Получение электроэнергии из земли: Как получить бесплатное электричество (мы нашли четыре способа)

Содержание

Планета Земля: природный электрический мотор – генератор и альтернативная чистая энергетика на его основе — Энергетика и промышленность России — № 1 (53) январь 2005 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 1 (53) январь 2005 года

Почему вращается Земля и как извлечь из этого вращения энергию?

На эти вечные вопросы правильные ответы ученые нашли сравнительно недавно.

Давно известно, что Земля — природный электромагнит в виде магнитного диполя с магнитными полюсами, почти противоположными географическим полюсам. Земля обладает и собственным электрическим зарядом и электрическим полем. В различных сферах планеты и в недрах и в Океане и в атмосфере давно зафиксированы электрические круговые токи. Однако вывод о том, что наша планета является, как ни парадоксально, – именно природной электрической машиной, которая и вращает планету, сделан сравнительно недавно.

Согласно теории Земля является природной индуктивноемкостной электрической машиной, причем одновременно и мотором и генератором.

Виды природных электрических машин нашей планеты их взаимосвязи

Перечислим их ниже в порядке нисходящей иерархии:

1. Околоземный магнитогазодинамический генератор (далее – МГД-генератор), преобразующий энергию потока солнечной плазмы и магнитного поля Земли (МПЗ) в природное электричество;

2. Околоземный МГД-двигатель, вращающий ионизированные слои атмосферы;

3. Планетарный электростатический природный высоковольтный мотор-генератор, работающий на принципе электродинамической индукции и взаимодействии электрического потенциала ионосферы с электропроводящими сферами и круговыми электрическими токами планеты;

4. Планетарный униполярный электромагнитный моторгенератор Фарадея;

5. Океанический и подземный магнитогидродинамические генераторы — двигатели, создающие смещение движущихся зарядов и перемещающих массы природного водного электролита в виде океанических течений и расплавленные электропроводящие породы внутри Земли;

6. Геомагнитная машина холода планеты – на ее магнитных полюсах.

Для всех этих совмещенных в разных геосферах электрических машин Земли характерны взаимосвязанность и саморегуляции их работы.

Иерархия уровней этой энергосистемы и взаимосвязь работы ее отдельных звеньев электромеханического преобразования солнечной энергии в кинетическую энергию вращения планеты пояснена кратко ниже.

Откуда, почему и как возникает природное электричество?

Как известно из электрофизики, возникновение электродвижущей силы (эдс) обусловлено такими физическими эффектами как электромагнитная, электродинамическая индукция, эффект Холла и некоторыми иными. Основным поставщиком природного электричества планеты является солнечный ветер.

Его исходно превращает в электрическое и магнитное поле планеты околоземный природный МГД-генератор.

Конкретно, он преобразует в рамках магнитосферы планеты весь поток солнечной плазмы посредством эффекта Холла и МПЗ в разность потенциалов и в природное околоземное геоэлектричество, путем сортировки и противоположного отклонения разноименных зарядов солнечной плазмы Определенный вклад в процесс вносит и ионосферная плазма.

В результате, возникает электрический заряд и электрическое поле планеты.

а) униполярной электромагнитный мотор–генератор планеты

Явление униполярной электромагнитной индукции открыто М. Фарадеем еще в 1831 г. Им же предложены раздельно с большим интервалом во времени первые униполярные мотор и генератор. Но Фарадей не исследовал их совместную работу, тем более в сочетании с электростатическим мотор-генератором. Известно, что работа униполярного электрического генератора основана на явлении униполярной электромагнитной индукции Для ее возникновения необходимо относительное перемещение силовых магнитных линий относительное ее электропроводящих сред. Есть ли такое их взаимное перемещение на нашей красивой планете? Накопленная естествознанием и всей наукой информация свидетельствует о том, что ось геомагнитного диполя неподвижна в пространстве за суточный оборот планеты вокруг своей оси. Значит, индуцированные токи от униполярной индукции Земли должны наводиться.

Рассмотрим физику этого процесса подробнее. Вследствие орбитального вращения планеты силовые магнитные линии пересекают ее поверхность и все ее электропроводящие среды. В результате в электропроводящих средах планеты (в ионизированной высотной атмосфере, в морях, в ее недрах) возникают электродвижущие силы от униполярной электромагнитной индукции. Поэтому в этих электропроводящих средах планеты, включая ее расплавленное ядро планеты генерируется эдс униполярной индукции и протекают индуцированные от этой эдс – круговые электрические токи.

Они также усиливает и самоподдерживает магнитное поле Земли – т.е. Земля по сути представляет собою оригинальный природный электрический самовозбуждающийся униполярный генератор Фарадея.

Отметим, что униполярный электромагнитный генератор Земли наводит дополнительную разность природных электрических потенциалов по ее меридианам между магнитными полюсами и магнитным экватором планеты с общим напряжением порядка 250-400 кВ.

Режим работы этого природного планетарного униполярного генераторов различен даже в течение суток, потому что околоземное магнитное поле планеты в освещенной и теневой части орбиты несколько различны. Как известно, магнитосфера Земли сплюснута давлением солнечной плазмы в освещенной части и вытянута солнечным ветром в теневой ее части орбиты осевого вращения, т.е. оно весьма неоднородно даже на одной широте Земли, особенно с удалением от планеты, возрастает, что существенно влияет на работу природных электрогенераторов. Порожденные явлениями электромагнитной индукций, электрические токи протекают повсюду на планете и приводят к возникновению электромагнитных силы и момента вращения планеты,

б) магнитогидродинамический мотор-генератор планеты

Взаимодействие индуцированных круговых околопланетных токов в природном электролите — водах Мирового океана, с силовыми линиями ГМПЗ порождают силы Лоренца в них и как следствие возникает эффект магнитогидродинамического двигателя. Именно этот природный планетарный МГД-двигатель порождает мощные глобальные теченияциркуляции природного электролита в Океане, и глобальную циркуляцию высотных слоев ионизированной атмосферы и ядро планеты. Образованный этой униполярной индукцией суммарный индуцированный электрический ток всех сред планеты путем его электромагнитного взаимодействия с ГМПЗ электромеханический момент вращения планеты и ее отдельных электропроводящих сред совпадает с направлением вращения планеты и океанических течений.

в) природный электростатический мотор-генератора планеты

Явление электродинамической индукции открыто в России в 2000 г. Суть явления состоит в возникновении эдс в проводнике от изменения потока электрической индукции вследствие взаимного
перемещения проводника и источника внешнего электрического поля. Обнаруженное явление проявляется и на планете Земля, поскольку имеется и внешнее электрическое поле в виде суммарного заряда ионосферы и естественные проводники электропроводящих сфер планеты. В результате эффекта электродинамической индукции осуществляется генерация и трансформация
природного электричества во все электропроводящие сферы планеты, и, в частности, зарядка подземных конденсаторов планеты. Далее электрическое поле путем эффекта электродинамической индукции образует в ионосфере и иных электропроводящих слоях мощный круговой ток. Этот ток создает суммарное магнитное поле планеты. Путем электродинамической индукции электрический заряд ионосферы и энергия полей планеты трансформируются в виде наведенной эдс и электроэнергии емкостных токов внутрь Земли.

В результате, происходит электрическая зарядка всех подземные и наземных природных электрических конденсаторов.

Электростатический планетарный генератор своими эдс порождают индуцированные круговые электрические токи во всех электропроводящих сферах планеты. Взаимодействие этих круговых токов с электрическим полем планеты порождает ее электромеханический момент вращения электростатического планетарного двигателя, который частично обеспечивает двигательный режим планеты.

Изменение солнечной активности и режимы работы планетного мотор-генератора

При изменении солнечной активности изменяются его напряжение, следовательно, изменяется и электромеханический момент вращения электростатического двигателя. Режимы этой совмещенной природной электрической машины изменчивы как в краткосрочном суточном цикле ее вращения так и в годовом и более длительных циклах. Это вызвано тем, что параметры магнитного и электрического полей планеты различны также в зависимости от положения планеты на ее эллипсной орбите относительно Солнца и от самой активности светила.

От этих параметров изменяется поток солнечной плазмы, пронизывающей магнитосферу планеты, что приводит к различным динамическим процессам и изменению момента вращения, напряжения и мощности этого природного униполярного мотор-генератора Земля. Циклические изменения магнитного поля планеты, ее орбитальной скорости вращения в периоды солнечной активности и разные геологические эпохи уже давно зарегистрированы учеными. В рамках предлагаемой теории электромеханического преобразования энергии планетой эта зависимость скорости вращения природного униполярного мотор-генератора от величин эдс и момента является логичной и вполне понятна. В полном соответствии с теорией униполярных электрических машин, можно смело утверждать, что в процессе инверсии геомагнитного поля, который уже начался, геомагнитное поле и далее будет снижаться, что приведет к замедлению суточного вращения планеты и в последующем к реверсу направления вращения планеты.

Поскольку многократная инверсия МПЗ уже доказана геофизиками, то за всю историю существования планеты, она уже многократно меняла свое направление осевого вращения в связи с реверсом МПЗ.

Таким образом, планета Земля – уникальная природная электрическая машина, которая и обеспечивает планете ее непрерывное ее вращение и протекание всех природных явлений. По конструкции и режиму работы она представляет собою совмещенный природный электрический индуктивноемкостной мотор-генератор.

Солнечный ветер является ее первичным источником энергии, а динамика солнечной активности существенно влияет на ее работу. Осевое вращение планеты обусловлено сразу двумя электромеханическими моментами (электромагнитным и электростатическим, действующими на нее тангенциально и согласно.

Благодаря возникновению силы Лоренца и эффекта МГД-двигателя существует целая совокупность взаимосвязанных электромеханических явлений переноса и глобального круговорота атмосферы и океанических вод и т.д.).

Метод преобразования энергии Земли в полезную электроэнергию

Как полезно использовать эту огромную возобновляемую энергию планеты и естественные природные процессы генерации природного электричества на планете для выработки дешевой электроэнергии? По мере более полного понимания геомагнитных электромеханических эффектов на планете и процессов генерации ею природного электричества и в связи с энергетическими и экологическими проблемами цивилизации эта научно- практическая задача использования этой чистой энергии в целях энергетики становится все более актуальной.

Использование природного электричества в целях энергетики

Предложен способ использования природного электричества, образующего вокруг планеты естественный околоземный постоянно подзаряжаемый электрический конденсатор «ионосфераЗемля» путем подключения одного конца электрической нагрузки к ионосфере планеты, заряженной положительно относительно поверхности планеты, через ионизирующий луч, направленный с поверхности Земли в ионосферу, причем другой конец электрической нагрузки надежно заземляют — Земля). В состав установки входит рентгеновский лазер с изолятором, кольцевой электрод, разрядник.

Благодаря огромному запасу электроэнергии природного электричества электрогенераторов планеты и наличию механизма его постоянного естественного возобновления данный способ может обеспечить электроэнергией либо отдельный электропотребитель ограниченной мощности либо вообще всю цивилизацию при условии безопасного размещения таких установок в пустынных безлюдных местах без ущерба для окружающей среды. В качестве источника ионизирующего излучения целесообразно использовать рентгеновский лазер. После надежного электрического пробоя ионосферы на нагрузку ионизирующий источник может быть отключен. Способ проверен в лабораторных условиях. Настоящий способ получения электроэнергии из природного электричества является экологически чистым и может служить альтернативой существующим энергозатратным способам традиционного получения электроэнергии.

Альтернативная контурная геомагнитная электроэнергетика

Поскольку магнитное и электрическое поле планеты неподвижны в пространстве, а поверхность планеты вращается относительно геомагнитных и геоэлектрических силовых линий, то униполярная и электродинамическая эдс наводится во всех токопроводящих контурах планеты, пересекающих геомагнитные силовые линии.

Вполне понятно, что в любом искусственном электропроводном проводнике и контуре также будет наводиться униполярная эдс. Ее величина зависит от протяжности проводника, параметров геомагнитного поля в месте его размещения и от ориентации проводника относительно геомагнитных силовых линий.

Оценочные расчет показывает, что в проводнике длиной 1 км., сооринтированном в направлении восток-запад, униполярная эдс от ГМПЗ составит десятки вольт в зависимости от широты планеты. В таком замкнутом контуре из дух проводников длиною 100 км и минимальным внутренним сопротивлением, размещенным перпендикулярно силовым геомагнитным линиям, с магнитным экранирование второго параллельного проводника, генерируемая мощность составит уже десятки Мвт. Принцип функционирования такой альтернативной энергетики уже вполне ясен и состоит в наведении униполярной индукции от ГМПЗ в любом искусственном электропроводящем контуре, который пересекают силовые геомагнитные линии. Проблема практической реализации такой нетрадиционной наземной контурной энергетики состоит в решении двух условий:
1. В необходимости правильной ориентации этих генераторных контуров средних широтах перпендикулярно геомагнитным силовым линиям и соответствующих устройств;
2. В магнитном экранировании обратного проводника этого замкнутого контура для исключения наведения в нем эдс от ГМПЗ.

В случае выполнения этих двух условий вполне реально получать электроэнергию в них путем электромеханического преобразования огромной кинетической энергии вращения планеты посредством униполярной электромагнитной индукции.

Для этого их необходимо размещать этот частично экранированный двойной токовый контур, перпендикулярно силовым геомагнитным линиям, т.е. с ориентацией плоскости этого контура в направлении восток-запад, поскольку силовые геомагнитные линии в средних широтах идут практически параллельно поверхности планеты.

Варианты выполнения и размещения геомагнитных контуров на планете

Эти искусственные генераторные электропроводные контура могут быть самых разных размеров и конструкций. Например, их можно выполнить в виде полых металлических труб, заливаемый водою, то одновременно от электротермического нагрева этих треб наведенными индукционными токами можно получить и тепловую энергию и горячую воду и пар. Регулирование электрической мощности осуществляем изменением сопротивления нагрузок, включенной в эти контура, или углом поворота контура.

Вполне пригодятся в качестве устройств контурной гэеомагнитоэлектроэнергетики, особенно в начальной период их внедрения и реализации, правильно спроектированные линии электропередач и даже магистральные трубопроводы.

Конструирование, проектирование и изготовление таких необычных и простых контурных геомагнитных электростанций не вызовет больших трудностей , потому что все основные параметры геомагнитного поля и самой планеты давно известны, и накоплен опыт проектирования униполярных
электромашин.

Перспективы и предельные мощности контурной геомагнитной энергетики

Поскольку кинетическая энергия вращения планеты во многие миллиарды раз больше всей вырабатываемой электроэнергии цивилизацией, то суммарная мощность такой контурной геомагнитной энергетики может в принципе быть огромной.

Поэтому в перспективе такая контурная геоэлектроэнергетика может покрыть практически все текущие потребности цивилизации в электроэнергии без угрозы ощутимого торможения осевого вращения планеты. Усиление эффекта естественной генерации электроэнергии в искусственных контурах возможно путем размещения их в зонах магнитных аномалий планеты.

до 15 кВт | Министерство энергетики

Шаг 1 Подача заявки и заключение договора

— заявитель направляет заявку в сетевую организацию, объекты электросетевого хозяйства которой расположены на наименьшем расстоянии (под наименьшем расстоянием понимается минимальное расстояние по прямой от границ участка заявителя до существующего объекта электрической сети, или планируемого к вводу в соответствии с инвестиционной программой) от границ участка заявителя. Форма заявки физического лица на присоединение по одному источнику электроснабжения энергопринимающих устройств с максимальной мощностью до 15 кВт включительно (используемых для бытовых и иных нужд, не связанных с осуществлением предпринимательской деятельности)

(Приложение N 6 к Правилам технологического присоединения энергопринимающих устройств потребителей

электрической энергии, объектов по производству электрической

энергии, а также объектов электросетевого хозяйства, принадлежащих сетевым организациям и иным лицам, к электрическим сетям) (далее – Правила ТП).

Если на расстоянии менее 300 метров от границ участка заявителя находятся объекты электросетевого хозяйства нескольких организаций заявитель вправе направить заявку в любую из них. Это положение не распространяется на заявителей имеющих намерение осуществить технологическое присоединение по индивидуальному проекту. Любые лица имеют право на технологическое присоединение построенных ими линий электропередач к электрическим сетям в соответствии с Правилами ТП.

Сведения, указываемые в заявке

В заявке, направляемой заявителем — физическим лицом в целях технологического присоединения энергопринимающих устройств, максимальная мощность которых составляет до 15 кВт включительно (с учетом ранее присоединенных в данной точке присоединения энергопринимающих устройств), которые используются для бытовых и иных нужд, не связанных с осуществлением предпринимательской деятельности, и электроснабжение которых предусматривается по одному источнику, должны быть указаны:

а) фамилия, имя и отчество заявителя, серия, номер и дата выдачи паспорта или иного документа, удостоверяющего личность в соответствии с законодательством Российской Федерации;

б) место нахождения заявителя;

в) наименование и место нахождения энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации;

г) запрашиваемая максимальная мощность энергопринимающих устройств заявителя.

Документы, прилагаемые к заявке

а) план расположения энергопринимающих устройств, которые необходимо присоединить к электрическим сетям сетевой организации;

б) однолинейная схема электрических сетей заявителя, присоединяемых к электрическим сетям сетевой организации, номинальный класс напряжения которых составляет 35 кВ и выше, с указанием возможности резервирования от собственных источников энергоснабжения (включая резервирование для собственных нужд) и возможности переключения нагрузок (генерации) по внутренним сетям заявителя;

в) перечень и мощность энергопринимающих устройств, которые могут быть присоединены к устройствам противоаварийной автоматики;

г) копия документа, подтверждающего право собственности или иное предусмотренное законом основание на объект капитального строительства и (или) земельный участок, на котором расположены (будут располагаться) объекты заявителя, либо право собственности или иное предусмотренное законом основание на энергопринимающие устройства;

д) доверенность или иные документы, подтверждающие полномочия представителя заявителя, подающего и получающего документы, в случае если заявка подается в сетевую организацию представителем заявителя.

Договор с энергосбытовой организацией можно заключить в процессе технологического присоединения путем непосредственного обращения в энергосбытовую организацию, либо через сетевую организацию.

Сетевая организация в течение 15 дней со дня получения заявки направляет заявителю 2 экземпляра заполненного и подписанного со своей стороны проекта договора, в том числе ТУ, как неотъемлемое приложение к договору. В проекте договора и ТУ должен быть приведен перечень мероприятий по ТП, которые должны быть выполнены как со стороны сетевой организации, так и со стороны потребителя.

Срок подписания договора – 30 дней с момента получения его потребителем.

* В случае ненаправления заявителем подписанного проекта договора либо мотивированного отказа от его подписания, но не ранее чем через 60 дней со дня получения заявителем подписанного сетевой организацией проекта договора и технических условий, поданная этим заявителем заявка аннулируется.

Типовой договор

Типовой договор об осуществлении технологического присоединения к электрическим сетям (для физических лиц в целях технологического присоединения энергопринимающих устройств, максимальная мощность которых составляет до 15 кВт включительно (с учетом ранее присоединенных в данной точке присоединения энергопринимающих устройств) и которые используются для бытовых и иных нужд, не связанных с осуществлением предпринимательской деятельности) (Приложение № 8 к Правилам ТП)

Типовой договор об осуществлении технологического присоединения к электрическим сетям (для для юридических лиц или индивидуальных предпринимателей в целях технологического присоединения энергопринимающих устройств, максимальная мощность которых составляет до 15 кВт включительно (с учетом ранее присоединенных в данной точке присоединения энергопринимающих устройств) и которые используются для бытовых и иных нужд, не связанных с осуществлением предпринимательской деятельности) (Приложение № 9 к Правилам ТП )

 

Шаг 2 Выполнение мероприятий

— заявитель выполняет мероприятия в границах своего земельного участка;

— сетевая организация выполняет мероприятия до границ земельного участка заявителя.

Срок осуществления мероприятий по ТП:

а) в случаях осуществления технологического присоединения к электрическим сетям классом напряжения до 20 кВ включительно, при этом расстояние от существующих электрических сетей необходимого класса напряжения до границ участка, на котором расположены присоединяемые энергопринимающие устройства, составляет не более 300 метров в городах и поселках городского типа и не более 500 метров в сельской местности и от сетевой организации не требуется выполнение работ по строительству (реконструкции) объектов электросетевого хозяйства, включенных (подлежащих включению) в инвестиционные программы сетевых организаций (в том числе смежных сетевых организаций), и (или) объектов по производству электрической энергии, за исключением работ по строительству объектов электросетевого хозяйства от существующих объектов электросетевого хозяйства до присоединяемых энергопринимающих устройств и (или) объектов электроэнергетики:

– до 4 месяцев ;

б) в иных случаях:

— до 6 месяцев, если технологическое присоединение осуществляется к электрическим сетям, уровень напряжения которых составляет до 20 кВ включительно, и если расстояние от существующих электрических сетей необходимого класса напряжения до границ участка заявителя, на котором расположены присоединяемые энергопринимающие устройства, составляет не более 300 метров в городах и поселках городского типа и не более 500 метров в сельской местности;

Мероприятия по технологическому присоединению

— подготовка, выдача сетевой организацией технических условий и их согласование с системным оператором (субъектом оперативно-диспетчерского управления в технологически изолированных территориальных электроэнергетических системах), а в случае выдачи технических условий электростанцией — согласование их с системным оператором (субъектом оперативно-диспетчерского управления в технологически изолированных территориальных электроэнергетических системах) и со смежными сетевыми организациями;

— разработка сетевой организацией проектной документации согласно обязательствам, предусмотренным техническими условиями;

— разработка заявителем проектной документации в границах его земельного участка согласно обязательствам, предусмотренным техническими условиями, за исключением случаев, когда в соответствии с законодательством Российской Федерации о градостроительной деятельности разработка проектной документации не является обязательной;

— выполнение технических условий заявителем и сетевой организацией, включая осуществление сетевой организацией мероприятий по подключению энергопринимающих устройств под действие аппаратуры противоаварийной и режимной автоматики в соответствии с техническими условиями;

— осмотр присоединяемых электроустановок заявителя, включая вводные распределительные устройства, должен осуществляться сетевой организацией с участием заявителя), с выдачей акта осмотра (обследования) энергопринимающих устройств заявителя;

— осуществление сетевой организацией фактического присоединения объектов заявителя к электрическим сетям и включение коммутационного аппарата (фиксация коммутационного аппарата в положении «включено»).

Шаг 3

Оформление документов и фактическая подача напряжения — — — получение Акта о ТП;

— получение Акта разграничения балансовой принадлежности и Акта эксплуатационной ответственности.

Осуществление фактической подачи электроэнергии заявителю путем включения коммутационного аппарата.

Технологическое присоединение завершено.

Ноль и земля бесплатное электричество

Земля как источник бесплатного электричества

Расходы на электрическую энергию растут с каждым повышением тарифов. И если жители города Для снижения денежных трат уменьшают лишнее электропотребление, то хозяева приватизированных домов имеют шанс дополнительно получать электричество из земли.

Приобретаем бесплатное электричество из земли

Вопрос эффективности

Получение электричества из земли окутано мифами – в Интернет систематически ложатся материалы на тему получения бесплатной электрической энергии благодаря применению неисчерпаемого потенциала электромагнитного поля планеты. Однако бесчисленные видео, на каких самодельные установки добывают ток из земли и вынуждают светится многоваттные лампочки или вращаться электрические моторы, являются мошенническими. Если бы получение электричества из земли было настолько хорошо, атомная и гидроэнергетика давно ушли бы в минувшее.

Однако бесплатное электричество добыть из земной оболочки вполне возможно и выполнить это можно собственными руками. Правда, полученного тока хватит исключительно на подсветку со светодиодами или на то, чтобы не торопясь подзарядить мобильное устройство.

Напряжение из магнитного поля Земли — можно ли!?

Для получения тока из обстановки природы на постоянной основе (другими словами, исключаем разряды молний), нам нужен проводник и разница потенциалов. Найти разница потенциалов большого труда не составит в земля, которая соединяет все три среды – твёрдую, жидкую и газообразную. По собственной структуре грунт собой представляет твёрдые частицы, между которыми присутствуют водяные молекулы и воздушные пузырьки.

Необходимо знать, что элементарной единицей почвы считается глинисто-гумусовый комплекс (мицелла), который обладает конкретной разностью потенциалов. Оболочка с внешной стороны мицеллы копит негативный заряд, в середине нее вырабатывается позитивный. Благодаря тому, что электроотрицательная оболочка мицеллы притягивает из внешней среды ионы с позитивным зарядом, в почве беспрерывно протекают электрохимические и работающие от электричества процессы. Этим почва прекрасно выделяется от водной и воздушной среды и позволяет собственными руками создать устройство для добычи электрической энергии.

Способ с 2-мя электродами

Самый простой способ получить дома электрическую энергию – применить принцип, по которому устроены традиционные солевые батарейки, где применена гальваническая пара и электролит. При погружении стержней, сделанных из самых разнообразных металлов, в раствор соли, на их концах образуется разница потенциалов.

Мощность подобного гальванического элемента зависит от целого нескольких моментов, включая:

  • сечение и длину электродов;
  • глубину погружения электродов в электролит;
  • концентрацию солей в электролите и его температуру и т. д.

Дабы получить электричество, требуется взять два электрода для гальванической пары – один из меди, второй из оцинкованного железа. Электроды опускают в почву примерно на глубину в полметра, установив их на расстоянии около 25 см, по отношению друг к другу. Грунт между электродами необходимо прекрасно пролить раствором соли. Замеряя вольтметром напряжение на концах электродов спустя 10-15 минут, можно понять, что система даёт бесплатно ток около 3 В.

Добыча электричества при помощи 2-х стержней

Если провести ряд экспериментов на различных участках, раскроется, что показания вольтметра меняются в зависимости от параметров грунта и его влаги, размеров и глубины установки электродов. Для увеличения эффективности рекомендуется уменьшить с помощью куска трубы нужного диаметра контур, куда будет заливаться солевой раствор.

Внимание! Необходимо применять сочный электролит, а данная концентрация соли выполняет почву неподходящей для роста растений.

Способ с нулевым проводом

Напряжение в дом жилого фонда подается с применением 2-ух проводников: один из них фаза, второй – нуль. Если например дом оснащен высококачественным заземляющим контуром, во время интенсивного электропотребления часть тока уходит через заземление в почву. Подключив к нулевому проводу и заземлению лампочку на 12 В, вы заставите ее светиться, потому как между контактами нуля и «земли» напряжение достигает 15 В. И этот ток электрическим счетчиком не крепится.

Добыча электричества при помощи нулевого провода

Схема, собранная по принципу ноль – покупатель энергии – земля, вполне рабочая. При большом желании для выравнивания колебаний напряжения можно применять преобразователь электрической энергии. Минусом считается нестабильность возникновения электричества между нулем и заземлением – чтобы это сделать требуется, чтобы дом потреблял много электрической энергии.

Стоит обратить внимание! Этот способ добывать бесплатное электричество подходящ только в условиях приватного домовладения. В жилых площадях нет хорошего заземления, а применять в этом качестве магистрали из труб систем обогрева или водообеспечения нельзя. Тем более запрещено объединять заземляющий контур с фазой для получения электричества, так как заземляющая шина оказывается под напряжением 220 В, что смертельно страшно.

Не обращая внимания на то, что система такого типа задействует для работы землю, ее нельзя отнести к источнику земной электрической энергии. Как добыть энергию, применяя электромагнитный потенциал планеты, остается открытым.

Энергия магнитного поля планеты

Земля собой представляет своего рода конденсатор сферообразной формы, на поверхности внутри которой скапливается негативный заряд, а с наружной стороны – позитивный. Изолятором служит обстановка – через нее проходит переменный ток, при этом разница потенциалов сберегается. Утерянные заряды восполняются за счёт магнитного поля, которое служит натуральным электрическим генератором.

Как получить В практических условиях электричество из земли? По существу, нужно подсоединиться к полюсу генератора и организовать надежное заземление.

Устройство, получающее электричество из природных источников, должно состоять из таких элементов:

  • проводник;
  • контур заземления, к которому подсоединен проводник;
  • эмиттер (катушка Тесла, высоковольтный генератор, дающий возможность электронам оставлять проводник).

Схема получения электрической энергии

Верхняя точка конструкции, на которой размещён эмиттер, должна размещаться на такой высоте, чтобы за счёт разницы потенциалов электрического поля планеты электроны поднимались по проводнику вверх. Эмиттер их будет освобождать из металла и в виде ионов отпускать в атмосферу. Процесс не будет прекращаться до той поры, пока потенциал в верхних слоях атмосферы не станет наравне с электрическим полем планеты.

К цепи подсоединяется покупатель энергии, причем чем эффектнее не прекращает работу катушка Тесла, тем выше сила тока в цепи, тем больше (или мощнее) потребителей тока можно присоединить к системе.

Так как электрическое поле окружает заземленные проводники, к которым относятся деревья, строения, разные высотные конструкции, то в черте города верхняя часть системы должна находиться выше всех имеющихся объектов. Собственными руками создать аналогичную конструкцию не по настоящему.

Из данного следует

Электрическая энергия из земли потенциально может быть добыта, однако в данное время нет технологий, которые разрешают выполнить это хорошо. Если есть собственный дом с участком, то можно провести эксперимент с разработкой земляной батареи из листов меди и фольги на алюминевой основе – чертежи и фотографии не сложно отыскать на просторах интернета. Но опыт говорит, что мощность выполненного конденсатора ощутимо ниже заявленной и конструкция быстро выходит из строя. При этом материальные затраты на материалы навряд ли когда-нибудь оправдаются.

Как получить

электричество из земли

Постоянно стоимость электрической энергии в наших квартирах и домах растет, что заставляет очень многие люди подумать об ее экономии. Но имеются и такие, что пытаются всеми методами добыть хоть чуть чуть бесплатной энергии, к примеру, электричество из земли. Потому как количество данных людей постоянно растет, имеет смысл решить вопрос детальнее, что и будет сделано в этой публикации.

Мифы и реальность

В интернете существует огромное количество видеороликов, где люди зажигают от земли лампы мощностью 150 Вт, запускают электрические двигатели и так дальше. Намного больше есть разных текстовых материалов, детально рассказывающих о земляных батареях. К аналогичной информации не рекомендуется относиться очень серьезно, ведь написать можно все что угодно, а перед съемкой видеоролика провести необходимую подготовку.

Просмотрев или прочтя данные материалы, вы на самом деле можете верить в различные небылицы. К примеру, что электрическое или магнитное поле Земли имеет океан бесплатной электрической энергии, получение которой очень легко. Правда состоит в том, что запас энергии на самом деле большой, но вот вынуть ее абсолютно не просто. Иначе никто бы уже не пользовался двигателями внутреннего сгорания, не обогревался сетевым газом и так дальше.

Для справки. Магнитное поле у нашей планеты на самом деле есть и оберегает все живое от губительного влияния различных частиц, идущих от солнечных лучей. Силовые линии этого поля проходят параллельно поверхности на восток с запада.

Если соответственно с теорией провести некий виртуальный эксперимент, то можно удостовериться, насколько сложно приобрести электричество из магнитного поля земли. Возьмём 2 железных электрода, для чистоты эксперимента – в виде квадратных листов со сторонами 1 м. Один лист установим на земле перпендикулярно силовым линиям, а второй – поднимем на высоту 500 м и сориентируем его в пространстве точно также.

В теории между электродами появится разница потенциалов порядка 80 вольт. Тот же результат будет наблюдаться, если второй лист разместить под землёй, на дне самой глубокой шахты. А сейчас представьте такую электростанцию – в километр высотой, с большой поверхностной площадью электродов. Более того, станция должна сопротивляться ударам молний, что неминуемо будут бить собственно по ней. Может быть, это реальность далекого грядущего.

Все таки получить электричество от земли – действительно возможно, хотя и в мизерных количествах. Его может хватить на то, чтобы зажечь светодиодный фонарик, включить калькулятор или чуть-чуть зарядить мобильный телефон. Рассмотрим способы, разрешающие это выполнить.

Электричество от 2-ух стержней

Этот способ построен совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А доктрина эта – о взаимном действии гальванических пар в солевом растворе. Если взять два стержня из самых разнообразных металлов, загрузить их в раствор такого типа (электролит), то на концах возникнет разница потенциалов. Ее величина зависит от большого количества самых разных факторов: состава, насыщенности и температуры электролита, размеров электродов, глубины погружения и так дальше.

Такое получение электричества возможно и через землю. Берем 2 стержня из самых разнообразных металлов, образующих говоря иначе гальваническую пару: металлический и медный. Опускаем их в землю на глубину примерно полметра, расстояние между электродами соблюдаем маленькое, хватит 20—30 см. Земельный участок между ними хорошо поливаем раствором с применением соли и спустя 5—10 мин производим измерение электронным вольтметром. Показания прибора бывают разнообразными, но как максимум вы получите 3 В.

Примечание. Показания вольтметра зависят от влаги почвы, ее натурального солесодержания, размеров стержней и глубины их погружения.

На самом деле все просто, получившееся бесплатное электричество – это результат взаимного действия гальванической пары, при котором влажная почва служила электролитом, принцип схож на работу солевой батарейки. Настоящий эксперимент о разнице потенциалов на электродах, забитых в землю, можно взглянуть на видео:

Электричество от земли и нулевого провода

Это явление тоже появляется не от магнитного поля Земли, а потому, что часть тока «течет» через заземление в часы самого большего электропотребления. Большинству клиентов известно, что напряжение для дома подается через 2 проводника: фазный и нулевой. Если есть 3-ий проводник, присоединенный к хорошему заземляющему контуру, то между ним и нулевым контактом может «гулять» напряжение до 15 В. Данный факт можно закрепить, включив меж контактами нагрузку в виде лампочки на 12 В. И что отличительно, проходящий из земли на «ноль» ток совсем не крепится учетными приборами.

Воспользоваться таким бесплатным напряжением в квартире трудно, потому как хорошего заземления там не найти, магистрали из труб таким считаться не могут. А вот в приватном доме, где a priori обязан быть контур заземления, электричество получить можно. Для подсоединения применяется обычная схема: нулевой провод – нагрузка – земля. Некоторые умельцы даже подстроились выравнивать колебания тока преобразователем электрической энергии и подсоединять подобающую нагрузку.

Внимание! Не идите на поводу у «добрых» советчиков, предлагающих заместь нулевого проводника применить фазный! А дело все в том, что при аналогичном подсоединении фаза и земля дадут вам 220 В, но дотрагиваться к заземляющей шине смертельно страшно. Тем более это касается «мастеров», проделывающих такие вещи в жилых площадях, добавляя нагрузку к фазе и батарее. Они делают опасность удара током для абсолютно всех соседей.

Заключение

Извлекать электрическую энергию из магнитного поля планеты собственными руками – невозможно. Вышеописанные способы – иное дело, однако их функциональная ценность невелика. Разве что заряжать телефон во время похода, но тогда придется тянуть с собой трубы из металла. Касаемо второго способа необходимо выделить, что напряжение между землёй и нулем возникает совсем не всегда, а если и есть, то очень нестабильно. Другие способы просят немалого количества меди и алюминия при неизвестном результате, о чем добросовестно предупреждает автор установки, изображенной на рисунке:

Электричество из земли

Электричество из земли для дома — как получить собственными руками

Именно тогда, как человек выучился передавать электричество на расстоянии, жизнь всей планеты поменялась.

Возможным стало то, что раньше казалось фантастикой: на смену свечкам и газовым фонарям пришли лампочки, возникли троллейбусы и электропоезда, увеличил скорость жизненный темп.

И ровно с того же момента люди подумали: как можно получить электричество из земли собственными руками.

Источники энергии – сетевой газ, уголь, нефть – подходят к концу, данных ресурсов на земля осталось буквально на 50-100 лет. Предприятия промышленности, которые работают на угле, нефтяная добыча и газа, — все это строго вредит экологии, так что планета Земля находится в тревожащем экологов и небезразличных людей, положении.

Мифы и реальность

Попытки обычных жителей своими силами, в обход государственных тарифов, «добыть» электричество, обросли большим количеством слухов и догадок:

  • Главный миф, связанный с самостоятельным получением энергии из земли, звучит так: это электричество вечно.

Опровержение: для того, чтобы как правило извлечь электричество из земли, нужно выполнение большинства условий, в числе которых – особенные качества почвы, железный штырь или стержень, вкопанный в землю на достаточном расстоянии, и неокисляемые провода.

Ни одно из данных условий не можно сделать замечательно, так что электричество, добываемое аналогичным образом, абсолютно не вечно.

Опровержение: отчасти это так: человек может делать со своим личным земляным участком все, все что угодно. Однако для того, дабы получить хоть какой-то электрический заряд, необходимо много земли.

  • Миф 3-ий: электричество, которое можно получить благодаря земля, имеет огромную мощность.

Опровержение: выходной мощности электричества, получаемого из земли, хватает на очень небыструю зарядку простенького мобильника или зажигание маленькой лампочки. Для того, чтобы вскипятить электро чайник, зарядить ноутбук или включить холодильник, потребуется столько земли, железных штырей и проводов, что одной семье необходимы будут безграничные наделы и деньги.

Электричество из земли собственными руками

Все таки большинство людей не оставляют попыток извлечь электричество из земли, чтобы сделать легче или поменять собственную жизнь, и их не стоит останавливать, ведь наиболее весомые открытия в человеческой истории происходили собственно упорными людьми, влюбленными в собственные идеи.

Есть рейтинг самых распространенных вариантов недорогого и быстрого получения электричества из земли.

Нулевой провод – нагрузка – почва

Электрический ток, благодаря ему в жилых площадях питаются все приборы работаюшие от электричества, поступает в дома через два проводника: ноль и фазу. Из-за заземления значительное количество энергии уходит в грунт. Разумеется, никто не хочет расплачиваться за то, что не получается применить полностью. Благодаря этому находчивые люди уже давно убедились, как с помощью нулевого провода можно доставать из земли энергию.

Данный способ построен на том, что земля из-за собственных физических параметров считается вместе с тем накопителем энергии и ее проводником.

Схема прокладки под землей кабеля

Чтобы извлечь электричество, необходимо создать простейшую цепь.

  • На достаточном расстоянии в землю вкапывается два железных кола, один из которых считается катодом, а второй – анодом, из-за чего возникнет энергия напряжением от 1 до 3 В. Сила тока в данном случае будет ничтожно небольшой.
  • Чтобы сделать больше напряжение и силу тока, придется на участке с большой площадью вбить много штырей, как постепенно, так и параллельно которые соединены между собой. Методичное соединение увеличивает напряжение, а параллельное – силу тока.
  • Когда напряжение достигнет 20-30 В, к цепи нужно присоединить самый простой преобразователь электрической энергии для увеличения напряжения при выходе и аккумулятор для собирания и стабилизации электроэнергии. Заключительный этап – трансформация непрерывного тридцати вольтажного тока в переменный, напряжением в 220 В.

Цинковый и медный электрод

Это самый обыкновенный, доступный и хороший сейчас способ получения электроэнергии, собственно по данному принципу устроены обыкновенные всем батарейки.

В первую очередь следует изолировать какое-то кол-во почвы, чтобы создать в ней максимально кислую среду. Потом присоединить к данной изолированной земля цинковый и медный электроды. На выходе на самом деле выходит электрическая энергия. Такой принцип получения энергии в большинстве случаев зависит от качества почвы – чем она кислее, тем лучше.

Аккумулятор из цинка и меди

Можно провести любопытный эксперимент, поместив два ключа – медный и стальной – в апельсин. В результате возникает напряжение до 1 В. Основным фактором считается площадь электродов, сопрекасающихся с кислотой, и уровень кислотности самого апельсина.

Такого количества энергии хватает на зарядку обычного телефона. Чтобы нарастить мощность, нужно параллельно присоединить к данной схеме еще несколько подобных же цепей. В результате выйдет зарядить смартфон или ноутбук, но под электростанцию из апельсинов и электродов придется выделить большое помещение.

Потенциал между крышей и землёй

В земля ставится железный штырь, от него к крыше протягивается провод, получившейся электроэнергией можно без зазрения совести пользоваться.

Правда, только до первой грозы, ведь по существу – это реальный проводник.

Работающие схемы

Большинство людей действительно тревожит данная несправедливость: за электричество необходимо платить большие деньги и это тогда, когда миллион ног из дня в день топчут бесплатный энергетический источник.

Неужели все попытки фанатов получить электричество из земли тщетны?

Разумеется, есть работающие схемы извлечения электроэнергии из почвы.

Все способы добычи электричества из земли, описанные в этой публикации, — настоящие и рабочие, проблематика только в том, что они не дают желанной мощности.

Электричество из земли. Как?

Слышал про подобный вариант добыть лишние 2-3 вольта. Забить в землю на метр-другой стальной прут, после этого от него можно будет зажечь маленький диод, например. Это правда? Если кто знает, можно ли подробно, что и как?

Электричество: Электричество из земли. Как?

Прочёл, что в земной коре в результате трения тектонических плит и разницы давлений образуется значительное количество электричества, намного более чем в атмосфере. Даже собственные грозы есть и более мощных, чем на поверхности.А что если объединить проводником две плиты недалеко от места разлома с глубины к примеру 2 — 5 километров на нагрузку. А ни с того ни с сего электромоторчик завертится?Плит у нас на земля несколько, да и большие они. Можно много натыкать проводочков. Шутки тоже принимаются, но всет.

Есть три абсолютно похожих на вид провода.При подсоединении к проводам 1 и 2 и 1 и 3 лампочка начинает светится.Как определить, где ноль, а где земля без прозвонки от щитка или от конечной розетки?

Кто-то привязывает «ноль» в водопроводной трубе, другими словами к «земля». Если выполнить «землю» самому? Установить тумблер и к примеру при большом потреблении электричества (отоплении), переключаться.

Пару лет назад видел статейку в каком то журнале, там было описано как собирать атмосферное электричество. Сущность состоит в установке высокой изолированной мачты и рядом хорошего заземления. На мачте наводится пару десятков кВ непрерывного напряжения.

2я — сложность высокой мачты и надежность её изоляции от земли изоляция до 400кВ

3я — мачта должна достать до области высокого потенциала, для этого она обязана быть больше, чем любое очень высокое окружение (дерево, очень высокое здание в городе также и его антенны тд) любое высокое строение собственной вершиной приподнимает слой высокого потенциала над собой и как зонтиком закрывает всю область вокруг, аналогичным образом в городе это осуществить почти что не по настоящему.

Идеальное установочное место — высокая плоская равнина без деревьев и построек или горные вершины.

1. — термальные электрические станции на вулканах и горячих источниках

2. собирание сетевого газа из свалок мусора с дальнейшим получением электричества на рядом стоящей газовой электрические станции.

Альтернативная энергетика

Земляная электрическая батарея

Рукодельный «земляной» гальванический (электролитический) компонент выполняется из имеющихся материалов, с выбором по самой большой разности их электродных потенциалов (напряжение, в режиме хода в холостую, между медной и цинковой пластиной – порядка 1 вольта, см. таблицу 1). Это могут быть старые трубы из железа и оцинкованные листы, угольная куча или зола из дерева, моток металлического провода и т.д. Подойдет любой металлолом – жестянки, конструкции из металла и т.д. Работать данная батарея может долго – месяцы (до зимних холодов, когда дерн леденеет и становится практически диэлектриком). Быстрее корродирует (рушиться растворяясь) – минусовой электрод.

окислительно-восстановительных потенциалов), вольт:

Al (Алюминий) = -1,66

Mn (Марганец) = -1,2

Fe (Железо, сталь)

С (Графит, каменный уголь, зола из дерева)

Фруктово-овощные («зелёные», экологичные) источники электротока

В свежий лимон, в яблоко или в отварной картофель – втыкаются железные электроды, к примеру – стальной гвоздь и зачищенный провод из меди. Напряжение на элементе – достигает 1 вольта. Ток – до нескольких миллиампер.

Свободная энергия от электромагнитного излучения мощных передающих радиостанций

Об этом уже и так много написано, плюс к этому – в публикациях, в журнальных публикациях и книгах В. Полякова.

Общественное решение

Оказывается, электричество можно добыть из воздуха собственными силами, не используя очень сложные устройства. Во всяком случае, как экологически чистый источник энергии, электричество из земли представляется очень многообещающим.

Постоянно стоимость электрической энергии в наших квартирах и домах растет, что заставляет очень многие люди подумать об ее экономии. Этот способ построен совсем на другой теории и никакого отношения к магнитному или электрическому полю Земли не имеет. А доктрина эта – о взаимном действии гальванических пар в солевом растворе.

Такое получение электричества возможно и через землю. Берем 2 стержня из самых разнообразных металлов, образующих говоря иначе гальваническую пару: металлический и медный. Это явление тоже появляется не от магнитного поля Земли, а потому, что часть тока «течет» через заземление в часы самого большего электропотребления. А дело все в том, что при аналогичном подсоединении фаза и земля дадут вам 220 В, но дотрагиваться к заземляющей шине смертельно страшно.

Электричество возникающее в результате трения из воздуха

Извлекать электрическую энергию из магнитного поля планеты собственными руками – невозможно. Несколько лет ученые мужи ищут прекрасный альтернативный источник электрической энергии, который дал возможность бы добывать ток из возобновляемых ресурсов. В использовании данного способа есть как плюсы, так и минусы. В особенности, ветер – это переменчивая величина, благодаря этому нельзя предугадать уровень напряжения и собирания электричества.

Самая простая важная схема в себя не включает никаких добавочных накопительных устройств и преобразователей. По существу, требуется исключительно железная антенна и земля. Между этими проводниками ставится электрический потенциал.

Бесплатное

электричество: как получить переменный ток из земли и воздуха собственными руками

Аналогичным образом, можно извлечь из земли и воздуха очень и очень много полезной электрической энергии, которой будет вполне хватать для работы электроустановки. Это считается одной из самых основных причин, почему проект не «пошёл в массы» — он опасен для жизни и производства.

Этот бестопливный энергетический источник был презентован в Грузии, нынче он тестируется. Генератор позволяет добывать электричество из воздуха без применения посторонних ресурсов. В свободном доступе есть видео с конференции и опыты, но нет никаких документов, по настоящему подтверждающих существование этого изобретения. Эта проблема занимает умы не только доморощенных изобретателей, которые пытаются найти решение дома с паяльником в руках, но и реальных учёных.

Возможно, некоторые могут подумать, что это прямолинейный абсурд. Но реальность такая, что получить электрическую энергию из воздуха возможно. Есть даже схемы, которые способны помочь создать устройство, способное выполнить получение электрической энергии буквально из ничего. Можно обратиться к трудам уже популярных учёных, которые в минувшем пытались получать электричество буквально из воздуха.

Тесла определил, что между Основанием и поднятой пластиной из металла есть электрический потенциал, собой представляет электричество возникающее в результате трения. К слову, сам Тесла предполагал, что наличием электричества у себя в составе, воздух обязан лучам солнца, которые при пронизывании пространства воздуха буквально разделяется собственными частичками. Есть довольно обыкновенные схемы, которые обязательно создадут устройство, способное совершать получение и накопление электроэнергии, которая содержится в воздухе.

Это одна из наиболее простых схем, благодаря которой можно соорудить устройство для получения электрической энергии из воздуха собственными руками. Как правило, абсолютно ничего сложного в данном нет. Земля может послужить Основанием, В то время когда антенной как правило выступает пластина из металла, которая помещена над землёй.

Необходимо не забывать, что создание подобного обычного устройства собственными руками даже по такой несложной схеме, может быть соеденено с определёнными рисками. 3. Применяя молоток, забейте трубки в землю, оставляя до 1? над грунтом. Это даст возможность Вам охватить и собирать энергию земли, а в грозовую погоду энергия, которую Вы можете собрать, вас удивит! Вы должены применить антенну на цинковом или медном электроде.

Имеется множество патентов Соединённых Штатов, которые выпустили еще в 1800-х годах, один из них был выданной господин Дэкманом. При помощи меди и цинка или листовой фольги на алюминевой основе, вы получите намного больше тока из вашей системы! Все это на первый взгляд покажется восхитительным, однако это правда, и это факт! Чем больше пластин, которые Вы добавляете, тем больше энергии вы получите!

Потом нужно сделать из дерева крышку находящуюся сверху, подобную основанию из дерева. Если вы хотите собрать энергию земли в бурю и грозу приходится задействовать толстый диэлектрик. Рассмотрим детальнее, как же из средств находящихся под рукой можно извлечь электроэнергию. В данном разделе мы воочию покажем возможность извлекать электричество с помощью химической и электролитической реакции.

Более воочию и точно данный эффект описан в подобном опыте с лимонами. Вышеописанный принцип можно применять для создания устройства для зарядки из средств находящихся под рукой. отдельные детали и соль можно взять с собой в поход или держать уже готовые детали одновременно со свечой на случай отключения электроэнергии. Кольца из резины из сантехнического набора. Потом резко приложить усилие вдоль оси поршня и извлечь его из цилиндра. Трут на конце будет тлеть и из него можно раздуть пламя. Именно данный эффект применен в двигателях на дизеле.

К несчастью, создать мощный прибор, который сумеет получать электричество из воздуха, собственными руками очень сложно. Ветер, солнце, вода… А можно тоже получать электричество из земли. Способ абсолютно не считается фантастическим. Про то, как получить электричество возникающее в результате трения из воздуха, думал еще Тесла в девятнадцатом веке, и нынче ученые мужи поняли, что да, это вполне возможно.

Бесплатное

электричество )

электричество из земли своими руками (бесплатное электричество между нулем и землей)


Навигация по записям

Дешевый, безопасный, экологичный, но редкий способ получения электричества в промышленных масштабах

После Чернобыля мир не испугался и не прекратил строительство атомных электростанций. Мир решил, наверное, что это сработал специфически советский человеческий фактор. После катастрофы на АЭС «Фукусима» в Японии человечество осознало, что атомная энергия опасна даже в руках осторожных, ответственных, и технически продвинутых цивилизаций. Германия и другие страны ЕС уже думают о полном прекращении использования АЭС. Поэтому поиск новых, менее опасных источников энергии сейчас актуален как никогда. Одним из таких источников может стать тепло земли.

Сидим на грелке

Под наружной оболочкой Земли — земной корой — находится разогретая мантия, где, возможно, зарождаются вулканы (по другим теориям, вулканы зарождаются во внешней, расплавленной оболочке ядра). Горячая магма поднимается вверх по тектоническим трещинам и вступает в контакт с океанической водой, которая инфильтрируется из придонных областей океана в околомагматические зоны. Там вода нагревается, вбирает часть растворенных в магме газов — таких как сероводород и углекислый газ — и других химических веществ, захватывая и элементы из пород, сквозь которые она фильтруется. Увеличение содержания СО2 вызывает образование сильного адсорбента — кальциевого силикагеля, что ведет к изменению проницаемости водовмещающих комплексов и, в конечном счете, к тепловой и геохимической самоизоляции геотермальной системы. Считается, что наличие силикагеля обусловливает высокие концентрации разных веществ в термальных водах.

На континентах земная кора обычно очень мощная — до 70, иногда до 100 километров. Более древние магматические породы обычно перекрыты толстым осадочным чехлом, и магме его просто не прорвать. Там же, где земная кора тоньше — например, в зонах перехода от континентальной коры к океанической — магме, раскаленным газам и перегретому водяному пару легче выбраться на поверхность. Именно в таких районах случаются самые интересные геологические события наших дней — извержения вулканов, землетрясения, именно там фыркают и плюются гейзеры, дымят фумаролы, и именно там сравнительно легок доступ к подземным источникам тепла. Вообще-то наиболее активные проявления вулканизма отмечаются в областях, где кора тоньше всего — на дне океанов, в зонах срединно-океанических хребтов, но ни видеть, ни толком изучать, ни тем более использовать этот вулканизм мы пока не научились.

Основная часть территории России расположена на двух древних, 2,5 — 3,5 млрд лет, платформах (Восточно-Европейской и Сибирской). Между ними лежит сравнительно молодая (всего 250-400 млн лет), но тоже надежная Западно-Сибирская плита. Поэтому в России районы с тонкой корой находятся только на дальних окраинах — на Камчатке и Курильских островах, которые входят в зону активных геологических процессов. «В областях современного вулканизма формируются и геотермальные месторождения, — говорит доктор геолого-минералогических наук, заведующий лабораторией тепломассопереноса ИВиС ДВО РАН Алексей Кирюхин. — Условия их формирования могут быть разными. Довольно часто работает правило: чем больше и активнее вулкан, тем меньше шансов найти в его окрестностях геотермальное месторождение (пример — вулкан Ключевский), чем крупнее геотермальное месторождение, тем меньше шансов увидеть в его пределах большой вулкан (пример — Долина гейзеров в Калифорнии)».

Области современного активного вулканизма в основном сосредоточены в так называемом Тихоокеанском огненном кольце — это практически все окраины Тихого Океана, включая Камчатку, Курилы, Японию, Индонезию, Филиппины, Анды и Кордильеры, цепочку Алеутских островов и архипелаг Огненная Земля. Все эти территории относятся к зонам самой молодой, альпийской складчатости, и на окраинах материков подвержены процессу субдукции — поддвиганию океанической коры под континентальную. В процессе субдукции окраинные участки континентальной коры вздымаются, формируя горные хребты, а «ныряющая» фронтальная зона тонкой океанической коры плавится, давая «сырье» для современных вулканов.

К зонам альпийской складчатости относятся также Альпы и Пиренеи, Крым, Кавказ, Памир, Гималаи. Многие вулканы здесь уже прошли активную стадию, и в породах, перекрывающих остывающую магму, происходят постмагматические процессы. В таких районах затухающего или «дремлющего» вулканизма — который проявляется не столько извержениями, сколько работой гейзеров, фумарол, грязевых вулканов — как раз и существует возможность получения электричества в промышленных масштабах. В других, менее активных, областях, впрочем, тоже можно использовать земное тепло. Даже в стабильных платформенных областях встречаются источники термальных вод, да и геотермический градиент может быть достаточно высоким.

Креативная, дешевая и чистая технология

Использовать геотермальное тепло можно по-разному. Во-первых, как древние римляне, можно непосредственно применять термальные воды для обогрева и ванн. Бесчисленные горячие источники в Европе ли, в Америке, на Филиппинах, — это проявления все тех же поствулканических процессов. В России тепло подземных вод используется для обогрева зданий и теплиц в Калининградской области, в Западной Сибири, в Краснодарском крае. Такое «прямое» использование тепла позволяет сэкономить и снизить нагрузку на окружающую среду.

Новозеландская геотермальная станция Ваиракеи открыта в 1958 году, первой после войны и второй в мире (самая первая построена в итальянском городе Лардерелло в 1904 году).

Фото: National Geographic/Getty Images/Fotobank

Можно использовать тепловые насосы, позволяющие обогревать или охлаждать жилые дома за счет разницы температур между воздухом и грунтом. А можно — в дополнение к простому обогреву — построить геотермальную электростанцию и получать очень дешевую электроэнергию. В зависимости от геологических условий, — то есть от температуры пород, наличия и состава воды в них — могут использоваться разные типы гидротермоэлектростанций.

В некоторых случаях геотермальная энергия позволяет убить сразу нескольких зайцев. Например, «Шеврон» использует для ее получения горячие воды, выкачиваемые из недр вместе с нефтью. На поверхности раскаленная смесь воды и пара отделяется от нефти, сепарируется, пар вращает турбины и дает электроэнергию, вода же закачивается обратно в породу. Это позволяет одновременно решить проблему токсичных сбросов и поддержать давление в нефтяном пласте, тем самым улучшая его нефтеотдачу и увеличивая срок использования скважины.

Геотермальная энергетика, новая отрасль на стыке нескольких наук и промышленности, привлекает внимание ученых и практиков разных специальностей. Одни задумываются, как добыть редкие и благородные металлы, растворенные в горячих подземных водах. Может быть, именно в фазе охлаждения этих вод когда-нибудь и удастся извлечь золото и платину.

Другие изобретают способы применения низкотемпературных вод. Главный инженер ОАО «Геотерм» Дмитрий Колесников считает, что вскоре будет разработана технология вторичного использования сепарата, то есть частично охлажденной воды: «Ее можно будет использовать на любых промышленных предприятиях, где есть горячие стоки. Больших мощностей ожидать не стоит, но, во-первых, горячая вода идет на второй цикл, то есть снижается непроизводственное использование энергии, а во-вторых, можно будет решать проблему энергоснабжения самого предприятия».

Россия отличается стабильностью

Геотермальная энергетика в России начала развиваться в 1960 годах. Тогда были построены первые — по сути, экспериментальные — электростанции. Паужетская ГеоЭС (11 МВт), на одноименном геотермальном месторождении была построена в 1967 году. «Эта электростанция служила как бы опытной площадкой, на ней опробовались технологии, испытывалась паро-водяная смесь», — рассказал Колесников. Неподалеку от нее расположены Мутновская ГеоЭС (50 МВт) и Верхне-Мутновская (12 МВт) ГеоЭС. На Курилах, на островах Кунашир и Итуруп, тоже работают две относительно небольшие ГеоЭС — 6 и 2,6 МВт. Собственно, этим недлинным списком и ограничивается действующая российская геотермальная энергетика.

Первая в России геотермальная электростанция — Паужетская — введена в эксплуатацию в 1966 году.

Фото: РИА НОВОСТИ

Не в силу политико-экономических или исторических причин, не потому, что за рубежом лучше головы или технологии, но исключительно из-за высокого уровня стабильности российского геологического устройства западные, восточные, юго-восточные и даже некоторые африканские страны оставили нас далеко позади в области геотермальной энергетики. В Исландии на геотермальных электростанциях получают 30% электроэнергии, на Филиппинах — более 25%, в Сальвадоре и Коста-Рике — около 15%, в Новой Зеландии и Никарагуа — 10%. В США доля «геотермального» электричества невелика, всего 0,3%, но по объемам выработки США опережают все остальные страны мира.

В США к широко известным геотермальным электростанциям в Калифорнии и Неваде в 2006 году добавилась маленькая, но необычная электростанция в самой что ни на есть глубокой американской глубинке — на Аляске, на курорте China Hot Springs. Хотя термальные источники там горячи для человека (74С), эта температура все же слишком низка для производства энергии по обычной технологии. Тем не менее, решение — применение бинарного цикла — было найдено: в теплообменнике природная вода отдает свое тепло специальному реагенту, который закипает даже при столь низкой температуре. Слегка охлажденная (примерно до 70 градусов) вода честно возвращается в исходный горизонт. За пять лет эксплуатации температура поступающей воды упала примерно на градус. Три генератора могут давать 650 кВт в час, что достаточно, например, для обслуживания целого поселка. Каждый генератор стоит около $800 000, и окупаемости за полгода ожидать не стоит. Но лет за 10 эти инвестиции окупятся даже при цене электричества в 6 центов за киловатт. Генератор, работающий на мазуте, «стоил» 30 центов за киловатт, так что разница очевидна.

А бинарная технология, использованная на Аляске, вообще-то изобретена в России еще в 1967 году, и использована на Паратунском геотермальном месторождении на Камчатке.

Экономика горячей воды

Как считает Дмитрий Колесников, преимущества геотермальной энергетики — в простоте процесса и дешевизне получаемой энергии. «Собственно, бурится скважина, из которой идет паро-водяная смесь, которая на станции сепарируется, пар вращает турбину, и дальше все работает как в обычной котельной», — объяснил он принцип работы.

Возле исландского города Гриндавика геотермальная электростанция совмещена со spa-курортом

Фото: AFP/EASTNEWS

Геотермальная энергия действительно обходится очень дешево, прежде всего за счет экономии на углеводородном сырье. Самое дорогое — это скважины и линии электропередач. Правда, там, где можно построить ГЭС, геотермальные электростанции будут не столь экономически привлекательными. Но в России мощнейшие ГЭС строились тогда, когда понятия частной собственности на землю не было. Сегодня, чтобы затопить гигантские территории, нужно будет их у кого-то выкупить, что сильно поднимет цену киловатт-часа. Да и землю жалко (поэтому современные ГЭС строятся в основном в горах, где площадь затопления минимальна). А вот при сравнении цены «геотермального» киловатт-часа с ценой электричества, вырабатываемого ТЭС, разница уже сегодня не в пользу углеводородной энергетики.

Экология соленой воды

Люди, которые занимаются геотермальной энергетикой, как-то с восхищением к ней относятся. Они понимают, что это сравнительно дешевый, сравнительно безопасный способ получения электроэнергии из возобновляемых источников. Тем не менее, как и во всех отраслях промышленности, здесь есть свои проблемы.

Да, углеводородного топлива на ГеоЭС нет, но проблема отходов существует. «Отходы» — это остывшая подземная вода, часто сильно соленая. Ее нельзя сбросить в ближайшую речку, она слишком токсична. Кроме того, при изъятии материала из недр обычно повышается сейсмическая активность, и из-за сейсмодислокаций приток пароводяной смеси на поверхность может вообще прекратиться. «Воды у нас (на Паужетской электростанции) — 1000 тонн в час, в идеале должен быть замкнутый цикл, на поверхность мы эту воду сливать не можем. Воду — сепарат — мы закачиваем обратно в пласт. Правда, не в то место, откуда мы ее берем, иначе мы быстро охладим «дающий» участок. Поэтому закачиваем не в него, а в соседние зоны», — объясняет Колесников.

В связи с высокой агрессивностью горячих подземных вод возникает проблема коррозии, износа оборудования. Но с коррозией, по мнению Колесникова, бороться можно — надо просто правильно подбирать материалы.

Геотермальную энергию добывать не всегда легко. Часто геотермальные месторождения находятся в труднодоступных местах или в зонах повышенной сейсмической активности. В сейсмически активных зонах постройка ГеоЭС не только сопряжена с угрозой для работников, но может оказаться экономически бессмысленной: при структурных подвижках геотермальное месторождение может просто исчезнуть или поменять режим так, что работа станции станет невыгодной.

Геотермы вообще недостаточно изучены. Поверхностные, более легкодоступные геотермы часто имеют довольно короткий срок жизни. Исследования же глубоко залегающих, более крупных геотермальных месторождений требуют больших средств. Пока российская экономика живет за счет высоких цен на углеводородное сырье, научные и практические работы по геотермам будут оставаться недофинансированными. Это приведет к тому, что Россия, некогда первой применившая бинарную технологию, вновь окажется в хвосте, как и со сланцевым газом.

«Хотим, не хотим, а развивать будем»

Вряд ли геотермальная энергия придет в каждый дом. В России, во всяком случае, не завтра. Низкотемпературные технологии получения электричества пока еще дороги, а самое главное — в платформенных областях, где проживает большая часть населения России, горячие напорные подземные воды редки. Поэтому в ближайшее время можно ожидать только развития применения тепловых насосов, которые позволяют напрямую использовать тепло земли.

Возможности для постройки ГеоТЭС, кроме Камчатки и Курил, существуют на Урале, в Краснодарском крае, на Ставрополье. Анализируются возможности строительства ГеоЭС в южных областях Западной Сибири. «А вообще, должна быть энергетическая стратегия по регионам, комплексный подход. Если есть возможность построить геотермальную электростанцию — надо строить: это и дешевая энергия, и отсутствие потребности в углеводородном сырье», — считает Колесников.

Алексей Кирюхин уверен, что геотермальную энергию можно получать всюду — вопрос в количестве и качестве. Но, конечно, для гидротермальных электростанций главным ограничивающим фактором еще долго будет служить строгая привязанность к источникам тепла.

Даже если экономия на геотермальной электроэнергии окажется меньше ожидаемой, выигрыш для природы очевиден. Валентина Свалова из Института геоэкологии РАН в работе «Геотермальные ресурсы России и их комплексное использование» показала, что если за счет геотермальной энергетики удастся достичь выработки электричества в 7800 ГВт.ч, то это позволит сэкономить 15,4 млн баррелей нефти, что исключит выброс приблизительно 7 млн тонн СО2.

Возобновляемость и дешевизна делают геотермальную энергию крайне привлекательной. «Хотя геотермальные электростанции имеют более низкий потенциал, дают меньшую мощность, они не требуют использования углеводородного сырья, — повторяет Колесников. — Ситуация с нефтью понятна, цены будут только расти, поэтому, хотим мы или не хотим, а геотермальную энергетику развивать будем».

Суммарная мощность геотермальных электростанций

Татьяна Крупина

4 способа получения электроэнергии из земли | Лампа Эксперт

Человечество давным-давно решает проблему получения альтернативных сжиганию топлива источников электрической энергии и нашел, стоит заметить, немало решений. Но все они достаточно затратны, сложны и, к сожалению, никак не претендуют за звание генераторов даровой энергии.

Но поиски продолжаются. Ищут все – от ученых до откровенных шарлатанов. В этой статье мы поговорим об энергии, которую можно добыть из… земли. Насколько предлагаемые методы реальны и можно ли их использовать на практике? Это мы решим в данной статье.

Схема Белоусова

По утверждению автора при помощи подобного генератора при правильно подобранных элементах можно получить напряжение в 220 В! Конструкция представляет собой два штыря заземления, разнесенных друг от друга на 10 м. В цепь между штырями включены два трансформатора и два электролитических конденсатора. Один трансформатор является якобы фильтром и  имеет короткозамкнутую вторичную обмотку. Второй обычный, повышающий.

Схема генератора Белоусова

Схема генератора Белоусова

Что можно сказать по поводу этой схемы неизвестного Кулибина-Белоусова? Судя по всему, это устройство использует эффект так называемого «шагового напряжения» и собирает энергию, растекающуюся в грунте поблизости от мощного заземленного устройства.

В принципе, получение энергии таким образом вполне реально, но более-менее приличную нагрузку (к примеру, светодиодную лампу на 220 В) можно запитать лишь при огромных токах растекания. Конечно, если воткнуть штыри поблизости от оборванного высоковольтного провода, лежащего на земле, или мощного заземленного трансформатора с пробитой изоляцией, результат будет. Правда может оказаться, что трансформатор ТР2 понадобится понижающий.

При исправном же оборудовании, даже воткнув штыри рядом с ТП, мы максимум запитаем двухвольтовый светодиод. Так что подобная «добыча» электроэнергии – лишь любопытный эксперимент, не имеющий практического значения. Ну а глухой степи, конечно, мы не получим от такого генератора ни сотой вольта – красть не у кого и нечего.

Важно! Шаговое напряжение при обрыве провода или пробое трансформатора может иметь опасные для жизни значения.  Находится в месте подобной аварии, а тем более, тыкать в землю штыри – очень плохая идея.
Вблизи неисправного оборудования шаговое напряжение может иметь значения в сотни и даже тысячи вольт

Вблизи неисправного оборудования шаговое напряжение может иметь значения в сотни и даже тысячи вольт

Антенна + земля – электричество

Эта конструкция является вариантом генератора Белоусова, но использует разность потенциалов между землей и массивным металлическим предметом – антенной, — поднятым как можно выше. Принцип ее работы тот – же, правда, с небольшим отличием. Схема работает благодаря электромагнитному полю, которое всегда присутствует вблизи действующих электроустановок и линий электропередач.

Генератор, собирающий энергию электромагнитного поля

Генератор, собирающий энергию электромагнитного поля

Чем больше антенна и сильнее электромагнитное поле, тем выше ЭДС, создаваемая таким генератором. Если поблизости, к примеру, стоит мощная ДВ радиостанция, То зажечь светодиодную лампу вполне реально. В противном случае это тоже всего лишь любопытный эксперимент.

Важно! Ставить эксперименты с таким генератором, в отличие от предыдущего много безопаснее, но не стоит забывать про молнию, которая, кстати, убила господина Рихмана, решившего ее поймать. Она вполне может ударить в высоко поднятую антенну со всеми вытекающими последствиями.
Здесь в качестве антенны используется металлическая крыша, изолированная от земли, что очень опасно во время грозы

Здесь в качестве антенны используется металлическая крыша, изолированная от земли, что очень опасно во время грозы

«Даровая» энергия из розетки

Если в электросетях с глухозаземленной нейтралью (а именно они используются в жилых домах) место заземления нулевого провода находится достаточно далеко от потребителей, то между этим проводом и землей появляется электрический потенциал. Он тем больше, чем больше потребителей и дальше соединение нуля с землей. Ну и, конечно, немаловажным фактором, влияющим на КПД, будет перекос фаз, присутствующий при несимметричности нагрузок по фазам. В жилых домах она есть всегда.

Следующая схема уже может иметь некоторое практическое значение. Ее можно использовать, к примеру, для питания низковольтного аварийного освещения (светодиоды) или зарядки маломощных гаджетов.

Между нулевым проводом и заземлением есть небольшое напряжение

Между нулевым проводом и заземлением есть небольшое напряжение

Трансформатор ТР – развязывающий и одновременно повышающий, поскольку нескольких вольт явно не хватит ни светодиодам, ни пятивольтовым гаджетам. Конечно, прежде, чем можно будет использовать такую энергию, ее придется выпрямить, сгладить и при необходимости стабилизировать.

Насколько такая схема реальна? Как было сказано выше, напряжение такого источника зависит от расстояния между розеткой и заземлением, а также от мощности потребителей и наличия перекоса фаз. При удачном стечении обстоятельств при помощи такой конструкции можно получить 10-15 В и достаточно приличные токи.

Важно! Прежде, чем использовать этот «генератор» для зарядки мобильных устройств, стоит 10 раз подумать. Нагрузка в сети постоянно изменяется, а значит, будет скакать и напряжение. Если не жалко гаджет, то можно попробовать. Если жалко, то лучше все оставить на стадии эксперимента.

Что же касается «даровой» энергии, то очевидно, что она вовсе не даровая, а откровенно уворованная. Да, она не будет регистрироваться электрическим счетчиком, но суть от этого, как и в предыдущих случаях, не меняется.

Земляной гальванический элемент

Эта конструкция представляет собой два электрода из разнородных металлов – меди и цинка. Втыкаем их на некотором расстоянии в землю и получаем… 1-1.2 В. Поучилось меньше? Поливаем землю между электродами рассолом – отличный электролит. Но если мы внимательно присмотримся к схеме конструкции, то увидим обычный гальванический элемент Вольта!

Схема химического получения энергии из земли

Схема химического получения энергии из земли

При чем тут земля? Правильно, абсолютно ни при чем! Точно такой же результат мы получим, если опустим эти электроды в банку с все тем же рассолом или лучше с более подходящим электролитом (более подробно о такой батарее можно прочитать в статье «Самодельная батарейка»).  (на Дзене есть наша, названия не помню).

И конструкция будет компактнее, и можно поднять напряжение, используя батарею таких элементов и, что немаловажно, мы не засолим землю, на которой после наших экспериментов ничего не будет расти. Да и ток от такой батареи будет вполне приличным, в отличие от «земляной», способной отдать лишь пару миллиампер.

Полезно! Что касается «даровой» энергии, то она такая же даровая, как и покупка батареек, а КПД этой конструкции будет смехотворно мал. Поэкспериментировать и забыть.

P.S. Уже после написания статьи, мне встретился рисунок химического земляного элемента, который перевернул все мои понятия по электротехнике и химии. Оказывается, чтобы поднять КПД такой конструкции, необходимо ориентироваться на части света! Никто не в курсе, может и обычные батарейки, повернутые плюсовым выводом на север, отдадут втрое больше энергии?

Вот такие пляски с бубном и компасом…

Вот такие пляски с бубном и компасом…

Вот мы и выяснили, что используя землю, действительно можно получить электрическую энергию. Но, во-первых, она совсем не даровая, а, во-вторых, настолько ничтожна, что за редким исключением абсолютно непригодна для практического применения.

Электростанция на орбите: кто будет поставлять энергию из космоса на Землю | Электротранспорт

Китай намерен стать первой страной, построившей на околоземной орбите солнечную электростанцию, которая будет передавать собранную энергию на Землю. Один из вариантов предполагает передачу на Землю преобразованной энергии при помощи лазеров. Рассказываем, как Китай и другие страны развивают космическую энергетику.

Какие технологии используют в космической энергетике

  • Беспроводная передача энергии

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или лунной станции к Земле.

Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Какой выбор был сделан, чтобы передача излучения была не ионизирующей, во избежание возможных нарушений экологии или биологической системы региона получения энергии?

Верхний предел для частоты излучения установлен таким, чтобы энергия на один фотон не вызывала ионизацию организмов при прохождении через них. Ионизация биологических материалов начинается только с ультрафиолетового излучения и, как следствие, проявляется при более высоких частотах, поэтому большое количество радиочастот будет доступно для передачи энергии.

Исследователи НАСА работали в 1980-х годах с возможностью использования лазеров для излучения энергии между двумя точками в пространстве. В перспективе эта технология станет альтернативным способом передачи энергии в космической энергетике.

В 1991 году начался проект SELENE, который предполагал создание лазеров для космической энергетики, в том числе и для излучения энергии лазером на лунные базы. 

В 1988 Грант Логан предложили использовать лазер, размещенный на Земле, чтобы обеспечить энергией космические станции, предположительно, это можно было осуществить в 1989. Предлагалось использование солнечных элементов из алмаза при температуре 300 °C для преобразования ультрафиолетового лазерного излучения.

Проект SELENE продолжал работать над этой концепцией, пока не был официально закрыт в 1993 после двух лет исследований, так и не осуществив тестирования технологии на большие расстояния. Причина закрытия: высокая стоимость осуществления.

  • Преобразование солнечной энергии в электрическую

В космической энергетике, в существующих станциях и при разработках космических электростанций единственный способ эффективного получения энергии — это использование фотоэлементов.

Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

Наиболее эффективными с энергетической точки зрения устройствами для этого являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии.

КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов до 25%. В лабораторных условиях уже достигнут КПД 43%.

  • Получение энергии от СВЧ-волн, испускаемых спутником

Также важно подчеркнуть способы получения энергии. Один из них — это получение энергии с помощью ректенн. Ректенна  — устройство, представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на нее волны в энергию постоянного тока.

Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней проводимостью (например диод).

В таком варианте конструкции антенна совмещается с детектором, на выходе которого при наличии падающей волны появляется ЭДС. Для повышения усиления такие устройства могут быть объединены в многоэлементные решетки.

Плюсы и минусы космической энергетики

Космическая солнечная энергия — энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков на Землю падает примерно 35% энергии от той, которая попала в атмосферу. 

Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96% времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли, на высоте 36 тыс. км, будут получать в среднем в восемь раз больше света, чем панели на поверхности Земли, и даже еще больше, когда космический аппарат будет ближе к Солнцу, чем к поверхности Земли. 

Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики — это высокая стоимость. Вторая проблема создания ОЭС — большие потери энергии при передаче. При передаче энергии на поверхность Земли будет потеряны, по крайней мере, 40–50%.

Основные технологические проблемы космической энергетики

По данным американских исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной.

  • Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.
  • Беспроводная передача энергии должна быть точной и безопасной.
  • Космические электростанции должны быть недорогими в производстве.
  • Поддержание постоянного положения станции над приемником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения, направленного на Землю, будет толкать станцию от Земли.

Кто собирается добывать энергию из космоса

Китай хочет стать первой страной, которая развернет на околоземной орбите солнечную электростанцию. Объект планируется использовать для сбора, а также передачи собранной энергии на Землю.

Конструкцию планируется разместить на геостационарной орбите, на высоте 35 786 км, где она сможет постоянно находиться над выбранной точкой Земли, рассказал Лун Лэхао (Long Lehao), главный конструктор китайских ракет серии «Чанчжэн-9». 

Проект предусматривает строительство на орбите больших солнечных панелей. Преимуществом электростанции станет возможность почти постоянного получения солнечной энергии, независимо от погодных условий. Передавать энергию на Землю планируется с помощью лазеров или микроволн.

Энергия солнечных лучей будет преобразовываться в электрический ток, а затем при помощи микроволн или лазерного излучения передаваться на Землю.

К 2030 году на орбиту планируется вывести полноценную электростанцию мегаваттного класса. Коммерческую станцию гигаваттного класса китайские ученые хотят построить на орбите к 2050 году.

Информация о Японии, скорее всего, потеряла свою актуальность. Однако страна в 2009 году заявляла, что начинает строительство космической электростанции. 

Для участия в проекте стоимостью $21 млрд подрядили корпорации Mitsubishi Electric и IHI. В течение четырех лет они обязаны были разработать и сконструировать конкретные устройства для транспортировки панелей на стационарную орбиту 36 тыс.  км, сборки панелей и передачи электроэнергии на Землю с минимальными потерями. Однако, вероятно, проект по каким-то причинам решили не реализовывать. 

Главное научное учреждение Роскосмоса ЦНИИмаш выступило с инициативой создания российских космических солнечных электростанций (КСЭС) мощностью 1–10 ГВт с беспроводной передачей электроэнергии наземным потребителям.

В ЦНИИмаше обращают внимание, что американские и японские разработчики пошли по пути использования СВЧ-излучения, которое сегодня представляется значительно менее эффективным, чем лазерное.

Проект ФГУП НПО им. Лавочкина предполагает использовать солнечные батареи и излучающие антенны на системе автономных спутников, управляемых по пилотному сигналу с Земли. Для антенны — использовать коротковолновой СВЧ-диапазон вплоть до миллиметровых радиоволн. Это даст возможность формировать в космосе узкие пучки при минимальных размерах генераторов и усилителей. Небольшие генераторы позволят и принимающие антенны сделать на порядок меньше.

Читать далее

В головном мозге человека зафиксирован неизвестный тип сигнала

На Курилах найден необычный песок, из которого японские самураи делали мечи

В Солнечной системе замечена самая большая комета за всю историю: это почти планета

Альтернативная энергетика | Ассоциация «НП Совет рынка»

Полезные разделы

Альтернативная энергетика

Альтернативная энергетика

Альтернативная энергетика —  к  альтернативной энергетике  относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:Ветроэнергетика  — использование кинетической энергии ветра для получения электроэнергии;Гелиоэнергетика  — получение электрической энергии из энергии солнечных лучей;Геотермальная энергетика  — использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, т. е., там, где естественные источники тепла наиболее доступны;Водородная энергетика  — использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода;Альтернативные виды гидроэнергетики: приливная и волновая энергетика. В этих случаях используется естественная кинетическая энергия морских приливов и ветровых волн соответственно. 

Производство электроэнергии / Использование энергии Земли / Энергия Земли / Наука / Обучение / Домашняя страница

Горячая вода и пар из геотермальных систем могут быть извлечены из пробуренных геотермальных скважин. Электроэнергия вырабатывается за счет использования пара или вторичных жидкостей для привода турбин, которые, в свою очередь, приводят в действие генераторы. Избыточные жидкости закачиваются обратно в подземный резервуар, чтобы продлить срок службы системы.

Узнайте больше об отводе тепла.

Электростанции с сухим паром
  • Первый тип геотермальных электростанций (Италия, 1904 г.).
  • Очень эффективен для выработки электроэнергии.
  • Завод использует пар, доступ к которому осуществляется путем бурения непосредственно в подземный источник.
Паровые электростанции мгновенного действия
  • Гидротермальный флюид с температурой 240–290 ° C выталкивается на поверхность высоким давлением в подземном резервуаре.
  • Когда эта очень горячая жидкость достигает поверхности, она попадает в сепаратор, где давление мгновенно падает, и большая часть жидкости превращается в пар.
  • Сила, создаваемая паром, используется для привода турбин и производства электроэнергии.
  • NZ Примеры: Wairakei, Ohaaki, Kawerau, Mokai
Бинарные электростанции
  • Геотермальная жидкость из подземного резервуара никогда не контактирует с турбогенераторами.
  • Вместо этого горячая геотермальная жидкость подается в теплообменник, где тепло передается «рабочей жидкости» с более низкой температурой кипения, чем вода (обычно изобутан или изопентан).
  • Рабочая жидкость превращается в возбужденный пар и вращает турбогенераторную установку, вырабатывая электричество.
  • NZ Примеры: Wairakei, Tauhara

Хранение электроэнергии | Агентство по охране окружающей среды США

Посмотреть интерактивную версию этой схемы >>

О накопителе электроэнергии

Электросеть работает на основе тонкого баланса между предложением (генерацией) и спросом (потребителями).Один из способов помочь сбалансировать колебания предложения и спроса на электроэнергию — хранить электроэнергию в периоды относительно высокого производства и низкого спроса, а затем отправлять ее обратно в электрическую сеть в периоды более низкого производства или повышенного спроса. В некоторых случаях хранение может обеспечить экономические выгоды, надежность и экологию. В зависимости от степени развертывания, хранение электроэнергии может помочь коммунальной сети работать более эффективно, снизить вероятность сбоев во время пикового спроса и позволить создавать и использовать больше возобновляемых ресурсов.

Энергия может храниться различными способами, в том числе:

  • Насосная гидроэлектростанция. Электроэнергия используется для перекачки воды в резервуар. Когда вода выпускается из резервуара, она стекает через турбину для выработки электроэнергии.
  • Сжатый воздух. Электричество используется для сжатия воздуха до 1000 фунтов на квадратный дюйм и его хранения, часто в подземных пещерах. Когда потребность в электроэнергии высока, сжатый воздух выпускается для выработки электроэнергии через турбодетандер-генератор.
  • Маховики. Электричество используется для разгона маховика (разновидность ротора), благодаря которому энергия сохраняется в виде кинетической энергии вращения. Когда требуется энергия, вращающая сила маховика используется для вращения генератора. В некоторых маховиках используются магнитные подшипники, они работают в вакууме для уменьшения сопротивления и могут достигать скорости вращения до 60 000 оборотов в минуту.
  • Батареи. Подобно обычным аккумуляторным батареям, очень большие батареи могут накапливать электричество до тех пор, пока оно не понадобится.В этих системах могут использоваться литий-ионные, свинцово-кислотные, литиево-железные или другие аккумуляторные технологии.
  • Накопитель тепловой энергии. Электричество можно использовать для производства тепловой энергии, которую можно хранить до тех пор, пока она не понадобится. Например, электричество можно использовать для производства охлажденной воды или льда в периоды низкого спроса, а затем использовать для охлаждения в периоды пикового потребления электроэнергии.

В дополнение к этим технологиям в настоящее время разрабатываются новые технологии, такие как проточные батареи, суперконденсаторы и сверхпроводящие магнитные накопители энергии.

Хранение электроэнергии в США

По данным Министерства энергетики США, по состоянию на март 2018 года в Соединенных Штатах имелось более 25 гигаватт накопительных мощностей электроэнергии. Из этого общего количества 94 процента приходилось на гидроаккумулирующие гидроаккумуляторы, и большая часть этой гидроаккумулируемой мощности приходилась на установлен в 1970-х гг. Шесть процентов остальной емкости аккумуляторов составляют аккумулятор, теплоаккумулятор, сжатый воздух и маховик, как показано на следующем графике:

Источник: У.S. База данных по хранению глобальной энергии Министерства энергетики США (по состоянию на 1 марта 2018 г.).

Воздействие накопления электроэнергии на окружающую среду

Хранение электроэнергии может принести косвенные экологические выгоды. Например, накопление электроэнергии можно использовать для интеграции большего количества возобновляемых источников энергии в электрическую сеть. Хранение электроэнергии также может помочь генерирующим объектам работать на оптимальном уровне и сократить использование менее эффективных генерирующих агрегатов, которые в противном случае работали бы только в часы пик.Кроме того, дополнительная мощность, обеспечиваемая накоплением электроэнергии, может отсрочить или избежать необходимости строительства дополнительных электростанций или инфраструктуры передачи и распределения.

Возможные негативные последствия накопления электроэнергии будут зависеть от типа и эффективности технологии хранения. Например, в батареях используется сырье, такое как литий и свинец, и они могут представлять опасность для окружающей среды, если не утилизируются или не перерабатываются должным образом. Кроме того, в процессе хранения теряется часть электроэнергии.

Электричество в природе | Hydro-Qubec

Молния

Молния и гром случаются одновременно, но молния движется со скоростью, близкой к скорости света, а гром движется со скоростью звука, примерно в 866 000 раз медленнее скорости света, что объясняет задержку между двумя явлениями.

Разряд молнии может достигать 30 миллионов вольт, что эквивалентно 2,5 миллионам автомобильных аккумуляторов!

Каждую секунду между моментом удара молнии о землю и моментом, когда мы слышим гром, соответствует 300 метрам.Итак, если считать 3 секунды, молния ударила в 900 метрах.

Молния — это в основном статическое электричество, вызванное огромным скоплением капель дождя, трущихся друг о друга высоко в небе.

Электрическая рыба

На самом деле существуют виды рыб — некоторые виды скатов, угрей и сомов — у которых есть особые органы, излучающие электрические разряды.

Они используют эти разряды, чтобы парализовать добычу, защитить себя или определить местонахождение объектов.

Электрические угри ( Electrophorus electricus ), обитающие в реках Южной Америки, производят достаточно электроэнергии, чтобы привести в действие дюжину 40-ваттных лампочек.

Солнечные бури

Активность Солнца усиливается каждые 11 лет, создавая штормы на поверхности нашей звезды, которые, в свою очередь, нарушают магнитное поле Земли. Эти магнитные бури могут вызвать серьезные проблемы для систем передачи электроэнергии.

Истерики Солнца

Солнечные циклы — относительно неизвестное и сложное явление.Однако ученые заметили, что количество солнечных пятен, появляющихся на поверхности Солнца, достигает максимума каждые 11 лет. Эти темные пятна наблюдаются в течение почти 400 лет с момента изобретения телескопа и являются источником солнечных вспышек, при которых внезапно высвобождается огромное количество энергии. Сильнейшие из них мощнее 40 миллиардов атомных бомб! Эта энергия нагревает окружающие газы, выбрасывая из Солнца огромные пузыри сверхгорячей материи. Эти массы протонов и электронов, известные как плазменные шлейфы, в конечном итоге могут ударить по Земле.

Следующая остановка, Земля!

Поток газа и частиц, выпущенных Солнцем, движется с невероятной скоростью от 300 до 1200 км / с! Даже при этом солнечному ветру потребуется несколько дней, чтобы преодолеть 150 миллионов километров, разделяющих Солнце и Землю. Мы уже знаем, что фотоны достигают Земли за восемь минут. Заряженные частицы движутся медленнее и достигают нас от двух до пяти дней. К счастью, большинство из них отвлекает магнитное поле. Те, что проникают в атмосферу, генерируют мощные электрические токи, которые движутся и различаются по интенсивности.Эти электрические токи могут перемещаться на высоте около ста километров (ионосфера) в течение нескольких минут, нескольких часов и даже нескольких дней. Результатом является прекрасное явление, известное нам как Северное сияние или Северное сияние в Северном полушарии и Южное сияние или Австралийское сияние в Южном полушарии.

Полярные сияния — это звездные вспышки ярких цветов и завораживающей красоты: одно из самых зрелищных представлений матери-природы.

К сожалению, эти яркие и красочные шоу — не единственное влияние солнечного ветра. Электрические токи в ионосфере вызывают быстрое изменение интенсивности магнитного поля Земли и вызывают так называемые магнитные бури. Они также вызывают токи в земной коре, и эти токи пытаются протекать через все, что является хорошим проводником, например, железнодорожные пути, трубопроводы, подводные кабели и линии электропередач.

Линии системы передачи энергии соединены с землей через трансформаторы, которые обеспечивают путь наименьшего сопротивления, поэтому ток, создаваемый магнитными бурями, проходит через них.Но поскольку трансформаторы не предназначены для того, чтобы выдерживать этот тип тока, возникают искажения формы электрического сигнала. Система защиты воспринимает эту аномальную волну как перегрузку или скачок напряжения и «размыкает» или отключает часть передающего оборудования. Результатом является прерывание передачи и, возможно, отключение электроэнергии.

Побочные эффекты

Магнитные бури влияют не только на линии электропередач. Они могут нарушать работу спутников, радиосвязи, сотовых телефонов, телевещания на УКВ и коротковолновой связи.Они также могут вызывать коррозию трубопроводов природного газа и нефтепродуктов. Были замечены даже огни железнодорожных переездов!

Производство электроэнергии — Canadian Electricity Association

Производство электроэнергии — Canadian Electricity Association Перейти к содержанию

Генерация — один из трех ключевых компонентов, составляющих нашу национальную электроэнергетическую отрасль:

  • Генерация (производство электроэнергии)
  • Передача (передача электроэнергии по высоковольтным линиям от генерирующих станций в населенные пункты)
  • Распределение (доставка электроэнергии физическим лицам)

Канада занимает 4-е место в мире по экспорту вырабатываемой электроэнергии.

Как вырабатывается электричество

Электроэнергия производится, когда механическая энергия используется для вращения турбины.

Механическая энергия для вращения турбины может поступать из различных источников, включая падающую воду, ветер или пар от тепла, генерируемого ядерной реакцией или сжиганием ископаемого топлива.

Источники выработки электроэнергии

Для выработки электроэнергии в Канаде мы используем:

Hydro

Гидроэнергетика использует силу проточной воды для производства электроэнергии.Это чистый и возобновляемый ресурс, из которого Канада вырабатывает большую часть электроэнергии.

Канада является третьим по величине производителем гидроэлектроэнергии в мире. Благодаря гибким возможностям хранения и эксплуатационной гибкости мы можем постоянно зависеть от гидроэнергетики.

Видео любезно предоставлено студентом Energy:

Nuclear

Ядерная энергия возникает в результате процесса ядерного деления, в результате которого выделяется тепло, которое используется для генерации пара, который вращает турбины для выработки электроэнергии.

Видео предоставлено студентом Energy:

Уголь

Уголь — богатый и недорогой источник энергии с долгой историей. Он обеспечивает 40% мировой электроэнергии.

Видео предоставлено студентом Energy:

Природный газ

Природный газ, ископаемое топливо, обнаруженное в подземных резервуарах, выделяет примерно половину выбросов углерода, чем уголь, когда используется для производства электроэнергии.

Видео любезно предоставлено студентом Energy:

Биомасса

При сжигании органических материалов образуется пар высокого давления, который приводит в действие турбогенератор для производства электроэнергии. Отобранный пар из электростанции также может быть использован.

Видео предоставлено студентом Energy:

Wind

Турбины улавливают кинетическую энергию ветра и преобразуют ее в электричество. Количество энергии определяется скоростью ветра.

В Онтарио самый большой рынок ветроэнергетики в Канаде: 2 465 ветряных турбин и 4 781 МВт установленной мощности. (CANWEA)

Ветер — это возобновляемый источник энергии, который относительно мало влияет на окружающую среду, не считая эстетических проблем и проблем с шумом. Успешное развитие технологий хранения энергии окажет значительное влияние на способность нашей электросети обеспечивать прерывистые поставки электроэнергии, такие как энергия ветра.

Видео предоставлено студентом Energy:

Когенерация

Когенерация — это когда отработанное тепло от производства электроэнергии рекуперируется и используется для таких приложений, как отопление и охлаждение помещений, водонагревание и тепло промышленных процессов.

  • По данным Канадского центра данных и анализа конечного использования промышленной энергии, в 2012 году в Канаде было 200 когенерационных систем с рабочей мощностью 6,5 ГВт.
  • На Альберту и Онтарио приходится 67% когенерационных мощностей в Канаде. На канадские коммунальные предприятия приходится наибольшая когенерационная мощность — 45% по классификации системного оператора. Далее следует производство бумаги с показателем 23%.
Солнечная энергия

Две технологии используют солнечную энергию.Солнечная фотоэлектрическая энергия преобразует солнечный свет в электричество постоянного тока с помощью полупроводников, а солнечная тепловая энергия использует солнечное тепло.

Видео предоставлено студентом Energy:

Tidal

Приливная энергия создается, когда приливы вращают погруженные турбины. Полученная энергия преобразуется в электричество. Первая в Северной Америке приливная турбина, подключенная к сети, находится в Новой Шотландии.

Видео предоставлено студентом Energy:

Геотермальная энергия

Геотермальная энергия использует внутреннее тепло земной коры для производства электроэнергии.Геотермальная генерация сосредоточена в вулканически и тектонически активных регионах.

Видео предоставлено студентом Energy:

Выбор первичного источника

На то, как вырабатывается электричество, в значительной степени влияют ресурсы, доступные для производства механической энергии.

Например:

  • Квебек и Британская Колумбия имеют изобилие рек, необходимых для гидроэнергетики
  • Саскачеван с равнинным ландшафтом и отсутствием крупных рек, изобилует углем
  • Альберта богата нефтью и природным газом
  • Онтарио вложил значительные средства в атомную энергетику

Экономические и экологические

Электроэнергетическая система Канады уже является относительно чистой и низкоуглеродистой.Ожидается, что доля возобновляемых источников энергии в структуре электроэнергии увеличится до 12% к 2035 году благодаря постоянному развитию технологий, снижению затрат на производство возобновляемых источников энергии и нашим коллективным усилиям по защите окружающей среды.

Электричество из ядра Земли | WIRED

Радикально новый метод производства электричества из внутреннего тепла Земли был разработан проектировщиком электростанции из Техаса.

Дойл Брюингтон из ESOR Consulting Engineers в Хьюстоне спроектировал длинный автономный вал турбины, называемый Power Tube, который может отводить подземное тепло, не полагаясь на гейзеры и паровые вентили.

«Я 25 лет строил электростанции и видел ущерб, который они наносили», — сказал Брюингтон. «Ядовитый газ, выделяемый множеством этих паровых турбин, вызвал много кислотных дождей по всему миру».

Энерготрубка Брюингтона представляет собой герметичную трубку шириной четыре фута и длиной 185 футов, в которой находится паровой генератор. Идея состоит в том, чтобы закопать Power Tube достаточно глубоко, чтобы коснуться горячего камня.

Наконечник Power Tube содержит пару углеводородов, изопентан и изобутен, которые превращаются в пар при контакте с горной породой, температура которой не менее 220 градусов по Фаренгейту (104 C).Пар поднимается вверх, приводя в движение генератор. Затем пар снова охлаждается в жидкость с помощью гелия, который сжимается и расширяется с помощью звуковых волн. Затем сжиженные углеводороды закачиваются обратно в наконечник, чтобы возобновить цикл в непрерывном цикле. Магнитная подвеска, а не смазка, устраняет трение в турбине.

Брюингтон разработал прототип половинного размера, чуть более двух футов в диаметре и 85 футов в длину. Ожидается, что он будет производить мегаватт электроэнергии, достаточной для питания 750 домов.По словам Брюингтона, первые Power Tubes будут введены в эксплуатацию на Гавайях и в Коста-Рике. Он все еще разговаривает с властями и не сказал, когда он уйдет в землю.

Брюингтон сказал, что полноразмерные Power Tubes будут производить 10 МВт, что достаточно для освещения небольшого жилого городка. В отличие от старомодных геотермальных площадок, которые занимают до 10 акров земли, у Power Tubes будет только небольшой навес для техобслуживания наверху. А поскольку Power Tubes работают бесшумно, над ними можно строить дома и офисы.

Рабочие силовые трубки будет легко собрать на месте: длинные трубки будут транспортироваться секциями, сказал Брюингтон. А обслуживание Power Tube на месте будет быстрее, чем обслуживание традиционных электростанций, потому что весь вал можно снять и заменить за несколько часов. Затем дефектную трубку можно было установить обратно на заводе.

Если Брюингтон прав, большая часть энергии, необходимой для расширения индустриализации, может быть обеспечена без выброса парниковых газов, связанных со сжиганием ископаемого топлива или рисков, связанных с ядерной энергией.

Многие из наиболее быстрорастущих экономик находятся на «огненном кольце» Земли, в цепи вулканов, землетрясений и других проявлений тектонического напряжения. Брюингтон утверждает, что 48 стран только в Огненном кольце могут получать питание от энерготрубок, что является большим шагом вперед по сравнению с другими геотермальными системами.

«Все, что имеет под собой магму, прекрасно», — сказал он.

Но ведущие исследователи наблюдают настороженно, и некоторые выразили серьезные сомнения в отношении планов Брюингтона.Они не понимают, как он собирается реализовать свои планы по электропитанию без воды.

Может ли тепло земной коры стать основным источником энергии? — ScienceDaily

В мире, где потребление энергии растет, наша единственная надежда — развитие новых технологий производства энергии. Хотя используемые в настоящее время возобновляемые источники энергии, такие как энергия ветра и солнца, имеют свои достоинства, существует гигантский, постоянный и неиспользованный источник энергии буквально у нас под носом: геотермальная энергия.

Для производства электричества из геотермальной энергии необходимы устройства, которые каким-то образом могут использовать тепло земной коры. Недавно группа ученых из Tokyo Tech во главе с доктором Сатико Мацусита достигла большого прогресса в понимании и разработке сенсибилизированных тепловых ячеек (STC), типа батарей, которые могут генерировать электроэнергию при температуре 100 ° C или ниже.

Существует несколько методов преобразования тепла в электроэнергию, однако их широкомасштабное применение невозможно.Например, горячие и холодные окислительно-восстановительные батареи и устройства, основанные на эффекте Зеебека, невозможно просто закопать внутри источника тепла и эксплуатировать.

Команда доктора Мацуситы ранее сообщала об использовании STC в качестве нового метода преобразования тепла непосредственно в электрическую энергию с использованием сенсибилизированных красителями солнечных элементов. Они также заменили краситель на полупроводник, чтобы система могла работать с использованием тепла вместо света. STC, батарея, состоит из трех слоев, зажатых между электродами: слоя переноса электронов (ETM), слоя полупроводника (германий) и слоя твердого электролита (ионы меди).Короче говоря, электроны переходят из состояния с низкой энергией в состояние с высокой энергией в полупроводнике, становясь термически возбужденными, а затем естественным образом переносятся в ETM. Затем они выходят через электрод, проходят через внешнюю цепь, проходят через противоэлектрод, а затем достигают электролита. На обеих границах раздела электролита происходят реакции окисления и восстановления с участием ионов меди, в результате чего электроны с низкой энергией переносятся в полупроводниковый слой, так что процесс может начаться заново, замыкая электрическую цепь.

Однако в то время не было ясно, можно ли использовать такую ​​батарею в качестве постоянного двигателя или ток в какой-то момент прекратится. После тестирования команда заметила, что электричество действительно перестало течь через определенное время, и предложила механизм, объясняющий это явление. В основном, ток останавливается, потому что окислительно-восстановительные реакции в слое электролита прекращаются из-за перемещения различных типов ионов меди. Что наиболее важно, и что также удивительно, они обнаружили, что батарея может сама исправить эту ситуацию в присутствии тепла, просто размыкая внешнюю цепь на некоторое время; другими словами, с помощью простого переключателя.«При такой конструкции тепло, обычно считающееся некачественной энергией, стало бы отличным возобновляемым источником энергии», — заявляет Мацусита.

Команда очень взволнована своим открытием из-за его применимости, экологичности и потенциала для решения глобального энергетического кризиса. «Нет страха перед радиацией, нет страха перед дорогой нефтью, нет нестабильности выработки электроэнергии, как если бы мы полагались на солнце или ветер», — отмечает Мацусита. Дальнейшие усовершенствования этого типа батарей будут целью будущих исследований с надеждой однажды решить энергетические потребности человечества, не нанося вреда нашей планете.

История Источник:

Материалы предоставлены Токийским технологическим институтом . Примечание. Содержимое можно редактировать по стилю и длине.

Производство собственной электроэнергии | Умные дома

Выработка собственного электричества может снизить затраты на электроэнергию и обеспечить надежность энергоснабжения.

Для сельской недвижимости это может быть единственный практичный и экономичный вариант. Для городской недвижимости «микрогенерация» также может быть привлекательным вариантом при определенных обстоятельствах.

Есть несколько вариантов, от солнечных, ветряных и гидроэнергетических до традиционных дизельных генераторов.

Зачем вырабатывать собственное электричество?

Рентабельность

Производство собственной электроэнергии в долгосрочной перспективе может оказаться дешевле, чем продолжение использования энергии от местных линий, особенно для объектов, имеющих доступ к хорошим возобновляемым ресурсам (ветровым или солнечным).

Для собственности в удаленных районах подключение к местным линиям может стоить десятки тысяч долларов.Выработка собственного электричества может обойтись дешевле. Это также может быть вариант в городских условиях. В настоящее время затраты на установку относительно высоки, но они снижаются.

Если вы подключены к сети и вырабатываете собственное электричество, вы можете продать излишки обратно своей энергетической компании.

Гарантированное подключение

Если вы можете генерировать и хранить собственное электричество, индивидуально или совместно с соседями, вы можете быть уверены в надежности электроснабжения даже в случае отключения электроэнергии или закрытия вашей местной электросети.Это дает вам гораздо большую независимость от сети и может быть полезно во время гражданской чрезвычайной ситуации или плохой погоды.

Воздействие на окружающую среду

В 2016 году почти 84 процента электроэнергии Новой Зеландии вырабатывается из возобновляемых источников, таких как гидроэнергия, ветер, биоэнергия и геотермальная энергия. Остальное происходит от сжигания ископаемого топлива, такого как газ или уголь, процесса, который приводит к выбросам парниковых газов и способствует изменению климата.

New Zealand Energy Quarterly на веб-сайте MBIE содержит информацию о производстве энергии в Новой Зеландии.

По мере увеличения спроса и выработки дополнительной электроэнергии эти выбросы, вероятно, увеличатся. Снижая спрос на электроэнергию от местных линий и вырабатывая ее самостоятельно с использованием возобновляемых источников энергии, таких как гидро-, ветровые или фотоэлектрические элементы, вы поможете сократить выбросы парниковых газов в Новой Зеландии и свой личный углеродный след.

Как вы можете вырабатывать собственное электричество?

Варианты для выработки собственной электроэнергии включают:

  • фотоэлектрические (PV) системы
  • ветряные турбины
  • микрогидравлические системы
  • Двигатели на биомассе и биогазе
  • дизельных или биодизельных генераторов.

Ветровая, фотоэлектрическая, гидроэнергетическая, биогазовая и биодизельная энергия — все они используют возобновляемые источники энергии, не производят чистых вредных выбросов и — в зависимости от ваших обстоятельств — могут предложить рентабельные варианты производства электроэнергии.

Если вы уже подключены к сети, переход на эти системы может оказаться относительно дорогим вариантом. Тем не менее, все это стоит учитывать, особенно в отношении недвижимости в удаленных местах — а цена снижается из года в год.

Биомасса и биогаз

Биомасса — это органический материал, который можно использовать для производства электроэнергии, тепла и трансформировать в топливо для транспорта.Примерами биомассы являются древесная щепа, обрезки древесины, бумажные изделия, растительные остатки, навоз и сточные воды. Если фабрики или фермы производят много отходов биомассы, может быть экономически выгодно использовать эти отходы для выработки электроэнергии.

В домашних условиях более эффективно сжигать сухую биомассу в дровяной печи для отопления и нагрева воды или в случае листьев и садовых отходов для ее компостирования.

При разложении органических отходов в отсутствие кислорода образуется смесь метана и диоксида углерода.Этот биогаз можно использовать вместо природного газа для отопления, охлаждения, приготовления пищи и производства электроэнергии. Метан и углекислый газ являются парниковыми газами, но лучше сжечь метан, чем позволить ему попасть в атмосферу.

Биогаз полезен для фермеров, которым приходится избавляться от большого количества отходов животноводства. Однако биогазовая установка требует технического обслуживания и эксплуатационного внимания, поэтому может подходить только для крупных хозяйств.

Дизель-генераторы

Дизель-генераторы уже много десятилетий используются для выработки электроэнергии в удаленных местах.

Они также используются для аварийного производства электроэнергии в случае отключения электроэнергии. Они есть в больницах, компьютерных центрах и других важных зданиях.

При использовании системы возобновляемой энергии (особенно ветровой или солнечной) вам может понадобиться генератор в качестве резервного. Он может запуститься автоматически, если заряд аккумулятора станет слишком низким, например, в безветренный или пасмурный день.

Они просты в использовании и могут обслуживаться любым механиком в гараже. Но у них есть недостатки: шум, затраты на топливо, неудобство заправки, выхлопные газы (включая парниковые газы и другие опасные загрязнители воздуха), износ и затраты на техническое обслуживание.

Хранение и использование электроэнергии

Если вы производите собственное электричество — особенно с помощью ветряных, гидро- или фотоэлектрических систем — вы можете быть подключены к сети (и подавать в нее излишки электроэнергии) или быть независимыми (стенд -одельная энергосистема). Если у вас автономная система, вам потребуется:

  • иметь батареи для хранения энергии по мере ее выработки
  • имеют дополнительную опцию генерации для обеспечения бесперебойного питания.

Если вы подключены к сети, вы будете подключены к местной электросети и сможете экспортировать избыточную электроэнергию, а также использовать электроэнергию от сети в качестве резервной для вашей системы. Использование сети для хранения данных означает, что вы можете сэкономить на размещении локальных аккумуляторных батарей.

Батареи

Если вы используете батареи, вам понадобится достаточно емкости для хранения электроэнергии для ваших нужд, когда генераторы не работают. Это может быть эквивалентно нескольким дням поставки, если вы полагаетесь на прерывистые источники генерации, такие как ветряные турбины или солнечные фотоэлектрические установки.

Ваши батареи также должны иметь возможность накапливать электроэнергию для удовлетворения пикового спроса, когда несколько приборов включены одновременно.

Это должны быть батареи глубокого разряда. Большинство аккумуляторов, например используемых в транспортных средствах, повреждаются, если вы израсходуете слишком много заряда. Те, у кого глубокий цикл, могут выдержать обычную разрядку ниже 50%.

Есть множество вариантов, но свинцово-кислотные батареи являются самыми дешевыми для крупномасштабного хранения. В системах возобновляемой энергии обычно используются так называемые мокрые батареи, а не герметичные или гелевые батареи.

Батареи выделяют едкие и легковоспламеняющиеся газы на последних этапах зарядки, поэтому их следует устанавливать в хорошо вентилируемом помещении, по возможности отдельно от дома.

Их необходимо правильно установить и обслуживать, чтобы они были в безопасности и в хорошем состоянии. Проконсультируйтесь с вашим поставщиком и следуйте инструкциям производителя. Может потребоваться их замена каждые 6-8 лет.

Банк батарей, достаточный для автономной системы в одном доме, может стоить от 10 000 до 30 000 долларов, в зависимости от того, сколько энергии вам нужно хранить.

Другое оборудование

Если у вас есть собственная система выработки электроэнергии и вы храните энергию в батареях, вам понадобится другое оборудование, такое как:

  • инвертор для преобразования постоянного тока, хранящегося в батарее, в переменный ток 230 В ( AC) используется в стандартных приборах
  • выпрямитель для преобразования переменного тока в постоянный перед аккумулятором
  • контроллер, чтобы убедиться, что выходное напряжение составляет 230 В и 50 Гц, а аккумулятор не перезаряжается (он передает избыточную мощность на элемент сопротивления, который может сильно нагреваться).
  • кабелей, которые должны быть достаточно толстыми, чтобы выдерживать самый высокий ток.Чем они короче, тем меньше энергии вы потеряете в пути. Если они должны быть длинными, напряжение необходимо увеличить — а это значит, что вам понадобится дополнительное оборудование для изменения уровней напряжения.

Обратите внимание, что для работы с этими системами обычно требуется лицензированный электрик.

Продажа в сеть

Ваш розничный продавец электроэнергии будет продавать вам электроэнергию по одной цене и может покупать электроэнергию у вас по другой цене. Вам понадобится контракт с продавцом.

В зависимости от того, как вы генерируете электроэнергию, линейная компания может не принимать очень небольшие количества колеблющейся мощности.Это может означать, что вам придется использовать батарею в качестве промежуточного накопителя, прежде чем отправлять питание обратно в сеть.

Разные поставщики допускают разные варианты, поэтому проверьте перед установкой системы. Если вы подключены к сети, вам придется платить ежемесячную плату за поставку.

Вам также понадобится система управления, которая предотвращает передачу энергии в сеть, когда сеть не работает, чтобы обеспечить безопасность всех, кто работает на линиях.

Энергоэффективность

Производство электроэнергии в домашних условиях стоит дорого, поэтому вы не хотите покупать систему большего размера, чем вам нужно.

Перед установкой любого типа домашнего генерирующего оборудования убедитесь, что вы сокращаете потребление электроэнергии с помощью изоляции, энергоэффективных лампочек, газового приготовления, солнечного нагрева воды и т. Д.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *