Получение электричества из воды: Вода стала «топливом» для получения электричества – Электричество из лужи, или Как получить энергию из воды — Энергетика и промышленность России — № 19 (327) октябрь 2017 года — WWW.EPRUSSIA.RU

Содержание

Вода стала «топливом» для получения электричества

Что если зонтик сможет заряжать ваш телефон или освещать дорогу под дождем? Ученые создали высокоэффективный генератор, вырабатывающий энергию из воды.

Разработчики надеются, что наряду с солнечной и ветровой энергией, новый метод получения электричества из возобновляемого источника энергии поможет преодолеть мировой энергетический кризис.

Технология получения электричества с помощью воды не нова, но исследователи смогли значительно повысить эффективность генератора за счет особого покрытия, секрет которого не разглашается. Одна капля позволяет генерировать достаточно энергии, чтобы питать 100 маленьких светодиодных лампочек, а четыре капли заставляют светиться почти 1500 светодиодов.

То есть мгновенная мощность, создаваемая их генератором с особым покрытием, в тысячи раз выше, чем у аналогичных устройств без данного покрытия.

«Значимость этой технологии заключается в том, что на каждую каплю падающего дождя приходится больше электрической мощности, что делает устройство гораздо эффективнее при преобразовании энергии из падающих капель в электричество», — говорит соавтор исследования и профессор химия из университета Небраски-Линкольна Сяо Чен Цзэн.

Wang et. al. / City University

Высокая эффективность генератора достигается не только за счет покрытия. Ученые заметили, что генератор не создавал пика электрической мощности, когда капли первоначально ударялись о его поверхность. Пик наблюдался только когда капля разрушалась и растекалась при ударе. То есть растекающаяся капля, касающаяся алюминиевого электрода на поверхности прибора, создавала замкнутую цепь. Авторы пишут, что капля действовала как резистор, а покрытие — как конденсатор.

Это позволило поверхности с покрытием сохранять заряд от непрерывно падающих капель, а затем высвобождать его, когда капли растекаются и соединяют два конца цепи.

Как заявил ведущий автор исследования и профессор машиностроения в Городском университете Гонконга Зуанкай Ван, устройство способно генерировать энергию и от водяного волнения, и даже в водопроводных трубах, для чего не требуются падающие капли.

Электричество из лужи, или Как получить энергию из воды — Энергетика и промышленность России — № 19 (327) октябрь 2017 года — WWW.EPRUSSIA.RU

Газета «Энергетика и промышленность России» | № 19 (327) октябрь 2017 года

Без еды человек может прожить от четырех до шести недель, а вот без воды – не более трех дней. Впрочем, не только человек, все живое нуждается в воде.

Однако именно человек пошел дальше всех, ведь людям вода нужна не только для поддержания жизни, приготовления пищи и гигиены, но и для многого другого. Воду мы используем и в быту, и на производстве. И вот теперь человечество всерьез задумалось о том, чтобы добывать из воды энергию!

Конечно, человек давно уже умеет добывать энергию с помощью воды, для чего служит огромное количество гидроэлектростанций, построенных по всему миру. Однако можно ли добывать энергию прямо из воды?

Невозможное возможно?

В принципе, современная физика к подобному относится с изрядным скепсисом. Ведь, в соответствии с фундаментальными физическими законами, нет способа извлекать химическую энергию из воды. У воды отрицательная энтальпия образования, следовательно, для разделения ее на элементы требуется затратить энергию. Не существует соединений кислорода и водорода с большей негативной энтальпией образования, за счет которой мог бы быть получен избыток энергии. Поэтому многие изобретатели, которые заявляли, что научились добывать энергию непосредственно из воды, получали клеймо мошенников.

Однако изобретателей это не останавливает, и раз за разом ученые пытаются добиться невозможного. Вот и опять не так давно была опубликована информация о том, что ученые разработали технологию, благодаря которой из воды стало возможно получать экологически чистую энергию. Якобы этого добился профессор Массачусетского технологического института Дэниэл Носер.

Прототип получил название Sun Catalytix. Для извлечения водорода из воды устройство использует солнечную энергию. Специальный солнечный элемент помещается в сосуд с водой. При попадании на него света образуются пузырьки водорода. Процесс получения дешевой энергии из воды полностью обратим. При помощи солнечного света происходит разложение воды на водород и кислород. Получаемый кислород впоследствии используется при горении водорода. Конечным продуктом горения снова является вода. Получается такой себе «круговорот воды в природе» в пределах энергетической установки. По сути, солнечная энергия преобразуется в удобную для использования форму посредством воды.

Разработчики уверены, что их изобретение сможет применяться не только для обеспечения энергией отдельных домов и учреждений, но даже в транспортных средствах. Их уверенность была подкреплена грантом в размере 4 млн долл. от Агентства исследований в области энергетики и индийского машиностроительного гиганта Tata. Была даже создана «Sun Catalytix Corporation».

По словам разработчиков, их технология обеспечит источниками бесплатной энергии как жилые дома, так и другие объекты в странах третьего мира. Сюда включаются и транспортные решения, и промышленные предприятия и т. д.

Единственное, что смущает в этой «новости» – датирована она 2011 г., а Google даже утверждает, что «по их данным, компания Sun Catalytix Corporation закрыта навсегда».

Топливо из воды

Так что же получается? Неужели физика права, и вода не сможет нам помочь в деле производства энергии? Возможно, это и так, но из воды можно получить топливо. Например, водород. Сейчас водород получают, главным образом, из природного газа методом каталитической конверсии с водяным паром. Пока это самый дешевый способ, но в конечном итоге такой путь ведет в тупик, ведь запасы газа рано или поздно тоже закончатся. Неиссякаемым источником водорода может служить вода. Электролиз воды технически осуществить довольно просто, но этот процесс требует значительных энергозатрат. Технология будет экономически выгодной только в том случае, если использовать дешевую электроэнергию, получаемую желательно из возобновляемых источников, – за счет энергии воды, ветра, солнца.

Еще в 1935 г. Чарльз Гаррет продемонстрировал «в течение нескольких минут» работу «водяного автомобиля». Как можно увидеть из патента Гаррета, оформленного в том же году, для генерации водорода применялся электролиз. Повторить успех Гаррета пытались и другие изобретатели. Конечно, в этом деле тоже не все так просто. И многие изобретатели, заявлявшие, что добились в вопросе получения топлива из воды существенного прогресса, также оказались мошенниками.

Например, в 2002 г. Genesis World Energy анонсировала готовое к продвижению на рынок устройство, которое извлекало бы энергию из воды путем ее разложения на водород и кислород. Увы, в 2006 г. Патрик Келли, собственник GWE, был приговорен в Нью-Джерси к пяти годам тюрьмы за кражу и выплате возмещений в размере 400 тыс. долл.

Другой изобретатель, Дэниэл Дингел, заявлял, что разработал технологию, позволяющую использовать воду в качестве топлива. В 2000 г. Дингел стал бизнес-партнером компании Formosa Plastics Group с целью дальнейшего развития технологии. Но в 2008-м компания подала на изобретателя иск за мошенничество, и 82‑летний Дингел был приговорен к 20 годам тюрьмы.

В том же 2008 г. СМИ Шри-Ланки сообщили о некоем гражданине этой страны по имени Тушара Приямал Эдиризинге, который утверждал, что проехал около 300 км на «водяном автомобиле», потратив 3 литра воды. Тушара продемонстрировал свою технологию премьер-министру Ратнасири Викреманаяке, который пообещал всемерную правительственную поддержку его усилий по продвижению водяного автомобиля на рынок Шри-Ланки. Однако несколько месяцев спустя Тушара был арестован по обвинению в мошенничестве.

Шанс все же есть

Вместе с тем, ошибочно думать, что все, кто занимается проблемой получения топлива из воды, – мошенники. Например, авторитетный ученый Джеффри Хьюитт даже стал лауреатом премии «Глобальная энергия» в 2007 г. за идею производства топлива на основе энергии воды. К сожалению, сам ученый считает, что подобные методы добычи топлива еще долго останутся недоступными для будничного использования в связи с их высокой стоимостью. По его мнению, стоимость такой энергии безумно велика, и время, когда экологичные виды топлива можно будет использовать в повседневной жизни, настанет еще не скоро. Так что пока энергия из воды – не конкурент традиционной энергетики. Однако ученый уверен, что эту отрасль энергетики необходимо активно развивать, так как применение, например, водородного сырья может повысить коэффициент полезного действия электростанций до 85 % с текущего уровня в 50 %. И в будущем новое горючее способно заменить все существующие ныне ресурсы.

Так что ученые не зря бьются над этой проблемой. Возможно, в скором времени это принесет свои плоды. Например, в марте этого года пришло сообщение, что в процессе лабораторных исследований ученые из Калифорнийского университета научились создавать топливо из воды. Над созданием альтернативного вида топлива американские специалисты начали работу еще два года назад. На протяжении этого времени ученые обнаружили, что при правильном расщеплении молекул воды получается горючее, которое в будущем способно заменить все существующие ныне ресурсы. Полученный результат не до конца удовлетворил ученых, поэтому исследовательская работа еще продолжается.

Новый метод, который разработали специалисты, способен расщеплять воду на несколько молекул. При правильном синтезе водорода возникают процессы, которые присущи топливу. Однако существует основная проблема, решением которой занимаются ученые. Дело в том, что расщепленные молекулы подвергаются стремительному разрушению, в результате чего синтезировать все элементы не представляется возможным.

На сегодняшний день ученые работают над созданием метода, который бы позволил использовать все полученные элементы. Конечно, это вновь может оказаться уткой, но возможно что и нет. И если результаты научной работы окажутся положительными, то человечество получит новый альтернативный вид топлива, ресурсы которого будут неограниченными.

Как добыть электричество из водопроводной воды

Получение электроэнергии из воды само по себе не в новинку. Гидроэлектростанции используются по всему миру, но ученые не останавливаются на достигнутом и ищут новые пути рационального использования водных ресурсов. Довольно оригинальный способ нашли в Гонконге.

Сотрудники кафедры Гражданского Строительства при Политехническом Университете Гонконга и инженеры Управления Водоснабжения Гонконга представили совместную разработку по превращению городской системы водоснабжения в альтернативный источник электроэнергии.

 

Для мониторинга состояния водопроводной системы Гонконга общей протяженностью более 7 800 км требуется обширная сеть контрольных устройств. Само собой, эти устройства нуждаются в электропитании. Инженеры предложили устанавливать небольшие гидротурбины в водопроводные трубы для получения электричества из питьевой воды.

Самым большим вызовом в ходе разработки стали малый диаметр водопроводных труб – не более 1 метра – и намного меньший объем потенциальной энергии по сравнению, например, с огромными плотинами. В результате совместной работы специалистов по гидродинамике, машиностроению и возобновляемым источникам энергии была разработана высокоэффективная турбина. Она врезается в трубу и способна выдавать напряжение 80 Вольт – этого достаточно для питания 4 флуоресцентных ламп.

Оригинальное устройство состоит из внешнего гидроэлектрического генератора и высокоэффективной сферической турбины, которая опускается в проточную воду, не создавая при этом дополнительного противодавления.
В целях сохранения баланса между напором воды и захватываемой кинетической энергией была выбрана 8-лопастная турбина, позволяющая добиться максимально возможной эффективности без значимого влияния на инерцию потока воды.

Для достижения максимальной выходной мощности центральный вал сделан полым, что обеспечивает сокращение энергопотерь при вращении генератора. Также для повышения энергетического потенциала проточной воды команда разработчиков решила разместить по центру трубы металлический блок, который выступает в роли компрессора, нагнетая поток воды. Все части турбогенератора размещены на одном валу, что позволяет отказаться от использования масел и исключить риск загрязнения питьевой воды.

Мини-гидроэлектростанции в настоящее время проходят эксплуатационные испытания в водопроводной системе Гонконга.
«Мы сделали водопроводные трубы самодостаточными», — отметил руководитель проекта, профессор кафедры Гражданского Строительства Хонг-шин Янг. Согласно расчетам после окончательного ввода в эксплуатацию массив гидротурбин обеспечит экономию 700кВт электричества в год, а также сократить выбросы углекислого газа на 560 кг ежегодно.
«Эта технология открывает новые возможности для разработки гидротурбин, которые могут быть использованы для генерации энергии из других низкоэнергетических водных ресурсов», — добавил профессор Янг.

Источник

WATTA — Электричество из воды

Эта прекрасная маленькая демонстрация была изобретена лордом Кельвином. Используя несколько консервных банок, проволоку и капающую воду, можно элегантно сгенерировать тысячи вольт энергии.

Итак у нас есть 4 консервных банки, верхние две соединены токопроводящей проволокой, а нижние друг от друга изолированы. От верхних банок вниз отведены трубочки. 

Вода, капающая из этих трубочек пролетает сквозь проволочные кольца, при чем правое кольцо припаяно к левой нижней банке, а левое к правой.

Смотрите, что произойдет, если открыть воду:


Что происходит?

Когда вода капает, одна из нижних банк становится положительно заряженой, а другая отрицательно с разницей потенциалов больше 1000В. Это означает, что любые мелкие капельки будут сбиты с пути электрическим полем и будут разлетаться кто куда.

Почему?

Это очень гениально и просто. Вначале, когда включают воду, одна из банок имеет чуть больший положительный заряд, чем другие. Какая именно банка имеет больший заряд, определяется чистой случайностью, так как изначальный заряд банок обуславливается естественной радиоактивностью или космическим излучением, или статикой оставшейся на банке после прикосновения. Кольцо, припаянное к этой банке соответственно тоже будет иметь чуть больший положительный заряд.

Электроны в воде притягиваются положительно заряженым кольцом, так что сами капли падают в банку отрицательно заряжеными.

Эта банка становится отрицательно заряжена и, следовательно, противоположное кольцо также становится отрицательным. Капли слева соответственно становятся положительными, делая левую банку всё более положительно заряженной.

Несмотря на то, что начальная разность потенциалов между банками ничтожна, в некоторых самодельных капельницах Кельвина удается получить разность потенциалов до 15 кВ. Причем одна пара жестяных банок заряжается положительно, а другая – отрицательно.
К нижним банкам может быть подсоединена проводами неоновая лампочка. При работе устройства, по мере накопления заряда на банках, она будет периодически вспыхивать.

Как получить электричество из воды

Сотрудники Университета Альберты нашли принципиально новый способ получения электроэнергии из воды. Первый прототип «электрокинетической» батареи выдал 1 миллиампер электричества с напряжением около 10 В — этого было достаточно, чтобы зажечь светодиод.

В изобретении используется эффект разделения зарядов. Имеет место феномен, называемый, двойным электрическим слоем, — когда ионы воды текут по каналу диаметром в 10 микрон с непроводящими стенками, на одном конце элемента питания возникает положительный заряд, на другом — отрицательный. В прототипе наличествовало около 400-500 тысяч раздельных каналов. Профессор Костюк полагает, что в будущем такие «водяные» батарейки можно будет использовать в качестве элементов питания для смартфонов и КПК.

Автономная электроэнергия: миф или реальность?

В 1729 году мир узнал, что на земле существуют материалы , которые могут пропускать через себя ток. Эти материалы стали именоваться проводниками. Были найдены и другие вещества , которые не проводят ток которые стали именоваться изоляторами. Но применять электричество человечество смогло лишь в начале 19 века. Стало ясно, что ток может быть использован для получения тепла и света. Тогда же было установлено, что электричество — это поток небольших заряженных частиц — электронов. И каждый из них несет малый заряд энергии. Но когда собирается много электронов, заряд становится большим, вот тогда и появляется электрическое напряжение. Поэтому электричество может по проводам перемещаться на длинные расстояния.

Давайте рассмотрим одно занятное явление. Человек снимает свитер через голову и вдруг ни с того, ни сего раздается треск. Если раздеваться в темноте, то можете наблюдать, как этот треск сопровождается искрами. Это искрит и трещит одежда. Посмотрев внимательнее можно увидеть, что свитер прилегает к рубашке, которая еще была одета на теле. Таким образом, между вещами возникает ток. Его проявление на разных предметах приводит не только к притяжению, но и к отталкиванию. Это и есть действие электричества. Выходит, что человек в нынешнее время не может и шагу ступить без электричества.

Электричество из воды в домашних условиях

Эта труба может напор водопроводной воды превращать в электроэнергию, которую можно применять для домашних условий.

Для получения электричества требуется установить в трубу устройство, потом открыть вентиль. Вода после этого будет производить желаемую электроэнергию, двигая внутри устройства маленькие колесики.

Произведенная энергия накапливается в специальных лампах, которые устанавливаются после зарядки на свое место для целевого применения, при этом возможна регулировка яркости их свечения.

Этот метод может быть использован людьми всего мира, где есть водопроводная вода. Странно, что до этого никто об этом не додумался. Поэтому изобретение Чоя вышло в финал конкурса по индустриальному дизайну и уже готовится к серийному выпуску. Один английский изобретатель Рян Йонгву Чой разработал метод, как добыть электроэнергию в домашних условиях из водопроводной воды, и придумал трубу, у которой внутри имеется водяное колесо, и назвал ее ES Pipe Waterwheel.

Как получить электричество в природных условиях

Пользу, а иногда и необходимость электричества недооценить сложно. Особенно в чрезвычайных условиях. Вам может понадобиться подзарядить рацию, фонарик или мобильный телефон. В данной статье мы расскажем о способах альтернативного получения электроэнергии из подручных материалов.

Для практически любого простейшего способа получения электричества  без подключения к уже имеющейся электрической сети, обязательно понадобятся гальванические элементы, а именно два металла, которые в паре образуют разнополярные анод и катод соответственно. Теперь остается воткнуть в ближайшее дерево один из них, например алюминиевый стержень или железный гвоздь так, чтобы он полностью вошел через кору в сам ствол дерева, а другой элемент, например медную трубку, воткнуть в почву рядом, чтобы она вошла в землю на 15-20 см. Возможно даже между медной трубкой и алюминиевым стержнем возникнет напряжение в приблизительно 1 Вольт. Чем больше стержней вы вставите в дерево, тем лучше будет качество электроэнергии, добываемой таким способом. После окончания добычи электричества обязательно наведите порядок, замажьте поврежденные места на дереве смолой.

Апельсины, лимоны и другие цитрусовые, & все это идеальный электролит для выработки электричества в экстремальных условиях, особенно если экстремальная ситуация застала вас недалеко от экватора. Помимо уже известных алюминия и меди, можно использовать более эффективные золото и серебро если на вас или вашей спутнице остались украшения, доведя напряжение вашего электричества аж до 2 Вольт. Если вы занимаетесь получением электроэнергии с целью освещения, то в качестве лампочки может служить стеклянная колба с кусочком обугленного бамбукового волокна в качестве нити накаливания. Эту кустарную нить накаливания использовал для первой лампочки в мире сам Эдиссон .

Если у вас есть медная проволока и фольга, получение электричества в этом случае, займёт минимум усилий. Наполняем несколько стаканов соленой водой и соединяем их медной проволокой, от стакана к стакану. На один конец каждого провода, соединяющего стаканы, должна быть намотана алюминиевая фольга. Соответственно чем больше проволоки и стаканов. тем выше ваши шансы! Такой тип устройства был изобретен еще в 18-м веке, он называется Вольтов столб. Но в этом случае используются медно-цинковые элементы.

Электричество из воды — капельный генератор Кельвина

Эта прекрасная маленькая демонстрация была изобретена лордом Кельвином. Используя несколько консервных банок, проволоку и капающую воду, можно элегантно сгенерировать тысячи вольт энергии.

Итак у нас есть 4 консервных банки, верхние две соединены токопроводящей проволокой, а нижние друг от друга изолированы. От верхних банок вниз отведены трубочки.

Вода, капающая из этих трубочек пролетает сквозь проволочные кольца, при чем правое кольцо припаяно к левой нижней банке, а левое к правой.

Смотрите, что произойдет, если открыть воду:

Что происходит?

Когда вода капает, одна из нижних банк становится положительно заряженой, а другая отрицательно с разницей потенциалов больше 1000В. Это означает, что любые мелкие капельки будут сбиты с пути электрическим полем и будут разлетаться кто куда.

Гениально и просто. Вначале, когда включают воду, одна из банок имеет чуть больший положительный заряд, чем другие. Какая именно банка имеет больший заряд, определяется чистой случайностью, так как изначальный заряд банок обуславливается естественной радиоактивностью или космическим излучением, или статикой оставшейся на банке после прикосновения. Кольцо, припаянное к этой банке соответственно тоже будет иметь чуть больший положительный заряд.

Электроны в воде притягиваются положительно заряженым кольцом, так что сами капли падают в банку отрицательно заряжеными.

Эта банка становится отрицательно заряжена и, следовательно, противоположное кольцо также становится отрицательным. Капли слева соответственно становятся положительными, делая левую банку всё более положительно заряженной.

Как добыть электричество из водопроводной воды

Получение электроэнергии из воды само по себе не в новинку. Гидроэлектростанции используются по всему миру, но ученые не останавливаются на достигнутом и ищут новые пути рационального использования водных ресурсов. Довольно оригинальный способ нашли в Гонконге.

Сотрудники кафедры Гражданского Строительства при Политехническом Университете Гонконга и инженеры Управления Водоснабжения Гонконга представили совместную разработку по превращению городской системы водоснабжения в альтернативный источник электроэнергии.

Для мониторинга состояния водопроводной системы Гонконга общей протяженностью более 7 800 км требуется обширная сеть контрольных устройств. Само собой, эти устройства нуждаются в электропитании. Инженеры предложили устанавливать небольшие гидротурбины в водопроводные трубы для получения электричества из питьевой воды.

Самым большим вызовом в ходе разработки стали малый диаметр водопроводных труб – не более 1 метра – и намного меньший объем потенциальной энергии по сравнению, например, с огромными плотинами. В результате совместной работы специалистов по гидродинамике, машиностроению и возобновляемым источникам энергии была разработана высокоэффективная турбина. Она врезается в трубу и способна выдавать напряжение 80 Вольт – этого достаточно для питания 4 флуоресцентных ламп.

Оригинальное устройство состоит из внешнего гидроэлектрического генератора и высокоэффективной сферической турбины, которая опускается в проточную воду, не создавая при этом дополнительного противодавления.

В целях сохранения баланса между напором воды и захватываемой кинетической энергией была выбрана 8-лопастная турбина, позволяющая добиться максимально возможной эффективности без значимого влияния на инерцию потока воды.

Для достижения максимальной выходной мощности центральный вал сделан полым, что обеспечивает сокращение энергопотерь при вращении генератора. Также для повышения энергетического потенциала проточной воды команда разработчиков решила разместить по центру трубы металлический блок, который выступает в роли компрессора, нагнетая поток воды. Все части турбогенератора размещены на одном валу, что позволяет отказаться от использования масел и исключить риск загрязнения питьевой воды.

Мини-гидроэлектростанции в настоящее время проходят эксплуатационные испытания в водопроводной системе Гонконга.

«Мы сделали водопроводные трубы самодостаточными», — отметил руководитель проекта, профессор кафедры Гражданского Строительства Хонг-шин Янг. Согласно расчетам после окончательного ввода в эксплуатацию массив гидротурбин обеспечит экономию 700кВт электричества в год, а также сократить выбросы углекислого газа на 560 кг ежегодно.

«Эта технология открывает новые возможности для разработки гидротурбин, которые могут быть использованы для генерации энергии из других низкоэнергетических водных ресурсов», — добавил профессор Янг.

Источники: www.membrana.ru, energominimum.com, lastday.club, www.bolshoyvopros.ru, watta.ru, kak-eto-sdelano.ru, nashagazeta.ch

Человек-птица

В мифологических сюжетах достаточно часто встречаются человекоподобные существа, обладающие крыльями. Однако выдуманы ли они, или действительно существуют? В 1877 …


Спасская башня старинные куранты

Спасская башня является одним из самых узнаваемых строений на постсоветском пространстве, ведь именно на ней установлен символ России — …


Фотография и виды съёмки

Сегодня, когда современная фотоаппаратура позволяет быстро и без особых усилий добиться фотографий высокого качества, может показаться фотосъемка простой процесс и …


Жемчужина Южнобережья

— Ялос! Ялос! – радостно закричали греческие моряки, когда после многодневного, утомительного, морского путешествия наконец-то увидели берег. Вот почему, когда греки высадились …


Зимняя Германия — отличное место для отдыха

Германия — прекрасное место для отдыха. Причем, порадует отдых и летом, и зимой. В это время года города и деревни …


Таяние Антарктиды

Ледники Гренландии и Антарктиды тают с катастрофической скоростью. Несмотря на многочисленные исследования, ученые все же не могут точно ответить на …


Самые невероятные места на планете

На Земле полно уникальных мест при виде которых забываешь как дышать. Большая часть из них создана природой. Но люди …


Как добыть электричество из обычной соленой воды?

Там, где перемешиваются соленые и пресные воды, таятся залежи постоянно обновляемой энергии. Так, по крайней мере, считает наноинженер Александра Раденович из Швейцарского федерального технологического института.

Сегодня Раденович опубликовала проект качественно нового типа электрогенератора, которые больше похож на тончайшую мембрану. Генератор получает энергию из процесса осмоса — когда соли из соленой воды равномерно распределяются в пресную через мембрану. Генератор в самой своей тонкой части не превышает трех атомов в ширину, и его можно использовать в устьях рек или других местах, где постоянно смешиваются воды разной солености.

Раденович пишет, что выработка электроэнергии у такого генератора может быть огромной. Такое устройство площадью всего 0,3 квадратных метра теоретически может производить целый мегаватт энергии. Этого достаточно, чтобы запитать 50 000 энергосберегающих лампочек. Генератор описан в статье, опубликованной в журнале Nature.

Мембрана Раденович — это тонкий лист, усеянный огромным количеством невероятно крошечных отверстий. Он сделан из относительно дешевого материала под названием дисульфид молибдена. Сквозь отверстия проходят только соли определенного размера. А благодаря дисульфида молибдена отверстия электрически заряжены, отталкивая определенные типы солей. Такие отверстия называются нанопорами. Соли, проходя через мембрану даже через единственную нанопору, уже генерируют небольшое количество электричества. Это происходит, потому что у солей есть небольшой электрический заряд, и таким образом они создают электрический ток посредством этого движения.

Единственная нанопора производит около 10 или 20 нановатт. Соответственно мембрана площадью 0,3 квадратных метра с нанопорами всего на 30% материала производит мегаватт энергии. Правда, есть одна неприятность. Раденович с коллегами сделали мембрану всего лишь с одной нанопорой. Никто пока не знает, как воспроизвести этот материал равномерно, или сделать миллионы наноотверстий, которые нужны для такого генератора. Так что пока мегаватта нам не видать, нужны дополнительные технологии.

Как добыть электричество из обычной соленой воды

Экология потребления.Наука и техника: Новый источник чистой энергии открыли ученые Лаборатории нанобиологии Политехнической школы Лозанны — осмотический. Энергия производится при контакте пресной воды с соленой через мембрану толщиной в три атома, в которой и заключается главная инновация.

Там, где перемешиваются соленые и пресные воды, таятся залежи постоянно обновляемой энергии. Так, по крайней мере, считает наноинженер Александра Раденович из Швейцарского федерального технологического института. 

 

Как добыть электричество из обычной соленой воды

13 июля Раденович опубликовала проект качественно нового типа электрогенератора, которые больше похож на тончайшую мембрану. Генератор получает энергию из процесса осмоса — когда соли из соленой воды равномерно распределяются в пресную через мембрану. Генератор в самой своей тонкой части не превышает трех атомов в ширину, и его можно использовать в устьях рек или других местах, где постоянно смешиваются воды разной солености.

ПОДПИСЫВАЙТЕСЬ на НАШ youtube канал Эконет.ру, что позволяет смотреть онлайн, скачать с ютуб бесплатно видео об оздоровлении, омоложении человека. Любовь к окружающим и к себе, как чувство высоких вибраций — важный фактор оздоровления — econet.ru.

Ставьте ЛАЙКИ, делитесь с ДРУЗЬЯМИ!

https://www.youtube.com/channel/UCXd71u0w04qcwk32c8kY2BA/videos 

Подпишитесь -https://www.facebook.com/econet.ru/

Раденович пишет, что выработка электроэнергии у такого генератора может быть огромной. Такое устройство площадью всего 0,3 квадратных метра теоретически может производить целый мегаватт энергии. Этого достаточно, чтобы запитать 50 000 энергосберегающих лампочек. Генератор описан в статье, опубликованной в журнале Nature.

Мембрана Раденович — это тонкий лист, усеянный огромным количеством невероятно крошечных отверстий. Он сделан из относительно дешевого материала под названием дисульфид молибдена. Сквозь отверстия проходят только соли определенного размера.

А благодаря дисульфида молибдена отверстия электрически заряжены, отталкивая определенные типы солей. Такие отверстия называются нанопорами. Соли, проходя через мембрану даже через единственную нанопору, уже генерируют небольшое количество электричества. Это происходит, потому что у солей есть небольшой электрический заряд, и таким образом они создают электрический ток посредством этого движения.

Единственная нанопора производит около 10 или 20 нановатт. Соответственно мембрана площадью 0,3 квадратных метра с нанопорами всего на 30% материала производит мегаватт энергии. Правда, есть одна неприятность. Раденович с коллегами сделали мембрану всего лишь с одной нанопорой. Никто пока не знает, как воспроизвести этот материал равномерно, или сделать миллионы наноотверстий, которые нужны для такого генератора. Так что пока мегаватта нам не видать, нужны дополнительные технологии. опубликовано econet.ru 

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *