Поиск кабеля в земле – Поиск неизвестного кабеля или трубы под землей (зондирование местности на предмет наличия коммуникаций)

Содержание

Поиск кабеля в земле

Выполняя строительные и дорожные работы по благоустройству территории, требуется удостовериться в том, что под землёй нет кабелей, находящихся под напряжением. Поскольку кабельные линии находятся на глубине от 0,5 до 1 м, то повредить их легко. Какими могут быть последствия – это ясно без слов. По закону, карты, на которых помечено месторасположения кабелей, должны находиться у соответствующих служб. К сожалению, в настоящей жизни их найти сложно, а в отдельных ситуациях – невозможно. Кроме того, коммуникационные системы обычно прячутся под газонами и покрыты толстым слоем асфальта или бетона, что создаёт проблемы в их поисках.

Если вам интересно месторасположения и глубина залегания кабеля, компания «Трубный Доктор» даст ответы на все вопросы. В работе используем проверенные методы и европейское и американское оборудование, что позволяет нам определить расположения кабеля с точностью до сантиментра.

Оборудование, которое мы используем в работе

Для зондирования местности сотрудники нашей компании также используют трассоискатели.

Способы поиска кабелей под землёй

  1. 1. Пассивные метод. Если кабель, проложенный через дачный участок, находится под напряжением, его можно легко обнаружить с помощью специального приёмника. Силовые кабели под нагрузкой находятся в первую очередь, а вероятность того, что они будут найдены, составляет 95-98%. Чтобы отыскать место прохождения кабеля, необходимо включить приёмник в нужный режим и пройтись по периметру исследуемой территории. Как только система обнаружит силовой кабель, она подаст сигнал, по уровню которого можно проложить путь пролегания инженерных коммуникаций.
  2. 2. Активный метод. Чтобы обнаружить обесточенные инженерные коммуникации, подключается генератор с индукционной антенной. С её помощью удаётся создать сигнал в кабеле без непосредственного доступа. Принцип работы антенны прост. Вокруг себя устройство образует электромагнитные поле и если в него попадает проводник электрического тока, создаются вихревые токи, способствующие появлению нового поля, которое и обнаруживают приёмники. Чтобы правильно определить место нахождения кабеля, необходимо:
  • Специалисту с генератором встать с одной стороны исследуемой площади.
  • Включить генератор в индукционном режиме.
  • Другому инженеру встать с приёмников на расстоянии 25-30 м от первого.
  • Начинать двигаться параллельно друг к другу.

Если инженерные коммуникации окажутся между двумя специалистами, они их смогут легко обнаружить.

Важно: Для качественного исследования участок разбивается на квадраты, которые вдоль, поперёк и по диагонали проходят наши инженеры.

  1. 3. Идентификация кабеля пассивными маркерами. Чтобы определить, где установлен силовой кабель, мы используем пассивный маркер, представляющий собой резонансный контур, спрятанный в пластиковый кожух. Если во время исследования участка обнаружен маркер, сигнал, который поступает от прибора, вызывает в нем колебания определённой частоты, что и помогает установить местонахождение кабеля. В работе могут использоваться два вида маркеров: дипольный и сферический. Дипольный маркер передаёт сигнал только вверх и вниз, сложный в установке и локации. Сферический маркер позволяет получать сигнал в двух областях, по сравнению с дипольным, простой в эксплуатации .

На заметку: На протяжении всего рабочего периода маркеры не требуют обслуживания и питания. Могут эксплуатироваться 25-30 лет.

  1. 4. Поиск кабеля в земле интеллектуальным методом. Благодаря этому способу можно не только обнаружить кабель, находящийся в земле, но и считать из памяти маркера всю необходимую информацию, включая серийный номер и данные владельца. Используется в основном для поисков оптических кабелей. Метод новый, востребованный, но эффективен в том случае, если во время монтажа инженерных коммуникаций были установлены такие маркераы.

Если нужна помощь в поиске силового или оптического кабеля – звоните нам. Компания «Трубный Доктор» сделает всё для того, чтобы во время проведения строительных работ у вас не возникли конфликтные ситуации из-за обрыва чужих трасс, и чтобы вы не знали, что такое штрафные санкции из-за повреждённых коммуникаций.

Поиск силового кабеля под землей

  1. Статьи

Пассивный метод:

В случае, если силовой кабель находится под нагрузкой, к нему приложено напряжение и по нему протекает электрический ток – допускается применение пассивного метода локации.

Электрический ток, протекая по жилам силового кабеля, создает вокруг него электро магнитное поле частотой 50 Гц. Это поле и может быть обнаружено приемником трассоискателя. При этом генератор трассоискателя – не используется вообще.

Этот метод прост, но не всегда эффективен. С его помощью определить, что под землей есть кабель — легко, но не возможно отличить кабель один от другого. Сигнал от всех силовых кабелей будет иметь одинаковую частоту.

Активный метод:

Для точной идентификации «своего» кабеля и трассировки его под землей применяется активный способ поиска, в котором генератор подключается к кабелю при помощи крокодилов, индукционной клипсы или антенны. Если кабель обесточен и к нему есть доступ – проще всего воспользоваться непосредственным методом подключения (крокодилы). В случае, если кабель под напряжением, подать сигнал в него можно только при помощи индукционной антенны или клещей. (к примеру, BLL-200 допускает подключение к кабелю с напряжением до 600В при использовании индукционных клещей).

Генератор наводит в кабеле сигнал на частоте отличной от 50 Гц. Соответственно, кабель легко идентифицировать и трассировать.

Идентификация и трассировка силового кабеля посредством пассивных маркеров

Для точной маркировки, идентификации и трассировки силового кабеля, или его ключевых точек (изменение направления, муфты) используются пассивные маркеры.

Пассивный маркер представляет собой резонансный контур, который запаян в пластиковый корпус. Он не требует питания и обслуживания и рассчитан на срок эксплуатации более 25-ти лет.

Резонансная частота и цвет маркеров силовых кабельных линий – стандартизирован:

  • Частота F = 169,8 кГц
  • Цвет = красный

Поиск маркеров производится при помощи специального прибора – маркеро искателя. Он излучает сигнал в широком диапазоне частот и определяет, на какой частоте произошел резонанс. Таким образом, если пассивные маркеры закладывать вместе с кабелем, то маркероискатель позволит однозначно определить положение последнего.

Стоит сказать, что пассивные маркеры можно классифицировать по нескольким параметрам:

Классификация по типу диаграммы направленности:

  • Дипольная – отражает сигнал только вверх и вниз. Такие маркеры более сложные в монтаже и локации.
  • Сферическая – отражает сигнал в двух плоскостях. Такие маркеры более простые в монтаже и локации

Классификация по мощности (глубине закладывания)

Подписаться на рассылку статей


Поиск кабельных трасс в земле

Линии электропередач могут располагаться как в надземном, так и подземном положении. Первые используются в основном для передачи электричества от источников (генераторов, электростанций и прочих) к распределительным сетям (трансформаторным подстанциям и непосредственно потребителям). Под землей кабельные трассы могут располагаться в специальных лотках, внутри труб, либо непосредственно в самом грунте. Последний вариант наименее предпочтителен, но из-за экономии денежных средств он является самым распространенным.

Во время ремонтов или строительства отдельных зданий к ним протягивают новые кабели, и эти работы не всегда отображаются в проектной и прочей технической документации объекта. Подключение новых потребителей осуществляется через специальные колодцы или непосредственно от трансформаторов. Но сама траншея, в которую уложен кабель после засыпки грунтом никак не маркируется, после чего обнаружить кабель становится крайне сложно.

Причинами для поиска силовых линий могут быть:

  • Необходимость восстановить схемы инженерных сетей и коммуникаций во время проведения изыскательских, проектных и строительных работ. Это актуально при капитальном ремонте, реконструкции или модернизации объекта. Если во время буровых или земляных работ повредить силовые линии, то это может обесточить всю площадку на продолжительное время.

  • Подключение нового потребителя – в этом случае необходимо найти колодец или линию, чтобы не тянуть новый кабель от трансформатора, который может располагаться на большом удалении.

  • Поиск аварийных участков – при механическом повреждении или износе кабельной трассы напряжение может резко упасть, а в отдельных случаях на таком отрезке и вовсе может возникнуть расплавление провода или короткое замыкание.

  • Обнаружение незаконных подключений – бывают случаи, когда потребитель умышленно или случайно подключается к электросети предприятия или частного лица. В таком случае необходимо обнаружить точку подключения и вызвать представителей снабжающей организации для ее устранения.

Обнаружение кабелей и их обследование обычно ведется на основании имеющихся проектных документов, но при их отсутствии потребуется специализированное оборудование.

Как найти место повреждения кабеля под землей?

Как найти место повреждения кабеля под землей?

Эксплуатация подземных силовых и телекоммуникационных кабелей связана с проведением плановых и ремонтно-восстановительных измерений, а также локализации повреждений в кабельных линиях.

В ходе плановых измерений зачастую проверяют первичные параметры: сопротивление изоляции, шлейфа, асимметрию. Зачастую для этих работ достаточно мостового измерителя.

Ремонтно-восстановительные работы – это более трудоемкий процесс, требующий хорошей подготовки специалистов и широкого спектра оборудования. Локализация дефекта требует выполнения следующих действий:

  • Определение наличия дефекта и его идентификация (вода в кабеле, обрыв пары или жилы, повреждение изоляции, короткое замыкание, переходные наводки, шумы, перепутанные пары, параллельные отводы и др.)

  • Определение расстояния до дефекта (при помощи мостового или рефлектометрического метода).

  • Локализация повреждения на местности при помощи трассодефектоискателей или кабельных локаторов.

Определение наличия дефекта в кабеле и его идентификация

Чаще всего для определения наличия повреждения и идентификации его типа применяются те же измерения, что и в ходе плановых измерений. Для проведения таких измерений используются кабельные мосты, мегомметры, измерители сопротивления заземления.

Однако в ряде случаев имеют место множественные дефекты (несколько разнотипных дефектов одновременно). В этом случае сложно определить, какое из них вносит наибольший вклад, так как они маскируют друг друга. Для определения таких неисправностей требуется не только измерение первичных параметров кабеля, но и вторичных: перекрестных наводок, наведенных шумов, затухания и т.д. В таких случаях ремонтная бригада должна быть оснащена несколькими приборами: кабельный мост, мегомметр, анализатор шумов и помех, измеритель затухания. Существуют, конечно, и комплексные анализаторы, которые совмещают в одном корпусе множество функций. Так, для работы с абонентскими телефонными линиями в последнее время часто используются кабельные анализаторы Greenlee SideKick Plus, Riser Bond 6000DSL и др.

Они позволяют измерить все первичные и вторичные параметры кабельной линии, подать тональный сигнал для идентификации пары на обратном конце, локализовать повреждение рефлектометрическим и мостовым методом и даже проанализировать качество ADSL/VDSL канала, сымитировав абонентский модем.

Определение расстояния до места повреждения кабеля под землей

Определение расстояния до дефекта производится одним из двух методов – рефлектометрическим (при помощи рефлектометров) и мостовым (при помощи кабельных мостов). Эти методы имеют существенные различия.

Кабельные мосты выполняют локализацию повреждения по сопротивлению и емкости кабеля. В ходе измерения они используют вспомогательные (заведомо исправные) жилы или пары кабеля, что позволяет измерить сопротивление (емкость) исправной пары, сравнить эти показания с аналогичными значениями на поврежденной паре и определить расстояние до дефекта. В ходе измерений они чаще всего используют напряжение 180В — 500В, что позволяет определить даже незначительные повреждения изоляции кабеля.

Кабельные рефлектометры посылают в пару импульс амплитудой примерно 20В (ширина импульса регулируется в зависимости от длины линии) и по форме и задержке отраженных от неоднородностей (дефектов) импульсов определяется тип повреждения и расстояние до него. Этот метод не позволит определить незначительные повреждения изоляции, зато с легкостью обнаружит перепутанные пары, параллельные отводы, пупиновские катушки и др.

Для повышения эффективности эти методы все чаще совмещают в одном корпусе прибора. В таком исполнении, например, представлены приборы ИРК-ПРО Альфа и КБ Связь Сова. Такие функции имеют и описанные выше анализаторы SideKick Plus и Riser Bond 6000DSL.

Следует заметить, что точность определения расстояния до дефекта прибором и точность локализации повреждения в кабеле – это разные вещи. Ведь измеренное расстояние еще нужно точно отмерять, а это весьма непростая задача, учитывая запасы кабеля на муфтах, неравномерность глубины залегания кабеля и др. Кроме того, большую погрешность вносят неточно введенные погонные значения сопротивления и емкости или коэффициент распространения (а они постоянно изменяются в ходе эксплуатации).

Локализация повреждения на местности

После того, как приблизительное расстояние до повреждения известно, к поврежденной паре подключается генератор трассоискателя или кабельного локатора и начинается трассировка кабеля. Трассировать и искать дефект поврежденного кабеля лучше начинать на расстоянии 200-300 метров от определенного кабельным мостом или рефлектометром места дефекта, от ближайшей муфты, кабельного ящика или другого места, расположение которого точно известно. Причем если трассировка начинается от кабельного шкафа или ящика, генератор нужно установить в этом месте.

Трассировку и локализацию дефектов можно производить параллельно или последовательно. В первом случае сначала «отбивается» трасса при помощи трассоискателя, после этого производится локация повреждения при помощи кабельного локатора. Во втором случае трассировка и локализация повреждений ведется одновременно: один специалист производит трассировку линии, другой – локализацию повреждений. Для таких случаев существуют приборы с одним генератором, но двумя приемниками, например Поиск-310Д-2М (2). Существуют также приборы, совмещающие не только средства поиска и локализации повреждений, но и средства предварительной диагностики и определение расстояния до повреждения. Среди них можно выделить прибор ToneRanger от компании Greenlee. К его преимуществам можно отнести:

  • Высокая точность локализации повреждения

  • Отсутствие зависимости результатов диагностики от длины и температуры кабеля, разности сечения жил различных участков, количества участков, наличие воды в кабеле и муфтах

  • Измерение таких параметров как:

  • Сопротивление изоляции

  • Сопротивление шлейфа

  • Емкость

  • Определение расстояния до повреждения

  • Локализация повреждений:

  • Пониженное сопротивление изоляции

  • Короткое замыкание

  • Обрыв

  • Перепутанные пары

  • Идентификация пар кабеля

  • В ходе измерений не осуществляет влияния на передачу информации в соседних DSL линиях

  • Всепогодное вибро- и ударопрочное исполнение

Трассировка кабеля подробно описана в разделе «Трассировка и идентификация инженерных коммуникаций (кабели, трубопроводы и т.д.)», поэтому не будем на ней останавливаться тут. Уже в ходе трассировки можно локализовать некоторые повреждения кабеля, такие как обрыв или короткое замыкание пары.

Локализация повреждений изоляции кабеля, как говорилось выше, производится при помощи кабельного локатора. Составными его частями являются контактные штыри (или, как изображено на рисунке — А-образная рама) и генератор сигнала. 

А-образная рама

Генератор подключается к линии и подает в нее импульсы высокого напряжения. Локализация выполняется с помощью контактных штырей или А-образной рамы с индикаторами. А-рама состоит из двух соединённых между собой контактных штырей, измеряющих разность потенциалов в точке, находя место утечки тока в землю. Определение точки утечки выполняется после отсоединения кабеля от штатного заземления. Заземлённый генератор подсоединяют к экрану или жиле кабеля, создавая условия для возвращения «стёкшего» тока путём наименьшего сопротивления. Контактные штыри или А-раму передвигают параллельно кабельной линии (над ней), в сторону предполагаемого повреждения, периодически втыкая в землю, сверяя показания индикаторов.

В зависимости от места нахождения дефекта по отношению к А-раме (контактным штырям) и генератору, показания вольтметра колеблются вправо или влево от нуля (плюс и минус соответственно)

В зависимости от места нахождения дефекта по отношению к А-раме (контактным штырям) и генератору, показания вольтметра колеблются вправо или влево от нуля (плюс и минус соответственно). Смещение индикатора на шкалу плюс указывает, что повреждение кабеля находится между А-рамой и концом кабеля, а смещение на минус, что прибор находится между генератором и А-рамой. Перемещением А-рамы по направлению к повреждению определяется место, в котором индикатор покажет обратное направление. Повернув раму на 90 градусов, двигаясь в сторону дефекта необходимо найти следующую точку, в которой индикатор покажет обратное направление. Если стрелка находится посредине «0» – это значит, что повреждение изоляции находится непосредственно между точками соприкосновения с землей (А-рамы). Эта точка – цель поиска.

При локализации повреждений показания приёмника могут изменяться в зависимости от глубины залегания кабеля, неоднородности почвы (сухая или влажная, песок или глина) и присутствия металлических предметов непосредственно возле линии. Чтобы не отвлекаться на поиск подобных «неполадок», необходимо учесть следующее:

  • возле повреждения показания индикатора меняются резко в одной точке;

  • величина максимальных показаний индикатора должна соотноситься с величиной сопротивления повреждения;

  • утечку можно проверить «на минимум», воткнув штыри на большей удалённости друг от друга (если рядом несколько повреждений, этот способ не подходит).

Выводы

Станет ли процесс локализации повреждений кабелей под землей чрезмерно затратным или нет, в равной степени зависит от профессионализма ремонтной бригады, и возможностей импульсного локатора и качества его исполнения. В этом случае пословица: «Скупой платит дважды», приобретает особую актуальность.


 

См. также:

Трассировка кабеля — цены в Москве. Поиск кабеля в земле, стоимость поиска КЛ под землей.

Как вариант: Поиск кабеля

Трассировка кабеля — поиск трассы прокладки кабельной линии с одновременной привязкой на плане местности или помещения.

Применительно к силовым кабельным линиям различают:

  • поиск кабеля в земле
  • поиск кабеля в стене (кабельном коллекторе / канале)

Для указанных двух случаев используются существенно отличающиеся приборные комплексы и методы.

В первую очередь, это относится к точности местоопределения (в случае поиска кабеля в стене требуемая точность существенно выше, вплоть до +- 0,05 м) и мощности зондирующего сигнала (в случае поиска кабеля в земле, требуемая мощность в десятки и сотни раз выше).

Кроме того, поиск кабеля под землей, как правило сочетается с большой протяженностью линии (сотни и тысячи метров).

В обоих случаях, трассировка может проводиться как на «отключенном» кабеле, так и на кабельной линии, находящейся под рабочим напряжением.

Обследование поверхности на предмет наличия кабелей, находящихся под напряжением

При проведении некоторых видов строительных, дорожных работ и работ по благоустройству территории часто требуется удостовериться в отсутствии под землей силовых кабелей, находящихся под напряжением. Повредить такие кабельные линии довольно легко, учитывая, что проложены они на глубине 0,5..1 м.

Если Вам требуется найти кабели в земле, или удостовериться в их отсутствии под определенным участком поверхности — то это мы тоже делаем. Поиск кабелей под землей является дешевой альтернативой геолокации, т.к. зачастую не требуется поиск магистральных трубопроводов и пр.

Стоимость трассировки кабелей и обследования поверхности

Устанавливаемая нами стоимость на услуги по трассировке не зависит от типа кабеля, но может быть увеличена в случае удаленности объекта от г. Москва.

Базовые цены на трассировку кабеля и обследование поверхности на предмет наличия силовых кабелей, находящихся под напряжением:

  • Поиск кабеля в земле — 8 т.р. за каждые 300 м трассы
  • Поиск кабеля в стене — от 2 т.р. для 10 м участка поверхности до 8 т.р. за 300 м погонной длины
  • Обследование 100 кв. м поверхности — 2 т.р., но не менее 8 т.р. за выезд
  • Сопровождение строительных и дорожных работ в форме дежурства на объекте — 12 т.р. за полный рабочий день (8 часов)

Для кабельных линий больших протяженностей цена трассировки индивидуальна и устанавливается по факту выполненных работ, с учетом сложности «рельефа» места прокладки (заборы, канавы, прочие труднодоступные участки), как на открытом месте, так и в помещениях. В связи с этим, стоимость поиска кабельной линии в Москве оказывается существенно выше, чем в не столь плотно застроенных городах области.

Нанесение кабельной линии на геоподоснову

В случае необходимости, мы выполняем нанесение трассы на геоподоснову, предоставленную Заказчиком. Так же, могут быть выполнены работы, необходимые для согласования ранее оформленного плана прокладки.

Порядок и форму представления результатов трассировки мы оговариваем заранее, так как указанный момент существенно влияет на стоимость работ по поиску трассы прокладки кабельной линии. Обращаем Ваше внимание, что, отражение результатов на плане местности, зачастую, более трудозатратная и ответственная процедура, чем, собственно, поиск.

Поиск оптического кабеля под землей

  1. Главная

Поиск оптического кабеля под землей – задача далеко не однозначная. Причиной тому является множество смыслов, которые вкладываются в словосочетание «Поиск оптического кабеля под землей». Это может быть:

  • Определение фактического расположения и трассировки своего оптоволоконного кабеля, имеющего в конструкции металлические элементы. Под «своего оптоволоконного кабеля» — имеется ввиду, что специалисту известны точки, в которых этот кабель проходит (кабельный колодец, муфта, АТС) и в которых в него можно подать сигнал для идентификации и трассировки.
  • Определение фактического расположения и трассировки оптоволоконного кабеля без  металлических элементов в конструкции
  • Обследование участка на предмет наличия подземных коммуникаций и в частности оптических кабелей

Для достижения положительного результата в каждом из описанных случаев, необходимо действовать согласно различных алгоритмов.

Поиск местоположения своего оптоволоконного кабеля с металлическими элементами конструкции

В случае, если необходимо определить местоположение своего оптоволоконного кабеля, имеющего в конструкции металлические элементы и провести дальнейшую его трассировку, действовать можно так же, как и в случае с металлическим кабелем, используя его броню или экран в качестве проводящего трассируемый сигнал элемента: включить и подключить к металлической оболочке генератор при помощи одного из 3-х способов, приемником в активном режиме поиска произвести поиск кабеля и его трассировку. При этом сигнал от генератора будет распространяться по металлической броне кабеля, создавая вокруг кабеля электромагнитное поле определенной частоты. Этот сигнал с легкостью может обнаружить приемником в активном режиме. Причем максимальный уровень принимаемого приемником сигнала будет наблюдаться в момент, когда оператор будет находиться непосредственно над кабелем. Не стоит забывать, что для организации контура распространения трассируемого сигнала, необходимо заземлить один из выводов генератора и оболочку кабеля на удаленном конце кабеля (должна быть сформирована следующая цепь: вывод генератора – оболочка кабеля на ближнем конце кабеля – «земля» — второй вывод генератора).

Поиск оптического кабеля под землей

Поиск местоположения оптического кабеля без металлических элементов конструкции

К сожалению, невозможно выполнить поиск оптического кабеля без металлических элементов, пластиковых и асбестоцементных трубопроводов и других не проводящих электрический ток коммуникаций при помощи трассоискателей. Поэтому для идентификации и трассировки последних в ходе эксплуатации, необходимо осуществлять их маркировку  во время строительства.

оптический кабель под землей

Для такой маркировки издавна использовались кабельные столбики, однако ввиду того, что в  последнее время наличие столбика служит сигналом «копать здесь» для «охотников за медью», все больше используются пассивные маркеры.

Пассивный кабельный маркер – это резонансный контур, состоящий из катушки индуктивности и конденсатора. Такой контур выполнен в прочном пластиковом корпусе и настроен на определенную резонансную частоту (согласно рекомендации  American Public Works Association). Пассивный маркер закладывается вместе с кабелем, не требует питания и обслуживания и гарантированно работает на протяжении не менее 25 лет. В ходе поиска подземных коммуникаций, маркероискатель излучает сигнал в широком спектре и принимает тот сигнал, на котором произошел резонанс. В результате, определяется не только наличие маркера, но и его тип.

оптический кабель под землей

Сравнительная таблица маркеров 3M Scotchmark и Greenlee Omni Marker

Применение

 

3M Scotchmark

Greenlee Omni Marker

Силовые линии

Наименование

 

оптический кабель под землей

 

  оптический кабель под землей

Частота

169,8 кГц

169,8 кГц

Диаметр

10,2 см

11,4 см

Вес

0,35 кг

0,14 кг

Глубина установки

1,5 м

1,5 м

Минимальное количество для заказа

30 шт

1 шт

Водопровод

Наименование

 

оптический кабель под землей

1403-XR

 

оптический кабель под землей

Частота

145,7 кГц

145,7 кГц

Диаметр

10,2 см

11,4 см

Вес

0,35 кг

0,14 кг

Глубина установки

1,5 м

1,5 м

Минимальное количество для заказа

30 шт

1 шт

Канализация

Наименование

 

 

 

оптический кабель под землей

1404-XR

 

 

 

оптический кабель под землей

Частота

121,6 кГц

121,6 кГц

Диаметр

10,2 см

11,4 см

Вес

0,35 кг

0,14 кг

Глубина установки

1,5 м

1,5 м

Минимальное количество для заказа

30 шт

1 шт

Телекоммуникации

Наименование

 

оптический кабель под землей

 

оптический кабель под землей

Частота

101,4 кГц

101,4 кГц

Диаметр

10,2 см

11,4 см

Вес

0,35 кг

0,14 кг

Глубина установки

1,5 м

1,5 м

Минимальное количество для заказа

1 шт

1 шт

Газопровод

Наименование

 

оптический кабель под землей

 

оптический кабель под землей

Частота

83 кГц

83 кГц

Диаметр

10,2 см

11,4 см

Вес

0,35 кг

0,14 кг

Глубина установки

1,5 м

1,5 м

Минимальное количество для заказа

1 шт

1 шт

 

Кабельное

телевидение

Наименование

 

 

оптический кабель под землей

1407-XR

 

 

оптический кабель под землей

Частота

77 кГц

77 кГц

Диаметр

10,2 см

11,4 см

Вес

0,35 кг

0,14 кг

Глубина установки

1,5 м

1,5 м

Минимальное количество для заказа

30 шт

1 шт

 

Общего

применения

Наименование

 

 

оптический кабель под землей

 

 

оптический кабель под землей
Omni Marker 168

Частота

66,35 кГц 66,35 кГц

Диаметр

10,2 см 11,4 см

Вес

0,35 кг 0,14 кг

Глубина установки

1,5 м 1,5 м

Минимальное количество для заказа

30 шт 1 шт

Для этих целей также используются стандартные и полноразмерные маркеры, а также интеллектуальные маркеры, позволяющие дополнительно записывать, хранить и выдавать информацию о владельце кабеля, его направлении и т. д.

Обследование участка на предмет наличия подземных коммуникаций и в частности оптических кабелей описано подробно в статье «Поиск неизвестного кабеля или трубы под землей»

 

СМОТРИТЕ ТАКЖЕ:

 

Подписаться на рассылку статей


Как найти кабель в земле или место повреждения контура заземления

При строительстве дачи или загородного дома обязательно устанавливают контур заземления. Нередки случаи, когда контур заземления уже есть, но проверка его работоспособности не помешает. Или другая ситуация – в земле проложен кабель, и нужно определить, как он проходит.

Немного теории. Контур заземления – это металлическая конструкция, состоящая из вертикальных электродов длиной, как правило, 3 – 5 метров и стальной ленты приваренной к этим электродам. Вертикальные электроды – это арматура или уголок. Общая длина контура равна сумме длин всех электродов.

Вашему вниманию предлагается устройство для проведения различных поисковых мероприятий связанных с залегающим на глубине 0,5 – 1,5 м в земле кабелем. Этот прибор поможет найти кабель в земле, а также определить место повреждения контура заземления. Недостаток прибора в том, что кабель должен быть обесточен.

Устройство состоит из двух блоков. Первый – генератор импульсов тока, второй – приемник импульсов. Импульсы тока от первого блока поступают в контур заземления и создают магнитное поле, а приемник с помощью индуктивного щупа индицирует это поле с помощью звукового сигнализатора, который дублируется светодиодным индикатором в случае проведения поисковых работ в шумном месте.

Схема генератора проверки контура заземления:

Рассмотрим принцип работы. Трансформатор T1 понижает сетевое напряжение до 6,3 В. Вторичные обмотки трансформатора соединены параллельно, что позволяет увеличить потребляемый нагрузкой ток до 15 А. Отечественные трансформаторы ТН серии допускают такую модернизацию. О включении генератора импульсов сообщит своим включением светодиод HL1.

Диодный мост VD1 – VD4 и конденсатор C2 служат для выпрямления и сглаживания напряжения, поступающего на выходные клеммы первого блока, XT1 и XT2. Перед выходом напряжение проходит через прерыватель, собранный на транзисторе VT3. Кстати, транзистор VT3 установлен на теплоотводе с площадью рассевания 100 см2. Мультивибраторы, собранные на DD1.1, DD1.2 (частота импульсов 1 Гц) и DD1.3, DD1.4 (частота импульсов 1 кГц, с возможностью ее регулировки резистором R9), формируют пачки импульсов, поступающие на транзистор VT1, а точнее на его базу. Транзистор VT1 является управляющим для транзистора VT3. Транзистор VT2 контролирует генератор, не позволяя выходному току превысить заданное число, и даже в случае короткого замыкания на выходных зажимах. Транзистор VT2 откроется в том случае, если ток эмиттера транзистора VT3 преодолеет значение 12 А. Резисторы R11 и R12 выступают в роли датчиков тока и соединены параллельно.

Диод VD5 совместно с конденсатором C1 служат для сглаживания пульсаций, возникающих в случае смены нагрузки. Микросхемы DD1 и DD2 питаются напряжением, стабилизированным стабилитроном VD6.

Рекомендуется применять детали указанные ниже. Конденсаторы по возможности применить с наименьшим ТКЕ. Конденсатор C3 – К73, С6 – КМ-5. Клемники XT1, XT2 любые, желательно с возможностью подключения кабелей с сечением не меньше 6 мм2. Диоды VD1 – VD4 тоже любые, рассчитанные на ток не менее 10 А. VD5 на ток не менее 0,1 А. Резистор R9 – подстроечный – СП3-19а, СП3-19б или импортный аналог. Резисторы R11, R12 – C5-16, можно сделать их самостоятельно из нихромовой проволоки диаметром 1мм и больше, сопротивлением 0,05 Ом.

Схема приемника для поиска места повреждения контура заземления:

Катушка L1 индуктивного щупа подключена экранированным проводом посредством разъема XW1 к входу селективного усилителя на операционном усилителе DA1. Вторая часть на ОУ DA2 аналогична первой. Усилитель нужно настроить на частоту генератора импульсов – 1 кГц, делается это при помощи подстроечных резисторов R6, R10. Сигнал, поступивший из усилителя, проходит еще две стадии усиления на транзисторах VT1, VT2 и VT3, а затем поступает на пьезоизлучатель HA1. Дублером в качестве световой сигнализации служит светодиод HL1, он подключен к транзистору VT1 и во время приема сигнала вспыхивает.

В зависимости от того, на какой глубине находится контур заземления или лежит кабель в земле выставляется чувствительность приемника. Регулятором выступает переменный резистор R12, для удобства можно использовать резистор, совмещенный с выключателем. Выключатель будет SA1. Питается приемник от гальванической батареи или аккумуляторов напряжением 9 В.

Найти кабель в земле или место повреждения контура заземления не составит большой сложности, если правильно изготовить щуп. Конструкция индуктивного щупа представляет собой деревянную или пластмассовую рукоятку с неэкранированной катушкой и экранированным проводом с разъемом с одной стороны. В схеме применена катушка от герконового реле РЭС64 исполнения РС4.569.727 на напряжение 27 В и сопротивлением обмотки 10 кОм. С нее убирают магнитный экран и геркон. Геркон нужно заменить магнитопроводом из аморфного железа или пермаллоя. Катушку необходимо очень тщательно защитить от влаги и пыли и естественно изолировать. Затем закрепить ее на рукоятке. Размеры рукоятки и способ крепления катушки нужно подобрать индивидуально исходя из точки зрения эргономики и удобства.

Конденсаторы C3 – C6 желательно использовать К73-17, подойдут также К73-29. Резисторы R6 и R10 – подстроечные, такие же, как в генераторе. Разъем XW1 – коаксиальный. Звукоизлучатель HA1 типа ЗП-5 или ПВА-1, или импортный аналог от музыкальной открытки, например.

Чтобы найти место пролегания кабеля необходимо подключить зажим XT1 генератора импульсов с началом кабеля, это могут быть все проводники (обязательно обесточенного). Зажим XT2 соединить со штырем забитым в землю. Конец кабеля или все его проводники подключить к другому штырю также забитому в землю.

При поиске участка повреждения участков заземления необходимо выполнять следующую последовательность действий. Контур подключить к зажиму генератора XT1, а зажим XT2 присоединить к забитому рядом в землю штырю. Включить генератор, подав на него сетевое напряжение. Затем включить приемник и регулируя чувствительность приемника начать отслеживание контура заземления. Катушку во время работы нужно располагать перпендикулярно контуру. Звук излучателя должен быть равномерным, его затухание говорит о повреждении контура или его окончании.

Чувствительность приемника регулируется номиналами резисторов R3, R7. В частности для увеличения чувствительности необходимо уменьшить сопротивление этих резисторов. Помните, правильное и надежное заземление электроприборов предотвратит возможное поражение электрическим током.

Отправить ответ

avatar
  Подписаться  
Уведомление о