модуль также выпускается в версиях на 3,3, 9 и 12 В. Он был выставлен на продажу как «понижающий понижающий модуль постоянного / постоянного тока 600 мА с фиксированным выходным напряжением 6-55 В на 5 В». Это может быть самый маленький модуль из 6, но отсутствие порта USB делает его нечестным сравнением. Одна особенность, которая отличает этот модуль от других, участвовавших в тесте, заключается в том, что он имеет панель «EN». Вы можете управлять этим разъемом для выключения и запуска модуля при необходимости. Заявленный ток отключения составляет менее 1 мкА.Если вы просто собираетесь подключить эту площадку к «Vin +», не беспокойтесь, «ток холостого хода» этого модуля составляет всего 0,7 мА.

Precise

Преобразователь «Precise», передний

Преобразователь «Прецизионный», задний

Этот модуль имеет те же подключения, что и «Fine», но он немного больше. Он продавался как «3A DC-DC 9V / 12V / 24V to 5V USB Step Down Power Module 2A Precise Vehicle Charger».

Напряжение и ток

Вот некоторые электрические свойства 6 модулей.У меня не было свойств модуля для «Сигары», поэтому диапазоны основаны на спецификациях микросхем и могут быть лучше, чем фактические диапазоны модулей.

Модуль Входное напряжение Выходное напряжение Максимальный выходной ток Пиковый выходной ток
Сигара 3 — 40В 5,4 — 5,5 В 1.5A ?
Регулируемый 4,75 — 24 В 0,93 — 18 В 2.5A 5A
Амперметр 4,5 — 24 В 0,93 — 20 В 2A ?
Тонкий 6 — 24 В 5,1 — 5,2 В 2,1 A 3A
600 мА 6 — 55 В 5 В 0,6 A 1A
Precise 7,5 — 28V 5V 2A 3A

Пиковый ток означает способность обеспечивать высокий ток в течение ограниченного периода времени.Максимальный ток означает максимальный ток, который модуль может обеспечить постоянно. Имейте в виду, что в некоторых модулях упоминается, что для работы с максимальным током может потребоваться дополнительный радиатор или охлаждающее решение.

Несколько моментов, о которых стоит упомянуть: во-первых, «Сигара» с фиксированным выходным USB-разъемом выдает слишком высокое напряжение по стандартам USB. Это могло быть из-за старости или просто плохого качества. Разница составляет около 10%, и я считаю ее непригодной для использования. Во-вторых, большинство модулей способны работать с входным напряжением примерно до 25 вольт, но немногие из них могут работать с напряжением 40 вольт и выше.Престижность за это.

Характеристики коммутационной цепи

Модуль Микросхема Частота Индуктор Заявленный КПД
Сигара MC34063A
100 кГц 220 мкГн? 83% при 24 В и 500 мА
Регулируемый MP23070N 340 кГц
10 мкГн? до 98%
Амперметр MP23070N 340 кГц
10 мкГн? ?
Fine MP2315 (знак AGCG)
500 кГц 4.7 мкГн от 12 В до 5 В 1 А может до 94%
600 мА HT7463A (маркировка 463A)
1250 кГц
22 мкГн до 96%
Точный MP1584EN 500 кГц
15 мкГн? до 96%

Более высокая частота переключения будет означать меньшую пульсацию на выходе (более точное напряжение / ток), но вызовет больше накладных расходов из-за переключения, что немного снижает эффективность.

Рядом с некоторыми значениями индуктивности стоит знак «?». Это означает, что компонент не был отмечен, а значение было оценено на основе рекомендаций в таблице данных. Обычно для более низкой частоты требуется индуктор большего размера и большей мощности.

Тестирование

Измерение тока с обеих сторон

Сначала я измерил ток, используемый моим устройством на выходе преобразователя, который составил около 50 мА. Затем я создал фиктивную нагрузку 100 Ом, подключив два резистора по 200 Ом параллельно.Я использовал массив резисторов, чтобы уменьшить нагрузку на каждый отдельный резистор, который был рассчитан на 0,25 Вт. В соответствии с законом Ома резистор на 100 Ом будет вызывать нагрузку 50 мА при напряжении 5 вольт, аналогично тому, как это делает устройство.

