Полевые и биполярные транзисторы – Биполярные и полевые транзисторы. Их характеристики и практическое применение.

Содержание

Отличие полевого транзистора от биполярного. Сфера их применения

Здравствуйте, дорогие читатели. В данной статье рассмотрим отличие полевого транзистора от биполярного, узнаем в каких сферах применяются и те, и другие транзисторы.

И так, начнём…

Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.

Отличие полевого транзистора от биполярного

   Отличие полевого транзистора от биполярного

Биполярные транзисторы

Проводящая область конструкции состоит из трёх «спаянных» полупроводниковых частей, с чередованием по типу проводимости. Полупроводник с донорной (электронной) проводимостью обозначается как n-тип, с акцепторной (дырочной) – p-тип. Таким образом, мы можем наблюдать только два варианта чередования – p-n-p, либо n-p-n. По этому признаку различают биполярные транзисторы с n-p-n и p-n-p структурой.

Общая часть транзисторного кристалла, контактирующая с двумя другими, называется «база». Две другие – «коллектор» и «эмиттер». Степень насыщенности базы носителями заряда (электронами или электронными вакансиями «дырками») определяет степень проводимости всего кристалла транзистора. Таким образом, осуществляется управление проводимостью переходов транзистора, что позволяет использовать его в качестве элемента усиления мощности сигнала, или ключа.

Полевые транзисторы

Проводящая часть конструкции представляет собой полупроводниковый канал p- или n-типа в металле. Ток нагрузки протекает по каналу через электроды, называемые «стоком» и «истоком». Величина сечения проводящего канала и его сопротивление зависит от обратного напряжения на p-n переходе границы металла и полупроводника канала. Управляющий электрод, соединённый с металлической областью называется «затвор».

Канал полевого транзистора может иметь электрическую связь с металлом затвора — неизолированный затвор, а может быть и отделён от него тонким слоем диэлектрика — изолированный затвор.

Какие транзисторы лучше полевые или биполярные?

И так, мы узнали, что главное отличие этих двух видов транзисторов в управление. Давайте рассмотрим прочие преимущества полевых транзисторов по сравнению с биполярными:

  • высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление
  • высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей)
  • почти полная электрическая развязка входных и выходных цепей, малая проходная ёмкость поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных
  • квадратичность вольт — амперной характеристики (аналогична триоду)
  • высокая температурная стабильность
  • малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»
  • малое потребление мощности

Накопление и рассасывание неосновных носителей заряда отсутствует в полевых транзисторах, от того и быстродействие у них очень высокое (что отмечается разработчиками силовой техники). И поскольку за усиление в полевых транзисторах отвечают переносимые основные носители заряда, то верхняя граница эффективного усиления у полевых транзисторов выше чем у биполярных.

Виды транзисторов

   Отличие полевого транзистора от биполярного

Здесь же отметим высокую температурную стабильность, малый уровень помех (в силу отсутствия инжекции неосновных носителей заряда, как то происходит в биполярных), экономичность в плане потребления энергии.

Ток или поле, управление транзисторами

Большинству людей, так или иначе имеющими дело с электроникой, принципиальное устройство полевых и биполярных транзисторов должно быть известно. По крайней мере, из названия «полевой транзистор», очевидно, что управляется он полем, электрическим полем затвора, в то время как биполярный транзистор управляется током базы.

Ток и поле, различие здесь кардинальное. У биполярных транзисторов управление током коллектора осуществляется путем изменения управляющего тока базы, в то время как для управления током стока полевого транзистора, достаточно изменить приложенное между затвором и истоком напряжение, и не нужен уже никакой управляющий ток как таковой.

Разная реакция на нагрев

У биполярных транзисторов температурный коэффициент сопротивления коллектор-эмиттер отрицательный (т. е. с ростом температуры сопротивление уменьшается и ток коллектор — эмиттер растет). У полевых транзисторов все наоборот — температурный коэффициент сток-исток положительный (с ростом температуры сопротивление растет, и ток сток-исток уменьшается).

Важное следствие из этого факта — если биполярные транзисторы нельзя просто так включать параллельно (с целью умощнения), без токовыравнивающих резисторов в цепи эмиттера, то с полевыми все намного проще — благодаря автобалансировке тока сток-исток при изменении нагрузки/нагрева — их можно свободно включать параллельно без выравнивающих резисторов. Это связано с температурными свойствами p-n перехода и простого полупроводника p- или n-типа. По этой причине у полевых транзисторов гораздо реже случается необратимый выходной тепловой пробой, чем у биполярных.

Так для достижения высоких показателей коммутационных токов, можно легко набрать составной ключ из нескольких параллельных полевых транзисторов, что и используется много где на практике, например в инверторах.

А вот биполярные транзисторы нельзя просто так параллелить, им нужны обязательно токовыравнивающие резисторы в цепях эмиттеров. Иначе, из-за разбаланса в мощном составном ключе, у одного из биполярных транзисторов рано или поздно случится необратимый тепловой пробой. Полевым составным ключам названная проблема почти не грозит. Эти характерные тепловые особенности связаны со свойствами простого n- и p-канала и p-n перехода, которые кардинально отличаются.

Сферы применения тех и других транзисторов

Различия между полевыми и биполярными транзисторами четко разделяют области их применений. Например в цифровых микросхемах, где необходим минимальный ток потребления в ждущем состоянии, полевые транзисторы применяются сегодня гораздо шире. В аналоговых же микросхемах полевые транзисторы помогают достичь высокой линейности усилительной характеристики в широком диапазоне питающих напряжений и выходных параметров.

Схемы типа reel-to-reel удобно реализуются сегодня с полевыми транзисторами, ведь легко достигается размах напряжений выходов как сигналов для входов, совпадая почти с уровнем напряжения питания схемы. Такие схемы можно просто соединять выход одной с входом другой, и не нужно никаких ограничителей напряжения или делителей на резисторах.

Что касается биполярных транзисторов, то их типичными сферами применения остаются: усилители, их каскады, модуляторы, детекторы, логические инверторы и микросхемы на транзисторной логике.

Полевые побеждают, почему?

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят все более широкое применение в различных радиоустройствах, где уже с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью.

Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где опять же с успехом заменяют биполярные транзисторы и даже электронные лампы.

В устройствах большой мощности, например в устройствах плавного пуска двигателей, биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие в себе как биполярные, так и полевые транзисторы, уже успешно вытесняют тиристоры.

Видео, отличие полевого транзистора от биполярного

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Полевые и биполярные транзисторы

Содержание:
  1. Биполярные транзисторы
  2. Свойства полевых транзисторов
  3. Видео

Среди полупроводниковых приборов существуют две большие группы, в состав которых входят полевые и биполярные транзисторы. Они широко используются в электронике и радиотехнике в качестве генераторов, усилителей и преобразователей электрических сигналов. Чтобы понять, в чем основное различие этих устройств, необходимо рассмотреть их более подробно.


Биполярные транзисторы

Биполярные транзисторы относятся к группе полупроводниковых приборов. Они имеют три вывода и два р-n-перехода. Принцип работы этих устройств позволяет использовать и положительные и отрицательные заряды, то есть, дырки и электроны. Управление током, протекающим через них, осуществляется специально выделенным управляющим током. Благодаря своим качествам, этот активный прибор получил широкое распространение.

Основой биполярных транзисторов являются трехслойные полупроводники, типа «р-n-р» и «n-р-n», а также р-n-переходы, в количестве двух. Каждый полупроводниковый слой соединяется с внешним выводом через невыпрямляющий металло-полупроводниковый контакт.

В качестве базы используется средний слой, подключенный к соответствующему выводу. Два крайних слоя также соединяются с выводами и называются эмиттером и коллектором. На схемах эмиттер обозначается стрелкой, которая показывает направление тока, проходящего через транзистор.

В различных приборах, носители электричества дырки и электроны выполняют собственные индивидуальные функции. Тип n-р-n транзисторов получил наибольшее распространение, по сравнению с р-n-р-типом, благодаря лучшим характеристикам и параметрам. Это связано с тем, что в n-р-n устройствах основная роль отводится электронам, обеспечивающим все электрические процессы. Их подвижность в 2-3 раза выше, чем у дырок, таким образом, они проявляют более высокую активность. Кроме того, свойства любого прибора улучшаются за счет того, что площадь перехода коллектора существенно превышает площадь перехода эмиттера.

В состав каждого биполярного транзистора входят два р-n-перехода. Поэтому, работоспособность таких приборов проверяется путем контроля сопротивления этих переходов во время подключения к ним прямого и обратного напряжения.

Нормальная работа n-р-n-прибора обеспечивается путем подачи на коллектор положительного напряжения. За счет этого, осуществляется открытие базового перехода. При появлении базового тока, возникает коллекторный ток. Если в базе возникает отрицательное напряжение, то в этом случае происходит закрытие транзистора.

Оптимальная работа р-n-р-устройств зависит от наличия на коллекторе отрицательного напряжения. С его помощью, базовый переход становится открытым. Закрытие транзистора производится при наличии положительного напряжения. Путем плавных изменений значений тока и напряжения, можно получить все необходимые выходные коллекторные характеристики. В схемах усилителей могут присутствовать режимы общей базы или общего эмиттера.


Свойства полевых транзисторов

К полевым транзисторам относятся устройства, в которых управление всеми процессами осуществляется действующим электрическим полем, направленным перпендикулярно току. Они еще носят название униполярных транзисторов. В своей конструкции эти приборы имеют три контакта, называемые истоком, стоком и затвором. Кроме этого, существует проводящий слой, называемый каналом, по которому происходит течение тока.

Устройства данного типа могут быть «р» или «n» канальными. Расположение и конфигурация каналов бывает вертикальное или горизонтальное, объемное или приповерхностное.

Среди приповерхностных каналов также происходит разделение. Они существуют в качестве инверсионных слоев или могут быть обогащенными и обедненными носителями. Все виды каналов формируются под влиянием внешнего электрического поля. В обедненных каналах присутствуют участки с однородными полупроводниками, которые отделяются от поверхности с помощью обедненного слоя. Приборы, имеющие приповерхностные каналы, структурно состоят из металла-диэлектрика-полупроводника. Они получили наименование МДП-транзисторов.


Биполярные и полевые транзисторы. Их характеристики и практическое применение.

Транзисторы используются для усиления, генерирования и преобразования электрических сигналов, а также в цифровой технике.

Термин «транзистор» образован из двух английских слов: transfer — преобразователь и resistor — сопротивление.

Биполярные транзисторы

Определение «биполярный» указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда двух типов — электроны и дырки.

Биполярный транзистор представляет собой пластину полупроводника с тремя чередующимися областями разной электропроводности (рис. 1), которые образуют два р — n перехода. У каждой области свой контактный вывод. Если в крайних областях преобладает дырочная электропроводность, а в средней электронная (рис. 1, а), то такой прибор называют транзистором структуры p — n — р. У транзистора структуры n — p — n, наоборот, по краям расположены области с электронной электропроводностью, а между ними — область с дырочной электропроводностью (рис. 1, б).

а б

Рис. 1 Схематическое устройство и графическое обозначение на схемах транзисторов структуры p-n-p и n-p-n.

Общую (среднюю) область транзистора называют базой, одну крайнюю область — эмиттером, вторую крайнюю область — коллектором. Это три электрода транзистора.

Существуют сплавной и диффузионно — сплавной способы изготовления транзисторов.

Схематическое устройство и конструкция сплавного транзистора показана на (рис. 2). Прибор собран на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу — ее наружный проволочный вывод. Внутренние выводы коллектора и эмиттера приварены к проволочкам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Цельнометаллический колпак защищает прибор от механических повреждений и влияния света.

Рис. 2 Устройство и конструкция сплавного транзистора

структуры p — n — p.

Коллектором диффузионно — сплавного транзистора служит пластина исходного полупроводника. На поверхность пластины наплавляют очень близко один от другого два маленьких шарика примесных элементов. Во время нагрева до строго определенной температуры происходит диффузия примесных элементов в пластинку полупроводника. При этом один шарик (на рис. 3 — правый) образует в коллекторе тонкую базовую область, а второй (на рис. 3 — левый) эмиттерную область. В результате в пластине исходного полупроводника получаются два р — n перехода, образующие транзистор структуры р — n — р.

Рис. 3 Устройство и конструкция

диффузионно – сплавного транзистора структуры p — n — p.

Режимы работы биполярного транзистора.

Каждый из переходов транзистора можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают четыре режима работы транзистора:

  1. Режим отсечки – оба p-n перехода закрыты, при этом через транзистор обычно идет сравнительно небольшой ток

  2. Режим насыщения – оба p-n перехода открыты

  3. Активный режим – эмиттерный p-n переход (ЭП) открыт, а коллекторный p-n переход (КП) закрыт

  4. Инверсный – эмиттерный p-n переход (ЭП) закрыт, а коллекторный p-n переход (КП) открыт

В режиме отсечки и режиме насыщения управление транзистором невозможно. Эффективное управление транзистором осуществляется только в активном режиме:

При подключении эмиттера к отрицательному зажиму источника питания возникает эмиттерный ток Iэ. Так как внешнее напряжение приложено к эмиттерному переходу в прямом направлении, электроны преодолевают переход и попадают в область базы. База выполнена из p-полупроводника, поэтому электроны являются для неё неосновными носителями заряда.

Электроны, попавшие в область базы, частично рекомбинируют с дырками базы. Однако базу обычно выполняют очень тонкой из p-проводника с большим удельным сопротивлением (малым содержанием примеси), поэтому концентрация дырок в базе низкая и лишь немногие электроны, попавшие в базу, рекомбинируют с её дырками, образуя базовый ток Iб. Большинство же электронов вследствие теплового движения (диффузия) и под действием поля коллектора (дрейф) достигают коллектора, образуя составляющую коллекторного тока Iк.

Отношение токов коллектора и эмиттера характеризует коэффициент передачи тока

.

Усилительные свойства транзистора вытекают из его технологического исполнения и принципа действия.

Усилительные свойства транзистора оценивают обычно по величине так называемого статического коэффициента передачи тока. который обозначается h21э (или β). Этот коэффициент показывает, во сколько раз изменение тока коллектора больше вызвавшего его изменения тока базы. У большинства исправных транзисторов величина h21э составляет от 10—12 до 200—300.

Управляющее свойство транзистора заключается в том, что большим током коллектора можно управлять достаточно маленьким током базы. Причем в активном режиме малое изменение тока базы прямо пропорционально большому изменению тока коллектора:

Полевой транзистор — Википедия

Мощный полевой транзистор с каналом N-типа

Полево́й (униполя́рный) транзи́стор — полупроводниковый прибор, принцип действия которого основан на управлении электрическим сопротивлением токопроводящего канала поперечным электрическим полем, создаваемым приложенным к затвору напряжением.

Область, из которой носители заряда уходят в канал, называется истоком, область, в которую они входят из канала, называется стоком, электрод, на который подается управляющее напряжение, называется затвором.

История создания полевых транзисторов[править | править код]

Схема полевого транзистора

В 1953 году Дейки и Росс предложили и реализовали конструкцию полевого транзистора — с управляющим p-n-переходом.

Впервые идея регулировки потока основных носителей электрическим полем в транзисторе с изолированным затвором была предложена Лилиенфельдом в 1926—1928 годах. Однако трудности в реализации этой идеи на практике позволили создать первый работающий прибор только в 1960 году. В 1966 году Карвер Мид (англ.)русск. усовершенствовал эту конструкцию, шунтировав электроды такого прибора диодом Шоттки.

В 1977 году Джеймс Маккаллахем из Bell Labs установил, что использование полевых транзисторов может существенно увеличить производительность существующих вычислительных систем.

Полевые транзисторы классифицируют на приборы с управляющим p-n-переходом и с изолированным затвором, так называемые МДП («металл-диэлектрик-полупроводник»)-транзисторы, которые также называют МОП («металл-оксид-полупроводник»)-транзисторами, причём последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.

К основным параметрам полевых транзисторов причисляют: входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и некоторые другие.

Транзисторы с управляющим p-n-переходом[править | править код]

Рис. 1. Конструкция полевого транзистора с управляющим p-n-переходом и каналом n-типа
а) с затвором со стороны подложки;
b) с диффузионным затвором.

Полевой транзистор с управляющим p-n-переходом[1] (JFET) — это полевой транзистор, в котором пластина из полупроводника, например p-типа (Рис. 1), имеет на противоположных концах электроды (исток и сток), с помощью которых она включена в управляемую цепь. Управляющая цепь подключается к третьему электроду (затвору) и образуется областью с другим типом проводимости, в примере на рисунке — n-типом.

Источник постоянного смещения, включенный во входную цепь, создаёт на единственном p-n-переходе обратное (запирающее) напряжение. Во входную цепь также включается и источник усиливаемого сигнала. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в связи с чем меняется толщина обедненного слоя, то есть изменяется площадь поперечного сечения области в криcталле, через которую проходит поток основных носителей заряда. Эта область называется каналом.

Электроды полевого транзистора называются:

  • исток (англ. source) — электрод, из которого в канал входят основные носители заряда;
  • сток (англ. drain) — электрод, через который из канала уходят основные носители заряда;
  • затвор (англ. gate) — электрод, служащий для регулирования поперечного сечения канала.

Тип полупроводниковой проводимости канала может быть как n-, так и p-типа. По типу проводимости канала различают полевые транзисторы с n-каналом и р-каналом. Полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.

Управление током и напряжением на нагрузке, включённой последовательно к каналу полевого транзистора и источнику питания, осуществляется изменением входного напряжения, вследствие чего изменяется обратное напряжение на p-n-переходе, что ведёт к изменению толщины запирающего (обеднённого) слоя. При некотором запирающем напряжении VP{\displaystyle V_{P}} площадь поперечного сечения канала станет равной нулю и ток через канал транзистора станет весьма малым.

Так как обратный ток p-n-перехода весьма мал, в статическом режиме или при низких рабочих частотах мощность, отбираемая от источника сигнала ничтожно мала. При высоких частотах ток, отбираемый от источника сигнала может быть значительным и идет на перезаряд входной ёмкости транзистора.

Таким образом, полевой транзистор по принципу управления током аналогичен электровакуумной лампе — триоду, но по виду сток-истоковых вольт-амперных характеристик близок к электровакуумному пентоду. При такой аналогии исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. При этом существуют и отличия, например:

  • в транзисторе отсутствует катод, который требует подогрева;
  • любую из функций истока и стока может выполнять любой из этих электродов;
  • существуют полевые транзисторы как с n-каналом, так и с p-каналом, что используется при производстве комплементарных пар транзисторов.

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы обладают низким уровнем шума (особенно на низких частотах) по сравнению с биполярными транзисторами, так как в полевых транзисторах нет инжекции неосновных носителей заряда и канал полевого транзистора может быть выполнен внутри полупроводникового кристалла. Процессы рекомбинации носителей в p-n-переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника порождают низкочастотные шумы.

Транзисторы с изолированным затвором (МДП-транзисторы)[править | править код]

Рис. 2. Устройство полевого транзистора с изолированным затвором.
a) — с индуцированным каналом, b) — со встроенным каналом

Полевой транзистор с изолированным затвором (MOSFET) — это полевой транзистор, затвор которого электрически изолирован от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильно легированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой диоксида кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом[править | править код]

При напряжении на затворе относительно истока, равном нулю, и при подаче напряжения на сток, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n-перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом p-типа, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

МДП-транзисторы со встроенным каналом[править | править код]
Рис. 3. Выходные статические характеристики (a) и сток-затворная характеристика (b) МДП-транзистора со встроенным каналом. {\displaystyle V_{P}} В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.

В связи с наличием встроенного канала в таком МДП-транзисторе (рис. 2, b), при подаче напряжения на сток, ток стока оказывается значительным даже при нулевом напряжении на затворе (рис. 3, b). Поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).

Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

Формулы расчёта Ic{\displaystyle I_{c}} в зависимости от напряжения UЗИ

1. Транзистор закрыт U3u<Unop{\displaystyle U_{3u}<U_{nop}}

Ic=0{\displaystyle I_{c}=0}

Пороговое значение напряжения МДП транзистора Unop=1.5B{\displaystyle U_{nop}=1.5B}

2. Параболический участок. U3u>Unop{\displaystyle U_{3u}>U_{nop}}

Ic=Kn[(U3u−Unop)Ucu−Ucu22]{\displaystyle I_{c}=K_{n}[(U_{3u}-U_{nop})U_{cu}-{\frac {U_{cu}^{2}}{2}}]}

Kn{\displaystyle K_{n}}-удельная крутизна передаточной характеристики транзистора.

3. Дальнейшее увеличение U3u{\displaystyle U_{3u}} приводит к переходу на пологий уровень.

Ic=Kn2[U3u−Unop]2{\displaystyle I_{c}={\frac {K_{n}}{2}}[U_{3u}-U_{nop}]^{2}} — Уравнение Ховстайна.
МДП-структуры специального назначения[править | править код]

В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28—30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.

Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.

В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.

Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния[2].

В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвлённой конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500—1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности[3][4].

За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы. В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера[5].

Схемы включения полевых транзисторов[править | править код]

Полевой транзистор в каскаде усиления сигнала можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

Схема включения полевого транзистора с управляющим p-n-переходом с общим истоком Схема включения полевого транзистора с управляющим p-n-переходом с общим стоком Схема включения полевого транзистора с управляющим p-n-переходом с общим затвором

На практике в усилительных каскадах чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с общим эмиттером (ОЭ). Каскад с общим истоком даёт большое усиление по мощности. Но, с другой стороны, этот каскад наиболее низкочастотный из-за вредного влияния эффекта Миллера и существенной входной ёмкости затвор-исток (Сзи).

Схема с ОЗ аналогична схеме с общей базой (ОБ). В этой схеме ток стока равен току истока, поэтому она не даёт усиления по току, и усиление по мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет специфическое практическое применение в усилительной технике. Преимущество такого включения — практически полное подавление эффекта Миллера, что позволяет увеличить максимальную частоту усиления и такие каскады часто применяются при усилении СВЧ.

Каскад с ОС аналогичен каскаду с общим коллектором (ОК) для биполярного транзистора — эмиттерным повторителем. Такой каскад часто называют истоковым повторителем. Коэффициент усиления по напряжению в этой схеме всегда немного меньше 1, а коэффициент усиления по мощности занимает промежуточное значение между ОЗ и ОИ. Преимущество этого каскада — очень низкая входная паразитная ёмкость и его часто используют в качестве буферного разделительного каскада между высокоомным источником сигнала, например, пьезодатчиком и последующими каскадами усиления. По широкополосным свойствам этот каскад также занимает промежуточное положение между ОЗ и ОИ.

Области применения полевых транзисторов[править | править код]

КМОП-структуры, строящиеся из комплементарной пары полевых транзисторов с каналами разного (p- и n-) типа, широко используются в цифровых и аналоговых интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные электронные часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят всё более широкое применение в различных радиоустройствах, где с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью. Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой мощности (Hi-Fi), где с успехом заменяют биполярные транзисторы и электронные лампы. Биполярные транзисторы с изолированным затвором (IGBT) — приборы, сочетающие биполярные и полевые транзисторы, — находят применение в устройствах большой мощности, например в устройствах плавного пуска, где успешно вытесняют тиристоры.

  1. И. П. Жеребцов. Основы электроники. Изд. 5-е. — Л., 1989. — С. 114.
  2. ↑ Дьяконов, 2004.
  3. ↑ Бачурин, Ваксембург, Дьяконов и др., 1994.
  4. ↑ Дьяконов, Максимчук, Ремнев, Смердов, 2002.
  5. ↑ Li, 2006.
  • Дьяконов В. П. Intel. Новейшие информационные технологии. Достижения и люди. — М.: СОЛОН-Пресс, 2004. — 416 с. — ISBN 5980031499.
  • Бачурин В. В., Ваксембург В. Я., Дьяконов В. П. и др. Схемотехника устройств на мощных полевых транзисторах: Справочник / Дьяконов В. П.. — М.: Радио и связь, 1994. — 280 с.
  • Дьяконов В. П., Максимчук А. А., Ремнев А. М., Смердов В. Ю. Энциклопедия устройств на полевых транзисторах / Дьяконов В. П.. — М.: СОЛОН-Р, 2002. — 512 с.
  • Li, Sheng S. Semiconductor Physical Electronics. — Second Edition. — Springer, 2006. — 708 с. — ISBN 978-0-387-28893-2.

Различия полевых транзисторов и биполярных.

От биполярного транзистора и в том числе от однопереходного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением р-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора отделен от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в р-n-переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов. Значительным недостатком по сравнению с биполярным транзистором является очень низкий коэффициент усиления по напряжению.

Статические характеристики

Выходные статические характеристики полевого транзистора представляют собой зависимости тока стока от напряжения на стоке относительно истока при различных постоянных напряжениях на затворе. Рассмотрим вначале характер одной зависимости

при.

Напряжение на затворе относительно истока будет равно нулю только в том случае, если затвор закорочен с истоком. Характеристика выходит из начала координат под углом, соответствующим начальному статическому сопротивлению канала и сопротивлениям иприлегающих к каналу областей полупроводникового кристалла с тем же типом электропроводности. Статическое сопротивление канала определяется его длиной и поперечным сечением, зависящим от толщины р-n-перехода (или р-n-переходов).

Рис. 6 Выходные статические характеристики

Первая часть характеристики, которую называют крутой частью, сублинейна, т. е. ток стока растет замедленно с ростом напряжения на стоке. Объясняется эта нелинейность характеристики увеличением толщины р-n-перехода затвора около стока, так как с увеличением напряжения на стоке растет по абсолютному значению обратное напряжение на р-n-переходе затвора. Ток стока, проходя по каналу, создает его неэквипотенциальность. Таким образом, наибольшая толщина р-n-перехода и соответственно наименьшее поперечное сечение канала получаются со стороны стока.

Другой физической причиной, приводящей к сублинейности выходной характеристики, является уменьшение подвижности носителей заряда в канале при увеличении в нем напряженности электрического поля.

При некотором напряжении на стоке напряжении насыщения— происходит перекрытие канала из-за увеличения толщины р-n-перехода затвора. Ток стока при дальнейшем увеличении напряжения на стоке почти не растет.

При напряжении между затвором и истоком, равном нулю, и при напряжении на стоке, равном или превышающем напряжение насыщения, ток стока называют начальным током стока. Часть характеристики, соответствующую насыщению тока стока, называютпологой областью. Следует учитывать условность понятия «перекрытие» канала при увеличении напряжения на стоке и неизменном напряжении на затворе относительно истока, так как перекрытие канала при указанных условиях является следствием увеличения тока стока. Таким образом, можно считать, что в результате увеличения тока стока или напряжения на стоке автоматически устанавливается некоторое малое сечение канала со стороны стокового электрода.

При дальнейшем увеличении напряжения на стоке увеличивается длина перекрытой части канала и растет статическое сопротивление канала. Если бы длина перекрытой части канала увеличивалась пропорционально напряжению на стоке, то ток стока не изменялся бы при напряжениях на стоке, превышающих напряжение насыщения. Однако длина перекрытой части канала увеличивается из-за увеличения толщины р-n-перехода с ростом напряжения на стоке, а толщина р-n-перехода пропорциональна либо корню квадратному, либо корню кубическому из напряжения. Поэтому в пологой части характеристики наблюдается некоторое увеличение тока стока при увеличении напряжения на стоке.

Теперь рассмотрим смещение и изменение статических характеристик с изменением напряжения на затворе. При подаче на затвор напряжения такой полярности относительно истока, которая соответствует обратному смещению р-n-перехода затвора, и при увеличении этого напряжения по абсолютному значению уменьшается начальное поперечное сечение канала. Поэтому начальные участки выходных статических характеристик при напряжениях на затворе, отличных от нуля, имеют другой наклон, соответствующий большим начальным статическим сопротивлениям канала.

При больших напряжениях на стоке может возникнуть пробой p-n-перехода затвора. Обратное напряжение на р-n-переходе затвора изменяется вдоль длины канала, достигая максимального значения у стокового конца канала. Напряжение, приложенное к р-n-переходу затвора в этом месте, является суммой напряжений на стоке и на затворе. Таким образом, пробой полевого транзистора может происходить при разных напряжениях на стоке в зависимости от напряжения на затворе. Чем больше напряжение на затворе, тем меньше напряжение на стоке, при котором произойдет пробой р-n-перехода затвора. Полевые транзисторы делают обычно на основе кремния. Поэтому пробой таких транзисторов имеет лавинный характер.

Статические характеристики передачи(рис. 7) полевого транзистора представляют собой зависимости тока стока от напряжения на затворе при различных постоянных напряжениях на стоке (). Так как основным рабочим режимом полевых транзисторов является режим насыщения тока стока, что соответствует пологим частям выходных статических характеристик, то наибольший интерес представляет зависимость тока насыщения от напряжения на затворе при постоянном напряжении на стоке.

Рис. 7 Передаточная характеристика

Напряжение между затвором и истоком полевого транзистора с управляющим переходом, при котором ток стока достигает заданного низкого значения, называют напряжением отсечки полевого транзистора которое зависит от концентрации доноров в канале и акцепторов в затворе, а также технологической толщины канала.

При рассмотрении статических характеристик полевого транзистора были отмечены его основные статические параметры. По статической характеристике передачи можно определить еще один основной параметр полевого транзистора, характеризующий его усилительные свойства, — крутизну характеристики полевого транзистора S, которая представляет собой отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком: .

С ростом отрицательного напряжения на затворе значение крутизны характеристики транзистора будет уменьшаться, т.к. при увеличении отрицательного напряжения на затворе будет увеличиваться ОПЗ перехода затвора и уменьшаться толщина проводящего канала. Вблизи напряжения отсечки толщина канала вместе с током стока уменьшается до нуля, сопротивление канала возрастает и крутизна падает до нуля.

Влияние степени легирования и размера областей на напряжение отсечки и крутизну:

Напряжение отсечки будет расти с ростом степени легирования канала транзистора, потому что чем больше число доноров в ОПЗ, тем труднее удалить из канала подвижные электроны. Аналогично с толщиной, необходимо большее напряжение, чтоб удалить все электроны в подложку из толстого канала. Увеличение ширины канала и степени легирования приведёт к росту крутизны транзистора, потому что при прочих равных условиях, рост числа электронов и размеров области приведёт к уменьшению сопротивления и, следовательно, обеспечит больший ток стока при том же напряжении на затворе. Следовательно, крутизна увеличится. Существенно, что толщина канала одинаково увеличивает крутизну и напряжение отсечки. Ширина канала увеличивает только крутизну, но не влияет на напряжение отсечки.

Полевые транзисторы. Характеристики. Основные типы.| Elektrolife

MOSFET — (Metal–Oxide–Semiconductor Field-Effect Transistor) использует изолятор обычно SiO2 между затвором и каналом. 

JFET — полевой транзисторе с управляющим p-n переходом
MESFET —  (Metal–Semiconductor Field-Effect Transistor) разновидность p-n перехода JFET с барьером Schottky; используются с GaAs и др. III-V полупроводниками. 
 ISFET — ion-sensitive field-effect transistor – ионно-чувствительный полевой транзистор. 
ChemFET —  chemical field-effect transistor — МОСФЕТ транзисторы, заряд на затворе которых определяется химическими процессами. 
EOSFET —  electrolyte-oxide-semiconductor field effect transistor вместо металла в качестве затвора используется электролит. 
CNTFET — Carbon nanotube field-effect transistor — полевой транзистор с углеродными нанотрубками.

DEPFET – полевой транзистор с полностью обедненной подложкой,  используются как сенсоры, усилители и ячейки памяти одновременно. Может быть использован как датчик фотонов. 
DGMOSFET — с двумя затворами. 
DNAFET — специальный FET используемый как биосенсор, с затвором из 1-й ДНК молекулы чтобы определять соответствующую нить ДНК. 
FREDFET (Fast Reverse or Fast Recovery Epitaxial Diode FET) специальный полевой транзистор, разработанный для обеспечения сверхбыстрого закрытия встроенного диода (is a specialized FET designed to provide a very fast recovery (turn-off) of the body diode)
HEMT(high electron mobility transistor) или HFET(heterostructure FET) полевой транзистор с высокой подвижностью зарядов, гетероструктурные (шестигранные) FET. Изолятор затвора формируется из полностью обедненного материала с большой шириной запрещенной зоны. 
HIGFET —  (heterostructure insulated gate field effect transisitor), гетероструктурные MISFET используются в основном в исследовательских целях.
MODFET —  (Modulation-Doped Field Effect Transistor) использует квантовую структуру, сформированную градиентным легированием активной области. 
 NOMFET – (Nanoparticle Organic Memory Field-Effect Transistor) — память на основе органических наночастиц. 
OFET – (Organic Field-Effect Transistor) — канал из органического полупроводника. 
GNRFET – (Field-Effect Transistor that uses a graphene nanoribbon for its channel). С каналом из графеновой пленки. 
VFET (Vertical Field-Effect Transistor), вертикальный полевой транзистор, полевой транзистор с вертикальной структурой, полевой транзистор с вертикальным каналом. 
VeSFET — (Vertical-Slit Field-Effect Transistor) is a square-shaped junction-less FET with a narrow slit connecting the source and drain at opposite corners. Two gates occupy the other corners, and control the current through the slit… полевой транзистор квадратной формы, без перехода с близким расположением истока и стока на противоположных углах. Два других входа, занимающие другие углы — затворы, которые контролируют переход. 
TFET — (Tunnel Field-Effect Transistor) — основан на эффекте тунеллирования … из полосы в полосу. 
IGBT (insulated-gate bipolar transistor) устройство для контроля мощности. Представляет из себя гибрид полевого транзистора с проводящим каналом, как у биполярного транзистора. Обычно используются для напряжений 200-3000V сток-исток. Мощные MOSFETs обычно используются до 200 V. 

10.5. Сравнение полевых и биполярных транзисторов

Полевые и биполярные транзисторы выполняют одинаковые функции: работают в схеме или в качестве линейного усилителя, или в качестве ключа. Ниже (табл. 10.4) приводится краткое обобщающее сравнение этих двух типов транзисторов.

Таблица 10.4

Биполярные транзисторы

Полевые транзисторы

Управляемый физический процесс – инжекция неосновных носителей заряда: изменяется ток управления – изменяется поток инжектированных носителей заряда, что приводит к изменению выходного тока

Управляемый физический процесс – эффект поля, вызывающий изменение концентрации носителей заряда в канале: изменяется управляющее напряжение – изменяется проводимость канала, что приводит к изменению выходного тока

Выходной ток обеспечивается носителями обоих знаков (дырками и электронами)

Выходной ток обеспечивается основными носителями одного знака (или дырками, или электронами)

Прибор управляется током, так как на входе имеется прямосмещенный pn— переход и входное сопротивление мало

Прибор управляется напряжением; входное сопротивление очень большое, так как входная цепь от выходной изолирована обратносмещенным pn— переходом или слоем диэлектрика

При управлении от интегральных схем требуется дополнительное усиление тока

Возможно непосредственное управление от интегральных схем

Относительно небольшой коэффициент усиления по току

Очень большой коэффициент усиления по току

Необходимость специальных мер по повышению помехоустойчивости

Высокая помехоустойчивость

Низкая теплостойкость: с увеличением тока растет температура структуры, что приводит к большему увеличению тока

Высокая теплостойкость: рост температуры структуры приводит к увеличению сопротивления канала, и ток уменьшается

Высокая вероятность саморазогрева и вторичного пробоя

Низкая вероятность саморазогрева и вторичного пробоя

Высокая чувствительность к токовым перегрузкам

Низкая чувствительность к токовым перегрузкам

Необходимость выравнивания токов в параллельном соединении приборов

Равномерное распределение тока в параллельном соединении приборов

Проведенное сравнение показывает, что в дискретных электронных устройствах полевые транзисторы в ряде применений предпочтительнее биполярных. Во-первых, управляющая цепь полевых транзисторов потребляет ничтожную энергию, так как входное сопротивление этих приборов очень велико. Как правило, усиление мощности и тока в полевых транзисторах много больше, чем в биполярных. Во-вторых, вследствие того, что управляющая цепь изолирована от выходной цепи, значительно повышаются надежность работы и помехоустойчивость схем на полевых транзисторах. В-третьих, полевые транзисторы имеют низкий уровень собственных шумов, что связано с отсутствием инжекции и свойственных ей флюктуаций. Наконец, в-четвертых, полевые транзисторы, вообще говоря, обладают более высоким собственным быстродействием, так как в них нет инерционных процессов накопления и рассасывания носителей заряда.

Однако полевые транзисторы имеют и недостатки. Вследствие относительно высокого сопротивления канала в открытом состоянии падение напряжения на открытом полевом транзисторе заметно больше, чем падение напряжения на насыщенном биполярном транзисторе. Этот недостаток усугубляется еще и тем, что температурная зависимость сопротивления канала сильнее, чем зависимость от температуры напряжения насыщения биполярного транзистора.

Отправить ответ

avatar
  Подписаться  
Уведомление о