Полупроводники — это… Что такое Полупроводники?
Полупроводники — вещества, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких эВ (электрон-вольта), то есть соизмерима с kT. Например, алмаз можно отнести к широкозонным полупроводникам, а InAs — к узкозонным.
В зависимости от того, отдаёт ли атом примеси электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства изоляторов.
Типы полупроводников в периодической системе элементов
В нижеследующей таблице представлена информация о большом количестве полупроводниковых соединений. Их делят на несколько типов: одноэлементные полупроводники IV группы периодической системы элементов, сложные: двухэлементные A
Физические свойства и применения
Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).
Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV
Собственный полупроводник при температуре абсолютного ноля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (cм. вырожденные полупроводники).
В связи с тем, что технологи могут получать очень чистые вещества встаёт вопрос о новом эталоне для числа Авогадро.
Легирование
Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксирован уровень Ферми в середине запрещённой зоны.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
Оптика полупроводников
Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот
Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона 2π / λ, где λ — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются
Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.
При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решетки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.
Полупроводники
- кремний, Si
- германий, Ge
- серое олово, α-Sn
- карбид кремния, SiC
- нитрид бора, BN
- нитрид алюминия, AlN
- фосфид алюминия, AlP
- арсенид алюминия, AlAs
- нитрид галлия, GaN
- фосфид галлия, GaP
- арсенид галлия, GaAs
- антимонид галлия, GaSb
- фосфид индия, InP
- арсенид индия, InAs
- антимонид индия, InSb
- селенид цинка, ZnSe
- селенид кадмия, CdSe
- теллурид кадмия, CdTe
- теллурид цинка, ZnTe
- теллурид ртути, HgTe
- оксид цинка, ZnO
- диоксид титана, TiO2
- сульфид цинка, ZnS
- сульфид свинца, PbS
- теллурид свинца, PbTe
- теллурид олова, SnTe
- теллурид висмута, Bi2Te3
- органические полупроводники
См. также
Ссылки
Wikimedia Foundation. 2010.
Полупроводник — это… Что такое Полупроводник?
Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний деньПолупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.
Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.
В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.
Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.
Механизм электрической проводимости
Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.
Дырка
Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.
Обычно подвижность дырок в полупроводнике ниже подвижности электронов.
Энергетические зоны
Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.
Подвижность
Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примесиПодвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля
При этом, вообще говоря, подвижность является тензором:
Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.
Размерность подвижности — м²/(В·с).
Собственная плотность
При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:
где:
- — Постоянная Планка
- — масса электрона
- — температура;
- — уровень проводимой зоны
- — уровень Ферми;
Также, плотность дырок полупроводника связана с температурой следующим соотношением:
где:
- — Постоянная Планка;
- — масса дырки;
- — температура;
- — уровень Ферми;
- — уровень валентной зоны.
Собственная плотность связана с и следующим соотношением:
Виды полупроводников
По характеру проводимости
Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
где — удельное сопротивление, — подвижность электронов, — подвижность дырок, — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).
Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
Электронные полупроводники (n-типа)
Полупроводник n-типаТермин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
Проводимость N-полупроводников приблизительно равна:
Дырочные полупроводники (р-типа)
Полупроводник p-типаТермин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.
Проводимость p-полупроводников приблизительно равна:
Использование в радиотехнике
Полупроводниковый диод
Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.
Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:
где — термодинамическое напряжение, — концентрация электронов, — концентрация дырок, — собственная концентрация[2].
В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.
Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.
Транзистор
Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.
Биполярный транзистор используют для усиления электрического тока.
Типы полупроводников в периодической системе элементов
В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:
- одноэлементные полупроводники IV группы периодической системы элементов,
- сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.
Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.
Группа | IIB | IIIA | IVA | VA | VIA |
Период | |||||
2 | 5 B | 6 C | 7 N | ||
3 | 13 Al | 14 Si | 15 P | 16 S | |
4 | 30 Zn | 31 Ga | 32 Ge | 33 As | 34 Se |
5 | 48 Cd | 49 In | 50 Sn | 51 Sb | 52 Te |
6 | 80 Hg |
Физические свойства и применение
Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).
Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.
Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).
В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.
Легирование
Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
Оптика полупроводников
Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где — ширина запрещённой зоны, — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.
Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.
Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.
Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.
При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.
При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.
Список полупроводников
Полупроводниковые соединения делят на несколько типов:
- простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
- в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV
Широкое применние получили следующие соединения:
- AIIIBV
- InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
- AIIBV
- AIIBVI
- ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
- AIVBVI
- PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe
а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).
На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.
Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах
Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.
Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.
Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.
Параметры | AlSb | GaSb | InSb | AlAs | GaAs | InAs |
---|---|---|---|---|---|---|
Температура плавления, К | 1333 | 998 | 798 | 1873 | 1553 | 1218 |
Постоянная решётки, Å | 6,14 | 6,09 | 6,47 | 5,66 | 5,69 | 6,06 |
Ширина запрещённой зоны ΔE, эВ | 0,52 | 0,7 | 0,18 | 2,2 | 1,32 | 0,35 |
Диэлектрическая проницаемость ε | 8,4 | 14,0 | 15,9 | — | — | — |
Подвижность, см²/(В·с): | ||||||
электронов | 50 | 5000 | 60 000 | — | 4000 | 3400[3] |
дырок | 150 | 1000 | 4000 | — | 400 | 460[3] |
Показатель преломления света, n | 3,0 | 3,7 | 4,1 | — | 3,2 | 3,2 |
Линейный коэффициент теплового расширения, K-1 | — | 6,9·10-6 | 5,5·10-6 | 5,7·10-6 | 5,3·10-6 | — |
Группа IV
- собственные полупроводники
- составной полупроводник
Группа III-V
- 2-х компонентные полупроводники
- Антимонид алюминия, AlSb
- Арсенид алюминия, AlAs
- Нитрид алюминия, AlN
- Фосфид алюминия, AlP
- Нитрид бора, BN
- Фосфид бора, BP
- Арсенид бора, BAs
- Антимонид галлия, GaSb
- Арсенид галлия, GaAs
- Нитрид галлия, GaN
- Фосфид галлия, GaP
- Антимонид индия, InSb
- Арсенид индия, InAs
- Нитрид индия, InN
- фосфид индия, InP
- 3-х компонентные полупроводники
- AlxGa1-xAs
- InGaAs, InxGa1-xAs
- InGaP
- AlInAs
- AlInSb
- GaAsN
- GaAsP
- AlGaN
- AlGaP
- InGaN
- InAsSb
- InGaSb
- 4-х компонентные полупроводники
- AlGaInP, InAlGaP, InGaAlP, AlInGaP
- AlGaAsP
- InGaAsP
- AlInAsP
- AlGaAsN
- InGaAsN
- InAlAsN
- GaAsSbN
- 5-ти компонентные полупроводники
Группа II-VI
- 2-х компонентные полупроводники
- 3-х компонентные полупроводники
- CdZnTe, CZT
- HgCdTe
- HgZnTe
- HgZnSe
Группа I-VII
- 2-х компонентные полупроводники
Группа IV-VI
- 2-х компонентные полупроводники
- 3-х компонентные полупроводники
Группа V-VI
- 2-х компонентные полупроводники
Группа II—V
- 2-х компонентные полупроводники
Другие
- Разные оксиды
Органические полупроводники
Магнитные полупроводники
См. также
Примечания
- ↑ Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
- ↑ Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
- ↑ 1 2 Индия арсенид // Химическая энциклопедия
Литература
- Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
- Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.