Затем я измерил ток, используемый преобразователем на входе, как для нагрузки устройства, так и для фиктивной нагрузки. Я заметил, что реальная нагрузка и фиктивная нагрузка с одинаковым средним током имеют одинаковую эффективность. Разница могла возникнуть, поскольку потребляемая мощность фиктивной нагрузки является фиксированной, в то время как устройство может потреблять мощность пачками, но это не оказало существенного влияния на результаты.Я пришел к выводу, что использование фиктивных резисторов — достаточно хорошее приближение для этого теста.

Затем я сделал фиктивные нагрузки для токов 25 мА, 50 мА и 100 мА, используя параллельно 1, 2 и 4 резистора.

Измерение тока с имитацией нагрузки

Чтобы как можно меньше повлиять на измерение, я использовал амперметр на входе (последовательно) и рассчитал ток на выходе, используя закон Ома I = V / R. Таким образом, не было никакого воздействия на выходную сторону, которое могло бы добавить падение напряжения и повлиять на результаты.Напряжение V измерялось параллельно, а сопротивление R известно и зависит от фиктивной нагрузки, используемой для каждого испытания.

Блок питания для теста был на 12 В, но из-за падения напряжения на амперметре входное напряжение модулей немного ниже.

Результаты

Я рассчитал эффективность каждого модуля для каждого типа нагрузки как:

 eff = Pin / Pout = (Vin * Iin) / (Vout * Iout) 

Таблицы данных некоторых микросхем, используемых в модулях, содержат график эффективности.Эффективность зависит от напряжения и тока. Если возможно, я добавил в последний столбец перечисленную эффективность микросхемы для соответствующих Vin и Iout. У некоторых модулей есть диаграммы эффективности, которые не охватывают диапазоны малых токов, что может указывать на тип нагрузки, для которой (не) были разработаны микросхемы.

Выходной ток 25 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11.82 5,46 21 60%
Регулируемый 11,63
5,08 35,65 31%
Амперметр 11,58 5,04
40,04 27%
Мелкий 11,91 5,12 13,7 80% 87%
600 мА 11,9
5.04 14,2 75% 74%
Precise 11,9
4,98 14,75 71% 75%

Выходной ток 50 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11,52 5,49 38,6 68%
Регулируемый 11.45 5,08 47,44 48%
Амперметр 11,39 5,05 52,2 43%
Мелкий 11,73 5,13 26,98 83% 89%
600 мА 11,72 5,01 26,66 80% 86%
Precise 11,72 4,98 27.3 78% 77,5%

Выходной ток 100 мА

Модуль In V Out V In mA Эффективность Эффективность микросхемы
Сигара 11,15 5,54 76,3 72%
Регулируемый 11,22 5,08 79,8 58%
Амперметр 11.18 5,04 76,1 60%
Мелкий 11,41 5,12 54,6 84% 91%
600 мА 11,46 4,9 51 82% 88%
Precise 11,38 4,96 53,5 81% 82%

Заключение

Различия могут быть значительными, как показано выше.При тесте с наименьшей нагрузкой (25 мА) худший исполнитель потребляет в 3 раза больше энергии, чем лучший.

Различия в эффективности между модулями становятся более тонкими по мере увеличения нагрузки: 2x для 50 мА и 1,5x для 100 мА.

Входные напряжения разные. Более высокий ток на входе означает большее падение напряжения на амперметре, что приводит к более низкому входному напряжению по сравнению с выходным напряжением источника питания.

Указанный КПД микросхемы находится в пределах 5-10% от измеренного КПД модуля. Дельта может быть связана с неэффективностью самого модуля или с различиями в общих условиях (температура и т. Д.).

И победитель: «Отлично»! Этот модуль явно лучше всего подходит для сценариев с низким энергопотреблением. При достижении токов 100 мА разница между 3 ведущими модулями минимальна.

Чем «Fine» лучше других? Это относительно новая микросхема. Таблица относится к 2014 году, а MP2307 — с 2008 года. Он также имеет очень низкие значения Rds (on) (90 мОм / 40 мОм), но, что наиболее интересно, MP2315 имеет режим энергосбережения AAM (Advanced Asynchronous Modulation) для легкая нагрузка.

Расширенная асинхронная модуляция (AAM) — это запатентованная технология MPS. Используя эту технологию, ИС будет снижать свою частоту при обнаружении низких нагрузок, тем самым уменьшая накладные расходы на переключение, но потенциально вызывая нестабильность и колебания. Значение резистора на выводе AAM определяет, когда начать это поведение. Не стесняйтесь поправлять меня в комментариях, если я неправильно это объясняю.

В заключение, если вам нужен эффективный модуль для легких нагрузок, вы можете попробовать его от QSKJ с чипом MPS MP2315, помеченным как AGCx (я видел, как AGCG или AGCE используются специально).Если у вас есть другие рекомендации, поделитесь ими в комментариях ниже. Удачного проекта!

Повышающий преобразователь постоянного тока с 5 В на 12 В

Повышающий DC-DC преобразователь основан на LM2577-ADJ IC, этот проект обеспечивает выход 12 В с использованием входа 5 В, максимальная выходная нагрузка 800 мА. LM2577 — это монолитные интегральные схемы, которые обеспечивают все функции питания и управления для повышающих (повышающих), обратных и прямых импульсных регуляторов преобразователя. Устройство доступно в трех вариантах выходного напряжения: 12В, 15В и регулируемое.

Для этих регуляторов требуется минимальное количество внешних компонентов, они экономичны и просты в использовании. В этом техническом описании перечислено семейство стандартных катушек индуктивности и обратных трансформаторов, предназначенных для работы с этими импульсными регуляторами. На микросхеме находится переключатель NPN 3,0 А и связанная с ним схема защиты, состоящая из ограничения тока и температуры, а также блокировки при пониженном напряжении. Другие функции включают в себя генератор с фиксированной частотой 52 кГц, который не требует внешних компонентов, режим плавного пуска для уменьшения пускового тока во время запуска и управление режимом тока для улучшенного подавления переходных процессов входного напряжения и выходной нагрузки.

Характеристики

  • Требуется несколько внешних компонентов
  • Вход 5 В постоянного тока
  • Выход 12 В постоянного тока
  • Выходная нагрузка 800 мА
  • Работа в токовом режиме для улучшения переходных характеристик, стабилизации линии и ограничения тока
  • Внутренний осциллятор, 52 кГц
  • Функция плавного пуска снижает пусковой ток при запуске
  • Выходной выключатель защищен ограничением по току, блокировкой при пониженном напряжении и тепловым отключением
  • Размеры печатной платы: 45.72 x 34.29 мм

Проект основан на LM2577-ADJ IC для гибкости получения других выходных напряжений путем изменения номинала резисторов обратной связи R2 и R3

Формула выходного напряжения В Out = 1,23 В (1 + R2 / R3) (Дополнительные сведения о величине индуктивности, конденсатора, резисторов обратной связи, выходном токе и напряжении см. В листе технических данных)

Схема

Как это работает

LM2577 включает и выключает свой выход с частотой 52 кГц, и это создает энергию в катушке индуктивности L1.

Когда переключатель NPN включается, ток в катушке индуктивности заряжается со скоростью vin / L1, сохраняя ток в катушке индуктивности. Когда переключатель выключается, нижний конец катушки индуктивности летит над Vin, разряжая свой ток через диод в выходной конденсатор со скоростью (Vout-Vin) / L1. Таким образом, энергия, запасенная в

Катушка индуктивности

во время включения переводится на выход во время выключения. Выходное напряжение контролируется количеством передаваемой энергии, которое, в свою очередь, регулируется путем модуляции пикового тока индуктора.Это делается путем подачи части выходного напряжения на усилитель ошибки, который усиливает разницу между напряжением обратной связи и опорным напряжением 1,23 В. Выходное напряжение усилителя ошибки сравнивается с напряжением, пропорциональным току переключения (т. Е. Току индуктора во время включения).

