Получение водорода из воды – Водородный генератор своими руками – схема, конструкция установки, чертежи

Биотехнологическое получение водорода — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 июля 2013; проверки требует 21 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 июля 2013; проверки требует 21 правка. Algae hydrogen production.jpg

Биологическое получение водорода при помощи водорослей — процесс биохимического расщепления воды, осуществляемый замкнутым фотобиореактором, основанный на получении водорода водорослями. Точные условия выделения водорода водорослями неизвестны. В 2000 году было обнаружено, что водоросли вида C. reinhardtii при нехватке серы перейдут от выделения кислорода (как при нормальном фотосинтезе) к выделению водорода.

Микробиологическое получение водорода[править | править код]

Водородообразующие микроорганизмы широко распространены в природе. Например, растущая культура

Rhodopseudomonas capsulata выделяет 200—300 мл водорода на 1 грамм сухой биомассы[1]. Микробиологическое образование водорода может идти из соединений углеводного характера (крахмал, целлюлоза).

Биофотолиз воды — разложение воды на водород и кислород с участием микробиологических систем. Производство водорода происходит в биореакторе, содержащем водоросли. Водоросли производят водород при определенных условиях. В конце 90-х годов XX века было показано, что в условиях недостатка серы биохимический процесс производства кислорода, то есть нормальный фотосинтез, переключается на производство водорода.

Во время фотосинтеза цианобактерии и зеленые водоросли расщепляют воду на ионы водорода и электроны. Электроны переводятся в ферредоксин . Fe-Fe гидрогеназа (фермент) объединяет их с газообразным водородом. Фотосистема II Chlamydomonas reinhardtii производит в прямом солнечном излучении 80% электронов, которые в конечном итоге находят свое место в газообразном водороде. LHCBM9 — светосборный белок II в светосборном комплексе эффективно поддерживает солнечную энергию. Fe-Fe-гидрогеназа требует анаэробных условий, потому что кислород блокирует ее активность. Спектроскопия Фурье используется для изучения метаболических путей.

Антенные системы хлорофилла в зеленых водорослях уменьшены или укорочены, чтобы максимизировать эффективность фотобиологического преобразования света в H 2 . Укороченная система сводит к минимуму поглощение и расточительное рассеивание света через отдельные клетки, что, в свою очередь, повышает эффективность использования света и повышает продуктивность фотосинтеза в колониях зеленых водорослей.

Особенности конструкции биореактора[править | править код]

  • Ограничения фотосинтетического производства водорода путём аккумулирования протонного градиента.
  • Конкурентное ингибирование фотосинтеза водорода со стороны углекислого газа.
  • Эффективность фотосинтеза возрастает, если бикарбоната связан с фотосистемой II (PSII)
  • Экономическая реализуемость. Энергетическая эффективность — коэффициент преобразования солнечного света в водород — должна достичь 7—10 % (водоросли в естественных условиях достигают в лучшем случае 0,1 %).

Основные вехи[править | править код]

2006 год — исследователи из Университета Билефельда и Университета Квинсленда генетически модифицировали одноклеточную водоросль Chlamydomonas reinhardtii таким образом, что она стала производить существенно большие количества водорода[2]. Получившаяся водоросль-мутант Stm6 может, в течение долгого времени производить в пять раз больше водорода, чем его предок, и давать 1,6—2,0 % энергетической эффективности.

2006 год — неопубликованная работа из Калифорнийского университета в Беркли (программа реализуется организацией MRIGlobal (англ.), по контракту с Национальной лабораторией возобновляемых источников энергии (англ. обещает разработку технологии с 10 процентной энергетической эффективностью. Утверждается, что путём укорочения стека хлорофилла Tasios Melis возможно преодолеть 10 процентный барьер

[3].

Исследования[править | править код]

2006 — В Университете Карлсруэ разрабатывается прототип биореактора, содержащего 500—1000 литров культуры водорослей. Этот реактор используется для доказательства реализуемости экономически эффективных систем такого рода в течение ближайших пяти лет.

Экономичность[править | править код]

Ферма водородопроизводящих водорослей площадью равной площади штата Техас производила бы достаточно водорода для покрытия потребностей всего мира.

[источник не указан 2985 дней] Около 25 000 км² достаточно для возмещения потребления бензина в США. Это в десять раз меньше чем используется в сельском хозяйстве США для выращивания сои[4].

История[править | править код]

В 1939 году немецкий исследователь Ханс Гаффрон (англ.), работая в Чикагском университете, обнаружил, что изучаемая им водоросль Chlamydomonas reinhardtii иногда переключается с производства кислорода на производство водорода[5]. Гаффрон не смог обнаружить причину этого переключения. В течение многих лет причину переключения не удавалось обнаружить и другим ученым. В конце 1990-х годов профессор Анастасис Мелис (англ.), работая исследователем в Беркли, обнаружил, что в условиях недостатка серы биохимический процесс производства кислорода, то есть нормальный фотосинтез, переключается на производство водорода. Он обнаружил ответственный за это поведение фермент гидрогеназу, теряющий эти функции в присутствии кислорода. Мелис обнаружил, что серное голодание прерывает внутреннюю циркуляцию кислорода, меняя окружение гидрогеназы таким образом, что она становится способна синтезировать водород. Другой тип водорослей

Chlamydomonas moeweesi (англ.) также перспективен для производства водорода.

