Отличие полевого транзистора от биполярного. Сфера их применения
Здравствуйте, дорогие читатели. В данной статье рассмотрим отличие полевого транзистора от биполярного, узнаем в каких сферах применяются и те, и другие транзисторы.
И так, начнём…
Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.
Отличие полевого транзистора от биполярного
Биполярные транзисторы
Проводящая область конструкции состоит из трёх «спаянных» полупроводниковых частей, с чередованием по типу проводимости. Полупроводник с донорной (электронной) проводимостью обозначается как n-тип, с акцепторной (дырочной) – p-тип. Таким образом, мы можем наблюдать только два варианта чередования – p-n-p, либо n-p-n. По этому признаку различают биполярные транзисторы с n-p-n и p-n-p структурой.
Общая часть транзисторного кристалла, контактирующая с двумя другими, называется «база». Две другие – «коллектор» и «эмиттер». Степень насыщенности базы носителями заряда (электронами или электронными вакансиями «дырками») определяет степень проводимости всего кристалла транзистора. Таким образом, осуществляется управление проводимостью переходов транзистора, что позволяет использовать его в качестве элемента усиления мощности сигнала, или ключа.
Полевые транзисторы
Проводящая часть конструкции представляет собой полупроводниковый канал p- или n-типа в металле. Ток нагрузки протекает по каналу через электроды, называемые «стоком» и «истоком». Величина сечения проводящего канала и его сопротивление зависит от обратного напряжения на p-n переходе границы металла и полупроводника канала. Управляющий электрод, соединённый с металлической областью называется «затвор».
Канал полевого транзистора может иметь электрическую связь с металлом затвора — неизолированный затвор, а может быть и отделён от него тонким слоем диэлектрика — изолированный затвор.
Какие транзисторы лучше полевые или биполярные?
И так, мы узнали, что главное отличие этих двух видов транзисторов в управление. Давайте рассмотрим прочие преимущества полевых транзисторов по сравнению с биполярными:
- высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление
- высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей)
- почти полная электрическая развязка входных и выходных цепей, малая проходная ёмкость поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных
- квадратичность вольт — амперной характеристики (аналогична триоду)
- высокая температурная стабильность
- малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»
- малое потребление мощности
Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.
Отличие полевого транзистора от биполярного
Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.
Ток или поле, управление транзисторами
Большинству людей, так или иначе имеющими дело с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.
Ток и поле, различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.
Разная реакция на нагрев
У биполярных транзисторов температурный коэффициент сопротивления коллектор-эмиттер отрицательный (т. е. с ростом температуры сопротивление уменьшается и ток коллектор — эмиттер растет). У полевых транзисторов все наоборот — температурный коэффициент сток-исток положительный (с ростом температуры сопротивление растет, и ток сток-исток уменьшается).
Важное следствие из этого факта — если биполярные транзисторы нельзя просто так включать параллельно (с целью умощнения), без токовыравнивающих резисторов в цепи эмиттера, то с полевыми все намного проще — благодаря автобалансировке тока сток-исток при изменении нагрузки/нагрева — их можно свободно включать параллельно без выравнивающих резисторов. Это связано с температурными свойствами p-n перехода и простого полупроводника p- или n-типа. По этой причине у полевых транзисторов гораздо реже случается необратимый выходной тепловой пробой, чем у биполярных.
Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.
А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.
Сферы применения тех и других транзисторов
Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.
Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.
Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.
Полевые побеждают, почему?
Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.
В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.
Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.
В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.
Видео, отличие полевого транзистора от биполярного
Будем рады, если подпишетесь на наш Блог!
[wysija_form id=»1″]
В чем разница между биполярным и полевым транзистором
Транзистору скоро исполнится 100 лет. Этот компонент на долгое время стал основой всей электроники 20 века. В настоящее время он тоже остаётся важной частью электронных схем, хотя внешняя форма исполнения изменилась: часто отдельные транзисторы объединяются в микросхемы и процессоры. В одной микросхеме может находиться несколько сотен и даже тысяч микроскопических транзисторов.
Что представляет собой транзистор как таковой? По сути, он почти ничем не отличается от обычного диода – электронного компонента, пропускающего ток только в одном направлении. В отличие от него, у транзистора есть дополнительный вывод, который «открывает» и «закрывает» прибор. Действительно, это очень похоже на водопроводный кран.
Только управляется этот кран тем же самым током. Если транзистор имеет тип PNP (прямой), то этот дополнительный вывод открывается подачей отрицательного сигнала, а если
Впрочем, транзистор отличается от диода не только этим. Он обладает ещё и усиливающими свойствами. Поэтому усилительная аппаратура – одно из основных применений этого компонента.
Как устроен биполярный транзистор
Все транзисторы делятся на два основных типа – биполярные и полевые.
Устройство биполярного транзистора
На схеме эмиттер изображается выводом со стрелкой, которая показывает направление движения тока.
Управление биполярным транзистором осуществляется путём подачи на базу определённого напряжения – положительного (для NPN) и отрицательного (для PNP).
Биполярные NPN-транзисторы пользуются большей популярностью, поскольку в них основная роль отводится электронам, а не дыркам (положительным условным частицам). Электроны имеют в несколько раз большую подвижность, чем дырки, поэтому обратные транзисторы работают лучше и быстрее.
Устройство полевых транзисторов
Полевые транзисторы устроены немного по-другому. Здесь управление работой прибора осуществляется с помощью электрического поля, которое направлено перпендикулярно току. Подобно биполярным транзисторам, полевые тоже имеют три вывода, которые, правда, называются иначе: исток, сток и затвор. Электрическое поле создаётся с помощью определённого напряжения, приложенного к затвору, который служит аналогом базы биполярного транзистора.
Устройство полевого транзистора с p-n-переходом
Также у полевого транзистора имеется проводящий слой, который называют каналом. По нему и течёт ток. Канал может быть N или P-типа, а также иметь различную пространственную конфигурацию. Каналы могут быть обогащёнными носителями или обеднёнными.
Существуют полевые транзисторы с управляющим p-n-переходом и с полностью изолированным затвором.
Устройство полевого транзистора с изолированным затвором
Что общего между этими устройствами?
Понятно, что и то, и другое – это транзисторы. У каждого есть три вывода, один из которых является управляющим. в зависимости от того, какой сигнал на него подан, ток по транзистору или будет течь, или не будет. Отличаются эти устройства лишь нюансами работы, однако таких нюансов достаточно много.
Отличия биполярных и полевых транзисторов
Полевые транзисторы более предпочтительны по большинству параметров:
- У них более высокое быстродействие.
- Они имеют маленькие потери на управление.
- У полевых транзисторов значительно более высокие усилительные способности.
- Они производят меньше шума и потребляют малую мощность.
Однако полевые транзисторы не переносят статического напряжения. Этим их использование и ограничивается, ведь в электронных устройствах оно накапливается постоянно. Там, где необходимо применять полевые транзисторы, необходимо предусмотреть их защиту от статического напряжения.
Как бы то ни было, полевые транзисторы почти полностью вытеснили биполярные из цифровой техники. В аналоговой, наоборот, пока что господствуют биполярные.
Изобретение полевых транзисторов, собственно, и было связано с производством электронно-вычислительных машин. В 1977 году учёные обнаружили, что с их помощью можно
Относительно недавно, в 1990-х годах, появился ещё один, «гибридный» тип таких компонентов. Это биполярные транзисторы с изолированным затвором, или IGBT. Такой прибор, по сути, является сочетанием биполярного транзистора, играющего роль силового канала, и полевого, являющегося управляющим элементом. Благодаря этому удалось совместить в одном компоненте выгодные выходные показатели (как у биполярного устройства) с предпочтительными входными (как у полевого). Управляются IGBT, как и полевые транзисторы, с помощью электрического поля.
Применяются гибридные компоненты в различных преобразователях, инверторах, импульсных регуляторах тока и т.д.
ТРАНЗИСТОРЫ
В этой статье мы разберем, чем же примечателен этот маленький кусочек кремния, называемый транзистором. Транзисторы, как известно, делятся на 2 вида полевые и биполярные. Изготавливаются они из полупроводниковых материалов, в частности германия и кремния.Транзистор в разрезе
Внешний вид советских транзисторов
Структура биполярных транзисторов
Транзистор как два диода
Золото в транзисторах СССР
Малой мощности
Средней мощности
Большой мощности
В металлическом корпусе
На этих фото изображены выводные транзисторы, которые впаивают в отверстия в печатной плате. Но существуют транзисторы и для поверхностного или SMD монтажа, в таком случае отверстия не сверлятся и детали припаиваются со стороны печати, один из таких транзисторов в корпусе sot-23 изображен на фотографии ниже, рядом на рисунке можно видеть его сравнительные размеры:
Фото SMD транзистор
Какие существуют схемы включения биполярных транзисторов? Прежде всего это схема (к слову сказать самая распространенная) включения с общим эмиттером. Такое включение обеспечивает большое усиление по напряжению и току: Схема с общим эмиттером
Схема с общим коллектором
Схема с общей базой
Пример усилителя по схеме с общим эмиттером
Схема транзистора в ключевом режиме
Схематическое изображение фототранзисторов
Фототранзистор — фотография
Полевые транзисторы
Как ясно из названия, такие транзисторы управляются не током, а полем. Электрическим полем. В следствии чего они имеют высокое входное сопротивление и не нагружают предидущий каскад. На этом рисунке изображено строение полевого транзистора:
Строение полевого транзистора
Схематическое изображение полевого транзистора
Изображение на схемах полевых транзисторов с изолированным затвором
Схематическое изображение мощного полевого транзистора
Фото SMD полевой транзистор
Устройства, созданные на основе КМОП транзисторов (полевых транзисторов) очень экономичны и имеют незначительное потребление питания. Привожу схемы включения полевых транзисторов:
С общим истоком
С общим стоком
С общим затвором
Применяются полевые транзисторы и в усилителях мощности звука, чаще всего в выходных каскадах.
Однопереходные транзисторы
Существуют так называемые Однопереходные транзисторы, второе, менее распространённое название — Двухбазовый диод. Ниже приведены схематическое изображение и фото однопереходных транзисторов.
Схематическое изображение однопереходных транзисторов
Форум по радиоэлементам
Форум по обсуждению материала ТРАНЗИСТОРЫ
Полевые транзисторы. Характеристики. Основные типы.| Elektrolife
MOSFET — (Metal–Oxide–Semiconductor Field-Effect Transistor) использует изолятор обычно SiO2 между затвором и каналом.
JFET — полевой транзисторе с управляющим p-n переходом
MESFET — (Metal–Semiconductor Field-Effect Transistor) разновидность p-n перехода JFET с барьером Schottky; используются с GaAs и др. III-V полупроводниками.
ISFET — ion-sensitive field-effect transistor – ионно-чувствительный полевой транзистор.
ChemFET — chemical field-effect transistor — МОСФЕТ транзисторы, заряд на затворе которых определяется химическими процессами.
EOSFET — electrolyte-oxide-semiconductor field effect transistor вместо металла в качестве затвора используется электролит.
CNTFET — Carbon nanotube field-effect transistor — полевой транзистор с углеродными нанотрубками.
DEPFET – полевой транзистор с полностью обедненной подложкой, используются как сенсоры, усилители и ячейки памяти одновременно. Может быть использован как датчик фотонов.
DGMOSFET — с двумя затворами.
DNAFET — специальный FET используемый как биосенсор, с затвором из 1-й ДНК молекулы чтобы определять соответствующую нить ДНК.
FREDFET — (Fast Reverse or Fast Recovery Epitaxial Diode FET) специальный полевой транзистор, разработанный для обеспечения сверхбыстрого закрытия встроенного диода (is a specialized FET designed to provide a very fast recovery (turn-off) of the body diode)
HEMT — (high electron mobility transistor) или HFET(heterostructure FET) полевой транзистор с высокой подвижностью зарядов, гетероструктурные (шестигранные) FET. Изолятор затвора формируется из полностью обедненного материала с большой шириной запрещенной зоны.
HIGFET — (heterostructure insulated gate field effect transisitor), гетероструктурные MISFET используются в основном в исследовательских целях.
MODFET — (Modulation-Doped Field Effect Transistor) использует квантовую структуру, сформированную градиентным легированием активной области.
NOMFET – (Nanoparticle Organic Memory Field-Effect Transistor) — память на основе органических наночастиц.
OFET – (Organic Field-Effect Transistor) — канал из органического полупроводника.
GNRFET – (Field-Effect Transistor that uses a graphene nanoribbon for its channel). С каналом из графеновой пленки.
VFET – (Vertical Field-Effect Transistor), вертикальный полевой транзистор, полевой транзистор с вертикальной структурой, полевой транзистор с вертикальным каналом.
VeSFET — (Vertical-Slit Field-Effect Transistor) is a square-shaped junction-less FET with a narrow slit connecting the source and drain at opposite corners. Two gates occupy the other corners, and control the current through the slit… полевой транзистор квадратной формы, без перехода с близким расположением истока и стока на противоположных углах. Два других входа, занимающие другие углы — затворы, которые контролируют переход.
TFET — (Tunnel Field-Effect Transistor) — основан на эффекте тунеллирования … из полосы в полосу.
IGBT — (insulated-gate bipolar transistor) устройство для контроля мощности. Представляет из себя гибрид полевого транзистора с проводящим каналом, как у биполярного транзистора. Обычно используются для напряжений 200-3000V сток-исток. Мощные MOSFETs обычно используются до 200 V.
Преимущества и недостатки, а так же области применения Полевых Транзисторов
Основными преимуществами ПТ с управляющим переходом перед биполярными транзисторами являются- высокое входное сопротивление,
- малые шумы (обусловлены тем, что носители заряда не пересекают p-n переходов, как в биполярных транзисторах, а двигаются вдоль них),
- простота изготовления,
- малое значение остаточного напряжения между истоком и стоком открытого транзистора. Так как в ПТ ток через канал вызван перемещением основных носителей, концентрация которых определяется преимущественно количеством примеси и поэтому мало зависит от температуры, то ПТ более температуростабильны.
- ПТ обладают более высокой стойкостью к ионизирующим излучениям.
При изготовлении интегральных схем и микропроцессоров часто на одном чипе изготавливаются и используются ПТ как с p-, так и с n-каналами. В этом случае транзисторы и схемы называются комплементарными, дополняющими друг друга. Такая технология получила широчайшее распространение при изготовлении микросхем с высокой степенью интеграции.Отметим, что мощность сигнала, необходимая для управления ПТ во много раз меньше, чем мощность для управления биполярным транзистором. По этой причине ПТ широко используются при изготовлении интегральных схем и микропроцессоров. Такие схемы с ПТ имеют малую потребляемую мощность, в их состав можно включать увеличенное число транзисторов. Появление мощных ПТ (30 А и более) позволяет заменить биполярные транзисторы во многих применениях, зачастую получая более простые схемы с улучшенными параметрами.
Недостаток многих полевых транзисторов – невысокая крутизна переходной характеристики, а, следовательно, и малый коэффициент усиления схем на ПТ. Кроме этого, по быстродействию и, соответственно, по частотным свойствам ПТ, как правило, не имеют преимуществ перед биполярными транзисторами. При работе с МОП транзисторами следует принимать меры предосторожности для предотвращения пробоя тонкого слоя диэлектрика между затвором и каналом под действием статического электрических зарядов, которые могут возникнуть на изолированном затворе. Такие статические заряды могут возникнуть даже при касании его рукой. Необходимо, чтобы при транспортировке и монтаже электроды у транзисторов были замкнуты накоротко. Эти замыкающие проводники удаляют только по окончании монтажа, когда выводы транзистора уже впаяны в схему. При пайке МОП транзистора следует заземлять паяльник, приборы и самого монтажника.
Обзор областей применения ПТ. При анализе возможных областей применения ПТ необходимо сравнивать характеристики транзисторов. В каких-то задачах себя лучше показали ПТ, в каких-то – биполярные транзисторы.
- Схемы с высоким входным сопротивлением (слаботочные). Сюда относятся буферные или обычные усилители для тех применений, где ток базы или конечное полное входное сопротивление биполярных транзисторов ограничивает их характеристики. Можно построить такие схемы на отдельно взятых ПТ, однако сегодняшняя практика отдает предпочтение использованию интегральных схем, построенных на ПТ. В некоторых из них ПТ используются только в качестве высокоомного входного каскада, а вся другая схема построена на биполярных транзисторах, в других вся схема построена на ПТ.
- Аналоговые ключи. МОП-транзисторы являются отличными аналоговыми ключами, управляемыми напряжением. По своим качествам такие ключи гораздо лучше ключей на биполярных транзисторах.
- Цифровые микросхемы. МОП-транзисторы доминируют при построении микропроцессоров, схем памяти и большинства высококачественных цифровых логических схем. Микромощные логические схемы изготавливаются исключительно на МОП-транзисторах.
- Мощные переключатели. Мощные МОП-транзисторы часто бывают предпочтительнее биполярных транзисторов для переключения нагрузок, в первую очередь из-за того, что в ПТ практически отсутствует входной ток и мощность управляющих сигналов чрезвычайно мала. Отличные результаты дает использование мощных ключей, построенных на комбинации биполярных и полевых транзисторов.
- Переменные резисторы и источники тока. В линейной области стоковых характеристик ПТ ведут себя подобно резисторам, управляемым напряжением, в области насыщения они являются управляемыми напряжением источниками тока.
Полевые транзисторы (ПТ) (Полупроводниковые триоды) Отличие…
Сразу хочу сказать, что здесь никакой воды про полевые транзисторы, и только нужная информация. Для того чтобы лучше понимать что такое полевые транзисторы, полевой транзистор, полупроводниковые триоды,mosfet,мосфет,мосфеты,тесты по транзисторам , настоятельно рекомендую прочитать все из категории Электроника, Микроэлектроника , Элементная база.
Полевой (униполярный) транзистор MOSFET (metal–oxide–semiconductor field-effect transistor) ( мосфет ) — полупроводниковый прибор, принцип действия которого основан на управлении электрическим сопротивлением токопроводящего канала поперечным электрическим полем, создаваемым приложенным к затвору напряжением.
Область, из которой носители заряда уходят в канал, называется истоком, область, в которую они входят из канала, называется стоком, электрод, на который подается управляющее напряжение, называется затвором.
полупроводниковые триоды , называемые транзисторами, служат для тех же целей, что и ламповые триоды, т. е. для усиления и генерирования колебаний, но они по сравнению с электронными лампами обладают рядом преимуществ: очень большим сроком службы, малыми размерами, большой механической прочностью, отсутствием расхода энергии на накал, незначительным собственным потреблением энергии.
Полупроводниковый триод представляет собой пластинку из кремния или германия, состоящую из трех областей. Две крайние области всегда обладают одинаковым типом проводимости, а средняя — противоположной проводимостью.
История создания полевых транзисторов
Схема полевого транзистора
В 1953 году Дейки и Росс предложили и реализовали конструкцию полевого транзистора — с управляющим p-n-переходом.
Впервые идея регулировки потока основных носителей электрическим полем в транзисторе с изолированным затвором была предложена Лилиенфельдом в 1926—1928 годах. Однако трудности в реализации этой идеи на практике позволили создать первый работающий прибор только в 1960 году. В 1966 году Карвер Мид (англ.)русск. усовершенствовал эту конструкцию, шунтировав электроды такого прибора диодом Шоттки.
В 1977 году Джеймс Маккаллахем из Bell Labs установил, что использование полевых транзисторов может существенно увеличить производительность существующих вычислительных систем.
полевые транзисторы (ПТ)
полевой транзистор – полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей заряда, протекающих через проводящий канал, управляемый электрическим полем.
Ток определяется движением основных носителей только одного заряда.
Полевой транзистор название электродов
Исток – электрод, через который в проводящий канал втекают носители заряда;
Сток — электрод, через который из проводящего канала вытекают носители заряда;
Канал – область в полупроводнике, где регулируется поток основных зарядов;
Затвор — электрод, на который подается электрический сигнал для управления значением тока через проводящий канал.
Рис. 1. Конструкция полевого транзистора с управляющим p-n-переходом и каналом n-типа
а) с затвором со стороны подложки;
b) с диффузионным затвором.
Типы полевых транзисторов
1.Полевой транзистор с управляющим p-n-переходом
n — канальный
p — канальный
2. МДП (МОП) транзисторы
С встроенным каналом
С индуцированным каналом
Схемы включения Полевых Транзисторов
С общим истоком
Вольтамперные характеристики полевого транзистора
с управляющим p-n переходом
Основные параметры ПТ
• Крутизна стоко-затворной характеристики (СЗХ)
при Uси = const
S = (∆ Ic /∆ Uзи )
• Дифференциальное сопротивление стока (канала) на участке насыщения
при Uзи = const
Rс = (∆Ucи /∆ Ic)
Параметры полевых и биполярных транзисторов
Параметры
Упревление током или полем?
Большинству людей, так или иначе сталкивающемуся с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.
Ток и поле — различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.
Полевые транзисторы быстрее
Какие транзисторы лучше полевые или биполярные? Достоинство полевых транзисторов, по сравнению с биполярными, налицо: полевые транзисторы обладают высоким входным сопротивлением по постоянному току, и даже управление на высокой частоте не приводит к значительным затратам энергии.
Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.
Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.
Разная реакция на нагрев
Если биполярный транзистор в процессе работы устройства нагревается, то ток коллектор-эмиттер увеличивается, то есть температурный коэффициент сопротивления у биполярных транзисторов отрицательный.
У полевых же все наоборот — температурный коэффициент сток-исток положительный, то есть с ростом температуры растет и сопротивление канала, то есть ток сток-исток уменьшается. Это обстоятельство дает полевым транзистором еще одно преимущество перед биполярными: полевые транзисторы можно без опаски соединять параллельно, и не потребуются выравнивающие резисторы в цепах их стоков, поскольку в соответствии с ростом нагрузки станет автоматически расти и сопротивление каналов.
Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах (смотрите — Почему в современных инверторах используются транзисторы, а не тиристры).
А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.
Сферы применения тех и других транзисторов
Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.
Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.
Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.
Полевые побеждают
Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счет применения КМОП -структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.
В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.
Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.
В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры .
Классификация полевых транзисторов
Виды полевых транзисторов и их обозначение на принципиальных схемах
Полевые транзисторы классифицируют на приборы с управляющим p-n-переходом и с изолированным затвором, так называемые МДП («металл-диэлектрик- полупроводник »)-транзисторы, которые также называют МОП («металл-оксид-полупроводник»)-транзисторами, причем последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.
К основным параметрам полевых транзисторов причисляют: входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и некоторые другие.
Транзисторы с управляющим p-n-переходомРис . Об этом говорит сайт https://intellect.icu . 1. Конструкция полевого транзистора с управляющим p-n-переходом и каналом n-типа
а) с затвором со стороны подложки;
b) с диффузионным затвором.
Сток-затворная характеристика (слева) и семейство стоковых характеристик (справа) полевого транзистора с затвором в виде p-n перехода и каналом n-типа.
— напряжение затвор-сток;
— напряжение сток-исток;
— ток стока или истока;
— запирающее напряжение затвора, или напряжение отсечки.
Полевой транзистор с управляющим p-n-переходом (JFET) — это полевой транзистор, в котором пластина из полупроводника, например p-типа (Рис. 1), имеет на противоположных концах электроды (исток и сток), с помощью которых она включена в управляемую цепь. Управляющая цепь подключается к третьему электроду (затвору) и образуется областью с другим типом проводимости, в примере на рисунке — n-типом.
Источник постоянного смещения, включенный во входную цепь, создает на единственном p-n-переходе обратное (запирающее) напряжение. Во входную цепь также включается и источник усиливаемого сигнала. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в связи с чем меняется толщина обедненного слоя, то есть изменяется площадь поперечного сечения области в криcталле, через которую проходит поток основных носителей заряда. Эта область называется каналом.
Электроды полевого транзистора называются:
- исток (англ. source) — электрод, из которого в канал входят основные носители заряда;
- сток (англ. drain) — электрод, через который из канала уходят основные носители заряда;
- затвор (англ. gate) — электрод, служащий для регулирования поперечного сечения канала.
Тип полупроводниковой проводимости канала может быть как n-, так и p-типа. По типу проводимости канала различают полевые транзисторы с n-каналом и р-каналом. Полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.
Управление током и напряжением на нагрузке, включенной последовательно к каналу полевого транзистора и источнику питания, осуществляется изменением входного напряжения, вследствие чего изменяется обратное напряжение на p-n-переходе, что ведет к изменению толщины запирающего (обедненного) слоя. При некотором запирающем напряжении {\displaystyle V_{P}} площадь поперечного сечения канала станет равной нулю и ток через канал транзистора станет весьма малым.
Так как обратный ток p-n-перехода весьма мал, в статическом режиме или при низких рабочих частотах мощность, отбираемая от источника сигнала, ничтожно мала. При высоких частотах ток, отбираемый от источника сигнала, может быть значительным и идет на перезаряд входной емкости транзистора.
Таким образом, полевой транзистор по принципу управления током аналогичен электровакуумной лампе — триоду, но по виду сток-истоковых вольт-амперных характеристик близок к электровакуумному пентоду. При такой аналогии исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. При этом существуют и отличия, например:
- в транзисторе отсутствует катод, который требует подогрева;
- любую из функций истока и стока может выполнять любой из этих электродов;
- существуют полевые транзисторы как с n-каналом, так и с p-каналом, что используется при производстве комплементарных пар транзисторов.
От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы обладают низким уровнем шума (особенно на низких частотах) по сравнению с биполярными транзисторами, так как в полевых транзисторах нет инжекции неосновных носителей заряда и канал полевого транзистора может быть выполнен внутри полупроводникового кристалла. Процессы рекомбинации носителей в p-n-переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника порождают низкочастотные шумы.
Транзисторы с изолированным затвором (МДП-транзисторы)Рис. 2. Устройство полевого транзистора с изолированным затвором.
a) — с индуцированным каналом, b) — со встроенным каналом
Полевой транзистор с изолированным затвором (MOSFET) — это полевой транзистор, затвор которого электрически изолирован от канала слоем диэлектрика.
В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильно легированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой диоксида кремния SiO2, выращенный на поверхности кристалла кремния путем высокотемпературного окисления. На слой диэлектрика нанесен металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.
Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.
Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.
В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определенной полярности и при определенном значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).
В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.
Изображенные на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.
МДП-транзисторы с индуцированным каналом
При напряжении на затворе относительно истока, равном нулю, и при подаче напряжения на сток, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n-перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обедненный основными носителями слой эффект поля и область объемного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом p-типа, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.
В связи с тем, что затвор отделен от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.
Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти все напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряженности электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счет энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нем подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.
МДП-транзисторы со встроенным каналом
Рис. 3. Выходные статические характеристики (a) и сток-затворная характеристика (b) МДП-транзистора со встроенным каналом.
В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.
В связи с наличием встроенного канала в таком МДП-транзисторе (рис. 2, b), при подаче напряжения на сток, ток стока оказывается значительным даже при нулевом напряжении на затворе (рис. 3, b). Поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).
Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.
Формулы расчета в зависимости от напряжения UЗИ
1. Транзистор закрыт
Пороговое значение напряжения МДП транзистора
2. Параболический участок.
-удельная крутизна передаточной характеристики транзистора.
3. Дальнейшее увеличение приводит к переходу на пологий уровень.
— Уравнение Ховстайна.
МДП-структуры специального назначения
В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28—30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причем их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.
Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подается высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нем появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.
В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.
Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния .
В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвленной конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500—1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности .
За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы. В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создается под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера .
Схемы включения полевых транзисторов
Полевой транзистор в каскаде усиления сигнала можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).
Схема включения полевого транзистора с управляющим p-n-переходом с общим истоком |
Схема включения полевого транзистора с управляющим p-n-переходом с общим стоком |
Схема включения полевого транзистора с управляющим p-n-переходом с общим затвором |
На практике в усилительных каскадах чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с общим эмиттером (ОЭ). Каскад с общим истоком дает большое усиление по мощности. Но, с другой стороны, этот каскад наиболее низкочастотный из-за вредного влияния эффекта Миллера и существенной входной емкости затвор-исток (Сзи).
Схема с ОЗ аналогична схеме с общей базой (ОБ). В этой схеме ток стока равен току истока, поэтому она не дает усиления по току, и усиление по мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет специфическое практическое применение в усилительной технике. Преимущество такого включения — практически полное подавление эффекта Миллера, что позволяет увеличить максимальную частоту усиления и такие каскады часто применяются при усилении СВЧ.
Каскад с ОС аналогичен каскаду с общим коллектором (ОК) для биполярного транзистора — эмиттерным повторителем. Такой каскад часто называют истоковым повторителем. Коэффициент усиления по напряжению в этой схеме всегда немного меньше 1, а коэффициент усиления по мощности занимает промежуточное значение между ОЗ и ОИ. Преимущество этого каскада — очень низкая входная паразитная емкость и его часто используют в качестве буферного разделительного каскада между высокоомным источником сигнала, например, пьезодатчиком и последующими каскадами усиления. По широкополосным свойствам этот каскад также занимает промежуточное положение между ОЗ и ОИ.
Области применения полевых транзисторов
КМОП-структуры, строящиеся из комплементарной пары полевых транзисторов с каналами разного (p- и n-) типа, широко используются в цифровых и аналоговых интегральных схемах.
За счет того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).
Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счет применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.
В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью. Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где с успехом заменяют биполярные транзисторы и электронные лампы. Биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие биполярные и полевые транзисторы, — находят применение в устройствах большой мощности, например в устройствах плавного пуска, где успешно вытесняют тиристоры.
Тесты для самопроверки по теме полевой транзистор
1 Полевой транзистор имеет следующие выводы:
- А – база, исток, затвор
- B – коллектор, сток, база
- C – база, эмиттер, исток
- D – сток, исток, затвор
2 Полевой транзистор — это прибор, управляемый:
- 1) током;
- 2) напряжением;
- 3) электрически полем;
- 4) сопротивлением;
- 5) магнитным полем.
3 Условное обозначение полевого транзистора с управляющим р-п-переходом и н-каналом:
- 1) а
- 2) б
- 3) в
- 4) г
- 5) д
4. Условное обозначение полевого транзистора с встроенным р-каналом:
- 1) а
- 2) б
- 3) в
- 4) г
- 5) д
5. Уравнение нагрузочной линии для схемы включения общий исток (ОИ) с нагрузочным сопротивлением в цепи стока полевого транзистора Rc и напряжением питания Е определяется выражением:
- 1) Е + Ucli + Ic Rc = 0;
- 2) E + Ucn=Ic R,;
- 3) E + IcliRc=U ;
- 4) E = Ucll +IC RC.
6 Полевые транзисторы по сравнению с биполярными имеют:
- 1) низкое входное сопротивление;
- 2) высокое входное сопротивление;
- 3) входную характеристику в виде зависимости входного тока от входного напряжения;
- 4) параметр, характеризующий усилительные свойства — коэффициент усиления тока.
- 7 Выберите вольтамперные характеристики (передаточную и выходные) полевого транзистора с управляющим р-п-переходом с р-каналом
8 К основным преимуществам полевого транзистора можно отнести:
- а) большое входное сопротивление по постоянному току;
- б) высокая технологичность;
- в) низкая температурная стабильность характеристик;
- г) коэффициент усиления по постоянному току стремится к нулю;
- д) малое выходное сопротивление;
- е) маленькое входное сопротивление по постоянному току.
9. Передаточная характеристика полевого транзистора — это зависимость:
- 1) тока базы от напряжения на коллекторе;
- 2) напряжения стока от напряжения затвора;
- 3) тока стока от напряжения затвора;
- 4) тока коллектора от напряжения на коллекторе;
- 5) тока стока от напряжения между стоком и истоком.
10. Полевой транзистор с п-каналом работает быстрее, чем аналогичный транзистор ср-каналом, потому что:
- 1) дырки движутся в полупроводнике быстрее электронов;
- 2) входное сопротивление транзистора с p-каналом больше, чем у транзистора с п-каналом;
- 3) входная емкость транзистора с p-каналом больше, чем у транзистора с п-каналом;
- 4) входная емкость транзистора с p-каналом меньше, чем у транзистора с п-каналом;
- 5) электроны движутся в полупроводнике быстрее дырок;
- 6) входное сопротивление транзистора с p-каналом меньше, чем у транзистора с п-каналом.
См. также
- биполярный транзистор
- Органический полевой транзистор
- NOMFET nomfet , полевой транзистор с органической памятью ,
- КМОП — матрица
- SRAM ( память )
- Логические элементы
- МОП -структура
- ТТЛ
- igbt , силовые транзистор ,
- эффект защелкивания ,
- моп-структура , моп ,
- кмоп , комплементарная структура металл-оксид-полупроводник ,
- транзисторно-транзисторная логика , ттл ,
А как ты думаешь, при улучшении полевые транзисторы, будет лучше нам? Надеюсь, что теперь ты понял что такое полевые транзисторы, полевой транзистор, полупроводниковые триоды,mosfet,мосфет,мосфеты,тесты по транзисторам и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электроника, Микроэлектроника , Элементная база
Как отличить полевой транзистор от биполярного
В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от «электрическое поле». Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. «Полевики» по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.
исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.
сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.
затвор (gate) — управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.
Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1 изображены типы полевых транзисторов и их обозначения на схемах.
Рис.1. Типы полевых транзисторов и их схематическое обозначение.
«Полевик» с изолированным затвором и индуцированным каналом
Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: «полевик», «мосфет», «ключ».
Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.
Обратный диод
Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.
Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.
В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.
Рис.2. Паразитные элементы в составе полевого транзистора.
Основные преимущества MOSFET
- меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
- простая схема управления.Схемы управления напряжением более просты, чем схемы управления током.
- высокая скорость переключения.Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
- повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.
Основные характеристики MOSFET
- Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
- Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В или 2.5 В при которых сопротивление становится минимальным.
- Vgs(th) – пороговое напряжение при котором транзистор начнет открываться.
- Ids – максимальный постоянный ток через транзистор.
- Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
- Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
- Qg – заряд который необходимо передать затвору для переключения.
- Vgs(max) – максимальное допустимое напряжение затвор-исток.
- t(on), t(of) – время переключения транзистора.
- характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)
Что еще нужно знать про полевой транзистор?
P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте.
МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.
МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.
Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs
Схема включения MOSFET
Традиционная, классическая схема включения «мосфет», работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором.
Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.
Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс.
Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).
Рис. 3. Классическая схема включения MOSFET в ключевом режиме.
МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).
МОП транзис торы, используемые в цифровой электронике, делятся на два типа.
- Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания.
- Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.
Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.
Другие популярные статьи
MacBook не включается. Что делать?
Читателей за год: 8483
Пожалуй одна из самых распространенных неисправностей, заявленная клиентами при сдаче в ремонт своего MacBook – «не включается». В этой заметке рассмотрим следующие вопросы.
Типовые неисправности MacBook Pro A1398
Читателей за год: 7852
МасBook Pro Retina A1398 появился в середине 2012 года.С 2012 года было выпущено 5 платформ A1398 и с десяток комплектаций.К сожалению, все модели имеют типовые неисправности.
Проблемы с видео в MacBook и их лечение
Читателей за год: 6806
В нашу мастерскую часто попадают MacBook’и с неисправностью графического процессора (он же видеокарта, видеоускоритель, видеочип). Некоторые проблемы решаются софтовым путем – настройка или переустановка системы. В большинство же случаев требуются вмешательство на уровне «железа» – компонентный ремонт – замена чипа на паяльной станции.
Оставить комментарий
Что делать если Mac не включается? (видео) Новое в блоге MacBook не грузится дальше «яблока» после обновления macOS Mojave 10.14.5 7 июня 2019 г. Может ли небольшая мастерская назвать себя международной ?:) 2 апреля 2019 г. 5 сайтов распродаж программ для MacOS 21 марта 2019 г. Какие игры идут на MacBook и iMac? 18 февраля 2019 г. Что ломается в Макбуке при его залитии? 7 февраля 2019 г. Проверить статус заказа
Введите номер телефона, указанный в заказе:
От биполярного транзистора и в том числе от однопереходного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением р-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора отделен от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в р-n-переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов. Значительным недостатком по сравнению с биполярным транзистором является очень низкий коэффициент усиления по напряжению.
Статические характеристики
Выходные статические характеристики полевого транзистора представляют собой зависимости тока стока от напряжения на стоке относительно истока при различных постоянных напряжениях на затворе. Рассмотрим вначале характер одной зависимости
при.
Напряжение на затворе относительно истока будет равно нулю только в том случае, если затвор закорочен с истоком. Характеристика выходит из начала координат под углом, соответствующим начальному статическому сопротивлению канала и сопротивлениям иприлегающих к каналу областей полупроводникового кристалла с тем же типом электропроводности. Статическое сопротивление канала определяется его длиной и поперечным сечением, зависящим от толщины р-n-перехода (или р-n-переходов).
Рис. 6 Выходные статические характеристики
Первая часть характеристики, которую называют крутой частью, сублинейна, т. е. ток стока растет замедленно с ростом напряжения на стоке. Объясняется эта нелинейность характеристики увеличением толщины р-n-перехода затвора около стока, так как с увеличением напряжения на стоке растет по абсолютному значению обратное напряжение на р-n-переходе затвора. Ток стока, проходя по каналу, создает его неэквипотенциальность. Таким образом, наибольшая толщина р-n-перехода и соответственно наименьшее поперечное сечение канала получаются со стороны стока.
Другой физической причиной, приводящей к сублинейности выходной характеристики, является уменьшение подвижности носителей заряда в канале при увеличении в нем напряженности электрического поля.
При некотором напряжении на стоке —напряжении насыщения— происходит перекрытие канала из-за увеличения толщины р-n-перехода затвора. Ток стока при дальнейшем увеличении напряжения на стоке почти не растет.
При напряжении между затвором и истоком, равном нулю, и при напряжении на стоке, равном или превышающем напряжение насыщения, ток стока называют начальным током стока. Часть характеристики, соответствующую насыщению тока стока, называютпологой областью. Следует учитывать условность понятия «перекрытие» канала при увеличении напряжения на стоке и неизменном напряжении на затворе относительно истока, так как перекрытие канала при указанных условиях является следствием увеличения тока стока. Таким образом, можно считать, что в результате увеличения тока стока или напряжения на стоке автоматически устанавливается некоторое малое сечение канала со стороны стокового электрода.
При дальнейшем увеличении напряжения на стоке увеличивается длина перекрытой части канала и растет статическое сопротивление канала. Если бы длина перекрытой части канала увеличивалась пропорционально напряжению на стоке, то ток стока не изменялся бы при напряжениях на стоке, превышающих напряжение насыщения. Однако длина перекрытой части канала увеличивается из-за увеличения толщины р-n-перехода с ростом напряжения на стоке, а толщина р-n-перехода пропорциональна либо корню квадратному, либо корню кубическому из напряжения. Поэтому в пологой части характеристики наблюдается некоторое увеличение тока стока при увеличении напряжения на стоке.
Теперь рассмотрим смещение и изменение статических характеристик с изменением напряжения на затворе. При подаче на затвор напряжения такой полярности относительно истока, которая соответствует обратному смещению р-n-перехода затвора, и при увеличении этого напряжения по абсолютному значению уменьшается начальное поперечное сечение канала. Поэтому начальные участки выходных статических характеристик при напряжениях на затворе, отличных от нуля, имеют другой наклон, соответствующий большим начальным статическим сопротивлениям канала.
При больших напряжениях на стоке может возникнуть пробой p-n-перехода затвора. Обратное напряжение на р-n-переходе затвора изменяется вдоль длины канала, достигая максимального значения у стокового конца канала. Напряжение, приложенное к р-n-переходу затвора в этом месте, является суммой напряжений на стоке и на затворе. Таким образом, пробой полевого транзистора может происходить при разных напряжениях на стоке в зависимости от напряжения на затворе. Чем больше напряжение на затворе, тем меньше напряжение на стоке, при котором произойдет пробой р-n-перехода затвора. Полевые транзисторы делают обычно на основе кремния. Поэтому пробой таких транзисторов имеет лавинный характер.
Статические характеристики передачи(рис. 7) полевого транзистора представляют собой зависимости тока стока от напряжения на затворе при различных постоянных напряжениях на стоке (). Так как основным рабочим режимом полевых транзисторов является режим насыщения тока стока, что соответствует пологим частям выходных статических характеристик, то наибольший интерес представляет зависимость тока насыщения от напряжения на затворе при постоянном напряжении на стоке.
Рис. 7 Передаточная характеристика
Напряжение между затвором и истоком полевого транзистора с управляющим переходом, при котором ток стока достигает заданного низкого значения, называют напряжением отсечки полевого транзистора которое зависит от концентрации доноров в канале и акцепторов в затворе, а также технологической толщины канала.
При рассмотрении статических характеристик полевого транзистора были отмечены его основные статические параметры. По статической характеристике передачи можно определить еще один основной параметр полевого транзистора, характеризующий его усилительные свойства, — крутизну характеристики полевого транзистора S, которая представляет собой отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком: .
С ростом отрицательного напряжения на затворе значение крутизны характеристики транзистора будет уменьшаться, т.к. при увеличении отрицательного напряжения на затворе будет увеличиваться ОПЗ перехода затвора и уменьшаться толщина проводящего канала. Вблизи напряжения отсечки толщина канала вместе с током стока уменьшается до нуля, сопротивление канала возрастает и крутизна падает до нуля.
Влияние степени легирования и размера областей на напряжение отсечки и крутизну:
Напряжение отсечки будет расти с ростом степени легирования канала транзистора, потому что чем больше число доноров в ОПЗ, тем труднее удалить из канала подвижные электроны. Аналогично с толщиной, необходимо большее напряжение, чтоб удалить все электроны в подложку из толстого канала. Увеличение ширины канала и степени легирования приведёт к росту крутизны транзистора, потому что при прочих равных условиях, рост числа электронов и размеров области приведёт к уменьшению сопротивления и, следовательно, обеспечит больший ток стока при том же напряжении на затворе. Следовательно, крутизна увеличится. Существенно, что толщина канала одинаково увеличивает крутизну и напряжение отсечки. Ширина канала увеличивает только крутизну, но не влияет на напряжение отсечки.
Здравствуйте, дорогие читатели. В данной статье рассмотрим отличие полевого транзистора от биполярного, узнаем в каких сферах применяются и те, и другие транзисторы.
Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.
Отличие полевого транзистора от биполярного
Биполярные транзисторы
Проводящая область конструкции состоит из трёх «спаянных» полупроводниковых частей, с чередованием по типу проводимости. Полупроводник с донорной (электронной) проводимостью обозначается как n-тип, с акцепторной (дырочной) – p-тип. Таким образом, мы можем наблюдать только два варианта чередования – p-n-p, либо n-p-n. По этому признаку различают биполярные транзисторы с n-p-n и p-n-p структурой.
Биполярный транзистор— обзор
5.01.2.1 Плотность тока коллектора
В отличие от SiGe BJT с гомопереходом, наиболее выраженным явлением постоянного тока в SiGe HBT является увеличение плотности тока коллектора. В следующем анализе, чтобы получить выражение в замкнутой форме для тока коллектора, мы предполагаем случай преобладающих npn-транзисторов, хотя результаты в равной степени могут быть применены к pnp-транзисторам. Отдельно рассматриваются два случая: однородный состав Ge и градиентный состав Ge по нейтральному основанию.
Отправной точкой для обоих случаев является обобщенное соотношение Молла – Росса (Kroemer, 1985), которое представляет плотность тока коллектора в прямом активном режиме работы биполярных транзисторов:
(4) FC = qeqVBE / kT∫0WBNB ( x) DnB (x) niB2 (x) dx,
, где N B , D n B и n i B — концентрация допирования , константа диффузии электронов и собственная концентрация носителей, соответственно, в области нейтрального основания, а W B — ширина нейтрального основания при смещении V BE .
Сначала рассмотрим случай однородного состава Ge. Если мы предположим однородную концентрацию легирования и, следовательно, постоянную равномерной диффузии по базовой области, плотность тока коллектора станет
(5) FC, SiGe, unif = qniB2DnBNBWBeqVBE / kT.
Теперь вспомним общее выражение для n i 2 , которое дается как:
(6) ni2 = (NCNV) e − Eg / kT,
, где E g — ширина запрещенной зоны, N C и N V — эффективная плотность состояний в зоне проводимости и валентной зоне соответственно.Тогда n iB 2 базовой области SiGe можно выразить как
(7) niB2 = (NCNV) SiGee− (EgB, Si − ΔEgB, SiGe) / kT,
, где Δ E gB, SiGe представляет собой уменьшение ширины запрещенной зоны из-за добавления Ge в базовую область. Из уравнений (7) и (5) плотность тока SiGe HBT с однородным составом Ge на основании определяется как (Harame et al. , 1995)
(8) FC, SiGe, unif = qDnB ( NCNV) BNBWBe− (EgB, Si − ΔEgB, SiGe) / kTeqVBE / kT = γηeΔEgB, SiGe / kT · FC, Si,
, где γ и η учитывают уменьшение эффективной плотности состояний и усиление деформации. подвижности неосновных носителей заряда в базе SiGe по сравнению с аналогом Si:
(9) γ≜ (NCNV) SiGe (NCNV) Si
(10) η≜μn, SiGeμn, Si = Dn, SiGeDn, Si.
где μ n — подвижность неосновных электронов в основной области. J C, Si — плотность тока коллектора для гомоперехода Si BJT, которая задается как
(11) FC, Si = qni, Si2Dn, SiNBWBeqVBE / kT.
Следовательно, коэффициент увеличения плотности тока коллектора для SiGe HBT с однородным составом Ge равен γηeΔEgB, SiGe / kT. Поскольку произведение γη существенно не отличается от единицы, можно предположить, что усиление в основном определяется экспоненциальным множителем eΔEgB, SiGe / kT.При типичном диапазоне состава Ge 10–20% коэффициент усиления может составлять от ∼35 до ∼900 при комнатной температуре. Число может быть еще больше при более низких температурах.
Далее рассматривается база с градиентным составом Ge. Этот случай, безусловно, более сложен, поскольку нам нужно фактически выполнить интегрирование в текущем выражении, но вскоре будет показано, что мы все еще можем получить выражение в замкнутой форме, если градация является линейной. Если предположить однородную концентрацию легирования и ввести усредненные по нейтральной базовой области значения для постоянной диффузии электронов и эффективной плотности состояний, которые обозначены тильдой, то плотность тока коллектора может быть выражена как
(12) FC, SiGe , grad = q (N∼CN∼V) SiGee − EgB, Si / kTD∼nBNB∫0WBe − ΔEgB, SiGe (x) / kTdxeqVBE / kT,
, где Δ E gB, SiGe ( x ) представляет собой уменьшение ширины запрещенной зоны в основной области из-за добавления Ge в позиции x .Для линейно-градиентного состава Ge уменьшение ширины запрещенной зоны может быть приблизительно равно
(13) ΔEgB, SiGe (x) = ΔEgB, SiGe (WB) −ΔEgB, SiGe (0) WBx + ΔEgB, SiGe (0) = ΔEgB , SiGe (степень) WBx + ΔEgB, SiGe (0),
, где Δ E gB, SiGe (степень) определяется как общая градация ширины запрещенной зоны в нейтральной базовой области. Также мы можем определить усредненные факторы как
(14) γ∼≜ (N∼CN∼V) SiGe (NCNV) Si
(15) η∼≜D∼n, SiGeDn, Si.
Из уравнения (12) к уравнению (15) плотность тока коллектора SiGe HBT с линейно-градиентным составом Ge определяется как
(16) FC, SiGe, grad = γ∼η∼eΔEgB, SiGe (0) / kTΔEgB, SiGe (степень) kT (1 − e − ΔEgB, SiGe (степень) / kT) × qni, Si2Dn, SiNBWBeqVBE / kT = γ∼η∼eΔEgB, SiGe (0) / kTΔEgB, SiGe (степень) kT ( 1 − e − ΔEgB, SiGe (марка) / kT) ⋅FC, Si.
Следовательно, коэффициент увеличения плотности тока коллектора для SiGe HBT с линейно-градиентным составом Ge определяется как
γ∼η∼eΔEgB, SiGe (0) / kTΔEgB, SiGe (степень) kT (1 − e − ΔEgB, SiGe (марка) / тыс. Т).
Для типичной градации Ge 10–20% экспоненциальным членом в знаменателе можно пренебречь, и в этом случае коэффициент усиления будет уменьшен до
γ∼η∼eΔEgB, SiGe (0) / kTΔEgB, SiGe ( комплектация) кт.
По сравнению со случаем однородного состава Ge, показатель степени в экспоненциальном члене, Δ E gB, SiGe , теперь является конкретным значением на краю нейтральной базы со стороны эмиттера, а не значением по всей базе область, край.Кроме того, линейный коэффициент Δ E gB, SiGe / kT накладывает дополнительный эффект на улучшение. Другими словами, есть два фактора, экспоненциальный и линейный, которые способствуют увеличению плотности тока коллектора для случая градиентного состава Ge. Экспоненциальный множитель определяется составом Ge в начальной точке сортировки по нейтральному основанию. Линейный коэффициент определяется суммой общей градации по нейтральной базовой области.Поскольку линейный фактор не очень существенен по своему влиянию, состав Ge на эмиттерной стороне нейтральной базы должен поддерживаться на значительном уровне для достижения достаточно большого увеличения плотности тока коллектора.
Обратите внимание, что приведенный выше анализ не учитывал явный эффект сужения запрещенной зоны из-за сильного легирования. Если учесть этот эффект, фактическая плотность тока коллектора будет больше в eΔEgBapp / kT раз, чем предоставленный анализ, где Δ E gB app представляет собой видимое сужение запрещенной зоны из-за сильного легирования.Однако его влияние на коэффициент усиления по сравнению с Si BJT с гомопереходом будет незначительным, если сужение будет одинаковым для Si и SiGe-базы.
Определение биполярного транзистора | PCMag
Также называемый «транзистор с биполярным соединением» (BJT), это одна из двух основных категорий транзисторов; другой — «полевой транзистор» (FET). Хотя в первых транзисторах и первых кремниевых микросхемах использовались биполярные транзисторы, большинство современных микросхем представляют собой полевые транзисторы, подключенные как логику КМОП, которые потребляют меньше энергии (см. Полевые транзисторы и полевые МОП-транзисторы).Биполярные транзисторыдоступны как в индивидуальной упаковке дискретных компонентов, так и сотнями тысяч на одном кристалле.
Высокая мощность, высокая частота
Хотя общий рынок биполярных транзисторов сократился, они по-прежнему используются для приложений большой мощности и высокочастотных (RF) приложений, которые достигают диапазона гигагерц. Например, с 1997 по 2002 год мировые продажи биполярных микросхем упали с 1,5 миллиарда долларов до 226 миллионов долларов, причем последний из них составляет 136 миллиардов долларов на рынке полупроводников.См. Транзистор, IGBT и BiCMOS.
Первый транзистор был биполярным
В 1954 году компания Texas Instruments первой изобрела биполярный транзистор. Хотя BJT изготавливаются в микроскопических пропорциях на микросхемах, отдельные дискретные BJT, подобные этому, все еще широко используются. (Изображение любезно предоставлено Texas Instruments, Inc.)
Биполярный транзистор NPN
Биполярные транзисторы представляют собой либо сэндвич из кремния p-типа, окруженного областями n-типа, либо n-тип, окруженный p-типом.Чтобы включить NPN BJT (пример выше), отрицательный потенциал подается на вывод эмиттера, а положительный — на коллектор. Когда на базу подается положительное напряжение, электроны могут перемещаться от эмиттера к коллектору. Для PNP BJT полярность обратная. Название «биполярный» происходит от использования как мобильных носителей (электронов, так и дырок).
Биполяры увеличивают мощность
Биполярным транзисторам требуется постоянное напряжение на базе, чтобы транзистор оставался закрытым (включенным) и ток протекал от эмиттера к коллектору.В полевых транзисторах (FET), используемых в кристаллах CMOS, транзистор закрывается (включается) за счет зарядки затвора, и ток используется только во время периода зарядки затвора (см. FET и MOSFET).
Знакомство с биполярным переходным транзистором (BJT)
ОСНОВНЫЕ ЗНАНИЯ — БИПОЛЯРНЫЙ ПЕРЕХОДНЫЙ ТРАНЗИСТОР Введение в биполярный переходный транзистор (BJT)
Редактор: Эрика Гранат
Изобретенный в начале 1950-х годов биполярный транзистор (BJT) произвел революцию в области электроники. Транзистор является основой компьютерной памяти, микропроцессоров и других интегральных схем.
Связанные компании
Биполярный транзистор (биполярный транзистор или BJT) — это тип транзистора, который использует как электроны, так и дырки в качестве носителей заряда.(Источник: © tilialucida — stock.adobe.com)
Биполярный переходной транзистор, также называемый биполярным транзистором, представляет собой трехконтактное устройство, которое может функционировать как электронные переключатели или усилители сигналов. В этой статье мы рассмотрим основы этого типа транзисторов.
Что такое биполярный переходной транзистор (BJT)?
Проще говоря, BJT — это полупроводниковый прибор с тремя выводами. Название «биполярный» происходит от того факта, что этот тип транзистора содержит два типа полупроводникового материала — один положительный тип (p-тип) и один отрицательный тип (n-тип), через которые протекает ток.Транзисторы с биполярным переходом обычно содержат кремний. Более того, примеси обычно добавляются к кремнию путем легирования, чтобы слои вели себя желаемым образом.
Это слои p-типа в BJT, которые притягивают электроны, которые входят в транзистор через его входную цепь. С другой стороны, слои n-типа должны побуждать электроны выходить из транзистора. Этот двухтактный эффект между слоями позволяет усиливать и контролировать электрический ток.
Конфигурация слоев в BJT определяет поток электрического тока и гарантирует, что заряд не может вернуться в том же направлении, что и пришел.Такая установка защищает систему от перегрева или повреждения.
Трехслойный сэндвич
BJT создаются путем наслоения кремния p-типа и n-типа для образования трехслойного «сэндвича»:
- База, к которой присоединен небольшой пусковой ток
- Эмиттер, излучающий электроны
- Коллектор, который собирает электроны, которые были усилены. Электроны проходят от эмиттера к базе.
Работа биполярного переходного транзистора (BJP).
(Источник: Electronics Tutorials)
Есть два типа бутербродов: NPN (отрицательно-положительно-отрицательно) и PNP (положительно-отрицательно-положительно). Первый включается, когда ток течет через базу, а второй включается только тогда, когда в базе нет тока. Когда электрические контакты размещены на всех трех слоях кремния и включается ток, электроны в токе будут течь между слоями кремния n-типа и p-типа.
В сэндвиче NPN усиление происходит, когда небольшой положительный ток присоединяется к слою p-типа (основанию). Здесь один из слоев n-типа (эмиттер) заряжен отрицательно, а другой (коллектор) — положительно. В NPN-сэндвиче электроны притягиваются к базе от эмиттера. Затем электроны переходят от эмиттера к коллектору; это движение создает более сильный ток между двумя слоями n-типа.
Основной доклад на PCIM Digital Days 2021
Не пропустите основной доклад «Концепции трехфазных инверторов с регулируемой скоростью SiC / GaN нового поколения» от Иоганна Вальтера Колара, профессора и директора лаборатории силовых электронных систем, ETH Zurich , CH на PCIM Digital Days с 3 по 7 мая 2021 года.
Откройте для себя всю программу!Разработка BJT
Изобретенный физиком Уильямом Шокли в 1947 году, BJT претерпел несколько итераций на протяжении многих лет. До 1960-х годов в слоях использовался германий. К концу века германий был заменен кремнием — материалом, который показал более высокую термостойкость. Скорость BJT постепенно увеличивалась в процессе легирования, что привело к изобретению вариантов BJT, таких как:
- диффузный транзистор, который, как следует из названия, работает путем диффузии примесей в полупроводник, и
- планарный транзистор, который позволил массовое производство интегральных схем, тем самым положив начало буму бытовой электроники.
Базовые приложения
BJT часто комбинируются с MOSFET-транзисторами для обеспечения высокоскоростной цифровой логики, которая необходима для работы радиочастотных технологий и микропроцессорных микросхем высокого класса. Более того, BJT в сочетании с MOSFET позволяет сделать чипы радиационной стойкостью для использования в спутниках, ядерных реакторах и ускорителях частиц.
BJT также служат основой для имеющихся в продаже электронных усилителей и датчиков температуры.Наконец, BJT могут использоваться в качестве логарифмических преобразователей, которые сжимают динамический диапазон сигнала, чтобы сделать его более управляемым для других схем.
Следуйте за нами в LinkedIn
Вам понравилось читать эту статью? Тогда подпишитесь на нас в LinkedIn и будьте в курсе последних событий в отрасли, продуктов и приложений, инструментов и программного обеспечения, а также исследований и разработок.
Следуйте за нами здесь!(ID: 46388102)
В чем разница между MOSFET и BJT?
ОСНОВНЫЕ ЗНАНИЯ — MOSFET VS.BJT В чем разница между MOSFET и BJT?
Автор / Редактор: Люк Джеймс / Erika Granath
Полевой транзистор металл-оксид-полупроводник (MOSFET) и биполярный переходный транзистор (BJT) — это два типа транзисторов, которые выпускаются в различных корпусах, и тем, кто не знаком с электроникой, часто сложно решить, какой из них следует использовать. в своих проектах.
Связанные компании
Хотя и MOSFET, и BJT являются транзисторами, они работают по-разному и ведут себя по-разному.(Источник: Юрий Захачевский)
Хотя и MOSFET, и BJT являются транзисторами, они работают по-разному и ведут себя по-разному, поэтому используются по-разному.
Что такое полевой МОП-транзистор?
Рисунок 1: Структура полевого МОП-транзистора.
(Источник: Electronic Tutorials)
Полевой транзистор металл-оксид-полупроводник (MOSFET) представляет собой разновидность полевого транзистора (FET) , который состоит из трех выводов — затвора, истока и стока.В полевом МОП-транзисторе сток управляется напряжением на выводе затвора, поэтому полевой МОП-транзистор является устройством, управляемым напряжением. Напряжение, приложенное к затвору, определяет, сколько тока течет в сток. MOSFET доступны двух типов: « p-channel » и « n-channel ». Оба эти типа могут быть либо в режиме увеличения, либо в режиме истощения (см. Рисунок 1). Это означает, что всего существует четыре различных типа полевых МОП-транзисторов.
В полевых МОП-транзисторах с каналом p-типа выводы истока и стока выполнены из полупроводника p-типа.Точно так же в n-канальных полевых МОП-транзисторах выводы истока и стока сделаны из полупроводника n-типа. Сам вывод затвора сделан из металла и отделяется от выводов истока и стока с помощью оксида металла. Такой уровень изоляции обеспечивает низкое энергопотребление и является основным преимуществом транзисторов этого типа. Часто полевые МОП-транзисторы используются в маломощных устройствах или в качестве строительных блоков для снижения энергопотребления.
Режим истощения: Когда напряжение на клемме затвора низкое, канал демонстрирует максимальную проводимость.Поскольку напряжение на зажимах затвора является положительным или отрицательным, проводимость канала уменьшается.
Режим улучшения: , когда напряжение на клемме затвора низкое, устройство не проводит ток, если на клемму затвора не подается большее напряжение.
Что такое BJT?
Биполярный переходной транзистор (BJT) — это устройство, управляемое током (в отличие от MOSFET, управляемое напряжением), которое, среди прочего, широко используется в качестве усилителя, генератора или переключателя. Биполярный транзистор имеет три контакта — базу, коллектор и эмиттер — и два перехода: p-переход и n-переход.
Существует два типа BJT — PNP и NPN . Каждый тип имеет большой коллекторный элемент и большой эмиттерный элемент, которые легированы одинаковым образом. Между этими структурами находится небольшой слой другого легирующего агента, называемого «основой». Ток течет в коллекторе PNP и выходит из эмиттера. В NPN полярность противоположная, и ток течет в эмиттере и выходит из коллектора. В любом случае направление тока в базе такое же, как и на коллекторе.
Рисунок 2: Принцип работы BJT.
(Источник: Electronic Tutorials)
По сути, работа BJT-транзистора определяется током на его базовом выводе. Например, небольшой базовый ток равен небольшому току коллектора. Выходной ток BJT всегда равен входному току, умноженному на коэффициент, известный как «усиление», обычно в 10-20 раз превышающий базовый ток.
MOSFET vs BJT: в чем разница?
Рисунок 3: Разница между BJT и MOSFET.
(Источник: Electronic Tutorials)
Между MOSFET и BJT есть много различий.
- MOSFET (управляемый напряжением) представляет собой металлооксидный полупроводник, тогда как BJT (управляемый током) представляет собой транзистор с биполярным переходом.
- Хотя оба имеют по три клеммы, они отличаются. MOSFET имеет исток, сток и затвор, тогда как BJT имеет базу, эмиттер и коллектор.
- MOSFET идеально подходят для приложений большой мощности, тогда как BJT чаще используются в приложениях с низким током.
- BJT зависит от тока на его базовом выводе, тогда как MOSFET зависит от напряжения на электроде затвора с оксидной изоляцией.
- Структура MOSFET по своей природе более сложна, чем структура BJT.
Что лучше?
И MOSFET, и BJT имеют уникальные характеристики, а также свои плюсы и минусы. К сожалению, мы не можем сказать, что «лучше», потому что вопрос очень субъективен. На этот вопрос нет однозначного и однозначного ответа.
При выборе того, что использовать в проекте, необходимо учитывать множество различных факторов, чтобы прийти к решению. К ним относятся уровень мощности , напряжение привода, эффективность, стоимость и скорость переключения, среди прочего — вот где действительно полезно знать ваш проект!
Как правило, полевые МОП-транзисторы более эффективны в источниках питания. В устройстве с батарейным питанием, где нагрузка переменная, а источник питания ограничен, например, использование BJT было бы плохой идеей. Однако, если BJT используется для питания чего-то с предсказуемым потреблением тока (например, светодиодов), тогда это будет хорошо, потому что ток база-эмиттер может быть установлен на долю тока светодиода для повышения эффективности.
(ID: 46385462)
Глава 8: Транзисторы [Analog Devices Wiki]
В этой главе мы рассмотрим наши первые активные устройства.
8.1 Основные принципы
Активное устройство — это компонент любого типа, способный электрически управлять потоком тока (управлять одним электрическим сигналом другим электрическим сигналом). Чтобы схему можно было назвать электронной, она должна содержать хотя бы одно активное устройство.Все активные устройства контролируют прохождение тока через них. Один тип активного устройства использует напряжение для управления током, в то время как другой тип активных устройств использует другой ток в качестве управляющего сигнала. Устройства, использующие напряжение в качестве управляющего сигнала, неудивительно, называются устройствами, управляемыми напряжением. Устройства, работающие по принципу контроля одного тока другим током, известны как устройства с регулируемым током. Первым успешно продемонстрированным типом транзисторов стало устройство с регулируемым током.
В качестве примечания: происхождение термина «транзистор» — это сокращение от «варистор крутизны», поскольку предложенный Bell Telephone Laboratories. Иногда это ошибочно приписывают сокращению трансрезистентности.
Простой и общий вид такого устройства показан на рисунке 8.1.1. Имеет три терминала; назовем их пока X, Y и Z. Предположим также, что управляемый ток течет на клемму X и выводит ее обратно на клемму Y. Третья клемма, Z, является клеммой управления.Чтобы описать функцию этого блока, нам сначала нужно определить токи на клеммах IX , IY и IZ , и напряжения на клеммах VXY и VZY , как показано на рисунке. Поскольку ток протекает на клемму X, мы обычно предполагаем, что напряжение на клемме X больше, чем на клемме Y, а напряжение VXY является положительным числом. То же самое можно сказать о напряжении, наблюдаемом на выводе Z относительно вывода Y, и о напряжении VZY является положительным числом.
Рисунок 8.1.1 Общая модель
В случае устройства, управляемого током, предположим, что управляющий ток IZ, течет на клемму Z и обратно на клемму Y. Сохранение заряда говорит нам, что сумма токов, протекающих в коробку, должна равняться сумме текущие токи. Таким образом, IY = IX + IZ . Чтобы сделать устройство полезным, было бы желательно, чтобы управляющий ток IZ был очень мал по сравнению с гораздо большим управляемым током IX .Отношение IX к IZ является коэффициентом усиления устройства, и для обозначения этого коэффициента используется греческая буква β (бета). Отношение IX к IY , которое всегда меньше единицы, также является мерой усиления устройства и чаще всего обозначается греческой буквой α (альфа).
Для устройства, управляемого напряжением, предположим, как мы делали раньше, что ток течет на клемму X и выходит на клемму Y. Напряжение на клемме Z теперь управляет величиной тока на клеммах X и Y.Это напряжение теперь необходимо привязать к одной из двух других клемм, и мы будем использовать клемму Y для наших целей. Кроме того, поскольку в этом случае управляющим сигналом является напряжение, мы будем предполагать, что ток не течет на клемму Z (или не выходит из нее). Сравнивая это с устройством, управляемым током, мы можем сказать, что α = 1 и β бесконечно. Соотношение между выходным током и управляющим напряжением, выраженное в амперах / вольт, является размерной проводимостью, и для обозначения проводимости чаще всего используется буква g .Этот параметр транзистора называется крутизной, и обычно используется г, .
Мы также можем описать дополнительные устройства, изменив направление токов на обратное, так что теперь управляемый ток течет из клеммы X в клемму Y, как показано на рисунке 8.1.2. Поскольку направление тока теперь меняется на противоположное, мы обычно предполагаем, что напряжение на Y больше, чем на клемме X, а напряжение VXY является отрицательным числом. То же самое можно сказать и о напряжении, наблюдаемом на выводе Z относительно вывода Y, и о напряжении VZY — отрицательное число.Для случая с управлением по току мы также меняем направление управляющего тока I Z , который теперь вытекает из клеммы Z.
Рисунок 8.1.2 Дополнительная модель
Подводя итог, мы описали четыре типа активных устройств, источник тока, управляемый положительным током, и его дополнительную отрицательную форму, а также источник тока, управляемый положительным напряжением, и его дополнительную отрицательную форму.
8.1.1 Характеристики простой модели
Теперь мы рассмотрим передаточные характеристики этих простых моделей транзисторов и то, как их можно модифицировать или расширять, чтобы сделать их более реалистичными.Сначала мы рассмотрим характеристики выходного тока в зависимости от выходного напряжения простого (идеального) источника тока, управляемого напряжением, при ступенчатом изменении напряжения на управляющем входе. Результаты для управляемого источника с крутизной 1 мА / В показаны на рисунке 8.1.3, поскольку В XY изменяется от 0 до 5 В, а управляющее напряжение В ZY ступенчато. с шагом 0,4 В от 0,1 В до 2,1 В . Идеальный источник тока с регулируемым током должен иметь по существу те же характеристики, за исключением того, что каждая горизонтальная линия будет представлять другой управляющий ток (на клемме Z), а не другое управляющее напряжение.
Рисунок 8.1.3 Характеристики источника тока с идеальным управлением напряжением (или током)
Из этих характеристических кривых мы можем узнать следующее; во-первых, ток действительно не зависит от напряжения на клеммах X и Y. Во-вторых, ток I XY равен 1 мА на вольт, приложенный к клемме Z по отношению к клемме X (рисунок 8.1.1). Однако очевидна одна вещь, которая не может произойти в реальном устройстве, и это то, что I XY имеет значение, отличное от нуля, когда напряжение V XY равно нулю.Это означает, что устройство содержит источник энергии, и мы знаем, что это невозможно. В противном случае у нас было бы решение мирового энергетического кризиса. Более реалистичный набор характеристик больше похож на показанный на рисунке 8.1.4.
Кривые, подобные приведенным на рисунке 8.1.4, имеют больше физического смысла, но все же обладают некоторыми свойствами, которых не могут иметь реальные устройства. На графике видны резкие изломы кривых, где наклонная линия, проходящая через начало координат, пересекает горизонтальную линию при постоянном контролируемом значении тока.Этот переход никогда не может быть таким резким и должен каким-то образом плавно переходить от одной линии к другой.
Еще одним свойством этих простых кривых является идеально горизонтальный характер линий тока и напряжения. Реальное устройство покажет некоторое изменение, обычно увеличение из-за конечного реального сопротивления, с напряжением на X и Y.
Рисунок 8.1.4 Ток VCCS должен быть равен нулю, если В XY = 0
Более полная сложная математическая модель реального физического транзистора показана на рисунке 8.1.5. Мы рассмотрим эту более полную модель в следующих разделах этой главы.
Рисунок 8.1.5 Сложная математическая модель устройства
8.2 Обозначения транзисторов
Этим базовым моделям активных устройств соответствуют четыре типа транзисторов. Их схематические символы показаны на рисунке 8.2.1. Управляемым током устройством n-типа является биполярный транзистор NPN (BJT). Устройство с управлением током p-типа — это PNP BJT.Управляемым напряжением устройством n-типа является NMOS FET (металлооксидный полупроводниковый полевой транзистор). И, наконец, управляемое напряжением устройство p-типа — PMOS FET. Вместо того, чтобы давать клеммам устройства общие имена, такие как X, Y и Z, установленное соглашение для BJT — коллектор и эмиттер для клемм источника тока и база для клеммы управления током. Точно так же условное обозначение для устройства MOS — сток и источник для клемм источника тока и затвор для клеммы управления напряжением,
Рисунок 8.2.1 символы транзисторов
Примечание. Если читатель не занимается производством устройства, обычно менее важно понимать внутреннюю работу транзисторов. Описания, которые можно получить, углубляясь в внутренние свойства, не особенно подходят для схемотехники и могут быть трудными для полного понимания. Скорее для анализа и проектирования схем обычно достаточно понять внешние свойства транзисторов, рассматривая их более или менее как черный ящик. Добавление некоторого обсуждения тонкостей, которые возникают из-за физики, происходящей внутри черного ящика, конечно, необходимо для надежного проектирования схем.
8.3 Основы биполярного переходного транзистора
Транзистор с биполярным переходом (BJT) представляет собой электронное устройство с тремя выводами, построенное из легированного полупроводникового материала, и может использоваться в приложениях для усиления или переключения. Биполярные транзисторы названы так потому, что в их работе участвуют как электроны, так и дырки. Поток заряда в BJT обусловлен двунаправленной диффузией носителей заряда через соединение между двумя областями с разной концентрацией заряда. По своей конструкции большая часть тока коллектора БЮТ обусловлена потоком зарядов, вводимых от эмиттера с высокой концентрацией в базу, где они являются неосновными носителями, которые диффундируют к коллектору, и поэтому БЮТ классифицируются как устройства с неосновными носителями. в отличие от транзисторов с большинством носителей, таких как полевые транзисторы, в которых только основные носители участвуют в протекании тока из-за дрейфа.
Типичное поперечное сечение планарного NPN-транзистора показано на рисунке 8.3.1. NPN-транзистор можно рассматривать как два диода с PN-переходом с очень тонким общим анодом, P-слоем. При обычной работе переход база-эмиттер смещен в прямом направлении, а переход база-коллектор — в обратном направлении. В NPN-транзисторе, например, когда положительное напряжение прикладывается к переходу база-эмиттер, равновесие между термически генерируемыми носителями и отталкивающим электрическим полем обедненной области становится несбалансированным, позволяя термически возбужденным электронам инжектироваться в базовую область.Эти электроны блуждают (или «диффундируют») через очень тонкую базу из области высокой концентрации рядом с эмиттером в сторону области низкой концентрации возле коллектора. Электроны в базе называются неосновными носителями, потому что база легирована p-типом, что делает дырки основными носителями в базе.
Рисунок 8.3.1 Поперечное сечение планарного NPN-транзистора
Чтобы свести к минимуму процент носителей, которые рекомбинируют до достижения слоя истощения коллекторно-базового перехода, базовая область транзистора должна быть достаточно тонкой, чтобы носители могли диффундировать по ней за гораздо меньшее время, чем время жизни неосновных носителей полупроводника.В частности, толщина основания должна быть намного меньше диффузионной длины электронов. Коллектор-база-переход имеет обратное смещение, поэтому инжекция электронов от коллектора к базе происходит незначительно, но электроны, которые диффундируют через базу к коллектору, уносятся в коллектор электрическим полем в обедненной области коллектор-база. соединение. Тонкая общая база и асимметричное легирование коллектор-эмиттер — это то, что отличает биполярный транзистор от двух отдельных диодов с противоположным смещением, установленных последовательно.
8.3.1 Контроль напряжения, тока и заряда
Ток коллектора-эмиттера можно рассматривать как управляемый током база-эмиттер (управление током) или напряжением база-эмиттер (управление напряжением). Эти представления связаны между собой соотношением тока и напряжения в переходе база-эмиттер, которое представляет собой обычную экспоненциальную кривую вольт-амперной характеристики PN-перехода (диода).
Физическое объяснение тока коллектора — это количество заряда неосновных носителей заряда в базовой области.
Подробные модели действия транзистора, такие как модель Гаммеля-Пуна, явно объясняют распределение этого заряда, чтобы более точно объяснить поведение транзистора. Представление управления зарядом легко обрабатывает фототранзисторы, где неосновные носители в базовой области создаются за счет поглощения фотонов, и управляет динамикой выключения или временем восстановления, которое зависит от заряда в рекомбинации базовой области. Однако, поскольку базовый заряд не является сигналом, видимым на клеммах, при проектировании и анализе схем обычно используются режимы управления током и напряжением.
При проектировании аналоговых схем иногда используется представление управления током, поскольку оно приблизительно линейно. То есть ток коллектора примерно? F раз больше базового тока. Некоторые базовые схемы могут быть спроектированы, исходя из предположения, что напряжение эмиттер-база приблизительно постоянно, а ток коллектора в бета умножен на ток базы. Однако для точного и надежного проектирования надежных цепей BJT чаще используется модель управления напряжением (например, Ebers-Moll).Модель управления напряжением требует учета экспоненциальной функции. Следующее уравнение для тока коллектора I C показывает экспоненциальную зависимость от V BE .
Достаточно стандартный транзистор, работающий при токе около 100 мкА, может иметь В BE около 650 мВ при комнатной температуре, где q / kT составляет около 0,039 / мВ (или тепловое напряжение kT / q составляет 25 мВ). Экспоненциальный множитель в уравнении будет порядка 10 11 .В этом случае мы можем безопасно опустить член -1 в уравнении без серьезной ошибки. Взяв натуральный логарифм, мы получим уравнение для V BE .
Когда эта экспонента линеаризуется так, что транзистор может быть смоделирован как крутизна, как в модели Эберса-Молла, проектирование таких схем, как усилители, снова становится в основном линейной проблемой, поэтому часто предпочтительнее рассматривать управление напряжением. Для транслинейных схем, в которых экспоненциальная кривая I- В является ключевой для работы, транзисторы обычно моделируются как управляемые по напряжению с крутизной, пропорциональной току коллектора.Как правило, проектирование схем на уровне транзисторов выполняется с использованием SPICE или аналогичного имитатора аналоговых схем, поэтому математическая сложность модели обычно не имеет большого значения для разработчика.
8.3.2 Транзистор альфа и бета
Доля электронов, способных пересечь базу и достигнуть коллектора, является мерой эффективности BJT. Асимметричное сильное легирование эмиттерной области и легкое легирование базовой области вызывает инжекцию гораздо большего количества электронов из эмиттера в базу, чем дырок, инжектируемых из базы в эмиттер.Обычный эмиттер — ток усиление представлено как ß F или h fe и представляет собой приблизительно отношение постоянного тока коллектора к постоянному току базы в прямой активной области. Обычно оно больше 100 для малосигнальных транзисторов, но может быть меньше для транзисторов, предназначенных для мощных приложений. Другой важный параметр — коэффициент усиления по току общей базы, F . Коэффициент усиления по току с общей базой приблизительно равен коэффициенту усиления по току от эмиттера к коллектору в прямой активной области.Это отношение обычно имеет значение, близкое к единице; между 0,98 и 0,998. Альфа и бета более точно связаны следующими тождествами (транзистор NPN):
Биполярный транзистор состоит из трех областей полупроводника с различным легированием: области эмиттера, области базы и области коллектора. Этими областями являются, соответственно, тип p , тип n и тип p в PNP и тип n , тип p и тип n в транзисторе NPN.Каждая полупроводниковая область подключена к клемме, обозначенной соответствующим образом: эмиттер (E), база (B) и коллектор (C).
База физически расположена между эмиттером и коллектором и изготовлена из слегка легированного материала с высоким сопротивлением. Коллектор окружает эмиттерную и базовую области (рисунок 8.3.1), что делает практически невозможным выход электронов, инжектированных в базовую область из эмиттерной области, что делает результирующее значение очень близким к единице, и поэтому , придавая транзистору большую ß.Вид в разрезе BJT, рисунок 8.3.1, показывает, что переход коллектор-база имеет гораздо большую площадь, чем переход эмиттер-база.
Биполярный переходной транзистор, в отличие от полевого МОП-транзистора, который мы вскоре подробно обсудим, обычно не является симметричным устройством. Это означает, что перестановка коллектора и эмиттера заставляет транзистор выйти из прямого активного режима и начать работать в так называемом обратном активном режиме.
Поскольку внутренняя структура транзистора обычно оптимизирована для работы в прямом режиме, перестановка коллектора и эмиттера делает значения a и ß при работе в обратном направлении намного меньше, чем при работе в прямом направлении; часто а обратного режима ниже 0.5. Отсутствие симметрии в первую очередь связано с относительными степенями легирования эмиттера и коллектора. Эмиттер сильно легирован, в то время как коллектор слегка легирован, что позволяет приложить большое обратное напряжение смещения до того, как произойдет пробой перехода коллектор-база. Коллектор-база при нормальной работе имеет обратное смещение. Причина, по которой эмиттер сильно легирован, состоит в том, чтобы увеличить эффективность инжекции эмиттера: отношение носителей, инжектированных эмиттером, к носителям, инжектированным базой.Для высокого усиления по току большая часть носителей, вводимых в переход эмиттер-база, должна исходить от эмиттера.
Низкопроизводительные «боковые» биполярные транзисторы, которые иногда используются в КМОП-процессах, иногда проектируются симметрично, то есть без разницы между прямым и обратным режимом работы, рисунок 8.3.2. Однако, поскольку ширина основания часто намного больше, чем у вертикальной конструкции на рисунке 8.3.1, ß и а не так высоки. Метод компоновки для повышения эффективности сбора состоит в том, чтобы полностью окружить эмиттерную область со всех четырех сторон областью коллектора в форме кольца или пончика.Конечно, эта структура больше не симметрична.
Рисунок 8.3.2 Боковое сечение NPN
Небольшие изменения напряжения, приложенного к клеммам база-эмиттер, приводят к значительному изменению тока, протекающего между эмиттером и коллектором. Этот эффект можно использовать для усиления входного напряжения или тока. BJT можно рассматривать как источники тока с управлением по напряжению, но их проще охарактеризовать как источники тока с регулируемым током или усилители тока из-за относительно низкого импеданса, наблюдаемого на базе.
Ранние транзисторы были сделаны из германия, но большинство современных BJT сделаны из кремния. Устройства специального назначения также изготавливаются из полупроводниковых соединений на основе элементов III- V , таких как арсенид галлия, особенно для приложений с очень высокими частотами.
8.3.3 НПН
NPN — это один из двух типов биполярных транзисторов, в которых буквы «N» (отрицательный) и «P» (положительный) относятся к основным носителям заряда внутри различных областей транзистора.Производимые сегодня биполярные транзисторы с лучшими характеристиками — это NPN-транзисторы, поскольку подвижность электронов выше подвижности дырок в полупроводниках, что обеспечивает большие токи и более быструю работу.
Транзисторы NPN состоят из слоя полупроводника с примесью фосфора («основа»), помещенного между двумя слоями с примесью азота. Небольшой ток, поступающий в базу в режиме общего эмиттера, усиливается на выходе коллектора. Другими словами, NPN-транзистор включен, когда его база поднята высоко относительно эмиттера.Стрелка в символе транзистора NPN находится на плече эмиттера и указывает направление обычного тока, когда устройство находится в прямом активном рабочем режиме.
Одно мнемоническое устройство для идентификации символа для NPN-транзистора: « n ot p ointing i n или« n ot p ointing, n ointing »
8.3.4 PNP
Другой тип BJT — это PNP с буквами «P» и «N», обозначающими основные носители заряда внутри различных областей транзистора.Транзисторы PNP состоят из слоя полупроводника с примесью азота, расположенного между двумя слоями материала с примесью фосфора. Небольшой ток, выходящий из базы в режиме общего эмиттера, усиливается на выходе коллектора. Другими словами, транзистор PNP включен, когда его база опущена относительно эмиттера.
Стрелка в символе транзистора PNP находится на плече эмиттера и указывает направление обычного тока, когда устройство находится в прямом активном режиме.
8.3.5 BJT Регионы присутствия
Биполярные транзисторы имеют пять различных областей работы, определяемых способом смещения переходов. Чтобы наглядно представить режимы работы, нарисуйте NPN-транзистор с коллектором вверху, базой посередине и эмиттером внизу. Теперь есть две разницы напряжения: между коллектором и базой и между базой и эмиттером. Обратите внимание на два момента: V CB = — V BC , а «соединение база-коллектор с обратным смещением» означает V BC <0 или V CB > 0.Проще говоря, это означает, что коллектор имеет более высокое напряжение, чем база (если зондировать). Механическим аналогом может быть труба и вентиль.
Клапан базовый, а две стороны трубы — коллектор и эмиттер. Теперь количество воды (тока), проходящего через него, зависит от того, насколько открыт клапан (напряжение от базы к эмиттеру) и сколько воды у вас наверху трубы (напряжение от коллектора до базы). Если вы запишете смещения в терминах приложенных напряжений ( V CB , V BE ) вместо смещения перехода, режимы работы можно описать как:
Активный в прямом направлении: база выше эмиттера, коллектор выше базы (в этом режиме ток коллектора пропорционален току базы на β F ).
Насыщенность: База выше эмиттера, но коллектор не выше базы.
Cut-Off: База ниже эмиттера, но коллектор выше базы. Это означает, что транзистор не пропускает обычный ток через коллектор к эмиттеру.
Reverse Active: база ниже эмиттера, коллектор ниже базы: обратный условный ток проходит через транзистор.
Что касается смещения перехода: («соединение база-коллектор с обратным смещением» означает В BC <0 или В CB > 0)
Вперед — активный (или просто активный): переход база-эмиттер смещен в прямом направлении, а переход база-коллектор смещен в обратном направлении.Большинство биполярных транзисторов спроектированы так, чтобы обеспечить максимальное усиление по току с общим эмиттером, β F , в прямом активном режиме. В этом случае ток коллектор-эмиттер приблизительно пропорционален току базы, но во много раз больше при небольших изменениях тока базы.
Обратный — активен (или инверсный — активен или инвертирован): при изменении условий смещения прямой активной области биполярный транзистор переходит в обратно-активный режим.В этом режиме области эмиттера и коллектора меняются ролями. Поскольку большинство биполярных транзисторов предназначены для максимального увеличения коэффициента усиления по току в прямом активном режиме, β F в инвертированном режиме в несколько (2-3 для обычного германиевого транзистора) раз меньше. Этот транзисторный режим используется редко, обычно рассматривается только для условий отказоустойчивости и некоторых типов биполярной логики. Напряжение пробоя обратного смещения к базе может быть на порядок ниже в этой области.
Насыщение: с обоими переходами, смещенными в прямом направлении, BJT находится в режиме насыщения и обеспечивает проведение сильного тока от эмиттера к коллектору.Этот режим соответствует логическому «включению» или замкнутому переключателю.
Отсечка: В отсечке присутствуют условия смещения, противоположные насыщению (оба перехода смещены в обратном направлении). Ток очень слабый, что соответствует логическому «выключению» или разомкнутому переключателю.
Лавина обрыв район
Хотя эти области хорошо определены для достаточно большого приложенного напряжения, они частично перекрываются при малых (менее нескольких сотен милливольт) смещениях.Например, в типичной конфигурации с заземленным эмиттером NPN BJT, используемого в качестве понижающего переключателя в цифровой логике, состояние «выключено» никогда не включает в себя переход с обратным смещением, поскольку базовое напряжение никогда не опускается ниже уровня земли; тем не менее прямое смещение достаточно близко к нулю, чтобы ток практически не протекал, поэтому этот крайний предел прямой активной области можно рассматривать как область отсечки.
8.4.1 Биполярный переходной транзистор с большим сигналом Модель
Как мы только что узнали, транзистор с биполярным переходом (BJT) может работать в одной из трех областей:
- Область отсечки: транзистор выключен, и ток между коллектором и эмиттером не течет ( i.е. , сопротивление коллектор-эмиттер бесконечно).
Активная область: Транзистор действует как источник тока с регулируемым током между коллектором и эмиттером, как в базовой модели.
Область насыщения: когда напряжение между коллектором и эмиттером падает ниже определенного уровня (обычно, когда напряжение коллектора и базы равно нулю или меньше), ток базы увеличивается и соотношение I C к I B , или β намного меньше, чем в активной области.
В активной области транзистор регулирует ток коллектора на? умножить на базовый ток. Если базовый ток I B падает до 0, транзистор входит в область отсечки и закрывается. Когда напряжение коллектора становится меньше или равным базовому напряжению, базовый ток увеличивается, а β падает. В этом случае транзистор переходит в область насыщения. Чтобы не допустить попадания транзистора в область насыщения, общее практическое правило состоит в том, что напряжение на коллекторе должно быть более положительным, чем напряжение на базе.То есть переход коллектор-база всегда имеет обратное смещение.
Простая модель работы NPN и PNP BJT транзисторов в активной области показана на рисунке 8.4.1. Требуется знать коэффициент усиления по току β, чтобы спроектировать схему. В обеих этих моделях
I C = βI B , I E = (β + 1) I B и
Эмиттер отделен от базы диодом. Чтобы этот диод проводил ток, в случае устройства на основе кремния он должен быть смещен в прямом направлении на ~ 0.65В.
Рисунок 8.4.1 (a) Активная область NPN (b) Активная область PNP
Диод база-эмиттер: всегда помните о рисунке 8.4.1. Модель Эберса-Молла BJT рассматривает соотношение тока и напряжения в переходе база-эмиттер точно так же, как идеальный диод Шокли, ток которого отражается в коллекторе с усилением. Когда V B и V E не очевидны, помните о диоде база-эмиттер.
8.4.2 Ранний эффект (модуляция базовой ширины)
Ранний эффект был впервые обнаружен и объяснен Джеймсом Эрли, когда он работал в Bell Labs. В нашем идеальном устройстве ток коллектора должен быть равен току базы, умноженному на постоянный коэффициент усиления β. Но, как мы видели выше, каждый p-n-переход имеет два обедненных слоя. Для перехода коллектор-база один истощающий слой простирается в коллектор, другой — в основание. База почти всегда более сильно легирована, чем коллектор, поэтому ее обедненный слой довольно неглубокий.Однако основание также очень тонкое, поэтому даже неглубокий обедненный слой занимает значительную часть ширины основания. С увеличением напряжения на коллекторе обедненные слои расширяются. В области коллектора это имеет небольшой эффект (пока он не попадает в другую сторону коллектора), но в области основания это сужает ширину основания. Поскольку коэффициент усиления биполярного транзистора очень сильно зависит от ширины базы, коэффициент усиления просто увеличивается при уменьшении эффективной ширины базы. Если вы проведете прямую линию, увеличивающую наклон в передней активной области (от 0.От 4 до 15 вольт, например) в отрицательный квадрант и дайте ему пересечься с линией нулевого тока, вы получите раннее напряжение В A . В преувеличенном случае, показанном на рисунке 8.4.2, раннее напряжение будет -15 В (но обычно выражается как 15 В). В зависимости от ширины основания, предусмотренной в производственном процессе, она может быть больше или меньше, чем показанная, с соответственно меньшим или более крутым уклоном.
Рисунок 8.4.2 Раннее напряжение
8.5.1 Базовая конструкция и принцип работы
Полевой транзистор металл-оксид-полупроводник n-типа (MOSFET) состоит из истока и стока, двух высокопроводящих полупроводниковых областей n-типа, которые изолированы от подложки p-типа PN-диодами с обратным смещением. Затвор из поликристаллического кремния покрывает область между истоком и стоком, но отделен от полупроводника изолирующим слоем оксида. Базовая структура полевого МОП-транзистора n-типа и соответствующий символ схемы показаны на рисунке 8.5.1.
Рисунок 8.5.1 Поперечное сечение и условное обозначение схемы металл-оксид-полупроводник-полевой транзистор n-типа (MOSFET)
Как видно на рисунке, области истока и стока идентичны. Именно приложенные напряжения определяют, какая область n-типа обеспечивает электроны и становится источником, в то время как другая область n-типа собирает электроны и становится стоком. Напряжения, приложенные к электроду стока и затвора, а также к подложке посредством заднего контакта, относятся к потенциалу истока, как также показано на рисунке.
Вид сверху того же полевого МОП-транзистора показан на рисунке. 8.5.2, где указаны длина ворот L и ширина ворот W. Обратите внимание, что длина затвора не равна физическому размеру затвора, а скорее расстоянию между областями истока и стока под затвором. Перекрытие между затвором и областью истока и стока требуется, чтобы гарантировать, что инверсионный слой образует непрерывный проводящий путь между областью истока и стока. Обычно это перекрытие делается как можно меньше, чтобы свести к минимуму его паразитную емкость.
Рисунок 8.5.2 Вид сверху металл-оксид-полупроводник-полевой транзистор n-типа (MOSFET)
Поток электронов от истока к стоку контролируется напряжением, приложенным к затвору. Положительное напряжение, приложенное к затвору, притягивает электроны к границе раздела между диэлектриком затвора и полупроводником. Эти электроны образуют проводящий канал между истоком и стоком, называемый инверсионным слоем. Ток затвора не требуется для поддержания инверсионного слоя на границе раздела, поскольку оксид затвора блокирует любой поток носителей.В итоге ток между стоком и истоком регулируется напряжением, приложенным к затвору.
Типичные характеристики тока в зависимости от напряжения (I- V ) полевого МОП-транзистора показаны на рисунке ниже. Реализована квадратичная модель полевого МОП-транзистора.
8,6 МОП-транзистор, большой сигнал, модель
8.6.1 Режимы работы
Работа полевого МОП-транзистора может быть разделена на три различных режима в зависимости от напряжений на клеммах.В следующем обсуждении используется упрощенная алгебраическая модель, которая верна только для старых технологий. Характеристики современных полевых МОП-транзисторов требуют компьютерных моделей, которые имеют более сложное поведение.
Для расширения — режим , n-канальный MOSFET, три рабочих режима:
Режим отсечки, подпорога или слабой инверсии
Когда:
Где В th — пороговое напряжение устройства.
Согласно базовой пороговой модели транзистор выключен, и между стоком и истоком нет проводимости.В действительности, распределение энергии электронов Больцмана позволяет некоторым из более энергичных электронов в источнике проникать в канал и течь в сток, что приводит к подпороговому току, который является экспоненциальной функцией напряжения затвор-исток. В то время как ток между стоком и истоком в идеале должен быть равен нулю, когда транзистор используется в качестве выключателя, существует слабый ток инверсии, иногда называемый подпороговой утечкой. При слабой инверсии ток изменяется экспоненциально в зависимости от смещения затвор-исток В GS , что приблизительно равно:
Где:
I D0 = ток при В GS = В th
а коэффициент наклона n определяется выражением
С участием:
C D = емкость обедненного слоя
А также
C OX = емкость оксидного слоя.
В устройстве с длинным каналом отсутствует однократная зависимость тока от напряжения стока В DS » В T , но по мере уменьшения длины канала уменьшение барьера, вызванного стоком, приводит к зависимости напряжения стока, которая зависит от сложным образом от геометрии устройства (например, легирование канала, легирование перехода и т. д.). Часто пороговое напряжение В th для этого режима определяется как напряжение затвора, при котором возникает выбранное значение тока I D0 , например, I D0 = 1 мкА, что может не совпадать V th — значение, используемое в уравнениях для следующих режимов.
Некоторые аналоговые схемы микромощностей предназначены для использования преимущества подпороговой проводимости. Работая в области слабой инверсии, полевые МОП-транзисторы в этих схемах обеспечивают максимально возможное отношение крутизны к току, а именно:
Что почти то же самое, что и биполярный транзистор.
Подпороговая кривая I- V экспоненциально зависит от порогового напряжения, вводя сильную зависимость от любых производственных изменений, которые влияют на пороговое напряжение; например: изменения толщины оксида, глубины перехода или легирования тела, которые изменяют степень снижения барьера, вызванного стоком.Возникающая в результате чувствительность к вариациям изготовления усложняет оптимизацию утечки и производительности.
Триодный режим или линейная область (также известный как резистивный режим)
Когда
а также
Транзистор включается, и создается канал, который позволяет току течь между стоком и истоком. МОП-транзистор работает как резистор, управляемый напряжением затвора относительно напряжений истока и стока.Ток от стока к истоку моделируется следующим образом:
Где:
μ n — эффективная подвижность носителей заряда,
W — ширина затвора,
L — длина затвора,
C ox — емкость оксида затвора на единицу площади.
Переход от экспоненциальной подпороговой области к триодной области не такой резкий, как предполагают уравнения.
Насыщенность или активный режим,
Когда
а также
Переключатель включен, и был создан канал, который позволяет току течь между стоком и истоком.Поскольку напряжение стока выше, чем напряжение затвора, электроны распространяются, и проводимость осуществляется не через узкий канал, а через более широкое, двумерное или трехмерное распределение тока, простирающееся от границы раздела в глубину подложки. Начало этой области также известно как pinch- off, чтобы указать на отсутствие области канала около стока. Ток стока теперь слабо зависит от напряжения стока и контролируется в основном напряжением затвор-исток и моделируется очень приблизительно как:
Дополнительный фактор, включающий λ, параметр модуляции длины канала, моделирует зависимость тока от напряжения стока из-за эффекта Early или модуляции длины канала.Согласно этому уравнению, ключевым параметром конструкции крутизна полевого МОП-транзистора является:
Комбинация называется напряжением перегрузки. Другим ключевым параметром конструкции является выходное сопротивление полевого МОП-транзистора r O , определяемое по формуле:
r out является инверсией g ds где
V DS — выражение в области насыщения.
Если ? принимается равным нулю, в результате получается бесконечное выходное сопротивление устройства, что приводит к нереалистичным предсказаниям схемы, особенно в аналоговых схемах.Поскольку длина канала становится очень короткой, эти уравнения становятся неточными. Возникают новые физические эффекты. Например, перенос носителей в активном режиме может быть ограничен насыщением скорости. Когда преобладает насыщение по скорости, ток стока насыщения более близок к линейному, чем к квадратичному в V GS . На еще меньших длинах носители транспортируются с почти нулевым рассеянием, известным как квазибаллистический транспорт. Кроме того, на выходной ток влияет снижение порогового напряжения, вызванное стоком.
8.7 Малосигнальные модели Hybrid-pi
Модель Hybrid-Pi — это популярная схемная модель, используемая для анализа поведения слабого сигнала биполярных переходных и полевых транзисторов. Модель может быть достаточно точной для низкочастотных цепей и может быть легко адаптирована для более высокочастотных цепей с добавлением соответствующих межэлектродных емкостей и других паразитных элементов.
8.7.1 Параметры биполярного перехода (BJT)
Модель hybrid-pi представляет собой приближение линеаризованной двухпортовой сети к BJT с использованием напряжения база-эмиттер слабого сигнала v до и напряжения коллектор-эмиттер v ce в качестве независимых переменных и тока базы слабого сигнала i. b и ток коллектора i c в качестве зависимых переменных.Базовая низкочастотная гибридная пи-модель биполярного транзистора (NPN) показана на рисунке 8.7.1.
Рисунок 8.7.1 Модель BJT Hybrid-pi
Различные параметры следующие:
Крутизна, г м , в сименсах, определяется следующим уравнением:
где:
I C — ток покоя коллектора (также называемый током смещения коллектора или постоянным током коллектора) — тепловое напряжение, рассчитанное из постоянной Больцмана k , заряда электрона q и температуры транзистора в кельвинах T .При 300 K (приблизительно комнатная температура) V T составляет около 26 мВ .
где:
— текущий коэффициент усиления на низких частотах (также обозначается как h FE ).
Здесь I B — базовый ток точки покоя. Это параметр, специфичный для каждого транзистора, его можно найти в таблице данных; ß — это функция выбора тока коллектора.
Выходное сопротивление из-за раннего эффекта ( В A — раннее напряжение).
Связанные термины:
Величина, обратная выходному сопротивлению, называется выходной проводимостью.
Величина, обратная величине г м , называется внутренним сопротивлением r E
8.7.2 Параметры MOSFET
Базовая низкочастотная гибридная пи-модель для полевого МОП-транзистора (n-типа) показана на рисунке 8.7.2.
Рисунок 8.7.2 Модель MOSFET Hybrid-pi
Различные параметры следующие:
gm — крутизна в сименсах, рассчитанная по току стока I D . где:
I D — ток покоя стока (также называемый смещением стока или постоянным током стока) В th = пороговое напряжение и В GS = напряжение затвор-исток.
Комбинация: часто называется напряжением перегрузки.
r o — выходное сопротивление из-за модуляции длины канала с использованием аппроксимации для параметра модуляции длины канала λ.
Здесь V E — параметр, связанный с технологией (около 4 V / мкм для технологического узла 65 нм), а L — длина разнесения истока и стока.
Величина, обратная выходному сопротивлению, называется проводимостью стока.
8.8 Модель T
Модель hybrid-pi, безусловно, является самой популярной моделью слабого сигнала для транзисторов BJT и MOS. Альтернативой является Т-модель, которая полезна в определенных ситуациях. Модель T также имеет две версии:
Т-модели слабого сигнала для транзисторов PNP BJT и PMOS идентичны показанным здесь для транзисторов NPN и NMOS. Важно отметить, что нет никаких изменений полярностей (напряжения или тока) для моделей p-типа по сравнению с моделями n-типа.Опять же, эти модели слабого сигнала идентичны. Модель может быть достаточно точной для низкочастотных цепей и может быть легко адаптирована для более высокочастотных цепей с добавлением соответствующих межэлектродных емкостей и других паразитных элементов.
Базовая низкочастотная Т-модель для MOSFET и BJT показана на рисунке 8.8.1.
Рисунок 8.8.1 Модель MOSFET и BJT T
Некоторые важные уравнения МОП.
Некоторые важные уравнения БЮТ.
Лабораторная деятельность
Биполярный транзистор(BJT) — что это? — ES Components
Биполярные транзисторы названы так потому, что они проводят с использованием как мажоритарных, так и неосновных носителей. Биполярный переходной транзистор, первый тип транзистора, который будет производиться серийно, представляет собой комбинацию двух переходных диодов и состоит из тонкого слоя полупроводника p-типа, зажатого между двумя полупроводниками n-типа (n – p– n-транзистор), или тонкий слой полупроводника n-типа, зажатый между двумя полупроводниками p-типа (p – n – p транзистор).Эта конструкция создает два p − n-перехода: переход база-эмиттер и переход база-коллектор, разделенные тонкой полупроводниковой областью, известной как базовая область (два переходных диода, соединенные вместе, не разделяя промежуточную полупроводниковую область, не будут составлять транзистор. ).
Биполярные транзисторыимеют три вывода, соответствующие трем слоям полупроводника — эмиттер , основание и коллектор . Они полезны в усилителях, потому что токами на эмиттере и коллекторе можно управлять с помощью относительно небольшого тока базы.В n − p − n-транзисторе, работающем в активной области, переход эмиттер-база смещен в прямом направлении (электроны и дырки рекомбинируют на переходе), а переход база-коллектор смещен в обратном направлении (электроны и дырки образуются при удаляются от перехода), а электроны инжектируются в базовую область. Поскольку база узкая, большинство этих электронов диффундируют в переход база-коллектор с обратным смещением и уносятся в коллектор; возможно, одна сотая электронов рекомбинирует в базе, что является доминирующим механизмом в токе базы.Кроме того, поскольку база слегка легирована (по сравнению с областями эмиттера и коллектора), скорость рекомбинации низка, что позволяет большему количеству носителей диффундировать через область базы. Путем управления количеством электронов, которые могут покинуть базу, можно управлять количеством электронов, попадающих в коллектор. Ток коллектора приблизительно равен β (коэффициент усиления тока общего эмиттера), умноженный на ток базы. Обычно оно больше 100 для малосигнальных транзисторов, но может быть меньше для транзисторов, предназначенных для мощных приложений.
В отличие от полевого транзистора (см. Ниже), BJT представляет собой устройство с низким входным сопротивлением. Кроме того, по мере увеличения напряжения база-эмиттер ( В, BE) ток база-эмиттер и, следовательно, ток коллектор-эмиттер ( I CE) экспоненциально возрастают в соответствии с моделью диода Шокли и моделью Эберса-Молла. Из-за этой экспоненциальной зависимости BJT имеет более высокую крутизну, чем FET.
Биполярные транзисторы можно сделать проводящими под воздействием света, потому что поглощение фотонов в основной области генерирует фототок, который действует как базовый ток; ток коллектора примерно в β раз больше фототока.Устройства, предназначенные для этой цели, имеют в корпусе прозрачное окошко и называются фототранзисторами.
Источник: Википедия
ECE 291 Лаборатория 10: Транзистор, сравнение двух основных типов: МОП и БИПОЛЯРНЫЙ
ЗАДАЧИ
Знакомство с MOSFET, наиболее часто используемым типом транзисторов на сегодняшний день, и его сравнение с BJT. Демонстрирует чрезвычайно высокий импеданс затвора полевого МОП-транзистора по постоянному току. Изучение линейных характеристик и поведения переключения транзисторов.МОП-транзистор как устройство, управляемое напряжением, и BJT как устройство, управляемое током. Аналоговый переключатель MOS.
ВВЕДЕНИЕ
Сегодня существует два наиболее распространенных типа транзисторов: металл-оксидный полупроводник или MOS и биполярный переходный транзистор или BJT. MOS также обозначается как MOSFET, потому что это полевой транзистор (FET). Подавляющее большинство обоих типов изготовлено из кремния (Si) и небольшая часть (около 2%) из арсенида галлия (GaAs). Первоначально BJT доминировал на рынке, но теперь большинство транзисторов, особенно в интегральных схемах, относятся к типу MOS.BJT по-прежнему сохраняет свои позиции, особенно в некоторых аналоговых цепях и схемах большой мощности. В то время как большинство транзисторов любого типа сегодня изготавливаются как элементы интегральных схем (ИС), которые могут содержать миллионы элементов схемы, одиночные или дискретные транзисторы по-прежнему используются во многих приложениях, таких как высокочастотные или силовые блоки.
В этой лаборатории мы концентрируемся на МОП-транзисторе и сравниваем его с БЮТ. Подчеркивается важное различие между импедансом затвора MOS и базовым импедансом BJT.. Вы будете экспериментировать с N-канальным мощным МОП-транзистором и BJT типа npn.
PRELAB
- МОП-транзистор характеризуется очень высоким входным сопротивлением (затвором). Означает ли это, что к воротам никогда не протекает заметный ток? Объяснять.
- Изобразите схемы схем для экспериментов с полевым МОП-транзистором, описанных в разделах 1, 2 и 3 ниже.
ЛАБОРАТОРИЯ
Необходимое оборудование со склада: Протоплата аналоговая универсальная измеритель, коробка замены сопротивления, провода, щуп.
1. ПОЛЯРНОСТЬ БИПОЛЯРНОГО ТРАНЗИСТОРА
Проверить переходы база-коллектор и база-эмиттер омметром. (используйте шкалу кОм). На самом деле вы не измеряете сопротивление, но можете определить полярность переходов транзистора. Убедитесь, что npn-транзистор имеет соответствующие переходы между эмиттером (n-тип) и базой (p-тип), а также между базой и коллектором (n-тип).
Рис 9.1: Клеммы подключения к МОП-транзисторам (слева) и BJT (справа).
2. ТРАНЗИСТОР КАК ПЕРЕКЛЮЧАТЕЛЬ
2.1 БЮТ
Соберите схему (показанную ниже), в которой npn BJT используется для переключения включить и выключить небольшую лампу накаливания. Резистор R 1 должен быть от 220 до 390 Ом, чтобы защитить базу транзистора от чрезмерного тока. R x может быть коробкой замены сопротивления.
Инжир.9.2 Схема транзисторного переключателя.В этом приложении небольшой ток в базовой цепи управляет большим ток в цепи коллектора (лампы). Таким образом, транзисторы большой мощности может использоваться для управления большими токовыми нагрузками.
Найдите номинал базового резистора R x , позволяющий включить лампу на полную яркость. Измерьте базовое напряжение V b , когда лампа «включена», и вычислите базовый ток, который использовался для полного включения BJT.Какое эквивалентное сопротивление между базой и эмиттером транзистора в этой конфигурации? Также измерьте ток лампы и напряжение коллектора. Вычислите также эквивалентное сопротивление между эмиттером и коллектором, когда транзистор включен.
2.2 МОП-транзистор
ПРЕДУПРЕЖДЕНИЕ. Вы собираетесь работать с полевым МОП-транзистором, устройством, очень чувствительным к статическому электричеству. Не прикасайтесь к выводу затвора рукой, не дотронувшись до одного из двух других выводов транзистора той же рукой.Когда транзистор вставлен в макетную плату, сначала «заземлите» свое тело, прикоснувшись к печатной плате, прежде чем касаться электрода затвора. Когда транзистор не используется, держите его вставленным в черную прокладку из токопроводящей пены.
Замените BJT на полевой МОП-транзистор с n-канальным режимом улучшения: вывод затвора заменяет базу, исток заменяет эмиттер, а сток — коллектор (см. Рис. 9.1). Включите и выключите лампу, подключив резистор R x либо к положительной клемме источника питания, либо к земле.
Теперь сюрприз: отключите резистор затвора либо от земли, либо от источника питания. Коснитесь свободного конца резистора (или вывода затвора транзистора) одной рукой, а другой рукой коснитесь заземления или положительного вывода. Когда лампа загорится, уберите руки и подождите. Через некоторое время пальцами «отшлифуйте» ворота. С этого момента вы должны помнить, что никогда не оставляйте затвор MOSFET неподключенным. Что можете сказать о входном сопротивлении этой цепи? Вам нужен большой ток, чтобы включить транзистор? Сравните с BJT!
Измерьте также ток лампы и напряжение стока. Какое выходное сопротивление (сопротивление между истоком и стоком) этой цепи?
ПРИМЕЧАНИЕ: Транзистор, используемый в этих экспериментах, представляет собой силовой полевой МОП-транзистор, способный выдерживать большой ток и имеющий относительно низкое сопротивление канала. Полевой МОП-транзистор, обычно используемый в цифровых схемах, не включает лампочку; его сопротивление канала слишком велико. Однако он может управлять светодиодом (светоизлучающим диодом), который требует гораздо меньшего тока, чем лампочка.
2.3. ПЕРЕКЛЮЧЕНИЕ МОП-транзистора.
Заменить лампочку в цепи полевого МОП-транзистора двумя параллельными резисторами на 100 Ом. Подайте прямоугольный сигнал от генератора сигналов на вашем стенде к затвору через резистор 10 кОм. Амплитуда должна быть достаточно большой для включения и выключения транзистора, но используйте также регулировку смещения постоянного тока генератора, чтобы получить выход с одной полярностью (проверьте на осциллографе). Увеличьте частоту примерно с 1 кГц и наблюдайте за входным сигналом на затворе и выходным сигналом на стоке. Зачем вам действительно нужен зонд? Часть входного сигнала должна иметь вид RC-кривой. Попробуйте оценить емкость затвора.
ПРИМЕЧАНИЕ. Входная цепь, состоящая из резистора и затвора, более сложна, чем простая RC-цепь, поскольку на нее влияет напряжение на стоке. Когда напряжение стока меняется, оно влияет на напряжение затвора (обратная связь), и эффект выглядит как изменение емкости затвора. Это объясняет несколько странную форму наблюдаемых сигналов.
Чтобы определить, насколько быстро может переключаться транзистор, устраните сопротивление затвора и подключите затвор непосредственно к генератору сигналов. Остерегайтесь статического электричества!
Увеличьте частоту и наблюдайте за формами волны. Измерьте время «включения» и «выключения» как на входе, так и на выходе. Что ограничивает скорость переключения? Есть ли сопротивление во входной цепи?
3.ТРАНЗИСТОР КАК УСИЛИТЕЛЬ
3.1 МОП-транзистор
Поскольку затвор MOSFET практически не потребляет ток, выходной ток этого устройства регулируется напряжением затвора. Чтобы изучить этот эффект, измерьте ток стока как функцию напряжения затвора с заземленным истоком. Используйте схему на рис. 9.3, где резистор стока R d может быть 1 кОм. Увеличьте напряжение затвора V g от нуля, контролируя напряжение стока.В г . Рассчитайте ток стока и постройте его зависимость от V g . Определите пороговое напряжение транзистора.
Рис. 9.3: Схема MOSFET с общим истоком.3,2 БЮТ
BJT может управляться током базы, и цель этого измерения — продемонстрировать так называемое «усиление тока» транзистора или отношение тока коллектора к току базы.Коэффициент усиления по току (β или h FE ) не является хорошим параметром транзистора, потому что он зависит от условий эксплуатации и широко варьируется для разных образцов одного и того же типа, но он демонстрирует важную функцию транзистора: усиление .
Измерьте коэффициент усиления транзистора по току для нескольких значений I B , используя схему, показанную на рисунке 9.4 ниже.
Рис. 9.4 Схема измерения коэффициента усиления по току.У вас есть несколько вариантов выполнения этих измерений. Измеряя V b и V bb с помощью цифрового вольтметра, вы можете определить ток базы, если известно значение резистора базы (4,7k на рис. 9.4). В качестве альтернативы вы можете измерить базовый ток напрямую с помощью цифрового амперметра. Ток коллектора можно определить путем измерения напряжения коллектора V c или напрямую, подключив аналоговый амперметр последовательно с резистором 1 кОм.Цифровой измеритель понадобится для измерения V b или тока в базе.
Выполните измерения для нескольких значений базового тока I B , изменив V bb . Составьте таблицу результатов, включая напряжение база-эмиттер В BE и напряжение коллектор-эмиттер В CE , а также расчетные значения усиления по току ( h FE или beta ).
4.ХАРАКТЕРИСТИКИ ТРАНЗИСТОРА
С помощью измерителя кривой протестируйте МОП- и БЮТ-транзисторы в режиме общего истока или эмиттера, соответственно. Характеристические кривые включают ток стока (коллектора) как функцию напряжения стока (коллектора) для различных значений напряжения затвора (тока базы). Выберите диапазоны напряжения и тока, которые включают значения, которые вы измерили в части 3. Нарисуйте наблюдаемые кривые, обозначающие оси, и укажите приблизительные масштабы осей.Свяжите кривые со значениями, измеренными в части 3.
5. МОП-транзистор КАК АНАЛОГОВЫЙ ПЕРЕКЛЮЧАТЕЛЬ
Очень полезная схема, невозможная с BJT, может быть построена с MOSFET, используемыми в качестве переключателей аналоговых сигналов. Они действуют как твердотельные реле, управляемые напряжением затвора, в то время как стандартные реле управляются током в их катушках. Такие схемы, используемые в системах сбора данных, служат аналоговыми мультиплексорами, которые позволяют выбирать один из нескольких входов данных.В других приложениях они могут изменять коэффициент усиления операционного усилителя или коэффициент затухания путем переключения различных резисторов, используя уровни управляющего напряжения, обычно устанавливаемые цифровыми схемами. Существуют специальные аналоговые переключатели CMOS, выполненные в виде интегральных схем в нескольких блоках, также называемых воротами передачи. Здесь мы начинаем эксперимент с аналоговыми переключателями, используя наш силовой MOSFET.
Создайте аналоговый переключатель с использованием полевого МОП-транзистора. Подайте сигнал на исток и снимите выходной сигнал с резистора (от 10 кОм до 100 кОм), подключенного между стоком и землей.Управляющее напряжение должно подаваться на затвор через обычный однополюсный переключатель. Подайте сигнал, передавая некоторое смещение постоянного тока от генератора на вход, и наблюдайте за выходом на осциллографе, изменяя положение переключателя. Отрегулируйте регулятор смещения постоянного тока на генераторе и понаблюдайте за его действием. Каким должно быть соотношение между уровнем управляющего напряжения, подаваемого на затвор, и уровнем входного напряжения, чтобы это устройство работало?
ОТЧЕТ
- Включите все схемы со значениями компонентов.