Компаратор завершает время включения, когда два напряжения равны, тем самым управляя пиковым током переключения для поддержания постоянного выходного напряжения.

Список деталей

Видео

LM2577 Лист данных

lm2577

Какой резистор уменьшить с 18в до 14в?

Я вижу, что ответы указывают на правильное значение.180 Ом — хороший выбор. В следующем примере таблицы вычисляется значение балластного резистора с учетом того, что сопротивление лампы меньше при более низком напряжении.

Скопируйте и вставьте в пустую ячейку электронной таблицы A1. Остальные ячейки должны быть заполнены автоматически. Введите напряжение трансформатора в ячейку B2. Номинальное входное напряжение и ток лампы, которую вы используете в ячейках B3 и B4. Входное напряжение, при котором будет работать лампа в ячейке B5. Скопируйте формулы с D6 по D13 в ячейки с B6 по B13 и с D15 по D16 в ячейки с B15 по B16.(Избавьтесь от кавычек, чтобы заменить текст на формулу.) Правильное значение балластного резистора рассчитывается в ячейках B12 и B13. Введите ближайшее общее значение, доступное в ячейке B14.

Нет необходимости использовать точное значение, вычисленное в ячейке B12. В этом примере ближайшее значение, найденное в Radio Shack, составляет 150 Ом. Что касается номинальной мощности, то чем больше, тем лучше. Используйте резистор полуватта, чтобы рассеять 0,1 Вт. Он будет работать холоднее, чем резистор на четверть ватта.

ТАБЛИЦА, РАЗДЕЛЕННАЯ ЗАПЯТЫМИ:

Какой балластный резистор для лампы?, ЗНАЧЕНИЯ, ЕДИНИЦЫ, ФОРМУЛА
Трансформатор напряжения (Вт), 18.0, Вольт, Учитывая
Напряжение лампы (Вл), 18,0, Вольт, дано
Лампа тока (Il), 0,0260, Ампер, Учитывая
Требуемое напряжение (Vd), 14,0, Вольт, заданное
Лампа сопротивления (Rl = Vl / Il), 692, Ом, = B3 / B4 Коэффициент
(соотношение = Vd / Vl), 0,778 ,, = B5 / B3
Сопротивление холоду (Rc = Rl / 10), 69,2, Ом, = B6 / 10
Требуемое сопротивление [Rd = Соотношение (Rl-Rc) + Rc], 554, Ом, = B7 * (B6-B8) -B8
Требуемый ток (Id = Vd / Rd), 0,0253, Ампер, = B5 / B9
Напряжение балласта [Vb = (Vt-Vd)], 4,00, Вольт, = B2-B5
Сопротивление балласта (Rb = Vb / Id), 158, Ом, = B11 / B10
Вт балласта (Wb = VbId), 0.101, Вт, = B11 * B10
R = 100120150180220270330390,150, Ом, ближайшее общее значение
Напряжение лампы [VL = RdVt / (R + Rd)], 14,2, Вольт, B9 * B2 / (B14 + B9)
отклонение от цели dT = 100 (VL-Vd) / Vd, 1

Уэйн

Напряжение

в ампер-часах: какая связь?

Может быть, вы просто хотите узнать больше или посмотреть, верны ли ваши представления о напряжении и часах в ампер-часах. Может быть, вы новичок в беспроводных инструментах и ​​не знаете, с чего начать.Рад, что ты смог попасть на вечеринку!

Зависимость напряжения от ампер-часов — один из основных вопросов, который задают аккумуляторным инструментам. Это может сбивать с толку. С помощью проводных инструментов мы часто описываем количество энергии в зависимости от количества потребляемых усилителей. Это замечательно, когда есть практически бесконечный источник питания. Большинство людей сводят номера аккумуляторных инструментов к идее, что напряжение эквивалентно мощности, а часы в ампер-часах эквивалентны времени работы. Да… ну, вроде… может быть. Эти два измерения основаны на фактической емкости батареи — термине, известном как ватт-часы.Вот уравнение:

ампер-часов x номинальное напряжение = ватт-часы

. Если вы посмотрите на этикетку большинства аккумуляторов, вы увидите их общую емкость в ватт-часах. По сути, чем больше топливный бак (ватт-часов), тем выше ваш энергетический потенциал — все зависит от того, как вы его используете.