  • Варфоломеев С. Д., Зайцев С. В., Зацепин С. С. Проблемы преобразования солнечной энергии путём биофотолиза воды. — Итоги науки. М.: ВИНИТИ, 1978

Получение водорода — Основы химии на Ида Тен

История открытия водорода История водорода начинается с XVI века, когда было замечено, что при действии кислот на железо и другие металлы выделяется некий неизвестный газ. Первоначально его назвали «горючим воздухом». Такое название газ получил из-за способности гореть. Во второй половине XVIII века английский ученый Генри Кавендиш получил водород при действии соляной кислоты HCl на цинк:

Zn + 2HCl = ZnCl2 + h3­

Что же такое кислота с точки зрения химии? Кислота – это сложное вещество, в состав которого всегда входят атомы водорода. В формулах кислот атомы водорода принято писать на первом месте. Атомы, следующие в формуле за водородом, называют кислотным остатком. Так, в соляной кислоте HCl кислотный остаток – Cl.

Например, в серной кислоте h3SO4, кислотный остаток – SO4. Кислота – сложное вещество, в состав которого входят атомы водорода и кислотный остаток Генри Кавендиш изучил свойства «горючего воздуха». Он установил, что этот газ намного легче воздуха, а при сгорании на воздухе образует прозрачные капли жидкости. Этой жидкостью оказалась вода.

Генри Кавендиша считают первооткрывателем водорода. Вывод о том, что «горючий воздух» представляет собой простое вещество, был сделан в 1784 году французским химиком Антуаном Лораном Лавуазье.

Антуан Лоран Лавуазье дал этому веществу латинское название (Hydrogenium), которое происходило от греческих слов «хюдор» – вода и «геннао» – рождаю. В те годы под элементами подразумевали простые вещества, которые нельзя далее разложить на составные части. Поэтому у химического элемента водорода такое же название, как и у просто вещества h3. Русское слово водород – это точный перевод латинского названия Hydrogenium.

Получение водорода в лаборатории

Современный лабораторный способ получения водорода не отличается от того, которым его получал Генри Кавендиш. Это реакции металлов с кислотами. В лаборатории водород получают в аппарате Киппа (рисунок 152).

Аппарат Киппа изготовляется из стекла и состоит из нескольких частей:

  1. реакционная колба с резервуаром;
  2. воронка с длинной трубкой;
  3. газоотводная трубка.

Реакционная колба имеет верхнюю шарообразную часть с отверстием, в которое вставляется газоотводная трубка, снабженная краном или зажимом, и нижний резервуар в виде полусферы. Нижний резервуар и реакционная колба разделены резиновой или пластиковой прокладкой с отверстием, через которое проходит в нижний резервуар длинная трубка воронки, доходящая почти до дна. На прокладку через боковое отверстие шпателем насыпают твёрдые вещества (мрамор, цинк). Отверстие закрывается пробкой с газоотводной трубкой. Затем при открытом кране или зажиме в верхнюю воронку заливается раствор кислоты. Когда уровень жидкости достигает вещества на прокладке, начинается химическая реакция с выделением газа. При закрытии крана давление выделяющегося газа выдавливает жидкость из реактора в верхнюю часть воронки. Реакция прекращается. Открытие крана приводит к возобновлению реакции. Поместим в реакционную колбу кусочки цинка. В качестве кислоты воспользуемся серной кислотой. При контакте цинка и серной кислоты протекает реакция:

Zn + h3SO4 = ZnSO4 + h3­

Водородом можно заполнить мыльный пузырь.

Для этого необходимо опустить газоотводную трубку в мыльный раствор. На конце трубки начнется формирование мыльного пузыря, заполненного водородом; со временем пузырь отрывается и улетает вверх, что доказывает легкость водорода.

Соберем выделяющийся водород. С учетом того, что водород намного легче воздуха, для сбора водорода сосуд, в котором собирается газ, необходимо располагать вверх дном, или производить собирание методом вытеснения воды. Как обнаружить водород? Заполним пробирку водородом, держа ее вверх дном, по отношению к газоотводной трубке. Поднесем пробирку отверстием к пламени спиртовки – слышится характерный хлопок.

Хлопок – это признак того, что в пробирке содержится водород. При поднесении пробирки к пламени водород вступает в реакцию с кислородом, содержащимся в воздухе. При малых количествах реакция кислорода и водорода сопровождается хлопком. Более подробно об этой реакции будет рассказано в следующем параграфе.

Получение водорода в промышленности

Одним из промышленных способов получения водорода является реакция разложения воды под действием электрического тока:

2h3O эл.ток → 2h3­ + O2­.

Данный метод позволяет получить чистый водород и кислород. Процесс превращения химических веществ в другие вещества под действием электричества называется электролизом.