Ссылки
Что такое полупроводник?
Полупроводник — это кристаллический материал, который проводит электричество не столь хорошо, как металлы, но и не столь плохо, как большинство изоляторов. В общем случае электроны полупроводников крепко привязаны к своим ядрам. Однако, если в полупроводник, например, в кремний, ввести несколько атомов сурьмы, имеющей «избыток» электронов, то в этом случае свободные электроны сурьмы помогут кремнию переносить отрицательный заряд.
При замене нескольких атомов полупроводника индием, который легко присоединяет к себе дополнительные электроны, в полупроводнике образуются не занятые электронами «свободные места», или, как говорят физики, «дырки»; которые переносят положительный заряд.
Такие свойства полупроводников привели к их широкому использованию в транзисторах — устройствах для усиления тока, его блокирования или пропускания только в одном направлении. В типичном NPN транзисторе, слой полупроводника с положительной (Р) проводимостью (основание), расположен между двумя слоями полупроводника с отрицательной (N) проводимостью (эмиттером и коллектором). Когда слабый сигнал, например, от интеркома (аппарата селекторной связи), проходит через основание NPN транзистора, эмиссия электронов этот сигнал усиливает.
Строение полупроводников
Полупроводники N-типа содержат избыточное количество электронов, переносящих отрицательный заряд. Полупроводники Р-типа испытывают нехватку электронов, но зато имеют избыток дырок (вакантных мест для электронов), которые переносят положительный заряд.
Отличительные признаки полупроводников
В отличие от проводников, имеющих много свободных электронов, и изоляторов, практически их не имеющих, полупроводники содержат небольшое количество свободных электронов и так называемые дырки (белый кружочек) — вакантные места, оставленные свободными электронами. И дырки и электроны проводят электрический ток.
NPN транзистор
PNP транзистор
Дырки перемещаются от положительного эмиттера (+) к отрицательному основанию (N-слою) и далее через положительный коллектор к отрицательной клемме (-), усиливая электрический ток.
Что такое диод?
В одну сторону да, в другую — нет. Входной сигнал диода показывает переменный ток; из правого графика видно, что через диод проходит только постоянный ток.
Когда отрицательно заряженные электроны (голубые шарики) и положительно заряженные дырки (розовые шарики) расходятся от стыка слоев кремния N-типа и Р-типа в диоде, электрический ток прерывается. На нижнем рисунке справа электроны и дырки перемещаются к стыку, и в результате диод проводит ток только в одном направлении, превращая переменный ток в постоянный.
Полупроводники
Все вещества в зависимости от электропроводности делятся на: проводники, полупроводники и диэлектрики.
Во второй половине ХХ века внимание физиков привлекли кристаллы, свойства которых заметно отличались от свойств проводников (металлов), так и от свойств диэлектриков. Этот особый тип кристаллов назвали полупроводниками.
Полупроводники проводят электрический ток, но значительно хуже, чем проводники (металлы). Их удельное сопротивление, в отличие от проводников (металлов), с повышением температуры уменьшается. Это сближает их с диэлектриками, у которых с повышением температуры удельное сопротивление так же уменьшается. Дальнейшее изучение свойств полупроводников привело к обнаружению у них ряда замечательных свойств, которые в настоящее время используются в разнообразных полупроводниковых приборах.
Полупроводники занимают промежуточное положение между проводниками и диэлектриками. К полупроводникам относятся элементы IV группы периодической системы элементов Д.И. Менделеева, которые на внешней оболочке имеют четыре валентных электрона. Типичные полупроводники – германий Ge и кремний Si. К полупроводникам относятся кристаллы, в которых атомы связаны насыщенными ковалентными связями. Примером полупроводникового кристалла может служить кристалл кремния. Однако многие кристаллы с ковалентной связью атомов являются типичными диэлектриками. Например, алмаз обладает такой же кристаллической решёткой, как и кремний, однако его удельное сопротивление при комнатной температуре в 1011-1012 раз больше удельного сопротивления кремния. Чем же объясняется такое существенное различие свойств этих кристаллов?
Начнём с того, что и в том, и в другом кристалле ковалентные связи между атомами насыщены, то есть каждый их четырёх валентных электронов одного атома находится в общем владении двух атомов, объединивших свои валентные орбитали. Находясь в общем владении двух атомов, ни один электрон не может свободно перемещаться по кристаллу, даже если кристалл находится в электрическом поле. Кристаллы с ковалентной связью атомов должны быть диэлектриками и алмаз подтверждает правильность такого ожидания. Почему же кристалл кремния проводит электрический ток?
Ковалентная связь электронов с атомами в кристаллах, как и всякая другая связь, может быть разорвана, если сообщить электрону достаточную для этого энергию. В кристалле кремния для разрыва связи с атомом валентному электрону необходима энергия около 1, 1 эВ ≈ 1, 76 · 10-19 Дж, а в кристалле алмаза 7 эВ ≈ 11,2 · 10-19 Дж. При комнатной температуре средняя энергия теплового движения атомов равна примерно 0,04 эВ ≈ 0,064 · 10-19 Дж. Так как энергия теплового движения атомов распределяется случайным образом, отдельные атомы в кристалле кремния время от времени приобретают энергию, достаточную для отрыва электрона от атома. Поэтому в кристалле кремния при комнатной температуре имеется небольшое количество свободных электронов. При повышении температуры количество освобождённых в единицу времени электронов увеличивается. Это приводит к уменьшению удельного сопротивления кремния.
В кристалле алмаза энергия связи валентных электронов значительно больше, чем в кристалле кремния. Поэтому при комнатной температуре в нём почти отсутствуют свободные электроны.
Условно принято считать ковалентные кристаллы с энергией связи электронов не более 1,5 эВ — 2 эВ полупроводниками, а с энергией связи электронов более 2 эВ – диэлектриками.
Остались вопросы? Хотите знать больше о полупроводниках?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!
Зарегистрироваться
© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.
ПОЛУПРОВОДНИКИ • Большая российская энциклопедия
ПОЛУПРОВОДНИКИ́, вещества, характеризующиеся электрич. проводимостью $σ$, промежуточной между проводимостью хороших проводников, напр. металлов ($σ≈10^4-10^6$ Ом–1·см–1), и хороших диэлектриков ($σ≈10^{–12}-10^{–10}$ Ом–1·см–1) (проводимость указана при комнатной темп-ре). Характерной особенностью П. является сильная зависимость их проводимости от темп-ры, причём в достаточно широком интервале температур проводимость П., в отличие от металлов, экспоненциально увеличивается с ростом темп-ры $T$: $$σ=σ_0\exp(–ℰ_a/kT).\tag{*}$$ Здесь $k$ – постоянная Больцмана, $ℰ_a$ – энергия активации электронов в П., которая может меняться от нескольких мэВ до нескольких эВ, $σ_0$ – коэф. пропорциональности, который также зависит от темп-ры, но эта зависимость более слабая, чем экспоненциальная. С повышением темп-ры тепловое движение разрывает часть химич. связей в атомах П. и электроны, число которых пропорционально $\exp(–ℰ_a/kT)$, становятся свободными и участвуют в электрич. проводимости. Энергия, необходимая для того, чтобы разорвать химич. связь и сделать валентный электрон свободным, называется энергией активации.
П. и диэлектрики относят к одному классу материалов; различие между ними является скорее количественным, чем качественным. Проводимость диэлектриков также имеет активационный характер, однако $ℰ_a$ для них составляет 10 эВ и более, поэтому собств. проводимость диэлектриков могла бы стать существенной только при очень высоких темп-рах, при которых уже наступают структурные изменения вещества. В связи с этим термин «П.» часто понимают в узком смысле как совокупность веществ, полупроводниковые свойства которых ярко выражены при комнатной темп-ре (300 К).
Химич. связи могут быть разорваны не только тепловым движением, но и разл. внешними воздействиями: электромагнитным излучением, потоком быстрых частиц, деформацией, сильным электрич. и магнитным полями и др. Поэтому для П. характерна высокая чувствительность проводимости к внешним воздействиям, а также к концентрации структурных дефектов и примесей.
Классификация полупроводников
По агрегатному состоянию П. делятся на твёрдые и жидкие (см. Жидкие полупроводники), по внутр. структуре – на кристаллич. и аморфные (см. Аморфные и стеклообразные полупроводники), по химич. составу – на неорганические и органические. Наиболее широко изучены и используются в полупроводниковой электронике кристаллич. неорганич. П. К ним относятся:
– элементарные П. – элементы IV группы короткой формы периодич. системы химич. элементов – углерод С (графит, алмаз, графен, нанотрубки), германий Ge и кремний Si (базовый элемент большинства интегральных схем в микроэлектронике), элементы VI группы – селен Se и теллур Te, а также их соединения, напр. карбид кремния SiC, образующий слоистые структуры, и непрерывный ряд твёрдых растворов SixGe1–x;
– соединения AIIIBV, где А=Al, Ga, In; В=N, Р, As, Sb, напр. GaAs, AlAs, InAs, InSb, GaN, GaP и др.
– соединения AIIBVI, где А=Zn, Cd, Hg; B=S, Se, Te, напр. ZnTe, ZnSe, ZnO, ZnS, CdTe, CdS, HgTe и др.;
– соединения элементов I и V групп с элементами VI группы, напр. PbS, PbSe, PbTe, Bi2Se3, Bi2Te3,Cu2O и др.;
– тройные и четверные твёрдые растворы на основе соединений A III B V и A II B VI , напр. GaxAl1–xAs, GaxAl1–xN, CdxHg1–xTe, CdxMn1–xTe, GaxIn1–xAsyP1–y и др.
Примеры аморфных и стеклообразных П.: аморфный гидрированный кремний a-Si:H, аморфные Ge, Se, Te, многокомпонентные стеклообразные сплавы халькогенидов на основе S, Se, Te.
К органическим П. относятся: ряд органич. красителей, ароматич. соединения (нафталин, антрацен и др.), полимеры с сопряжёнными связями, некоторые природные пигменты. Органич. П. существуют в виде монокристаллов, поликристаллич. или аморфных порошков и плёнок. Достоинство органич. П. – относит. дешевизна их произ-ва и механич. гибкость. Они применяются как светочувствит. материалы для фотоэлементов и ПЗС-матриц; на их основе созданы светоизлучающие диоды, в т. ч. для гибких экранов и мониторов.
Большинство изученных П. находятся в кристаллич. состоянии. Свойства таких П. в значит. мере определяются их химич. составом и симметрией кристаллич. решётки. Атомы кремния, обладая четырьмя валентными электронами, образуют кубич. кристаллич. решётку типа алмаза с ковалентной связью атомов (кристаллографич. класс $m\bar 3m$, или $O_h$). Такую же кристаллич. решётку имеют германий и серое олово. В GaAs каждый атом образует 4 валентные связи с ближайшими соседями, в результате чего получается кристаллич. решётка, подобная решётке алмаза, в которой ближайшими соседями катиона Ga являются анионы As и наоборот. За счёт частичного перераспределения электронов атомы Ga и As оказываются разноимённо заряженными и связи между атомами становятся частично ионными. Кристаллич. решётка GaAs не обладает центром инверсии, поэтому в таких П. возникают эффекты, отсутствующие в центросимметричных полупроводниковых структурах, напр. пьезоэлектричество (см. Пьезоэлектрики), генерация 2-й оптич. гармоники, фотогальванические эффекты. Структурой, подобной арсениду галлия, обладают InAs, InP, ZnTe, ZnSe и др.
Чистые и структурно совершенные П. получают в результате кристаллизации из расплава или раствора. Для создания тонких полупроводниковых плёнок применяют метод эпитаксии из жидкой или газовой фазы.
Электроны и дырки в полупроводниках
В твёрдом теле волновые функции валентных электронов соседних атомов перекрываются, их валентные электроны обобществляются и возникает устойчивая химич. (ковалентная) связь. На каждую связь между атомами приходится по два электрона, и распределение электронной плотности в пространстве оказывается жёстко фиксированным. Проводимость П. появляется, если разорвать связи между некоторыми атомами, напр., тепловым или оптич. воздействием, передав небольшой части валентных электронов дополнит. энергию и переведя их на вакантные (пустые) электронные орбитали, расположенные выше по энергии. Такие электроны могут свободно передвигаться по кристаллу, переходя с одного атома на другой, и переносить отрицат. электрич. заряд. Разорванная связь с недостатком электрона (дырка) также может перемещаться по кристаллу за счёт перехода на неё электрона из соседней связи. Поскольку разорванная связь означает наличие локального положительного электрич. заряда, дырки переносят положительный заряд. Дырки, как и электроны, могут перемещаться на значит. расстояния в периодич. потенциале кристалла без рассеяния.
В идеальных кристаллах, не содержащих дефектов и примесей, электроны и дырки всегда появляются па́рами в силу сохранения электрич. заряда, однако подвижности электронов и дырок, как правило, различны. В легированных П. концентрации свободных электронов и дырок могут различаться на неск. порядков, так что электропроводность осуществляется практически полностью носителями заряда одного типа.