Зависимость напряжения от ампер-часов: проводка для увеличения напряжения

Если бы вы разобрали батарею (пожалуйста, не делайте этого!), Вы бы обнаружили отдельные аккумуляторные элементы, которые накапливают и передают электроэнергию инструменту.Каждая батарея способна выдавать определенное количество напряжения, обычно 3,6 В в используемых литий-ионных элементах 18650. Нужна батарея на 12 В? Нанижите 3 штуки в ряд. Нужна батарея на 18 В? Используйте 5.


Если вы вместе со мной делаете математические расчеты, вы уже знаете, что есть проблема. Напряжение внутри ячеек немного меняется в зависимости от количества заряда, который они удерживают. Они могут производить более высокое напряжение при полном заряде, чем при низком. Эта ячейка 3,6 В на самом деле выдает чуть больше 4 В при полном заряде.Даже с этим математика не работает идеально. Но пока не теряйте веры в меня. Я объясню эти аномалии в следующей статье. А пока давайте сосредоточимся на напряжении как мощности.

Если вам нужно больше мощности, просто добавьте к батарее еще одну ячейку. Вы увеличиваете примерно на 4 В для каждого нового, которое вы добавляете. Теоретически вы можете сделать 12В, 16В, 20В, 24В и так далее. К счастью, инструментальная промышленность использует платформы для инструментов на 12 В, 18 В / 20 В и 36 В, в то время как для наружного силового оборудования существуют другие комбинации.

Зависимость напряжения от ампер-часов: проводка для увеличения ампер-часов

Простое определение ампер-часов — это величина силы тока, которую аккумуляторная батарея может обеспечить в течение одного часа. Если не учитывать все остальные факторы (например, температуру и вибрацию), батарея на 3,0 А в час даст вам 3 А тока в течение часа. Батарея на 5,0 ампер-час даст вам 5 ампер в час. В отличие от напряжения, это не фиксированная цифра. Вы можете потреблять более высокую силу тока от батареи и сократить время работы. Джон Баклью блестяще продемонстрировал это с помощью бесщеточной угловой шлифовальной машины Makita 18V LXT.Вы также можете потреблять меньше ампер и дольше работать.

Все линейно. Работайте 2,5 ампера от батареи 5,0 ампер-час — вы получаете 2 часа работы. Потребляйте 6 ампер на батарее на 3 ампер-часа — теперь у вас всего 30 минут. Вот диаграмма, которая показывает, как текущий розыгрыш влияет на время выполнения.

Так как же получить эти числа? Большинство литий-ионных аккумуляторных элементов работают где-то около 2000 миллиампер-часов или 2,0 ампер-часов. Когда вы соединяете эти ячейки последовательно, они все равно производят только комбинированные 2.0 ампер часов. В серии складывается напряжение, а не ампер-часы.

Когда пришло время увеличить ампер-часы, вы соединяете ячейки параллельно. Вот пример от типичного аккумулятора 12 В.

Три литий-ионных аккумулятора 18650 соединены последовательно.

Каждая ячейка имеет напряжение 3,6 В и 2,0 ампер-часов. Поскольку они входят в серию, мы получаем 10,8 В (или 12 В при полной зарядке), но все равно всего 2,0 ампер-часа.

Другое электронное устройство использует те же три ячейки, но соединяет их параллельно.Теперь они выдают всего 3,6 вольт, но 6,0 ампер-часов.

Зависимость напряжения от ампер-часов: совместная работа

В аккумуляторах большой емкости происходит комбинация последовательного и параллельного подключения. Сначала вы берете 5 ячеек, соединенных последовательно, чтобы получить необходимое вам 18 В. Затем подключите параллельно другой комплект, подключенный к нему таким же образом. Мы сохранили напряжение на уровне 18, но удвоили ампер-час до 4,0. Теоретически мы могли бы добавить еще один комплект, чтобы получить 6,0 ампер-часов при 18 В.