Электролиз – химическая реакция, протекающая под действием электрического тока Проведем электролиз воды. В стакан наполненный водой, опустим металлические электроды. Поверх электродов опустим в стакан пробирки, заполненные водой. Подсоединим электроды к источнику тока – батарейке. В пробирках наблюдается выделение газов – водорода и кислорода, которые вытесняют воду. Наблюдая за процессом электролиза, можно заметить, что в одной из пробирок газа собирается в два раза больше, чем в другой. Проанализировав уравнение реакции электролиза воды, можно сделать вывод, в какой пробирке выделяется водород, а в какой – кислород. Попробуйте это сделать самостоятельно.

Существуют и другие способы получения водорода. Железо-паровой метод долгое время широко применялся в промышленности. Через электрическую трубчатую печь проходит трубка из нержавеющей стали, заполненная железными стружками. Через трубку с железными стружками пропускают водяной пар. При температуре около 800°С пары воды взаимодействуют с железом, образуя оксид Fe3O4 (железную окалину) и газообразный водород:

3Fe + 4Н2О = 4Н2­ + Fe3O4.

Можно получить Н2, пропуская Н2О через слой раскаленного угля. При этом образуется смесь двух газов – СО и Н2 (водяной газ):

Н2О + С = CO­ + Н2­

В настоящее время водород получают взаимодействием углеводородов (в основном метана, СН4) с водяным паром или неполным окислением метана кислородом:

СН4 + Н2О = СО + 3Н2

2СН4 + О2 = 2СО + 4Н2

Итог статьи:

  • В лаборатории водород получают в аппарате Киппа
  • Исходными веществами для получения водорода в лаборатории являются некоторые металлы и кислоты
  • Собирать водород нужно методом вытеснения воды, или методом вытеснения воздуха, расположив пробирку вверх дном по отношению к газоотводной трубке
  • Кислота – сложное вещество, в состав которого входят атомы водорода и кислотный остаток
  • Обнаружить водород можно по характерному хлопку при поднесении пробирки с водородом к пламени
  • Одним из промышленных способов получения водорода является электролиз воды
  • Электролиз – химическая реакция, протекающая под действием электрического тока

способ получения водорода из воды — патент РФ 2521632

Изобретение может быть использовано в химической промышленности и при изготовлении стационарных и транспортных источников топлива. Восстанавливают оксид железа путем его термолиза при нагреве инертным газом с получением кислорода при температуре выше 1200°C и давлении выше 0.1 МПа. Затем железо окисляют потоком водяного пара, нагреваемым инертным газом, в емкости, попеременно заполняемой нагретыми инертным газом и водяным паром. Адсорбцией, или мембранным, или электрохимическим разделением выделяют водород как конечный продукт из потока водяного пара, а также кислород из потока инертного газа. Цикл окисления и восстановления оксида железа ведут в параллельных переключаемых секциях, соединенных по инертному газу и водяному пару. 8 з.п. ф-лы, 1 ил.

Рисунки к патенту РФ 2521632

Изобретение относится к способу получения водорода из воды и может быть использовано в химической промышленности, а также в системах аккумулирования и транспорта энергии и как источник топлива в транспортных и стационарных энергоустановках.

С начала 20-го века основная технология производства водорода из воды была основана на т.н. железо-паровом методе, по которому пар при 500-1000°С пропускают над железом: 3Fe+4Н 2О Fe3O4+4Н2+160,67 кДж. Получаемый этим методом водород обычно используют для гидрогенизации жиров и масел. Состав оксида железа зависит от температуры процесса; при <560°С преобладает Fe3O4, выше 560°С возрастает доля FeO. Поскольку восстановление исходного железа из образовавшихся оксидов железа обычно проводили коксом, углем или водяным газом (смесь СО и H2), то небольшую примесь СО в производимом водороде удаляли, пропуская нагретую смесь Н2+СО над катализатором. При этом СО превращается в метан СН4.

Известен способ получения водорода, включающий взаимодействие водяного пара с элементарным железом и/или с его низшим окислом в кипящем слое при 500-650°С, давлении 0.1-0.4МПа, регенерацию образующихся окислов железа контактированием их с твердым углеродосодержащим материалом при 800-1100°С с получением газов регенерации и восстановленных окислов железа и возврат последних на стадию взаимодействия, газы регенерации возвращают на стадию регенерации [патент РФ № 1125186, МПК С01В 3/10, опубл. 23.11.1984 г., БИ № 43, «Способ получения водорода», авторы Лебедев В.В. и др.]. Недостатками способа являются сложность процесса, низкая производительность, большие энергозатраты, а также расход твердого углеродосодержащего материала.

Известен также способ получения водорода, заключающийся в конверсии перегретого насыщенного водяного пара в реакторе с электродами, отличающийся тем, что в реактор периодически вводят железную проволоку, которую пропускают между электродами в среде перегретого насыщенного водяного пара, на электроды периодически подают электрический разряд напряжением 45 кВ и периодически производят взрыв проволоки на мельчайшие жидкие частицы металла, которые вступают в реакцию с парами воды, образуя окислы железа и газообразный водород [патент РФ № 2424973, МПК С01В 3/10, опубл. 27.07.2011, Бюл. № 21, «Способ получения водорода», авторы Носырев Д.Я., Плетнев А.И. — прототип]. Недостатками способа также являются сложность процесса, низкая производительность, большие энергозатраты, а также необходимость производства железной проволоки и электроэнергии высокого напряжения.