Чередование разрешённых и запрещённых энергетических зон в кристаллических полупроводниках. Заполнение разрешённых зон: (а) при абсолютном нуле температуры; (б) при отличной от нуля температуре. Чёрны…
Последовательное и строгое описание состояний носителей заряда и их движения в кристаллах можно сделать в рамках зонной теории. Осн. состояние кристалла при темп-ре 0 К формируется за счёт последовательного заполнения электронами наинизших энергетич. состояний. Согласно принципу Паули, в каждом состоянии с определённым значением спина может находиться только один электрон. В зависимости от кристаллич. структуры и от числа электронов в каждом из атомов, составляющих кристалл, возможны два случая: 1) электроны полностью заполняют неск. нижних разрешённых зон, а все верхние зоны остаются пустыми; 2) одна из разрешённых зон заполнена частично. В первом случае распределение электронной плотности в кристалле фиксировано, электроны не могут участвовать в проводимости и кристалл является П. или диэлектриком. Во втором случае часть электронов в пределах частично заполненной зоны может свободно перемещаться по кристаллу3 и кристалл является металлом. В П. и диэлектриках верхняя полностью заполненная разрешённая зона энергий называется валентной зоной, нижняя пустая зона – зоной проводимости. Энергетич. интервал между дном (минимумом энергии) зоны проводимости и потолком (максимумом энергии) валентной зоны называется шириной запрещённой зоны $ℰ_g$. Различие между П. и диэлектриками чисто количественное: условно считают, что вещества с $ℰ_g<2$ эВ являются П., а с $ℰ_g>2$ эВ – диэлектриками. При отличной от нуля темп-ре тепловое движение перераспределяет электроны по энергии: часть электронов «забрасывается» из валентной зоны в зону проводимости. При этом появляются свободные носители заряда – электроны в зоне проводимости и дырки в валентной зоне (рис.). Количество свободных электронов и дырок экспоненциально зависит от темп-ры, поэтому температурная зависимость проводимости П. определяется формулой ( * ).
В широком классе П. ширина энергетич. зон значительно превышает тепловую энергию при комнатной темп-ре (0,025 эВ), поэтому носители заряда заполняют состояния только вблизи экстремумов разрешённых зон, т. е. вблизи дна зоны проводимости и потолка валентной зоны. Зависимость энергии от квазиимпульса вблизи экстремума часто оказывается квадратичной, и можно ввести представление об эффективной массе носителей заряда, которая зависит от номера разрешённой зоны и направления квазиимпульса. В некоторых П. одному значению энергии отвечает неск. экстремумов в первой зоне Бриллюэна и носители заряда распределены по эквивалентным «долинам» (окрестностям экстремумов). Такие П. называют многодолинными.
Примеси и дефекты в полупроводниках
Электрич. проводимость П. может быть обусловлена как электронами собственных атомов данного вещества (собственная проводимость), так и электронами и дырками примесных атомов (примесная проводимость). Процесс внедрения примесей в П. для получения необходимых физич. свойств называется легированием полупроводников. Поскольку энергия связи носителей заряда в примесных атомах составляет от нескольких мэВ до нескольких десятков мэВ, именно примесная проводимость объясняет экспоненциальный рост концентрации свободных носителей заряда в большинстве П. в интервале температур вблизи комнатной.
Примеси в П. обычно вводят в процессе роста структуры, они могут быть донорами или акцепторами, т. е. поставщиками электронов или дырок. Если, напр., в германий Ge или кремний Si (элементы IV группы) ввести примесные атомы элементов V группы (As, P), то 4 внешних электрона этих атомов образуют устойчивую связь с четырьмя соседними атомами решётки, а пятый электрон окажется несвязанным и будет удерживаться около примесного атома только за счёт кулоновского взаимодействия, ослабленного диэлектрич. поляризацией среды. Такой примесный атом является донором и легко ионизуется при комнатной темп-ре. Акцептор возникает, напр., при введении в Ge или Si элементов III группы (Ga, Al). В этом случае для образования всех четырёх связей с ближайшими атомами требуется дополнит. электрон, который берётся из внутр. оболочек атомов, так что примесный атом оказывается заряжен отрицательно. Электронейтральность восстанавливается за счёт того, что внутр. незаполненная орбиталь распределяется вблизи соседних атомов решётки, расположенных от примесного на расстояниях, превосходящих межатомное расстояние. Наличие доноров или акцепторов приводит соответственно к проводимости n- или р-типа.
П., в которых могут одновременно существовать акцепторные и донорные примеси, называются компенсированными. Компенсация примесей приводит к тому, что часть электронов от доноров переходит к акцепторам, и в результате возникает значит. концентрация ионов, которые эффективно влияют на проводимость полупроводников.
Амплитуда волновой функции электронов или дырок, локализованных на примесных атомах, составляет 1–10 нм. Это означает, что при концентрации примесных атомов ок. 1018 см–3 волновые функции электронов и дырок соседних атомов начинают перекрываться, носители заряда могут переходить от иона к иону и П. становится вырожденным (см. Вырожденные полупроводники). Такие П. называются сильнолегироваными. Из-за сильного экранирования кулоновского притяжения носители заряда в них оказываются свободными даже при таких низких темп-рах, при которых была невозможна термич. активация электрона или дырки из изолированного атома.
В отсутствие внешнего электрич. поля или освещения концентрация свободных носителей заряда называется равновесной и определяется шириной запрещённой зоны П., эффективными массами носителей заряда, концентрацией примесей и энергией связи примесных носителей заряда.
Наряду с примесями, источниками носителей заряда могут быть и разл. дефекты структуры, напр. вакансии (отсутствие одного из атомов решётки), межузельные атомы, а также недостаток или избыток атомов одного из компонентов в полупроводниковых соединениях (отклонения от стехиометрич. состава).
Электрические свойства полупроводников
Во внешнем электрич. поле на носители заряда в твёрдом теле действует сила, которая изменяет их скорость и приводит к направленному движению. Под действием силы носители заряда должны ускоряться, однако в кристаллах вследствие взаимодействия электронов с дефектами, колебаниями решётки и т. д. возникает сила трения, которая уравновешивает силу, действующую со стороны поля. В результате носители заряда движутся с постоянной средней (дрейфовой) скоростью $v_{др}$, зависящей от напряжённости $E$ электрич. поля. Можно ввести понятие подвижности носителей заряда $μ=v_{др}/E$. Действие силы трения означает, что в электрич. поле носитель заряда испытывает свободное ускорение только в промежутке времени $Δt$ между двумя актами рассеяния, так что $v_{др}=eEτ/m$ ($m$ – эффективная масса носителя, $e$ – его заряд, $τ$ – время релаксации, за которое свободный носитель заряда в отсутствие поля теряет свой направленный квазиимпульс). Обычно $τ$ не зависит от величины внешнего поля и определяется тепловым хаотич. движением носителей заряда в твёрдом теле, так что скорость теплового движения на неск. порядков превосходит $v_{др}$. Так, напр., для типичных П. при $T=300$ К в весьма сильном электрич. поле ($E$=3·104 В/м) скорость $v_{др}$ составляет 10–100 м/с, а величина ср. тепловой скорости – 105–106 м/с.
Величины $τ$ и $μ$ зависят от типа проводимости, химич. состава П., темп-ры, концентрации дефектов и примесей. При темп-рах ниже темп-ры кипения жидкого азота (77 К) подвижность $μ$ возрастает с ростом темп-ры, а при темп-рах выше 77 К – уменьшается, проходя через максимум вблизи 100 К. Такая зависимость $μ(T)$ объясняется наличием двух осн. причин рассеяния носителей заряда – на заряженных примесях и фононах. При низких темп-рах, когда примесные атомы ионизованы, рассеяние на них превосходит рассеяние на фононах, поскольку равновесных фононов мало. С увеличением темп-ры ср. энергия носителей возрастает, эффективность рассеяния уменьшается, время между столкновениями и подвижность возрастают. При темп-рах ок. 100 К резко возрастает концентрация равновесных фононов и взаимодействие с ними ограничивает подвижность, вследствие этого с увеличением темп-ры подвижность уменьшается. При $T$=300 К характерные значения $τ$ для П. лежат в интервале 10–13–10–12 с, а $μ$ – в интервале 102–10–2 м/с. При меньших значениях подвижности длина свободного пробега (произведение ср. скорости теплового движения на время $τ$) становится меньше расстояния между атомами и говорить о свободном движении носителей заряда нельзя. Возникает прыжковая проводимость, которая обусловлена перескоками носителей заряда в пространстве от одного иона к другому (реализуется в органических полупроводниках).
Направленному движению носителей заряда во внешнем электрич. поле препятствует их тепловое хаотич. движение. Если в результате приложения электрич. поля носители собираются у границы образца и их концентрация зависит от координат, то хаотич. движение приводит к выравниванию концентрации и носители переходят из области пространства с большей концентрацией в область, где их концентрация меньше. Такой процесс называется диффузией носителей заряда и определяется коэф. диффузии $D$. В условиях равновесия полный поток носителей заряда отсутствует, так что диффузионный поток полностью компенсирует поток частиц во внешнем поле. Это означает, что коэф. диффузии связан с подвижностью. Для невырожденных носителей $D=kTμ/e$ (соотношение Эйнштейна). Для типичных П. при комнатной темп-ре величина $D$ составляет 10–3–10–2 м2/с. Для неравновесных носителей заряда, напр. в случае инжекции в электронно-дырочном переходе (см. p–n-Переход), вводится понятие диффузионной длины $L_D$, которая определяет уменьшение числа носителей в процессе диффузии за счёт их рекомбинации: $L_D=\sqrt{D\tau_0}$, где $τ_0$ – время жизни неосновных носителей.
Наложение внешнего магнитного поля изменяет условия протекания электрич. тока в П. и приводит к гальваномагнитным явлениям, которые наиболее сильно проявляются в магнитных полупроводниках и полумагнитных полупроводниках. В П. для исследований и практич. применений наиболее часто магнитное поле прикладывают перпендикулярно электрич. полю, в этом случае имеют место Холла эффект и Шубникова – де Хааза эффект, классич. магнитосопротивление, слабая локализация носителей заряда, а в двумерных структурах – квантовый эффект Холла и дробный квантовый эффект Холла. В магнитном поле на заряженные частицы действует сила Лоренца, они начинают вращаться в плоскости, перпендикулярной направлению магнитного поля, с циклотронной частотой $ω_с$ и сохраняют свою скорость вдоль магнитного поля. В зависимости от величины произведения $ω_сτ$ различают классические слабые ($ω_сτ≪1$), классические ($ω_сτ>1$) и квантующие ($ωсτ≫1$ и $\hbar ω_с≫kT$) магнитные поля, где $\hbar$ – постоянная Планка.
В магнитных полях, когда $ω_сτ∼1$, движение носителей заряда можно описывать классич. уравнениями Ньютона, в этом случае имеет место эффект Холла, состоящий в возникновении дополнит. электрич. поля, перпендикулярного внешним электрич. и магнитному полям. Это дополнит. поле компенсирует поток частиц, вызванный совместным действием приложенных электрич. и магнитного полей, и зависит от величины магнитного поля и концентрации свободных носителей заряда, а его направление определяется знаком заряда, поэтому эффект Холла используется для определения знака и концентрации носителей заряда.
В более сильных полях, когда $ω_сτ≫1$, но характерная энергия носителей заряда значительно превосходит $\hbar ω_с$, необходимо учитывать квантование носителей заряда во внешнем магнитном поле, в результате плотность состояний как функция обратного поля приобретает вид острых, периодически расположенных пиков. При увеличении магнитного поля эти пики начинают пересекать уровень химич. потенциала электронного газа, в результате в квантующем магнитном поле сопротивление осциллирует.
В двумерных полупроводниковых структурах при $ω_сτ≫1$ и $\hbar ω_с≫kT$ возникает квантовый эффект Холла, состоящий в появлении ступенек на зависимости поперечного сопротивления от магнитного поля. Высота ступенек с большой точностью равняется кванту удельного сопротивления $h/e^2$. Значение продольного сопротивления обращается в нуль в магнитных полях, отвечающих ступенькам на зависимости поперечного сопротивления от магнитного поля и пикам между ступеньками. Такое поведение объясняется особенностями движения носителей заряда в сильном магнитном поле в условиях действия случайных электрич. и деформационных полей, имеющих разл. пространственный масштаб. При ещё большем магнитном поле имеет место дробный квантовый эффект Холла, проявляющийся в дополнит. расщеплении ступенек. Однако квантовый характер носителей заряда может проявляться и в слабых магнитных полях. Оказалось, что при низких темп-рах в П. и металлах наблюдается небольшое (ок. 1–5% от общего) изменение проводимости, пропорциональное квадрату магнитного поля. Этот эффект объясняется явлением слабой локализации, состоящим в увеличении сопротивления проводящих материалов за счёт усиления рассеяния назад при диффузионном движении частиц.
Оптические свойства полупроводников
Зонная структура кристаллов проявляется в свойствах пропускания, отражения и поглощения полупроводниками электромагнитного излучения. Наиболее очевидно существование запрещённой зоны следует из того, что излучение с энергией кванта, меньшей ширины запрещённой зоны $ℰ_g$ чистого П., не поглощается. Поглощение начинается только тогда, когда энергия кванта превысит $ℰ_g$. Для П. типа GaAs при низких темп-рах длина волны, на которой интенсивность падающего излучения уменьшается в $e$ раз, приблизительно равна 0,1 мкм. При таком поглощении кванта света в П. возникают электрон и дырка и имеет место закон сохранения квазиимпульса. Обычно импульс света значительно меньше квазиимпульсов носителей заряда, и при оптич. переходе электрона из валентной зоны в зону проводимости квазиимпульс не изменяется, так что в момент рождения электрон и дырка имеют противоположные квазиимпульсы. Такие переходы называются прямыми; они происходят в т. н. прямозонных П. (GaAs, InSb, Te, SiC), в которых потолок валентной зоны и дно зоны проводимости расположены в одной точке зоны Бриллюэна.
Электронные переходы со значит. изменением квазиимпульса происходят в т. н. непрямозонных П. (Ge, Si, AlAs, GaP), у которых вершина валентной зоны и дно зоны проводимости разнесены в пространстве квазиимпульсов на величину порядка $π/d$, где $d$ – межатомное расстояние в кристаллич. решётке. В этом случае для выполнения закона сохранения квазиимпульса необходимо участие третьей частицы, в качестве которой может выступать либо примесный атом, либо фонон. Типичная длина поглощения для непрямых переходов составляет 1–10 мкм.
В спектре поглощения П. присутствуют широкие энергетич. полосы, что указывает на то, что электроны в валентных зонах связаны слабо и легко поляризуются под действием электрич. поля. Это означает, что П. характеризуются относительно большой диэлектрич. проницаемостью $ε$, напр. в Ge $ε=16$, в GaAs $ε=11$, в PbTe $ε=30$. Благодаря большим значениям $ε$ кулоновское взаимодействие электронов и дырок друг с другом или с заряженными примесями сильно подавлено, если они находятся друг от друга на расстоянии, превышающем размеры элементарной ячейки. Это и позволяет во многих случаях рассматривать движение каждого носителя заряда независимо от других. Если бы кулоновское взаимодействие не ослаблялось, то примесные ионы могли бы связывать носители заряда в устойчивые, локализованные в пространстве образования с энергией ок. 10 эВ. В этом случае при темп-рах ок. 300 К тепловое движение практически не могло бы разорвать эти связи, создать свободные носители заряда и привести к заметной электропроводности. Такое связывание имеет место в П. и диэлектриках, но из-за ослабления кулоновского взаимодействия и относительно малых эффективных масс электронов и дырок (ок. 0,1–0,5 от массы свободного электрона) энергия связи таких образований (экситонов) составляет 1–50 мэВ, что много меньше энергии ионизации атомов. Экситоны легко ионизуются при темп-рах выше темп-ры жидкого азота и, т. о., не препятствуют образованию свободных носителей. Тем не менее при низких темп-рах образование экситонов приводит к поглощению в чистых П. электромагнитного излучения с энергией кванта, меньшей $ℰ_g$ на величину энергии связи экситона.
Прозрачность П. в узкой области частот вблизи края собств. поглощения изменяется под действием внешних (электрич., магнитного и др.) полей. Электрич. поле, ускоряя электрон, может в процессе оптич. перехода передать ему небольшую дополнит. энергию, в результате чего прямые оптич. переходы из валентной зоны в зону проводимости происходят под действием квантов света с энергией, меньшей $ℰ_g$ (Келдыша – Франца эффект).
В однородном магнитном поле закон сохранения квазиимпульса приводит к сохранению кругового движения электронов и дырок после поглощения излучения. В результате зависимость коэф. поглощения от частоты падающего излучения принимает вид узких пиков. Кроме собств. поглощения (за счёт прямых или непрямых переходов), в П. имеет место поглощение света свободными носителями, связанное с их переходами в пределах одной разрешённой зоны. Их вклад в общее поглощение мал, поскольку число свободных носителей заряда в П. малó по сравнению с полным числом валентных электронов, и для их реализации требуется участие третьей частицы – примеси или фонона. Кроме того, в нелегированных П. со значит. долей ионной связи наблюдается поглощение далёкого ИК-излучения за счёт возбуждения колебаний решётки – фононов.
Спектр фотолюминесценции П. сосредоточен в узкой области вблизи ширины запрещённой зоны. Вклад в фотолюминесценцию П. могут вносить разл. механизмы излучательной рекомбинации: зона – зона, зона – примесь, донор – акцептор, с участием фонона, излучение свободных, связанных или локализованных экситонов, экситон-поляритонная, биэкситонная рекомбинации. В нелегированных структурах с квантовыми ямами низкотемпературная фотолюминесценция обусловлена излучательной рекомбинацией экситонов, локализованных на шероховатостях поверхности и флуктуациях состава.
Оптич. свойства твёрдых растворов П. можно менять в широких пределах, подбирая химич. состав раствора, что обусловливает их широкое применение в приборах оптоэлектроники, в первую очередь в качестве рабочих материалов лазеров, свето- и фотодиодов, солнечных элементов, детекторов излучения.
Полупроводниковые гетеро- и наноструктуры
Совр. физика П. – это, прежде всего, физика полупроводниковых гетероструктур и наноструктур. В последних возникает ряд новых физич. явлений, которые невозможны в объёмных П., напр. квантовые целочисленный и дробный эффекты Холла. В наноструктурах движение свободных носителей заряда ограничено в одном или нескольких направлениях, что приводит к размерным эффектам, кардинально изменяющим энергетич. спектры носителей заряда, а также фононов и др. квазичастиц. Важную роль в наноструктурах играют гетерограницы, поскольку в системах малого размера отношение площади поверхности к внутр. объёму структуры является большим. Наиболее совершенные полупроводниковые наноструктуры получают методами молекулярно-пучковой эпитаксии и газофазной эпитаксии из металлоорганич. соединений.
В нач. 21 в. сложилась устойчивая терминология низкоразмерной физики П. Систематика начинается с одиночного гетероперехода между двумя композиционными материалами – полупроводниками A и B. Один или оба материала могут быть твёрдыми растворами (примеры гетеропар A/B: GaAs/Al1–xGaxAs, ZnSe/BeTe). По определению, в гетеропереходах первого типа запрещённая зона $ℰ_g$ одного из композиц. материалов лежит внутри запрещённой зоны др. материала. В этом случае потенциальные ямы для электронов или дырок расположены в одном и том же слое. В гетеропереходах второго типа дно зоны проводимости ниже в одном, а потолок валентной зоны выше в другом П. Для указанных гетеропар запрещённые зоны перекрываются. Имеются также гетеропереходы второго типа (напр., InAs/GaSb), у которых запрещённые зоны не перекрываются и дно зоны проводимости одного П. лежит ниже потолка валентной зоны другого П. К третьему типу относят гетеропереходы, в которых один из слоёв является бесщелевым П., напр. в паре HgTe/CdTe. Двойной гетеропереход B/A/B первого типа представляет собой структуру с одиночной квантовой ямой, если $ℰ^A_g<ℰ^B_g$, или структуру с одиночным барьером, если $ℰ^A_g>ℰ^B_g$.
К полупроводниковым наноструктурам относят квантовые ямы, квантовые проволоки, квантовые точки. В квантовой яме движение свободного носителя заряда (электрона или дырки) ограничено в одном из направлений. В результате возникает пространственное квантование и энергетич. спектр по одному из квантовых чисел из непрерывного становится дискретным – каждая трёхмерная энергетич. электронная зона превращается в серию двумерных подзон размерного квантования. Естеств. развитием однобарьерной структуры являются двух- и мультибарьерные структуры, на основе которых создаются резонансно-барьерные приборы. От одиночной квантовой ямы переходят к структуре с двумя или тремя квантовыми ямами и структурам с целым набором изолированных квантовых ям. По мере того как барьеры становятся тоньше, туннелирование носителей заряда из одной ямы в другую становится заметнее, и электронные состояния в подзонах размерного квантования изолированных ям трансформируются в трёхмерные минизонные состояния. В результате периодич. структура изолированных квантовых ям, или толстобарьерная сверхрешётка, превращается в тонкобарьерную сверхрешётку, или просто сверхрешётку. Полупроводниковая сверхрешётка используется для создания квантовых каскадных лазеров, излучение которых возникает при переходе электронов между слоями структуры.
Кроме структур с квантовыми ямами, существуют и др. двумерные системы, напр. графен и структура металл – диэлектрик – полупроводник (МДП-структура), которая используется в микроэлектронике в виде полевого МДП-транзистора.
В одномерных системах – квантовых проволоках – движение носителей заряда свободно только в одном направлении (напр., в углеродной нанотрубке, получаемой свёртыванием графеновой полоски и закреплением её противоположных сторон). Др. пример такой структуры – квантовая яма, выращенная на сколе, содержащем перпендикулярную ему квантовую яму. Квантовая механика допускает формирование одномерных электронных состояний на стыке двух таких ям.
В квантовых точках движение носителей заряда ограничено во всех трёх направлениях, напр. в нанокристаллах CdSe, выращенных в стеклянной матрице, и в эпитаксиальных квантовых точках GaAs/InAs, выращенных по механизму Странски – Крастанова.
Широкое применение получили полупроводниковые лазеры на квантовых ямах и массивах квантовых точек. В структуре с двойным ограничением стимулированное излучение выходит из торца, перпендикулярно направлению роста. Квантовый микрорезонатор, т. е. квантовые ямы или квантовые точки, выращенные в активной области оптич. микрорезонатора, используется для создания вертикально излучающих лазеров.
Возможность в широких пределах управлять физич. свойствами П. приводит к их многочисленным и разнообразным применениям (см. Полупроводниковые материалы).
Словарь терминов физики полупроводников — это… Что такое Словарь терминов физики полупроводников?
Эта страница — глоссарий.
А
Адатом — атом на поверхности кристалла.
Адиабатическое приближение — приближение в теории твёрдого тела, при котором движение остовов ионов кристаллической решётки рассматривается в качестве возмущения. См. фононы.
Адиабатический транспорт
Акустический фонон
Акцептор — примесь в полупроводниковом материале, которая захватывает свободный электрон.
Акцепторная ловушка
Аморфные тела
Анизотропия
Арсенид галлия
Б
Баллистический транзистор
Барьер Шоттки — потенциальный барьер, возникающий на границе металл — полупроводник
Безызлучательная рекомбинация — рекомбинация без испускания квантов света. Передача энергии электронно-дырочной пары происходит либо колебаниям решетки (фононам), либо третьей частице (Оже-рекомбинация).
Бесщелевой полупроводник — полупроводник с нулевой шириной запрещённой зоны.
Бинарные соединения — химические вещества, образованные двумя химическими элементами.
В
Валентная зона — зона валентных электронов, при нулевой температуре в собственном полупроводнике полностью заполнена.
Вольт-амперная характеристика — зависимость тока от напряжения. Основная характеристика для любого полупроводникового прибора.
Г
Галлий — элемент пятой группы периодической системы элементов.
Гальваномагнитные эффекты — эффекты связанные с действием магнитного поля на электрические (гальванические) свойства твердотельных проводников.
Д
Двумерный электронный газ — электронный газ, который находится в потенциальной яме, ограничивающей движение по одной из координат.
Дефекты кристалла — любое нарушение периодичности кристалла.
Дивакансия — конгломерат дефектов кристалла, состоящий из двух вакансий.
Диод — полупроводниковый прибор с двумя электродами.
Дислокация — линейный дефект в кристалле.
Дислокация несоответствия — один из типов линейных дефектов в кристалле, когда дополнительная полуплоскость вставлена в кристаллическую решётку.
Донор — тип легирующих примесей, поставляющих свободные электроны.
Дырка — квазичастица в твёрдом теле с положительным зарядом, равным по абсолютному значению заряду электрона.
Дырочная проводимость — в полупроводнике с p-типом проводимости основные носители заряда дают основной вклад в проводимость.
Дырочный полупроводник — полупроводник с p-типом проводимости, основные носители тока — дырки.
Двухдолинный полупроводник — полупроводник, зона проводимости которого имеет два энергетических минимума.
З
Закон дисперсии — Зависимость энергии от квазиволнового вектора . В полупроводнике с параболическим законом дисперсии эффективная масса не зависит от энергии.
Затвор — управляющий электрод в полевом транзисторе.
Зона — термин зонной теории, обозначающий область разрешённых значений энергии, которые могут принимать электроны или дырки.
Зонная теория твёрдых тел — одноэлектронная теория для периодического потенциала, объясняющая многие электрофизические свойства полупроводников. Использует адиабатическое приближение.
И
Излучательная рекомбинация — рекомбинация с испусканием одного или нескольких фотонов при гибели электрон-дырочной пары; источник излучения в светодиодах и лазерных диодах.
Инжекция — явление, приводящее к появлению неравновесных носителей в полупроводнике при пропускании электрического тока через p-n-переход или гетеропереход.
Исток — термин, обозначающий один из контактов в полевом транзисторе.
К
Квантовый точечный контакт
Квантовый эффект Холла
Коэффициент отражения
Коэффициент прохождения
Кристалл — идеализированная модель твёрдого тела с трансляционной симметрией.
Кристаллофизика
Кремний — полупроводник, основной материал современной полупроводниковой промышленности.
Л
Лавинная инжекция — см. ЛИЗМОП-структуры
Лавинный пробой
Лёгкие дырки
Люминесценция — свечение твёрдых под влиянием внешнего воздействия (пропускание электрического тока, возбуждение светом или заряженными частицами).
М
Механическое движение — изменение с течением времени положения тела относительно других тел.
Н
Неосновные носители магнитное поле
О
Оже-рекомбинация
Оптические переходы — переходы электрона в твёрдом теле между состояниями с различной энергиями с испусканием или поглощением света.
Оптические фононы
Основные носители — тип преобладающих в полупроводнике носителей заряда.
П
Параболический закон дисперсии — у полупроводников с параболическим законом дисперсии можно ввести массу, которая отличается от массы покоя электрона. В этом случае частица, движущаяся в кристаллическом потенциале, не замечает его и ведёт себя как свободная частица.
Переход металл-диэлектрик
Плотность состояний
Подвижность
Поликристалл
Примеси — инородные атомы в чистом материале.
Примесная зона — зона, которая образуется при сильном легировании полупроводника, когда волновые функции электронов соседних примесей перекрываются.
Пьезокристаллы
Пьезоэффект
Р
Рассеяние на акустических фононах
Рассеяние на оптических фононах
Рекомбинация — гибель пары электрон-дырка.
Релаксация
С
Статистика Бозе — Эйнштейна
Статистика Ферми — Дирака
Сток — один из контактов в полевом транзисторе.
Т
Тензор эффективной массы
Термализация — процесс установления термодинамического равновесия для неосновных носителей заряда.
Термогальваномагнитные эффекты — эффекты, возникающие под влиянием магнитного поля в электропроводности и теплопроводности проводников.
Теплоёмкость твёрдого тела
Точечные дефекты или нульмерные дефекты — дефекты кристалла, при которых периодичность потенциала нарушается только локально.
Твердые растворы
Тяжёлые дырки
У
Уровень Ферми — энергетический уровень, который при абсолютном нуле температур разделяет полностью заполненные квантовые состояния от полностью незанятых состояний.
Ф
Фонон — Квазичастица, квант колебательного движения атомов кристалла.
Фотопроводимость — проводимость полупроводника при воздействии света. Даёт информацию о дефектах в полупроводниках.
Х
Ц
Ш
Ширина запрещённой зоны, Eg — одна из основных электрофизических характеристик полупроводника. Разность между энергией дна зоны проводимости и потолком валентной зоны.
Широкозонные полупроводники — полупроводники с шириной запрещённой зоны 1 эВ < Eg < 3 эВ
Э
Экситон — квазичастица в твёрдом теле, связанное состояние электрона и дырки. Обладает ограниченным временем жизни.
Электрон — квазичастица в твёрдом теле с зарядом электрона, но с отличной массой.
Электронное сродство — энергия выделяющаяся при присоединении одного электрона к твердому телу. Для металлов совпадает с термодинамической работой выхода, для полупроводников отличается от неё на величину EС-EF, поскольку присоединенный электрон попадает на дно зоны проводимости.
Электронный полупроводник — полупроводник с n-типом проводимости, где основные носители — электроны.
Эффект Ааронова — Бома
Эффект Ганна — периодические колебания тока в двухдолинных полупроводниках
Эффект Нернста — Эттингсгаузена
Эффект Риги — Ледюка
Эффект Холла — возникновение поперечной разности потенциалов при протекании тока во внешнем магнитное поле.
Эффект Шубникова — де Гааза — осцилляции магнетосопротивления периодичные по обратному магнитному полю.
Эффект Эттингсгаузена
Эффективная масса — перенормированная масса электрона в кристаллической решётке. Примен́им к полупроводникам с параболическим законом дисперсии. Для различных разрешённых зон эффективная масса квазичастиц различается, поэтому появляются тяжёлые и лёгкие дырки. В общем случае нужно масса зависит от направления в кристалле и говорят о тензоре эффективной массы.
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 14 мая 2011. |
Примесная проводимость полупроводников — Википедия
Примесная проводимость полупроводников — электрическая проводимость, обусловленная наличием в полупроводнике донорных или акцепторных примесей.
Примесная проводимость, как правило, намного превышает собственную, и поэтому электрические свойства полупроводников определяются типом и количеством введенных в него легирующих примесей.
Собственная проводимость полупроводников обычно невелика, так как число свободных электронов, например, в германии при комнатной температуре порядка 3·1013 / см3. В то же время число атомов германия в 1 см3 ~ 1023. Проводимость полупроводников увеличивается с введением примесей, когда наряду с собственной проводимостью возникает дополнительная примесная проводимость.
Примесными центрами могут быть:
- атомы или ионы химических элементов, внедренные в решетку полупроводника;
- избыточные атомы или ионы, внедренные в междоузлия решетки;
- различного рода другие дефекты и искажения в кристаллической решетке: пустые узлы, трещины, сдвиги, возникающие при деформациях кристаллов, и др.
Изменяя концентрацию примесей, можно значительно увеличивать число носителей зарядов того или иного знака и создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.
Примеси можно разделить на донорные (отдающие) и акцепторные (принимающие).
Рассмотрим механизм электропроводности полупроводника с донорной пятивалентной примесью мышьяка As5+, которую вводят в кристалл, например, кремния. Пятивалентный атом мышьяка отдает четыре валентных электрона на образование ковалентных связей, а пятый электрон оказывается незанятым в этих связях.
Энергия отрыва (энергия ионизации) пятого валентного электрона мышьяка в кремнии равна 0,05 эВ = 0,08·10−19 Дж, что в 20 раз меньше энергии отрыва электрона от атома кремния. Поэтому уже при комнатной температуре почти все атомы мышьяка теряют один из своих электронов и становятся положительными ионами. Положительные ионы мышьяка не могут захватить электроны соседних атомов, так как все четыре связи у них уже укомплектованы электронами. В этом случае перемещения электронной вакансии — «дырки» не происходит и дырочная проводимость очень мала, то есть практически отсутствует. Небольшая часть собственных атомов полупроводника ионизирована, и часть тока образуется дырками, то есть донорные примеси — это примеси, поставляющие электроны проводимости без возникновения равного количества подвижных дырок. В итоге мы получаем полупроводник с преимущественно электронной проводимостью, называемый полупроводником n-типа.
В случае акцепторной примеси, например, трехвалентного индия In3+ атом примеси может дать свои три электрона для осуществления ковалентной связи только с тремя соседними атомами кремния, а одного электрона «недостает». Один из электронов соседних атомов кремния может заполнить эту связь, тогда атом In станет неподвижным отрицательным ионом, а на месте ушедшего от одного из атомов кремния электрона образуется дырка. Акцепторные примеси, захватывая электроны и создавая тем самым подвижные дырки, не увеличивают при этом числа электронов проводимости. Основные носители заряда в полупроводнике с акцепторной примесью — дырки, а неосновные — электроны.
Полупроводники, у которых концентрация дырок превышает концентрацию электронов проводимости, называются полупроводниками р-типа.
Необходимо отметить, что введение примесей в полупроводники, как и в любых металлах, нарушает строение кристаллической решетки и затрудняет движение электронов. Однако сопротивление не увеличивается из-за того, что увеличение концентрации носителей зарядов значительно уменьшает сопротивление. Так, введение примеси бора в количестве 1 атом на сто тысяч атомов кремния уменьшает удельное электрическое сопротивление кремния приблизительно в тысячу раз, а примесь одного атома индия на 108 — 109 атомов германия уменьшает удельное электрическое сопротивление германия в миллионы раз.
Возможность управления удельным сопротивлением благодаря введению примесей используется в полупроводниковых приборах.
Дырочная проводимость не является исключительной особенностью полупроводников. У некоторых металлов и их сплавов существует смешанная электронно-дырочная проводимость за счет перемещений некоторой части неколлективированных валентных электронов. Например, в цинке, бериллии, кадмии, сплавах меди с оловом дырочная составляющая электрического тока преобладает над электронной.
Если в полупроводник одновременно вводятся и донорные и акцепторные примеси, то характер проводимости (n- или p-тип) определяется примесью с более высокой концентрацией носителей тока — электронов или дырок.
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н. Н. Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 302—303.