В недавней статье о лучшей газонокосилке мы отметили, что похоже, что Black & Decker и Craftsman в основном использовали переработанные батареи на 20 В макс.Наверное, были. Возьмите эту батарею на 20 В, 5,0 ампер-час в конфигурации 5S2P (5 последовательных, 2 параллельных = 10 ячеек, расположенных как 2 набора по 5), и заставьте их работать последовательно. Теперь у вас есть батарея с максимальным напряжением 40 В и мощностью 2,5 ампер-часа, если изменить конфигурацию только на 10S (серия 10).

Всего 10 ячеек, расположенных в 2 ряда по 5 ячеек в серии = 20 В, аккумуляторная батарея макс. 5 Ач

Всего 10 ячеек, расположенных в 1 непрерывном ряду из 10 последовательно соединенных ячеек = 40 В, аккумуляторная батарея макс. 2,5 А-ч

Теперь вернемся к идея общих ватт-часов… Независимо от того, как вы соединяете элементы батареи, количество ячеек определяет ватт-часы батареи.И батарея Black & Decker на 40 В (номинал 36 В), 2,5 ампер-час, так и ее двоюродный брат 20 В (номинал 18 В), 5,0 ампер-час имеют в общей сложности 90 ватт-часов.

Как условия реального мира влияют на время работы

В реальном мире все начинает сходить с ума. Когда вы говорите о температуре (как слишком высокой, так и слишком низкой), вибрации и других условиях окружающей среды, напряжение и ампер-часы начинают выходить за рамки идеальных. Однако эти условия являются частью жизни на рабочем месте. В некотором смысле производители устанавливают лучшие ожидания, просто перечисляя более низкий рейтинг, который более соответствует реальному опыту работы (номинальное напряжение 18 В вместо 20 В максимальное).

Есть способы сделать батареи лучше. Вы можете начать играть с химией внутри батареи (аноды, катоды и электролиты среди других компонентов). Различия возникают в сопротивлении, импедансе каждой клетки и других забавных словах, которые большинство нормальных людей не могут определить. Это приводит к лучшей (а иногда и худшей) производительности. Внезапно такое же количество ячеек, которые вырабатывали 18 вольт и три ампер-часа, выдает такое же напряжение, но с 4 ампер-часами, а теперь и 5!

Выводы

Различия в производительности от одной компании к другой во многом связаны с батареями, которые они используют.Электронные средства управления и средства безопасности, которые они используют, также вступают в игру. Это просто изменение конфигурации проводки, что позволяет увеличить мощность аккумуляторной батареи, увеличить ампер-часы или и то, и другое. Реальный результат комбинации можно упростить, сказав, что более высокое напряжение означает большую общую мощность, а более высокие ампер-часы приводят к увеличению общего времени работы.

Поскольку производители постоянно тестируют различные аккумуляторные элементы и конструкции корпусов, мы продолжим видеть улучшения в конце уравнения ватт-часа в ампер-часах.На данный момент кажется, что мы продолжим наблюдать, как напряжение на аккумуляторном инструменте остается на прежнем уровне, пока OPE работает над установкой оптимального уровня.

Редуктор напряжения тележки для гольфа от 16-18 В до 12 В / 15 А

Если вы хотите добавить электрические аксессуары к вашей тележке для гольфа (например, фонари, звуковые сигналы, радио, вентиляторы, розетки на 12 В или любые другие аксессуары, требующие 12 В), настоятельно рекомендуется использовать редуктор напряжения для защиты вашей тележки. аксессуары от перенапряжения или перегорания.Этот редуктор напряжения для гольф-мобилей предназначен для всех электрических гольф-мобилей 36 В и 48 В, которые используют батареи 6 или 8 В. Это самый стандартный редуктор напряжения, который потребляет 16 В (две батареи по 8 В) или 18 В (три батареи по 6 В) до 12 В. Он также выдает 15 ампер, чего более чем достаточно для питания осветительного комплекта для гольф-мобиля, звукового сигнала или других аксессуаров.

Рекомендовано для: Все электрические тележки для гольфа на 36 и 48 В (батареи 6 или 8 В)
Рекомендовано для: Club Car, EZ-GO, Yamaha и всех других марки / модели
Состояние: Новый
Выход усилителя: 15 ампер
Вес: 2 фунта
Редуктор напряжения и универсальный
Дополнительная информация: Этот редуктор не активирован ключом зажигания. Видео по установке редуктора:

9 1264

Нужен выход более 15 А? Ознакомьтесь с нашими редукторами напряжения для тележек для гольфа на 20 ампер и редукторами напряжения для тележек для гольфа на 30 ампер .

Если вы ищете новый комплект освещения для своей тележки для гольфа, обратите внимание на наши комплекты освещения для тележки для гольфа . Если у вас есть другие вопросы, позвоните нам по телефону 1-800-401-2934 или отправьте нам электронное письмо по адресу [email protected] .

У меня к вам вопрос.

Делитель напряжения

Делитель напряжения — это простая схема, состоящая из двух резисторов, которая имеет полезное свойство изменять более высокое напряжение (Vin) на более низкое (Vout).Он делает это путем деления входного напряжения на соотношение, определяемое номиналами двух резисторов (R1 и R2):


Эта схема лучше всего подходит для слаботочных приложений, таких как датчики и линии передачи данных. Если вы потребляете слишком большой ток через Vout, это повлияет на выходное напряжение. Поэтому его не следует использовать для сильноточных приложений, таких как источники питания (регуляторы напряжения — гораздо лучший вариант).

Чтобы выбрать резисторы, используйте следующее уравнение:

Вы также можете найти ряд калькуляторов делителя напряжения с помощью Google.

Поскольку выходное напряжение зависит исключительно от отношения R1 к R2, вы можете использовать несколько различных значений R для получения одного и того же выхода (например, если R1 = R2, выход всегда будет составлять половину входного, независимо от того, является ли R 1 Ом или 1 МОм). Для большинства наших целей общее сопротивление (R1 + R2) должно быть между 1 кОм и 10 кОм. Меньше этого, и схема будет тратить много энергии, протекающей через R1 и R2 на землю. Более того, возможно, Vout не сможет обеспечить достаточный ток для управления аналоговым входом.

Эта схема очень полезна для преобразования выходного сигнала резистивного датчика (например, термистора или чувствительного к силе резистора) в напряжение, которое можно измерить с помощью аналого-цифрового преобразователя. R2 будет вашим датчиком, и хорошее практическое правило состоит в том, чтобы выбрать R1 на полпути между наименьшим и наибольшим значениями сопротивления датчика.

Например, наш мини-фотоэлемент имеет сопротивление света 1 кОм и сопротивление темного света 10 кОм. Резистор 5,6 кОм находится примерно на полпути между высоким и низким значениями.Если мы подключим датчик как R2, а 5,6k как R1, мы получим следующий Vout:

уровень света R2 (датчик) R1 (фиксированный) отношение (R2 / (R1 + R2)) Vout (если Vin 5 В)
свет 5,6к 16% 0.83 В
темный 10к 5,6к 67% 3,33 В

… поэтому выходное напряжение будет варьироваться от 0,83 В при ярком свете до 3,33 В в темноте. Вы не можете получить полное колебание напряжения от 0 до 5 В без более сложной схемы, но эй, это неплохо только для одного резистора.

Особым случаем этой схемы является потенциометр, который представляет собой поворотный регулятор, который позволяет плавно изменять соотношение между R1 и R2 и, следовательно, выходное напряжение, позволяя создать простой в использовании аналоговый элемент управления.

Внутри потенциометра находится один большой резистор с подвижным соединением (так называемый «дворник»), который может перемещаться от одного конца резистора к другому. Электрически это выглядит как два резистора, как и на нашей первой схеме выше. Когда вы поворачиваете ручку, один резистор становится больше, а другой — меньше. Чтобы использовать потенциометр в качестве делителя напряжения, подключите линии питания и заземления к внешним контактам (это концы большого резистора) и используйте центральный контакт (дворник) в качестве Vout.Когда вы поворачиваете ручку, соотношение между двумя резисторами изменится, плавно изменяя выходное напряжение между Vin и GND.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2021 © Все права защищены.