В патенте RU 2415072, опубл. 27.11.2010, изложен способ получения газообразного водорода из состава, предназначенного для получения газообразного водорода, включает в себя по весу 40-70% окиси кальция (СаО) в виде порошка, 2-20% хлорида кальция (CaCl2), хлорида магния (MgCl 2) или бикарбоната натрия (NaHCO3) в виде порошка, 6.7-30% алюминия или окиси алюминия (Al2O3 ) в виде порошка и 0.001-10% железа или магния в виде порошка, при котором 56 граммов окиси кальция (СаО) и 2 моля, то есть 36 граммов, воды (Н2О) вступают в реакцию для получения 2 граммов газообразного водорода (Н2). Объем 2 граммов газообразного водорода составляет 22,4 литра при температуре 0°С и 1 атмосфере (нормальное состояние), и, следовательно, 35,7 грамма (примерно 400 литров) газообразного водорода будет выработано из 1 кг окиси кальция. Недостатками способа также являются сложность процесса, низкая производительность, большие энергозатраты, а также расход твердого материала — окиси кальция (СаО). Для разложения (восстановления) оксидов металлов (кальций, цинк, марганец, железо, церий) предлагались различные солнечные печи, см., например, Thermodynamic Analysis of Cerium-based Oxides for Solar Thermochemical Fuel Production, Scheffe J., Steinfeld A. Energy & Fuels, Vol.26, pp.1928-1936, 2012, однако недостатком таких печей является крайне низкая объемная производительность, связанная с прохождением реакции разложения, в основном, на освещаемой солнцем поверхности, что ограничивает сферу применения такой технологии. Недостатком также является и необходимость поддержания крайне низкого давления в печи в связи с необходимостью применения кварцевого стекла для пропускания солнечной энергии внутрь печи.

Задача настоящего изобретения состоит в том, чтобы создать новый способ, позволяющий снизить тепловые затраты на процесс разложения воды, а также повысить производительность и экономичность технологии получения водорода.

Поставленная задача решается тем, что:

предложен способ получения водорода из воды, в котором проводят цикл окисления и восстановления оксида железа с получением водорода при окислении железа водяным паром, водород выделяют как конечный продукт из потока водяного пара, при этом восстановление оксида железа ведут путем его термолиза при нагреве инертным газом с получением кислорода, после чего железо окисляют потоком водяного пара, нагреваемым инертным газом, и его окисление водяным паром ведут в емкости, попеременно заполняемой нагретыми инертным газом и водяным паром.

Кроме того:

— нагрев инертного газа ведут в плазменной струе, или электронагревателями, или методом индукционного нагрева, или нагревом солнечной или ядерной энергией, или продуктами сгорания органического топлива,

— восстановление оксида железа ведут при температуре выше 1200°C и давлении выше 0.1 МПа, после чего выделение кислорода из потока инертного газа ведут адсорбцией, или мембранным или электрохимическим разделением,

— давление водяного пара выбирают в диапазоне от 0.1 до 1.0 МПа,

— часть тепла, необходимого для нагрева инертного газа, отводят от восстановленного оксида железа,

— отделение водорода от водяного пара после окисления железа ведут за счет адсорбции, или конденсации водяного пара, или мембранного разделения или электрохимическим процессом,

— путем регенеративного теплообмена изменяют температуры потоков инертного газа и водяного пара на входе и выходе из цикла окисления и восстановления оксида железа,

— цикл окисления и восстановления оксида железа ведут в параллельных переключаемых однородных по конструкции секциях, соединенных по инертному газу и водяному пару,

— в качестве инертного газа выбирают гелий, или аргон, или азот, или криптон или их смеси.

На чертеже дана одна из возможных схем реализации указанного способа, где 1 — нагретый гелий, 2 — термолизер, 3 — гелий-кислородная смесь, 4 — отделитель кислорода, 5 — кислород, 6 — охлажденный гелий, 7 — водяной пар, 8 — смесь водяного пара и водорода, 9 — регенеративный теплообменник нагрева водяного пара, 10 — отделитель водорода, 11 — водород, 12 — регенеративный теплообменник нагрева гелия, 13 — отбор тепла от оксида металла.

Примером реализации изобретения служит способ получения водорода из воды, описанный ниже.

В излагаемом примере осуществления изобретения предлагается, в качестве примера, использовать гелий 1 в качестве инертного газа и процесс термолиза оксидов железа: Fe2O 3 2FeO+1/2O2 (термолиз свыше 1300-1400°C) для получения кислорода 5.

Как известно, для реакций типа FeOx+H2O Fe2O4 (или Fe2O3 )+H2 (технология типа HyGas) окисление Fe (или FeO x) идет по зависимости:

w2t -1=2.4·1014 exp(-84300/RT), где

w — приращение веса металла вследствие его окисления (г/м 2).

Такой параболический характер имеют гетерогенные реакции, лимитируемые диффузией в конденсированной фазе. Аналогичный характер имеет и зависимость разложения гематита, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам окисления вюстита до гематита в термолизере 2 с получением смеси водяного пара и водорода 8 из водяного пара 7, подаваемого в термолизер 2.

На первой стадии процесса гелий 1, нагретый до температуры 1500°C, поступает в термолизер 2, заполненный оксидом железа в основном в форме гематита, и, нагревая гематит до температуры 1300-1400°C, разлагает его до вюстита и кислорода, который смешивается с гелием и выводится из термолизера 2 в виде охлажденной до 1000-1100°C гелий-кислородной смеси 3, поступающей, например, в высокотемпературный электрохимический отделитель кислорода 4, в котором за счет кислородной диффузии через керамический электролит производят отделение кислорода 5 от потока гелия 6, поступающего на повторный нагрев (на чертеже не показано). В высокотемпературном электрохимическом отделителе кислорода 4 при подводе электрической энергии осуществляют подачу гелий-кислородной смеси 3 на вход катодного пространства высокотемпературного электрохимического процесса, в то время как кислород выделяют в анодном пространстве, отделенном от катодного электролитическим слоем, выполненном из кислородпроводящей керамики, например, SrFeCo0.5O3.25-, как она описана в Department of Chemistry, University of Houston, Houston, TX 77204-5641, USA, Solid State lonics DOI: 10.1016/S0167-2738(98)00106-4, т.е. такой материал, который имеет высокий уровень ионной проводимости и сравнимый (или больший) уровень электронной проводимости. Акцепторное допирование катионной подрешетки обеспечивает появление вакансий кислорода и, следовательно, обеспечивает высокие значения кислородно-ионной проводимости, а наличие в структуре элемента, способного к легкой смене степени окисления — высокую электронную проводимость. Можно предложить в качестве перспективных материалов также некоторые составы твердых растворов, например CaTi0.8Fe0.2O3-. Выделение кислорода 5 из потока гелий-кислородной смеси 3 целесообразно также проводить адсорбцией, мембранным разделением, однако в этих вариантах исполнения температура гелий-кислородной смеси 3 должна быть понижена до 200-300°С, что может достигаться либо регенеративным нагревом гелия 1, поступающего в термолизер 2, либо нагревом водяного пара 7. Регенеративные теплообменники 12 и 9 нагрева входящих потоков гелия 1 и водяного пара 7 соответственно, ведут нагрев за счет выходящих потоков гелий-кислородной смеси 3 и смеси водорода и водяного пара 8 соответственно. Кроме того, частично поток входящего гелия 1 может нагреваться за счет отбора тепла 13 от секции термолизера 2, в которой проведено восстановление оксида металла.

На второй стадии прекращают подачу гелия 1 в термолизер 2, внутрь которого подают поток водяного пара 7, нагретый до температуры 400-800°С. Водяной пар 7 при взаимодействии с оксидом железа в основном в форме вюстита окисляет последний до гематита с образованием водорода, смешивающегося с потоком водяного пара, выводимого из термолизера 2 в виде смеси водорода с потоком водяного пара 8, поступающей на отделение водорода 11, например, в высокотемпературный электрохимический отделитель водорода 10, в котором при подводе электрической энергии осуществляют подачу смеси водорода с потоком водяного пара 8 на вход анодного пространства высокотемпературного электрохимического процесса, в то время как смеси водорода выделяют в катодном пространстве, отделенном от анодного электролитическим слоем, выполненном из протонпроводящей керамики, например, SrCeO3, обладающей высокотемпературной протонной проводимостью, как доминирующей характеристикой электролита. Для SrCeO3, допированного Y, Sc, In, РЗЭ получены высокие величины протонной проводимости при 600-1000°С [Uchida H., Maeda N., Iwahara H. Relation between proton and hole conduction in SrCeO3 — based solid electrolytes under watercontaining atmospheres at hift temperatures // Solid State lonics. 1983. V.11. N2. P.117-124]. Электролиты были испытаны в ячейках, составляющих основу ряда высокотемпературных электрохимических устройств, и показали хорошие характеристики. Отделение водорода от водяного пара 7 возможно проводить также за счет адсорбции, конденсации водяного пара или мембранного разделения смеси водорода с потоком водяного пара 8 в аппарате выделения водорода 10 с получением продукционного водорода 11.

Нагрев гелия 1 ведут в плазменной струе, либо электронагревателями, либо методом индукционного нагрева, либо нагревом солнечной или ядерной энергией, либо продуктами сгорания органического топлива, на чертеже не показано. Помимо оксидов железа в термолизере 2 в качестве металла можно применять также сплавы на основе металлов, выбранных из группы олово, индий, галлий, марганец, хром, титан, медь, церий, цинк, алюминий, цирконий, свинец, ванадий, рутений, их смеси или соединения. Оксиды железа, гематит (FeO1.5), магнетит (FeO1.33) и вюстит (FeO1.1) имеют особенности плотноупакованной структуры ионов кислорода, могут образовывать шпинели, в частности для вюстита различные Fe/O отношения могут дифференцироваться что, как правило, обозначается Fe1-O (с 0.05< <0.17). Вюстит может содержать 23.1-25.6% масс. кислорода. Гидролиз вюстита (FeO) ограничен из-за образования магнетита Fe3O4, играющего роль диффузионного барьера Такие компоненты, как Mn, Cr, Ti, Cu, Pb, V и Al, могут быть добавлены для повышения производительности, а добавки Al, Cr, Zr, Ga и V оказывают положительное влияние на окислительно-восстановительное поведение оксидов железа, вероятно, потому что водород активируется добавками или повышает диффузию кислорода в железе (оксидах).

Нагрев водяного пара 7 с давлением в диапазоне от 0.1 до 1.0 МПа перед подачей на окисление металла в термолизер 2 ведут помимо регенеративного нагрева в теплообменнике 9 также и с помощью, например, нагретого инертного газа 6, выходящего из отделителя 4, до температур 400-800°С с помощью отдельного теплообменника (на чертеже не показан) через герметичные теплообменные поверхности.

Цикл окисления и восстановления оксида металла ведут в параллельных переключаемых однородных по конструкции секциях термолизера 2, соединенных по гелию 1 и водяному пару 7 таким образом, чтобы поток гелия 1 поочередно переключался на подачу в соседние секции термолизера 2, в которых уже завершилось окисление оксида металла, а именно в излагаемом примере исполнения — окисление вюстита до гематита. Помимо гелия 1 в качестве инертного газа выбирают также аргон, азот, криптон или их смеси.

Ниже представлен расчет теплового баланса реализации способа:

1. Q термолиза гематита (до вюстита: Fe2 O3 2FeO+1/2О2): 342.8 кДж/моль Fe2O 3

2. Q нагрева/охлаждения гематита/вюстита (900 1500°С): Ср.гемсредн× Т=1 кДж/кг·К×600 К=0.6 МДж/кг Fe2O 3/

Ср.вюстсредн× Т=0.73 кДж/кг·К×600 К=0.44 МДж/кг FeO

3. Q на испарение и нагрев водяного пара (1 МПа) до 1100°С: 2.26+2.17×(1100-180)=4.26 МДж/кг H2O

4. Принимая расходную массу гематита и водяного пара на 1 кг производимого водорода, равными:

mFe2 O3=100 кг, что, соответственно, в 1.25 раза больше стехиометрического расхода (степень конверсии при термолизе-80%), масса вюстита: mFeO=72 кг и смеси вюстит/гематит (после термолиза): mFexOy=92 кг, mH2O=13.5 кг, что, в свою очередь, в 1.5 раза больше стехиометрического расхода, в соответствии с ожидаемой степенью конверсии пара (60-70% по данным Production of Synthesis Gas and hydrogen by the Steam-Iron Process: Pilot Plant Study of Fluidized and Free-Falling Beds, Gasior, S.J., Fomey, A.J., Field, J.H., Bienstock, Daniel, Benson, H.E.,U.S. DoI, Bureau of Mines, R.I. 5911,1961), получим общие затраты тепла (в приведении к 1 кг водорода):

— на проведение реакции термолиза: 171.2 МДж,

— на нагрев гематита: 0.6×100=60 МДж,

— на получение и нагрев водяного пара: 4.26×13.5=57.5 МДж.

Из них затраты на производство и нагрев водяного пара покрываются за счет охлаждения вюстита от температуры термолиза гематита (1500°С) до рабочей температуры генерации водорода (1100°С), что дает 0.76×600×92=41.7 МДж, а также за счет охлаждения потока водяного пара (4.5 кг) и водорода (1 кг) от 1100°С до 180°С, что дает 2×4.5+14.55×0.92=21.88 МДж и охлаждения потока кислорода (8 кг) от температуры термолиза (1500°С) до 180°С (в варианте термолизера с передачей тепла через стенку), что дает 1520×1×8=12.16 МДж, из которых 4.8 МДж может быть использовано для нагрева гематита перед термолизом, с соответствующим уменьшением затрат тепла, покрываемых нагретым гелием.

Таким образом, от энергоисточника с помощью гелиевого теплоносителя расход тепла составит 171.2+(60-4.8)=226.4 МДж.

Соответствующая общая эффективность процесса получения водорода из воды составит: 143/226.4=63%.

Такой показатель эффективности получения водорода из воды превышает все известные термохимические технологии.

При достигнутой объемной скорости водяного пара в реакционном объеме 300 1/ч и в расчете на мощность 1 МВт объем реактора-термолизера займет при плотности водяного пара 0.5 кг/м3:

1 МВт/226.4 МДж×3600×9/0.5/300=0.95 м3.

Суммарный процесс разложения воды в предложенном изобретении описывается реакцией (H2 O 1/2O22), в которой удается получить из воды водород и кислород высокой чистоты с необходимым для дальнейшего использования давлением. Таким образом, в предложенном изобретении удалось снизить тепловые затраты на процесс разложения воды, а также повысить производительность и экономичность технологии получения водорода, эффективно использовать энергетический потенциал высокотемпературных энергоисточников, в том числе ядерных, что позволяет рассчитывать на высокую экономическую эффективность. Полученные продукты разложения воды — газообразные водород и кислород могут затем использовать в химической промышленности и металлургии для переработки углеводородов, а также в системах аккумулирования и транспорта энергии и как топливо в транспортных и стационарных энергоустановках.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения водорода из воды, в котором проводят цикл окисления и восстановления оксида железа с получением водорода при окислении железа водяным паром, водород выделяют как конечный продукт из потока водяного пара, отличающийся тем, что восстановление оксида железа ведут путем его термолиза при нагреве инертным газом с получением кислорода, после чего железо окисляют потоком водяного пара, нагреваемым инертным газом, и его окисление водяным паром ведут в емкости, попеременно заполняемой нагретыми инертным газом и водяным паром.

2. Способ по п.1, отличающийся тем, что нагрев инертного газа ведут в плазменной струе, или электронагревателями, или методом индукционного нагрева, или нагревом солнечной или ядерной энергией, или продуктами сгорания органического топлива.

3. Способ по п.1, отличающийся тем, что восстановление оксида железа ведут при температуре выше 1200°C и давлении выше 0.1 МПа, после чего выделение кислорода из потока инертного газа ведут адсорбцией, или мембранным или электрохимическим разделением.

4. Способ по п.1, отличающийся тем, что давление водяного пара выбирают в диапазоне от 0.1 до 1.0 МПа.

5. Способ по п.1, отличающийся тем, что часть тепла, необходимого для нагрева инертного газа, отводят от восстановленного оксида железа.

6. Способ по п.1, отличающийся тем, что отделение водорода от водяного пара после окисления железа ведут за счет адсорбции, или конденсации водяного пара, или мембранного разделения или электрохимическим процессом.

7. Способ по п.1, отличающийся тем, что путем регенеративного теплообмена изменяют температуры потоков инертного газа и водяного пара на входе и выходе из цикла окисления и восстановления оксида железа.

8. Способ по п.1, отличающийся тем, что цикл окисления и восстановления оксида железа ведут в параллельных переключаемых однородных по конструкции секциях, соединенных по инертному газу и водяному пару.

9. Способ по п.1, отличающийся тем, что в качестве инертного газа выбирают гелий, или аргон, или азот, или криптон или их смеси.

Получение водорода электролизом воды.

Давно хотел сделать подобную штуку. Но дальше опытов с батарейкой и парой электродов не доходило. Хотелось сделать полноценный аппарат для производства водорода, в количествах для того чтобы надуть шарик. Прежде чем делать полноценный аппарат для электролиза воды в домашних условиях, решил все проверить на модели.

 

Общая схема электролизера выглядит так.

Эта модель не подходит для полноценной ежедневной эксплуатации. Но проверить идею удалось.

Итак для электродов я решил применить графит. Прекрасный источник графита для электродов это токосъемник троллейбуса. Их полно валяется на конечных остановках. Нужно помнить, что один из электродов будет разрушаться.

Пилим и дорабатываем напильником. Интенсивность электролиза зависит от силы тока и площади электродов.

К электродам прикрепляются провода. Провода должны быть тщательно изолированы.

Для корпуса модели электролизера вполне подойдут пластиковые бутылки. В крышке делаются дырки для трубок и проводов.

Все тщательно промазывается герметиком.

Для соединения двух ёмкостей подойдут отрезанные горлышки бутылок.

Их необходимо соединить вместе и оплавить шов.

Гайки делаются из бутылочных крышек.

В двух бутылках в нижней части делаются отверстия. Все соединяется и тщательно заливается герметиком.

В качестве источника напряжения будем использовать бытовую сеть 220в. Хочу предупредить, что это довольно опасная игрушка. Так что, если нет достаточных навыков или есть сомнения, то лучше не повторять. В бытовой сети у нас ток переменный, для электролиза его необходимо выпрямить. Для этого прекрасно подойдет диодный мост. Тот что на фотографии оказался не достаточно мощным и быстро перегорел. Наилучшим вариантом стал китайский диодный мост MB156 в алюминиевом корпусе.

Диодный мост сильно нагревается. Понадобится активное охлаждение. Кулер для компьютерного процессора подойдет как нельзя лучше. Для корпуса можно использовать подходящую по размеру распаячную коробку. Продается в электротоварах.

Под диодный мост необходимо подложить несколько слоев картона.

В крышке распаячной коробки делаются необходимые отверстия.

Так выглядит установка в сборе. Электролизер запитывается от сети, вентилятор от универсального источника питания. В качестве электролита применяется раствор пищевой соды. Тут нужно помнить, что чем выше концентрация раствора, тем выше скорость реакции. Но при этом выше и нагрев. Причем свой вклад в нагрев будет вносить реакция разложения натрия у катода. Эта реакция экзотермическая. В результате неё будет образовываться водород и гидроксид натрия.

Тот аппарат, что на фото выше, очень сильно нагревался. Его приходилось периодически отключать и ждать пока остынет. Проблему с нагревом удалось частично решить путем охлаждения электролита. Для этого я использовал помпу для настольного фонтана. Длинная трубка проходит из одной бутылки в другую через помпу и ведро с холодной водой.

Место подсоединения трубки к шарику хорошо снабдить краником. Продаются в зоомагазинах в отделе для аквариумов.

Процесс изготовления на видео.

Взрыв шарика с водородом

Способы получения водорода в промышленности и лаборатории

Получение водорода в промышленности

В промышленности водород получают главным образом из природных и попутных газов, коксового газа и продуктов газификации топлива (водяного и паровоздушного газов), путем неполного окисления углеводородов.

Основным источником водорода в промышленности является конверсия (от лат. «превращение») углеводородов, главным образом природного газа, парами воды (пароводяная конверсия):

CH4 + H2O → CO + 3H2, 800-900 °C, ΔH2980 = 206,2 кДж/моль

С последующим каталитическим взаимодействием оксида углерода (II) с парами воды:

CO + H2O → CO2 + H2, 550-600 °C, ΔH2980 = -41,2 кДж/моль

Катализатором этой реакции служит Fe2O3 с активирующими добавками (Cr2O3, Al2O3, K2O и др.).

Эндотермичность процесса конверсии метана можно частично восполнить энергией, выделяющейся при неполном его окислении.

2CH4 + O2 → 2CO + 4H2, ΔH2980 = -71 кДж/моль

Этот процесс называется кислородной конверсией метана. Поэтому в промышленности часто комбинируют все эти три процесса в один. Для этого природный газ смешивается с водяным паром и кислородом:

3CH4 + O2 + H2O → 3CO + 7H2, 850-900 °C, Ni

или

2CH4 + O2 + 2H2O → 2CO2 + 6H2, 850-900 °C, Ni

Диоксид углерода удаляют промывкой газовой смеси водой под давлением и окончательно – поглощением растворами щелочей.

Все описанные выше процессы используются как по отдельности, так и в сочетании друг с другом.

Помимо природного газа для получения водорода путем конверсии используют генераторный (CO + N2), водяной (CO + H2) – пароводяная конверсия, попутные газы – пароводяная и (или) кислородная конверсия.

В связи с уменьшением запасов углеводородного сырья большой интерес приобретает метод получения водорода восстановлением водяного пара раскаленным углем:

C + H2O → CO + H2, 1000 °C, ΔH2980 = 131 кДж/моль

При этом образуется генераторный газ. Затраты энергии на его получение можно компенсировать за счет реакции неполного окисления угля:

C + 1/2O2 → CO, ΔH2980 = -110,5 кДж/моль

При комбинировании этих процессов получается водяной газ, состоящий в основном из смеси водорода и угарного газа:

3C + H2O + O2 → 3CO + H2

Важным следствием является то, что получаемые генераторный и водяной газы можно использовать для дальнейшего получения водорода методом пароводяной конверсии.

Из газовых смесей с большим содержанием водорода (коксовый газ, газы нефтепереработки) его получают путем глубокого охлаждения смеси, при котором практически все газы кроме водорода сжижаются.

Водород высокой чистоты получают электролизом водных растворов щелочей (NaOH или KOH). Раньше для этого использовалась серная кислота. Однако это нерационально из-за быстрого коррозионного разрушения стальной аппаратуры. Хотя образующаяся в процессе электролиза пероксодисерная кислота H2S2O8 может использоваться для получения пергидроля:

2SO42- — 2ê = S2O82-

2H+ + 2ê = H20

H2S2O8 + H2O = H2SO5 + H2SO4

H2SO5 + H2O = H2SO4 + H2O2

В случае щелочей концентрация этих растворов выбирается такой, которая отвечает их максимальной электрической проводимости (25% для NaOH и 34% для KOH). Электроды обычно изготавливают из листового никеля. Этот металл не подвергается коррозии в растворах щелочей, даже будучи анодом. В случае надобности получающийся водород очищают от паров воды и следов кислорода. Этим способом целесообразно получать водород в районах с дешевой электроэнергией.

Водород образуется также как побочный продукт в процессе получения хлора и щелочей электролизом водных растворов хлоридов щелочных металлов.

Потенциальные способы получения водорода в промышленности

1. Термолиз воды:

2H2O → 2H2 + O2, 2000 °C, электрическая дуга.

Недостаток – большие расходы энергии.

2. Фотолиз воды:

2H2O → 2H2 + O2, hμ

3. Биохимическое разложение воды под действием бактерий.

4. Химическое разложение воды, восстановление водорода:

H2O + X = H2 + XO

2XO → 2X + O2, t°

Получение водорода в лаборатории

Восстановление металлами и неметаллами различных водородсодержащих соединений: воды, кислот, щелочей. Чаще используется взаимодействие разбавленных кислот (соляной, серной) с цинком, реже с железом. Реакции обычно проводят в аппарате Кипа.

Zn + 2HCl = ZnCl2 + H2

Zn + H2SO4 = ZnSO4 + H2

Fe + 2HCl = FeCl2 + H2

Fe + H2SO4 = FeSO4 + H2

Цинк обычно содержит примеси мышьяка, сурьмы и др. элементов, поэтому выходящий из аппарата водород немного загрязнен AsH3 и др. газами. Очень чистый водород в лаборатории можно получить электролизом водных растворов щелочей.

Для получения водорода в лаборатории также можно использовать гидрид кальция:

CaH2 + 2H2O = Ca(OH)2 + 2H2

Пропускание паров воды через раскаленную железную трубку:

3Fe + 4H2O → Fe3O4 + 4H20↑, t°

2Al + 2NaOH + 10H2O = 2Na[Al(OH)4·2H2O] + 3H20

Si + 2NaOH + H2O = Na2SiO3 + 2H20

2Na + 2H2O = 2NaOH + H20

2Al + 6HCl = 2AlCl3 + 3H20

И проч.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *