Условные обозначения полевых транзисторов
В электронике полевым транзистором называется электронный компонент, в котором ток проходящий через канал регулируется электрическим полем, образующимся в результате подачи напряжения между его истоком и затвором. Основным отличием полевого транзистора от транзистора биполярного является то, что выходное и входное сопротивление у него существенно выше.
Плевые транзисторы нередко именуют униполярными, поскольку основным принципом их действия является перемещение при помощи поля носителей зарядов одного и того же типа. Конструктивно эти приборы представляют собой изготовленные из полупроводниковых материалов пластинки одного типа проводимости, на противоположных сторонах которых способом диффузии создается область другого типа проводимости. На их границах образуется обладающий большим сопротивлением p
—n
-переход.
В полевых транзисторах существуют области полупроводника которые называют каналами. Их поперечное сечение, а вместе с ним и ток носителей заряда изменяются под воздействием электрического поля.
Структура полевого транзистора
с управляющим p
—n
-переходом и каналом n
-типа
В случае, если между p
-областью и n
-областью приложить некоторое напряжение Uзи
., как показано на рисунке выше, то p
—n
-переход окажется включенным в обратном направлении, следовательно его толщина увеличится, а толщины канала уменьшается. При этом принято p
-область называть затвором полевого транзистора, или же его управляющим электродом. Если к этому каналу подключить еще один источник напряжения
., то через него начнёт протекать ток в направлении от нижнего к верхнему участку n
-области. Часть этой области, от которой основные носители зарядов начинают свое движение, называется истоком, а та часть, по направлению к которой они перемещаются – стоком.
Что касается величины тока, который протекает через канал, то определяющим для нее является сопротивление. Оно, в свою очередь, напрямую зависит от толщины канала. Таким образом, если изменяется величина приложенного к каналу напряжения, то вслед за этим происходит изменение величины тока.
В тех случаях, когда для производства этого электронного компонента в качестве основы берут полупроводник
-типа, то получается полевой транзистор, имеющий канал р
-типа и управляющий p
—n
-переход. Канал в нем образуется n
-областью.
Структура и схема подключения МДП
-транзистора
с индуцированным каналом
Полевые транзисторы с изолированным затвором
Помимо тех полевых транзисторов, которые имеют в своей конструкции управляющий затвор, имеются и такие, у которых он изолирован. В электронике для обозначения таких транзисторов используют аббревиатуры МОП
(металл-оксид-полупроводник) или МДП
(металл-диэлектрик-полупроводник). Соответственно, такие приборы называют
-транзисторами или МДП
-транзисторами.
Для МДП
—транзистора характерно то, что в нем между истоком и стоком располагается n
-область, представляющая собой подложку. Поэтому образуется два p
—n
-перехода, которые включены навстречу друг другу. При этом вне зависимости от того, какую именно полярность имеет питающее напряжение, один из этих переходов всегда закрыт, так что в в направлении «исток-сток» ток равен нулю.
Если на затвор подается отрицательное напряжение, то ток в цепи начинает течь. Дело в том, что на расположенные в подложке электроны действует электрическое поле, и они начинают передвигаться вглубь нее.
Существует некоторое пороговое значение напряжения, при котором количество дырок, расположенных у самой поверхности подложки, становится существенно больше, чем электронов. В результате этого происходит так называемая инверсия типа электроповодности: она обретает p-тип. В результате этого между стоком и истоком получается канал, связывающий их. Его толщина зависит от того, какое именно значение имеет приложенное напряжение. Если изменять его, то можно регулировать и толщину канала, поскольку сопротивление участка, располагающегося между истоком и стоком, также будет изменяться.
Обозначения полевых транзисторов на схеме
MOSFET транзисторы. Устройство, принцип работы и разновидности.
Полевой транзистор с изолированным затвором
Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел — полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO2).
Еще одно, довольно распространенное название – МДП (металл – диэлектрик — полупроводник).
Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.
Что же это такое MOSFET ?
MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.
Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.
Внешний вид одного из широко распространённых мосфетов — IRFZ44N.
Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET’а, J-FET имеет немного иную структуру.
Принцип работы полевого транзистора.
Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.
Упрощённая модель полевого транзистора с изолированным затвором.
Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.
Упрощённая модель полевого транзистора с изолированным затвором
Основу МДП-транзистора составляет:
Подложка из кремния. Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.
Области полупроводника n+. Данные области сильно обогащены свободными электронами (поэтому «+»), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.
Диэлектрик. Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.
Теперь в двух словах опишем, как это всё работает.
Если между затвором и истоком приложить напряжение плюсом (+) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.
В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости. На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.
Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.
Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.
Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.
О различии MOSFET’ов обогащённого и обеднённого типа можно прочесть тут. Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.
Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор. Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора.
Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.
Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET’ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.
Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому — напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.
Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.
В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный прибор – IGBT-транзистор, который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть здесь.
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Что такое полевой транзистор и как его проверить
Добрый день, друзья!
Недавно мы с вами начали плотнее знакомились с тем, как устроено компьютерное «железо». И познакомились одним из его «кирпичиков» — полупроводниковым диодом. Компьютер – это сложная система, состоящая из отдельных частей. Разбирая, как работают эти отдельные части (большие и малые), мы приобретаем знание.
Обретая знание, мы получаем шанс помочь своему железному другу-компьютеру, если он вдруг забарахлит. Мы же ведь в ответе за тех, кого приручили, не правда ли?
Сегодня мы продолжим это интересное дело, и попробуем разобраться, как работает самый, пожалуй, главный «кирпичик» электроники – транзистор. Из всех видов транзисторов (их немало) мы ограничимся сейчас рассмотрением работы полевых транзисторов.
Почему транзистор – полевой?
Слово «транзистор» образовано от двух английских слов translate и resistor, то есть, иными словами, это преобразователь сопротивления.
Среди всего многообразия транзисторов есть и полевые, т.е. такие, которые управляются электрическим полем.
Электрическое поле создается напряжением. Таким образом, полевой транзистор – это полупроводниковый прибор, управляемый напряжением.
В англоязычной литературе используется термин MOSFET (MOS Field Effect Transistor). Есть другие типы полупроводниковых транзисторов, в частности, биполярные, которые управляются током. При этом на управление затрачивается и некоторая мощность, так как к входным электродам необходимо прикладывать некоторое напряжение.
Канал полевого транзистора может быть открыт только напряжением, без протекания тока через входные электроды (за исключением очень небольшого тока утечки). Т.е. мощность на управление не затрачивается. На практике, однако, полевые транзисторы используются большей частью не в статическом режиме, а переключаются с некоторой частотой.
Конструкция полевого транзистора обуславливает наличие в нем внутренней переходной емкости, через которую при переключении протекает некоторый ток, зависящий от частоты (чем больше частота, тем больше ток). Так что, строго говоря, некоторая мощность на управление все-таки затрачивается.
Где используются полевые транзисторы?
Настоящий уровень технологии позволяет сделать сопротивление открытого канала мощного полевого транзистора (ПТ) достаточно малым – в несколько сотых или тысячных долей Ома!
И это является большим преимуществом, так как при протекании тока даже в десяток ампер рассеиваемая на ПТ мощность не превысит десятых или сотых долей Ватта.
Таким образом, можно отказаться от громоздких радиаторов или сильно уменьшить их размеры.
ПТ широко используются в компьютерных блоках питания и низковольтных импульсных стабилизаторах на материнской плате компьютера.
Из всего многообразия типов ПТ для этих целей используются ПТ с индуцированным каналом.
Как работает полевой транзистор?
ПТ с индуцированным каналом содержит три электрода — исток (source), сток (drain), и затвор (gate).
Принцип работы ПТ наполовину понятен из графического обозначения и названия электродов.
Канал ПТ – это «водяная труба», в которую втекает «вода» (поток заряженных частиц, образующих электрический ток) через «источник» (исток).
«Вода» вытекает из другого конца «трубы» через «слив» (сток). Затвор – это «кран», который открывает или перекрывает поток. Чтобы «вода» пошла по «трубе», надо создать в ней «давление», т.е. приложить напряжение между стоком и истоком.
Если напряжение не приложено («давления в системе нет»), тока в канале не будет.
Если приложено напряжение, то «открыть кран» можно подачей напряжения на затвор относительно истока.
Чем большее подано напряжение, тем сильнее открыт «кран», больше ток в канале «сток-исток» и меньше сопротивление канала.
В источниках питания ПТ используется в ключевом режиме, т.е. канал или полностью открыт, или полностью закрыт.
Честно сказать, принципы действия ПТ гораздо более сложны, он может работать не только в ключевом режиме. Его работа описывается многими заумными формулами, но мы не будем здесь все это описывать, а ограничимся этими простыми аналогиями.
Скажем только, что ПТ могут быть с n-каналом (при этом ток в канале создается отрицательно заряженными частицами) и p-каналом (ток создается положительно заряженными частицами). На графическом изображении у ПТ с n-каналом стрелка направлена внутрь, у ПТ с p-каналом – наружу.
Собственно, «труба» — это кусочек полупроводника (чаще всего – кремния) с примесями химических элементов различного типа, что обуславливает наличие положительных или отрицательных зарядов в канале.
Теперь переходим к практике и поговорим о том,
Как проверить полевой транзистор?
В норме сопротивление между любыми выводами ПТ бесконечно велико.
И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.
Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).
Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.
Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.
Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.
Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.
Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.
В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.
В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.
При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.
Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.
Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.
В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.
В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).
Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.
Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.
Кстати, купить полевые транзисторы можно вот здесь.
Буквенное обозначение | Параметр | |
Отечественное | Международное | |
IЗ | IG | Ток затвора (постоянный). |
Iз отс | IGSX | Ток отсечки затвора. |
IЗ пр | IGF | Прямой ток затвора. |
IЗ ут | IGSS | Ток утечки затвора. |
IЗИО | IGSO | Обратный ток перехода затвор-исток. |
IЗСО | IGDO | Обратный ток перехода затвор-сток. |
IИ | IS | Ток истока (постоянный). |
IИ нач | ISDS | Начальный ток истока. |
IИ ост | ISDX | Остаточный ток истока. |
IС | ID | Ток стока (постоянный). |
IС нагр | IDSR | Ток стока при нагруженном затворе. |
IС нач | IDSS | Начальный ток стока. |
IС ост | IDSX | Остаточный ток стока. |
IП | IB, IU | Ток подложки. |
UЗИ | UGS | Напряжение затвор-исток (постоянное). |
UЗИ обр | UGSR | Обратное напряжение затвор-исток (постоянное). |
UЗИ отс | UGS(OFF), UGS(off) | Напряжение отсечки транзистора — напряжение между затвором и истоком (полевого транзистора с p-n-переходом и с изолированным затвором). |
UЗИ пор | UGST, UGS(th), UGS(TO) | Пороговое напряжение транзистора — напряжение между затвором и истоком (у полевого транзистора с изолированным затвором). |
UЗИ пр | UGSF | Прямое напряжение затвор-исток (постоянное). |
UЗ проб | U(BR) GSS | Пробивное напряжение затвора — напряжение пробоя затвор-исток при замкнутых стоке и истоке. |
UЗП | UGB, UGU | Напряжение затвор-подложка (постоянное). |
UЗС | UGD | Напряжение затвор-сток (постоянное). |
UИП | USB, USU | Напряжение исток-подложка (постоянное). |
UСИ | UDS | Напряжение сток-исток (постоянное). |
UСП | UDB, UDU | Напряжение сток-подложка (постоянное). |
U31— U32 | UG1— UG2 | Напряжение затвор-затвор (для приборов с двумя затворами). |
PСИ | PDS | Рассеиваемая мощность сток-исток (постоянная). |
PСИ, т max | — | Максимальная рассеиваемая мощность сток-исток с теплоотводом (постоянная). |
S | gms | Крутизна характеристики. |
RЗИ | rGS, rgs | Сопротивление затвор-исток. |
RЗС | rGD, rgd | Сопротивление затвор-сток. |
RЗСО | rGSS, rgss | Сопротивление затвора (при UDS = 0 или Uds = 0). |
RСИ отк | rDS(ON), rds(on), rDS on | Сопротивление сток-исток в открытом состоянии — сопротивление между стоком и истоком в открытом состоянии транзистора при заданном напряжении сток-исток. |
RСИ закр | rDS(OFF), rds(off), rDS off | Сопротивление сток-исток в закрытом состоянии — сопротивление между стоком и истоком в закрытом состоянии транзистора при заданном напряжении сток-исток. |
Сзио | Cgso | Емкость затвор-исток — емкость между затвором и истоком при разомкнутых по переменному току остальных выводах. |
Сзсо | Cgdo | Емкость затвор-сток — емкость между затвором и стоком при разомкнутых по переменному току остальных выводах. |
Ссио | Cdso | Емкость сток-исток — емкость между стоком и истоком при разомкнутых по переменному току остальных выводах. |
C11и, Свх, и | Ciss, C11ss | Входная емкость транзистора — емкость между затвором и истоком. |
С12и | Crss, C12ss | Емкость обратной связи в схеме с общим истоком при коротком замыкании на входе по переменному току. |
С22и | Coss, C22ss | Выходная емкость транзистора — емкость между стоком и истоком. |
С22с | Cods, C22ds | Выходная емкость в схеме с общим стоком при коротком замыкании на входе (при коротком замыкании цепи затвор-сток по переменному току). |
g11и | giss, g11s | Активная составляющая входной проводимости транзистора (в схеме с общим истоком при коротком замыкании на выходе). |
g22и | goss, g22s | Активная составляющая выходной проводимости транзистора (в схеме с общим истоком при коротком замыкании на входе). |
Y11и | Yis, Y11s | Полная входная проводимость транзистора (в схеме с общим истоком при коротком замыкании на выходе). |
Y12и | Yrs, Y12s | Полная проводимость обратной передачи транзистора (в схеме с общим истоком при коротком замыкании на входе). |
Y21и | Yfs, Y21s | Полная проводимость прямой передачи транзистора (в схеме с общим истоком при коротком замыкании на выходе; Yfs = gfs + gbfs = Id / Ugs ; на низких частотах |Yfs| = gfs). |
Y22и | Yos, Y22s | Полная выходная проводимость транзистора (при коротком замыкании на входе). |
Kу. P | GP | Коэффициент усиления по мощности. |
fY21и | fYfs | Частота отсечки в схеме с общим истоком. |
Uш | Un | Шумовое напряжение транзистора. |
Eш | en | Электродвижущая сила шума |
Kш | F | Коэффициент шума транзистора. |
— | αID | Температурный коэффициент тока стока. |
— | αrds | Температурный коэффициент сопротивления сток-исток. |
tвкл | ton | Время включения транзистора. |
tвыкл | toff | Время выключения транзистора. |
tзд, вкл | td(on) | Время задержки включения. |
tзд, выкл | td(off) | Время задержки выключения. |
tнр | tr | Время нарастания. |
tсп | tf | Время спада. |
Для сдвоенных полевых транзисторов: | ||
IЗ(ут)1-IЗ(ут)2 | IGSS1-IGSS2 | Разность токов утечки затвора (для полевых транзисторов с изолированным затвором) и разность токов отсечки затвора (для полевых транзисторов с р-n-переходом). |
IC нач1/IC нач1 | IDSS1/IDSS2 | Отношение токов стока при нулевом напряжении затвор-исток. |
UЗИ1-UЗИ2 | UGS1-UGS2 | Разность напряжений затвор-исток. |
|Δ(UЗИ1-UЗИ2 )|/ΔT | |Δ(UGS1-UGS2 )|/ΔT | Изменение разности напряжений затвор-исток между двумя значениями температуры. |
g22и1-g22и2 | gos1-gos2 | Разность выходных проводимостей в режиме малого сигнала в схеме с общим истоком. |
g21и1/g21и2 | gos1/gos2 | Отношение полных проводимостей прямой передачи в режиме малого сигнала в схеме с общим истоком. |
Устройство и маркировка биполярного транзистора
Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми приборами и с этой статьи начнем разбираться с транзистором. В этой части мы познакомимся с устройством и маркировкой биполярных транзисторов.
Полупроводниковые транзисторы бывают двух видов: биполярные и полевые.
В отличие от полевых транзисторов биполярные получили наиболее широкое применение в радиоэлектронике, а чтобы эти транзисторы как-то отличать друг от друга, биполярные принято называть просто — транзисторами.
1. Устройство и обозначение биполярного транзистора.
Схематично биполярный транзистор можно представить в виде пластины полупроводника с чередующимися областями разной электропроводности, которые образуют два p-n перехода. Причем обе крайние области обладают электропроводностью одного типа, а средняя область электропроводностью другого типа, и где каждая из областей имеет свой контактный вывод.
Если в крайних областях полупроводника преобладает дырочная электропроводность, а в средней области электронная, то такой полупроводниковый прибор называют транзистором структуры p-n-p.
А если в крайних областях преобладает электронная электропроводность, а в средней дырочная, то такой транзистор имеет структуру n-p-n.
А теперь возьмем схематичную часть транзистора и прикроем любую крайнюю область, например, область коллектора, и посмотрим на результат: у нас остались открытыми область базы и эмиттера, то есть получился полупроводник с одним p-n переходом или обычный полупроводниковый диод. О диодах можно почитать здесь.
Если же мы прикроем область эмиттера, то останутся открытыми области базы и коллектора — и также получается диод.
Отсюда возникает вывод, что биполярный транзистор можно представить в виде двух диодов с одной общей областью, включенных навстречу друг другу. При этом общая (средняя) область называется базой, а примыкающие к базе области коллектором и эмиттером. Это и есть три электрода транзистора.
Примыкающие к базе области делают неодинаковыми: одну из областей изготавливают так, чтобы из нее наиболее эффективно происходил ввод (инжекция) носителей заряда в базу, а другую область делают таким-образом, чтобы в нее эффективно осуществлялся вывод (экстракция) носителей заряда из базы.
Отсюда получается:
область транзистора, назначением которой является ввод (инжекция) носителей зарядов в базу называется эмиттером, и соответствующий p-n переход эмиттерным.
область транзистора, назначением которой является вывод (экстракция) носителей из базы, называется коллектором, и соответствующий p-n переход коллекторным.
То есть получается, что эмиттер вводит электрические заряды в базу, а коллектор их забирает.
Различие в обозначениях транзисторов разных структур на принципиальных схемах заключается лишь в направлении стрелки эмиттера: в p-n-p транзисторах она обращена в сторону базы, а в n-p-n транзисторах – от базы.
2. Технология изготовления биполярных транзисторов.
Технология изготовления транзисторов ни чем не отличается от технологии изготовления диодов. Еще в начальный период развития транзисторной техники биполярные транзисторы делали только из германия методом вплавления примесей, и такие транзисторы называют сплавными.
Берется кристалл германия и в него вплавляются кусочки индия.
Атомы индия диффузируют (проникают) в тело кристалла германия, образуя в нем две области p-типа – коллектор и эмиттер. Между этими областями остается очень тонкая (несколько микрон) прослойка полупроводника n-типа, которую именуют базой. А чтобы защитить кристалл от влияния света и механического воздействия его помещают в металлостеклянный, металлокерамический или пластмассовый корпус.
На картинке ниже показано схематическое устройство и конструкция сплавного транзистора, собранного на металлическом диске диаметром менее 10 мм. Сверху к этому диску приварен кристаллодержатель, являющийся внутренним выводом базы, а снизу диска – ее наружный проволочный вывод.
Внутренние выводы коллектора и эмиттера приварены к проводникам, которые впаяны в стеклянные изоляторы и служат внешними выводами этих электродов. Металлический колпак защищает прибор от влияния света и механических повреждений. Так устроены наиболее распространенные маломощные низкочастотные германиевые транзисторы из серии МП37 — МП42.
В обозначении буква «М» говорит, что корпус транзистора холодносварной, буква «П» — это первая буква слова «плоскостной», а цифры означают порядковый заводской номер транзистора. Как правило, после заводского номера ставят буквы А, Б, В, Г и т.д., указывающие на разновидность транзистора в данной серии, например, МП42Б.
С появлением новых технологий научились обрабатывать кристаллы кремния, и уже на его основе были созданы кремниевые транзисторы, получившие наиболее широкое применение в радиотехнике и на сегодняшний день практически полностью вытеснившие германиевые приборы.
Кремниевые транзисторы могут работать при более высоких температурах (до 125ºС), имеют меньшие обратные токи коллектора и эмиттера, а также более высокие пробивные напряжения.
Основным методом изготовления современных транзисторов является планарная технология, а транзисторы, выполненные по этой технологии, называют планарными. У таких транзисторов p-n переходы эмиттер-база и коллектор-база находятся в одной плоскости. Суть метода заключается в диффузии (вплавлении) в пластину исходного кремния примеси, которая может находиться в газообразной, жидкой или твердой фазе.
Как правило, коллектором транзистора, изготовленного по такой технологии, служит пластина исходного кремния, на поверхность которой вплавляют близко друг от друга два шарика примесных элементов. В процессе нагрева до строго определенной температуры происходит диффузия примесных элементов в пластину кремния.
При этом один шарик образует в пластине тонкую базовую область, а другой эмиттерную. В результате в пластине исходного кремния образуются два p-n перехода, образующие транзистор структуры p-n-p. По такой технологии изготавливают наиболее распространенные кремниевые транзисторы.
Также для изготовления транзисторных структур широко используются комбинированные методы: сплавление и диффузия или сочетание различных вариантов диффузии (двусторонняя, двойная односторонняя). Возможный пример такого транзистора: базовая область может быть диффузионная, а коллектор и эмиттер – сплавные.
Использование той или иной технологии при создании полупроводниковых приборов диктуется различными соображениями, связанными с техническими и экономическими показателями, а также их надежностью.
3. Маркировка биполярных транзисторов.
На сегодняшний день маркировка транзисторов, согласно которой их различают и выпускают на производствах, состоит из четырех элементов.
Например: ГТ109А, ГТ328, 1Т310В, КТ203Б, КТ817А, 2Т903В.
Первый элемент — буква Г, К, А или цифра 1, 2, 3 – характеризует полупроводниковый материал и температурные условия работы транзистора.
1. Буква Г или цифра 1 присваивается германиевым транзисторам;
2. Буква К или цифра 2 присваивается кремниевым транзисторам;
3. Буква А или цифра 3 присваивается транзисторам, полупроводниковым материалом которых служит арсенид галлия.
Цифра, стоящая вместо буквы, указывает на то, что данный транзистор может работать при повышенных температурах: германий – выше 60ºС, а кремний – выше 85ºС.
Второй элемент – буква Т от начального слова «транзистор».
Третий элемент – трехзначное число от 101 до 999 – указывает порядковый заводской номер разработки и назначение транзистора. Эти параметры даны в справочнике по транзисторам.
Четвертый элемент – буква от А до К – указывает разновидность транзисторов данной серии.
Однако до сих пор еще можно встретить транзисторы, на которых стоит более ранняя система обозначения, например, П27, П213, П401, П416, МП39 и т.д. Такие транзисторы выпускались еще в 60 — 70-х годах до введения современной маркировки полупроводниковых приборов. Пусть эти транзисторы устарели, но они все еще пользуются популярностью и применяются в радиолюбительских схемах.
В рамках этой части статьи мы рассмотрели лишь общие методы изготовления транзисторных структур, чтобы начинающему радиолюбителю было легче понять внутреннее устройство транзистора.
На этом мы закончим, а в следующей части проведем несколько опытов и на их основе сделаем практические выводы о работе биполярного транзистора.
Удачи!
Литература:
1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.
Полевые транзисторы
Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвует только один вид носителей.
Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Все они имеют три электрода: исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители).
Транзистор с управляющим p—n-переходом. Его схематическое изображение приведено на рис. 1.21, а условное графическое обозначение этого транзистора – на рис. 1.22, а, б (p— и n-типов соответственно). Стрелка указывает направление от слоя р к слою п (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть существенно меньше 1 мкм.
Рис. 1.22 Устройство транзистора
Рис. 1.23 Графическое изображение: а – канал р-типа; б – канал n-типа
Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя р (канала), поэтому область р-n-перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р.
Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющим
р-n-переходом и каналом n-типа. Если подать положительное напряжение между затвором и истоком транзистора с каналом р-типа: изи > 0, то оно сместит p—n-переход в обратном направлении.
При увеличении обратного напряжения на переходе он расширяется в основном за счет канала (в силу указанного выше различия в удельных сопротивлениях). Увеличение ширины перехода уменьшает толщину канала и, следовательно, увеличивает его сопротивление. Это приводит к уменьшению тока между истоком и стоком. Именно это явление позволяет управлять током с помощью напряжения и соответствующего ему электрического поля. Если напряжение изи достаточно велико, то канал полностью перекрывается областью p—n-перехода (напряжение отсечки).
В рабочем режиме р—n-переход должен находиться под обратным или нулевым напряжением. Поэтому в рабочем режиме ток затвора примерно равен нулю (iз ? 0), а ток стока практически равен току истока.
На ширину р—n-перехода и толщину канала прямое влияние также оказывает напряжение между истоком и стоком. Пусть uзи = 0 и подано положительное напряжение uис(рис. 1.24). Это напряжение окажется поданным и на промежуток затвор – сток, т.е. окажется, что uзс = uис и р—n-переход находится под обратным напряжением.
Обратное напряжение в различных областях р—n-перехода различно. В областях вблизи истока это напряжение практически равно нулю, а в областях вблизи стока это напряжение примерно равно величине uис. Поэтому p—n-переход будет шире в тех областях, которые ближе к стоку. Можно считать, что напряжение в канале от истока к стоку увеличивается линейно.
При uис = Uзиотс канал полностью перекроется вблизи стока (рис. 1.25). При дальнейшем увеличении напряжения uис эта область канала, в которой он перекрыт, будет расширяться.
Рис. 1.24 Принцип действия транзистора
Рис. 1.25 Режим отсечки
Схемы включения транзистора. Для полевого транзистора, как и для биполярного, существуют три схемы включения: схемы с общим затвором (03), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком (рис. 1.26).
Так как в рабочем режиме ic ? 0, то входные характеристики обычно не рассматриваются.
Выходные (стоковые) характеристики. Выходной характеристикой называют зависимость вида
где f – некоторая функция.
Выходные характеристики для транзистора с р—n-переходом и каналом n-типа приведены на рис. 1.27.
Обратимся к характеристике, соответствующей условию uзи = 0. В линейной области (uис < 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления.
При uис > 4 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока, так как с увеличением напряжения область, в которой канал перекрыт, расширяется. При этом сопротивление промежутка исток-сток увеличивается, а ток ic практически не изменяется. Это область насыщения. Ток стока в области насыщения uзи = 0 и при заданном напряжении исиназывают начальным током стока и обозначают через ic нач. Для рассматриваемых характеристик ic нач = 5 мА при иси = 10 В.
Рис. 1.26 Схема с общей базой
Рис. 1.27 Выходные характеристики
Параметрами, характеризующими свойства транзистора усиливать напряжение, являются:
1) Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора):
2) Внутреннее дифференциальное сопротивление Rис диф
3) Коэффициент усиления
Можно заметить, что
Транзисторы с изолированным затвором. Полевой транзистор с изолированным затвором – это транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Физической основой работы таких транзисторов является эффект поля, который состоит в изменении концентрации свободных носителей заряда в приповерхностной области полупроводника под действием внешнего электрического поля. В соответствии с их структурой такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами (металл-оксид-полупроводник). Существуют две разновидности МДП-транзисторов: с индуцированным и со встроенным каналами.
Рис. 1.28 Устройство МДП-транзистора со встроенным каналом n-типа
На рис. 1.28 показан принцип устройства транзистора со встроенным каналом.
Основанием (подложкой) служит кремниевая пластинка с электропроводностью p-типа. В ней созданы две области с электропроводностью n+-типа с повышенной проводимостью. Эти области являются истоком и стоком и от них сделаны выводы. Между стоком и истоком имеется приповерхностый канал с электропроводностью n-типа. Заштрихованная область – диэлектрический слой из диоксида кремния (его толщина обычно составляет 0,1 – 0,2 мкм). Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл такого транзистора обычно соединен с истоком, и его потенциал принимается за нулевой. Иногда от кристалла бывает сделан отдельный вывод.
Если к затвору приложено нулевое напряжение, то при подаче между стоком и истоком напряжения через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, так как один из p—n-переходов находится под обратным напряжением. При подаче на затвор напряжения отрицательной полярности относительно истока (следовательно, и кристалла) в канале образуется поперечное электрическое поле, которое выталкивает электроны из канала в области истока, стока и кристалла. Канал обедняется электронами, его сопротивление увеличивается, ток уменьшается. Чем больше напряжение на затворе, тем меньше ток. Такой режим называется режимом обеднения. Если подать положительное напряжение на затвор, то под действием поля из областей стока, истока и кристалла в канал будут приходить электроны. Сопротивление канала падает, ток увеличивается. Такой режим называется режимом обогащения. Если кристалл n-типа, то канал должен быть p-типа и полярность напряжения меняется на противоположную.
Другим типом является транзистор с индуцированным (инверсным) каналом (рис. 1.29). От предыдущего он отличается тем, что канал возникает только при подаче на затвор напряжения определенной полярности.
При отсутствии напряжения на затворе канала нет, между истоком и стоком
n+-типа расположен только кристалл p-типа и на одном из p-n+-переходов получается обратное напряжение. В этом состоянии сопротивление между стоком и истоком велико и транзистор закрыт. При подаче на затвор напряжения положительной полярности под влиянием поля затвора электроны проводимости будут перемещаться из областей стока и истока и p-области по направлению к затвору. Когда напряжение на затворе достигает своего отпирающего (порогового) значения (еденицы вольт), в приповерхностном слое концентрация электронов настолько увеличивается, что превышает концентрацию дырок, и в этом слое произойдет так называемая инверсия типа электропроводности, т.е. образуется тонкий канал n-типа, и транзистор начнет проводить ток. Чем больше напряжение на затворе, тем больше ток стока. Очевидно, что такой транзистор может работать только в режиме обогащения. Если подложка n-типа, то получится индуцированный канал p-типа. Транзисторы с индуцированным каналом часто встречаются в устройствах переключения. Схемы включения полевых транзисторов подобны схемам включения биполярных. Следует отметить, что полевой транзистор позволяет получить намного больший коэффициент усиления, нежели биполярный. Обладая высоким входным сопротивлением (и низким выходным) полевые транзисторы постепенно вытесняют биполярные.
По электропроводности канала различают p-канальные и n-канальные МДП-транзисторы. Условное обозначение этих приборов на электрических схемах показано на рис. 1.30. Существует классификация МДП-транзисторов по конструктивно-технологическим признакам (чаще по виду материала затвора).
Рис. 1.30 Условные графические обозначения полевых транзисторов
с изолированным затвором: а – со встроенным р-каналом; б – со встроенным
n-каналом; в – с индуцированным p-каналом; г – с индуцированным n-каналом
Интегральные микросхемы, содержащие одновременно p—канальные и n-канальные МДП-транзисторы, называют комплементарными (сокращенно КМДП-ИМС). КМДП-ИМС отличаются высокой помехоустойчивостью, малой потребляемой мощностью, высоким быстродействием.
Частотные свойства полевых транзисторов определяются постоянной времени RC-цепи затвора. Поскольку входная емкость Сзи у транзисторов с р—n-переходом велика (десятки пикофарад), их применение в усилительных каскадах с большим входным сопротивлением возможно в диапазоне частот, не превышающих сотен килогерц – единиц мегагерц.
При работе в переключающих схемах скорость переключения полностью определяется постоянной времени RC-цепи затвора. У полевых транзисторов с изолированным затвором входная емкость значительно меньше, поэтому их частотные свойства намного лучше, чем у полевых транзисторов с р-n-переходом.
В радиолюбительских конструкциях все чаще встречаются полевые транзисторы (ПТ), особенно в схемах УКВ аппаратуры. Но многие отказываются от их сборки, хотя схемы простые, проверенные временем, так как в них применяются ПТ к которым предъявляются особые требования по описанию схем. В журналах и интернете описано много приборов и испытателей ПТ (5,6), но они сложны, ведь в домашних условиях сложно измерить основные параметры ПТ. Приборы для испытания ПТ очень дороги и покупать их ради подбора двух, трех ПТ нет смысла.
Схема испытателя для полевых транзисторов (уменьшенная) SмА/В=Iс.нач — Iс.измер/Uзи. Так проверяются транзисторы с управляющим с p-n переходом и каналом p-типа, для ПТ n-типа нужно поменять полярность включения Uпит на обратное.Существуют также полевые транзисторы с изолированным затвором. Существуют две разновидности МДП-транзисторов с индуцированным и со встроенным каналами. Транзисторы первого типа можно использовать только в режиме обогащения. Транзисторы второго типа могут работать как в режиме обеднения, так и в режиме обогащения канала. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл — оксид- полупроводник). В МОП — транзисторах со встроенным каналом проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор — исток транзистора с р — каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение называют напряжением отсечки (Uотс ). МОП — транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда. Работа МОП-транзистора с индуцированным p-каналом. При отсутствии смещения (Uзи = 0; Uси = 0) приповерхностный слой полупроводника обычно обогащен электронами. Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки. Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением Unoр. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения Unop. При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом, МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения. Иногда в структуре полевого МОП транзистора между истоком и стоком присутствует встроенный диод. На работу транзистора диод не влияет, поскольку в схему он включен в обратном направлении. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты транзистора. Основными параметрами полевых транзисторов считаются; 1. Начальный ток стока Iс.нач — ток стока при напряжении между затвором и истоком, равном нулю. Измеряют при заданном для транзистора данного типа значении постоянного напряжения Uси. 2. Остаточный ток стока Iс.ост — ток стока при напряжении между затвором и истоком, превышающем напряжение отсечки. 3. Ток утечки затвора Iз.ут — ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой. 4. Обратный ток перехода затвор — сток Iзс.о — ток, протекающий в цепи затвор — сток при заданном обратном напряжении между затвором и стоком и разомкнутыми остальными выводами. 5. Обратный ток перехода затвор — исток Iзи.о — ток, протекающий в цепи затвор — исток при заданном обратном напряжении между затвором и истоком и разомкнутыми остальными выводами. 6. Напряжение отсечки Uотс — напряжение между затвором и истоком транзистора с р-n переходом или изолированным затвором, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА). 7. Пороговое напряжение полевого транзистора Uпор — напряжение между затвором и истоком транзистора с изолированным затвором, работающего в режиме обогащения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА). 8. Крутизна характеристик полевого транзистора S — отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком. Как известно собрать вольтметр постоянного тока намного проще чем миллиамперметр, имея одну и туже головку, а комбинированные приборы есть у каждого радиолюбителя, даже у начинающих. Собрав прибор по схеме приведенной на рисунке, можно значительно облегчить процедуру проверки ПТ во много раз. Данный прибор могут сделать даже начинающие радиолюбители не имеющие опыта работы с ПТ. Прибор питается от 9 вольт от стабилизированного преобразователя напряжения собранной по схеме из журнала Радио (3). Принцип измерений параметров ПТ. Установив переключатели SA1-SA3, SB2 в нужное полжения, в зависимости от типа и канала проверяемого ПТ, подключают любой тестер, стрелочный или цифровой (предпочтительней), в гнезда XS1, XS2, переведенном в режим измерения постоянного тока, к гнездам XS3 подключить в соответствие с цоколем ПТ и включают прибор переключателем SA4. Детали пробникаPA1 — микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 — СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 — МЛТ-0,25, С2-23 и другие. Переключатели SA1 — 3П12НПМ, 12П3Н ,ПГ2, ПГ3, П2К, SB1 — П2К. Тумблеры SA2 — SA4 — МТ-1, П1Т-1-1 и другие. Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II — 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом. Транзисторы VT1 — КТ315, КТ3102, VT2, VT3 — КТ801А, КТ801Б, VT4 — КТ805Б и другие, диоды VD1, VD2 — КД522, КД521, VD4-VD7 — КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 — К555ЛН1, К155ЛН1. В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.Настройка испытателя полевых транзисторов Налаживание прибора практически не требуется. Правильно собранный преобразователь, из исправных деталей, начинает работать сразу, выходное напряжение 15 В устанавливают подстроечным резистором R4 контролируя напряжение вольтметром. 1. Проверить исправность ПТ. Для этого обычно достаточно убедиться, что параметры его стабильны, не «плывут» и находятся в пределах справочных данных. 2. Выбрать по определенным характеристикам из имеющихся у радиолюбителя всего нескольких экземпляров ПТ те, что больше подходят для применения в собираемой схеме. Обычно здесь работает качественный принцип «больше — меньше». Например, нужен полевой транзистор с большей S или меньшим напряжением отсечки. И из нескольких экземпляров выбирают тот, у которого лучше (больше или меньше) выбранный показател. Таким образом, высокая точность измеряемых параметров на практике часто не столь важна, как можно было бы думать. Работа с прибором Перед включением прибора переключателем SA1 устанавливают тип канала, SB2 устанавливают в обогащенный режим, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ, цифровой тестер с автоматическим изменением предела предпочтителен так как не нужно будет переключать пределы при измерениях. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют полевой транзистор в разъем XS3 в соответствие с цоколем проверяемого ПТ. Включив прибор резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Переводят SA2 в положение Uзи, а SA3 в 1,5 В. Нажимают кнопку SB1 «Измер.» при этом тестер PA2 покажет какое то значение, например 0,8 мА на пределе 1 мА, это значение указывает начальный ток стока Iс.нач. Записывают это значение для данного ПТ. Затем медленно перемещают движок R1 «Uзи» контролируя при этом напряжение на затворе по PA1, напряжение Uзи увеличивают до тех пор пока ток стока Iс измеряемый тестером PA2 не уменьшится до минимального заданного как правило 10-20 мкА, переключая PA2 на пределы ниже. Как только ток уменьшится до заданного значения, снимают показание с PA1 (например 0,9 В), это напряжение является напряжением отсечки ПТ Uотс., его так же записывают. Для измерения крутизну характеристики SмА/В устанавливают тестер PA2 на тот предел который был установлен первоначально для данного транзистора и уменьшают Uзи до нуля, PA2 покажет Iс.нач. Резистором R1 медленно увеличивают Uзи до 1 В по PA1, PA2 покажет меньший ток Iс.измер. Если теперь вычесть из Iс.нач Iс.измер это и будет соответствовать численному значению крутизны характеристики SмА/В ПТ. Цифровой тестер с автоматическим изменением пределов предпочтительнее.Таким образом можно будет подобрать ПТ с близкими параметрами из одной партии с одинаковыми или разными буквенными индексами, ведь разные индексы указывают лишь на разброс параметров ПТ, так КП303А имеют Uотс. — 0,3-3,0 В, SмА/В — 1-4, а КП303В Uотс. — 1,0 — 4,0 В, SмА/В — 2-4, но некоторые ПТ с разными индексами могут иметь одинаковые значения при заданом напряжение сток-исток Uси. что не мало важно при подборке ПТ. Измерение параметров полевых транзисторов МОП-типа с встроенным каналом, режим обеднения. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обеднения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус «К» разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1, микроамперметр PA2 покажет какой-то ток это и будет начальный ток стока Iс.нач. При увеличение напряжения Uзи ток стока Iс будет уменьшатся и при определенном значение станет минимальным около 10 мкА, снятое показания с РА2 будет напряжением отсечки Uотс. Для проверки транзистора в режиме обогащения переключатель SB2 переводят в положение «Обогащения» и увеличивают напряжение на затворе Uзи при этом ток стока Iс будет увеличиваться. Как было сказано выше, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения. Измерение параметров полевых транзисторов МОП-типа с индуцированным каналом. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обогащения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус «К» разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1. При Uзи = 0 ток стока Iс = 0. Увеличивая напряжение Uзи следят за изменением тока стока Iс и при некотором напряжение Uзи ток стока начнет увеличиваться это будет пороговым напряжением Uпор. При дальнейшем его увеличение будет увеличиваться ток стока Iс. Данным прибором можно измерять параметры Iс.нач, Uотс., S ма/В ПТ средней и большой мощности, подав необходимое напряжение на внешний разъем XP1, по справочникам для данного ПТ, с добавлением необходимых пределов измерений внутренним вольтметром PA1, добавив необходимое число резисторов на переключатель SA3. Диоды VD5, VD6 при этом защищают преобразователь от внешнего напряжения. Если не требуется измерений точных значений Iс.нач и Uотс., а только подобрать ПТ с близкими параметрами, можно вместо PA2 включить индикаторы применяемые в бытовой технике для контроля уровней сигналов, М4762, М68501, М4248, М4223 и подобные, добавив к данным индикаторам переключатель и шунты на разные токи. Все остальные измерения производят по описанному выше методу. Данным прибором пользуюсь уже более шести лет. Он очень помогает при конструирование аппаратуры на полевых транзисторах, где к ним применяются особые требования. Литература: 1. Простейшие способы проверки исправности электрорадиоэлементов в ремонтных и любительских условиях, стр. 70, 300 практических советов. Бастанов В.Г. — Моск. рабочий 1986 г. Конструкцию прислал на конкурс:Слинченков Александр Васильевич г. Озерск, Челябинская обл. Форум по измерителям и тестерам Обсудить статью ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ |