Почему лампочка горит – Лампочка ABS — Почему Горит Или Моргает, Основные Причины Неисправности, Ошибки, Проблемы с Датчиками, Что Делать, Как Починить Самостоятельно

Содержание

Почему горит лампочка?

Времена, когда все электрические лампочки выглядели практически одинаково, уже ушли в прошлое. Если еще лет двадцать назад при слове «лампочка» любой человек сразу же мысленно представлял себе классическую стеклянную грушу со спиралью внутри, то нынче старая добрая лампочка накаливания утратила свою былую популярность, уступив место новым, более экономным и долговечным лампам. Весь современный ассортимент электрических ламп в зависимости от принципа их действия можно разделить на три большие группы:

  • лампы накаливания;
  • газоразрядные лампы;
  • светодиодные лампы.

Почему горит лампочка накаливания

В лампочках накаливания свет излучает проводник, нагревающийся при прохождении по нему электрического тока. После замыкания электрической цепи нить накала разогревается до 3000*С и начинает излучать энергию в видимой части спектра.

Конструкция лампы накаливания

Конструкция такой лампочки очень проста. Лампа состоит из:

  • цоколя;
  • стеклянной колбы;
  • электродов;
  • нити накала.

В качестве материала для изготовления нити накала в современных лампочках используют вольфрам – очень тугоплавкий и относительно недорогой металл. Из вольфрама делают тончайшую проволоку, которую для уменьшения размера нити накала закручивают в спираль. Иногда эту спираль для увеличения мощности лампы закручивают в спираль второго уровня. Лампы, в которых установлена такая двойная спираль, называют биспиральными.

Вольфрамовая спираль крепится внутри колбы крючками – держателями, изготовленными из молибдена. Концы спирали припаиваются к электродам, которые выводятся на цоколь лампы.

Стеклянная колба герметично запаивается. Перед запаиванием из колбы полностью откачивается воздух. Делается это для того, чтобы продлить срок службы нити накаливания, так как в воздушной среде вольфрам очень быстро окисляется, в результате чего нить разрушается и лампа перегорает. В лампах малой мощности в колбах создается вакуум, в более мощных лампах колбы заполняют инертным газом (в дешевых моделях смесью аргона с азотом, в дорогих — ксеноном или криптоном). О потребляемой мощности электрических ламп читайте в нашей статье Сколько потребляет лампочка.

На запаянный конец колбы крепится оцинкованный цоколь с резьбой, к нему припаиваются выводы электродов, на хвостик цоколя наносится керамическая изоляция.

Лампу ввинчивают в патрон, к которому подведен электрический ток. После того, как электричество будет подключено, ток пойдет по вольфрамовой спирали, спираль моментально разогреется и лампочка засветится. Часть потребляемой энергии лампочка преобразует в видимое человеческим глазом излучение, другая, большая часть рассеется в виде тепла.

По такому же принципу работают галогенные лампы. Единственное их отличие от обычных ламп накаливания состоит в том, что в инертный газ, наполняющий колбу, добавлены галогены — фтор, хлор, бром или йод, которые частично регенерируют нить накаливания, продлевая тем самым срок службы лампы.

Как работают газоразрядные лампы

Газоразрядные лампы работают намного эффективнее, чем лампы накаливания. Их КПД достигает тридцати, а в некоторых моделях даже сорока процентов, в отличие от максимальных десяти процентов, свойственных лампам накаливания.

К числу газоразрядных ламп относятся всем хорошо известные люминесцентные лампы. Колба люминесцентной лампы выполнена в форме длинной, герметично запаянной стеклянной трубки, заполненной инертным газом и небольшим количеством ртути. В такой лампе светится не нить накаливания, а тонкий слой порошкообразного светящегося вещества – люминофора, нанесенного на внутренние стенки стеклянной трубки. Свечение люминофора происходит в результате непрерывных электрических разрядов, происходящих в ртутных парах, наполняющих колбу.

Столь популярные ныне энергосберегающие лампы тоже относятся к числу газоразрядных люминесцентных ламп, являясь их компактным улучшенным вариантом.

Помимо энергосберегающих ламп к этой большой группе относятся неоновые лампы, в основном используемые в световой рекламе, и натриевые лампы, применяемые для уличного освещения.

Как работают светодиодные лампы

В светодиодных лампах фотоны света излучает кристалл полупроводника, заключенный в пластиковую защитную колбу одновременно служащую рассеивающей линзой. Это самые новые и самые перспективные лампы. Единственный их недостаток на сегодняшний день — довольно высокая цена. О преимуществах светодиодных ламп, и о том как выбрать лампочку написано в статье Как выбрать лампу.

Как горит лампочка? – статья – Корпорация Российский учебник (издательство Дрофа – Вентана)

Статьи

Внеурочная деятельность

Разновидностей электрических лампочек немного. Существуют лампы накаливания, люминесцентные, галогенные и на светодиодах. Наиболее популярными до сих пор остаются грушевидные лампы накаливания, так называемые «лампочки Ильича». Почему они получили такое название и как работают? Разбираемся вместе.

16 октября 2018

Почему «Ильича»?

Первоначально понятие «лампочка Ильича» было связано с электрификацией СССР, в частности в деревнях и сёлах. Существовала даже фраза: «Была коптилка да свеча — теперь лампа Ильича». Устойчивое выражение характеризовало перемены «электрического плана», а также пропагандировало советскую власть.

Первые «лампочки Ильича» представляли собой свободно свисающие лампы накаливания, подвешенные за патрон проводом к потолку. В наше время понятие продолжает относиться к лампе накаливания, но уже вне зависимости от наличия плафона при ней.

Почему «накаливания»?

Своё название лампочка получила в честь принципа действия. Сама лампа — это соединение колбы из стекла, металлического патрона и «пестика». Если внимательно взглянуть на саму лампу, то можно заметить некие рожки, соединённые между собой мостиком. Это и есть проводная нить. Она представляет собой либо металлическую спираль, чаще всего вольфрамовую, либо угольную нить. Электрический ток следует по проводнику, тем самым осуществляя физическую реакцию — тепловое действие тока.

Почему электричество даёт свет?

Вы когда-нибудь наблюдали за тем, как горит дерево? Сначала оно становится красным и даже ослепительно белым, от горящих поленьев исходит жар и свет. Подобная ситуация происходит и с проводником лампочки. Вольфрам, намного прочнее дерева, быстро не сгорает, а способен при накаливании нагреваться и долгое время выделять свет (разный по степени яркости в зависимости от мощности) и небольшое количество тепла.

Почему? Самые интересные детские вопросы о природе, науке и мире вокруг нас

Почему? Самые интересные детские вопросы о природе, науке и мире вокруг нас

Книга написана для детей-почемучек, которым все интересно, а также для их родителей. Она поможет вам найти ответы на самые разные «почему».

Купить

Сила тока влияет на температуру накаливания. Чем ток сильнее, тем выше температура. В зависимости от этого нить может менять свой цвет от жёлтого до ярко-белого.

В целом, вольфрамовый»мостик» является проводником мощнейшей энергии. Как известно, энергия не появляется внезапно и также не исчезает в никуда. Она меняет своё состояние, преобразовывается, переходит в другой вид. Энергия, проходящая через вольфрамовую «пружинку», также преобразовывается. Одна её часть переходит в тепловые волны (и мы чувствуем тепло, исходящее от лампочки), другая часть — в электроволны (лампочка даёт свет).

А можем ли мы влиять на степень освещения? Из вышесказанного следует, что если мы повысим температуру накаливания, то и света будет больше. Однако нельзя не принимать во внимание материал, из которого изготовлен проводник. Если вольфрам начать слишком сильно нагревать, то проводник может «перегореть». Слишком сильный нагрев и является одной из причин «лопнувших» лампочек. Если посмотреть на перегоревшую лампочку, то можно увидеть и повреждённый проводник. В сгоревшем состоянии он представляет собой нить из двух частей с повиснувшими концами.

Почему лампочка такая хрупкая?

Когда мы несём лампочки из магазина домой, то двигаемся всегда аккуратно, следим за своей покупкой. Лампочки — это эквивалент яиц по хрупкости. Зачем же лампочки изготавливают такими «нежными» и бьющимися?

Первый ответ — самый очевидный — прозрачность. Стекло с лёгкостью пропускает свет сквозь себя, поэтому мы получаем максимальное количество освещенности, которое может подарить нам лампочка. Второй ответ скрывается в улучшенных условиях для проводника. Для того чтобы вольфрамовой пружинке сильнее раскалиться, нужно сократить количество воздуха вокруг неё. Именно поэтому проводник помещают в стеклянную «грушу», заранее откачав оттуда воздух.

Вот так обычная лампочка, по сути являясь проводником мощной энергии, несёт в наши дома свет. И теперь мы знаем о лампочках чуть больше, нежели, например, говорится в детской загадке: «Провели под потолок удивительный шнурок. Привинтили пузырёк — загорелся огонёк».

Что? Когда? Зачем? Почему?

Что? Когда? Зачем? Почему?

Хотите разбираться в тех вопросах, которые раньше оставались без ответов? Легко! На страницах этой книги вы найдете много новой интересной информации на самые разные темы — Вселенная и космос, человек и его здоровье, животные, наука и техника, окружающий мир. Что такое «жидкие гвозди», когда люди начали строить города, зачем верблюду горб, почему одни люди левши, а другие правши? На эти и другие вопросы вы получите четкие ответы, сопровождаемые забавными иллюстрациями. Поверьте, читая эту книгу, вы не только приобретете новые знания, но еще и получите массу удовольствия!

Купить

Почему горит лампочка « Сто тысяч почему

Лампа накаливания

Если имеется в виду лампа накаливания, то ответ на это вопрос можно найти в учебнике физики средней школы. Давайте вспоминать. Конструкция лампы базируется на использовании эффекта накаливания (нагревания) проводника. То, что называют тепловым действием тока, проявляется при прохождении через проводник электрического тока переменного напряжения. Проводником служит вольфрамовая нить (спираль). Температура проводника резко увеличивается, синхронно с включением тока. Согласно функции Планка, проводник начинает испускать электромагнитное тепловое излучение. Максимум функции Планка достигается при повышении температуры: чем выше температура, тем короче длина электромагнитной волны, тем ярче (белее) излучаемый проводником (вольфрамовой нитью) свет. При снижении напряжения снижается и температура, происходит уменьшение доли видимого света до «красного». Основная часть энергии, проходящей через проводник, преобразуется в излучение: тепловое и электроволновое (свет), часть теряется в процессе теплопроводности материалов, из которых изготовлена лампа, и конвекции. Таким образом, в излучении  видимых электромагнитных волн задействуется  малая доля энергии, львиная ее доля уходит на невидимые, инфракрасные, волны. Чтобы усилить свечение лампы, нужно повышать температуру разогревания (накаливания) проводника. Сделать это в желаемом объеме невозможно из-за ограниченных возможностей материала, из которого изготовлен проводник (температуры плавления вольфрама). Температура, идеальная для создания максимально «белого»   цвета излучения, попросту недостижима, т.к. проводник разрушится. В современных лампах накаливания нити из вольфрама или осмия разогреваются до 2400-2800 градусов и излучают ярко-желтый свет. Проводник невозможно разогревать «на воздухе», он начнет образовывать оксиды, поэтому его помещают в стеклянную колбу, из которой откачиваются все атмосферные газы. Колбы мощных ламп накаливания заполняются газом (азот, аргон, криптон). Давление газов уменьшает скорость разрушения проводника. Но проводник все равно разрушается, распыляясь мелкодисперсным порошком, поэтому колбы покрываются изнутри черным налетом.

Лампа накаливания

Почему светятся электрические лампы?

Электричество, на котором работают осветительные лампы, телевизоры и другие бытовые электроприборы, состоит из движущихся электронов или электрического тока. Если свободный электрон приведен в движение, он со временем столкнется с атомом и переведет его в возбужденное состояние, другими словами — передаст атому часть своей энергии.

Возбужденный атом затем высвобождает эту дополнительную энергию в виде электромагнитного излучения. Когда электроны перемещаются по металлической нити лампы накаливания, нагрев нити приводит к тому, что она раскаляется добела и начинает испускать интенсивное электромагнитное излучение.

В люминесцентной лампе электрический ток вместо нити накала течет через газ. Когда электрический ток проходит по газоразрядной трубке, он заставляет газ испускать ультрафиолетовое излучение, которое возбуждает фосфор, покрывающий внутреннюю поверхность трубки, запуская цепную реакцию, в результате которой электромагнитное излучение высвобождается в области видимого света.

Длина волны излучения, испускаемого горячими телами, больше всего зависит от их температуры. Солнце при 6000°К испускает основную часть своего излучения в видимом спектре, в то время как 100-ваттная лампа накаливания, излучающая при температуре около 3000°К, выделяет основную часть своей энергии в виде инфракрасного излучения и совсем немного — в видимом диапазоне.

Удивительная нить

Электричество нагревает нить накала — свернутую спиралью проволоку внутри лампы накаливания — примерно до 3000°К (5000°F). Эта тонкая проволочка может выдерживать столь высокую температуру, потому что сделана из вольфрама, металла с высокой температурой плавления.

Люминесцентный свет из газа

В люминесцентных лампах в производстве света участвуют электроны, газ и химическое вещество, называющееся фосфором. Электроны, протекающие через полость стеклянной трубки, сталкиваются с атомами газа, отдавая им свою энергию. Возбужденные атомы газа высвобождают невидимые ультрафиолетовые лучи, которые бомбардируют фосфорное покрытие трубки. Фосфор поглощает это излучение и вновь его испускает, но уже в видимом диапазоне спектра

Тепловыделение в лампе накаливания

Лампа накаливания разогревается, потому что свободные электроны (голубые шарики) движутся по ее металлической нити (коричневая трубка) и сталкиваются на своем пути со стационарными атомами (красные шарики). Возбужденные атомы начинают совершать интенсивные колебания, увеличивая температуру металлической нити и заставляя ее светиться.

Ящик пандоры – Почему горит лампочка?

Вначале предисловие о том, как вообще появилась эта статья.

Лет пять тому назад я зарегистрировался на каком-то студенческом форуме и опубликовал там статью о том, какие ошибки допускает наша академическая наука в трактовке многих базовых положений, как эти ошибки исправляет альтернативная наука, и как академическая наука воюет с альтернативной, приклеивая ей ярлык “лженауки” и обвиняя во всех смертных грехах. Моя статья провисела в свободном доступе около 10 минут, после чего была скинута в отстойник. Меня же сразу отправили в бессрочный бан и запретили появляться у них. Через несколько дней я решил зарегистрироваться на других студенческих сайтах, чтобы повторить свою попытку с публикацией данной статьи. Но оказалось, что я уже нахожусь в черном списке на всех этих сайтах и в регистрации мне отказывают. Насколько я понимаю, между студенческими форумами происходит обмен информацией о нежелательных персонах и попадание в черный список на одном сайте означает автоматический вылет со всех других.

Тогда я решил выйти на журнал “Квант”, специализирующийся на научно-популярных статьях для школьников и студентов ВУЗов. Но так как на практике этот журнал больше ориентируется все же на школьную аудиторию, статью пришлось значительно упрощать. Я выкинул оттуда все про лженауку и оставил только описание одного физического явления и дал ему новую трактовку. То есть статья превратилась из технически-публицистической в чисто техническую. Но на мой запрос никакого ответа из редакции я не дождался. А раньше ответ из редакций журналов мне всегда был, даже если редакция отклоняла мою статью. Отсюда я сделал вывод, что в редакции я тоже нахожусь в черном списке. Так моя статья и не увидела свет.

Прошло пять лет. Я решил снова обратиться в редакцию “Квант”. Но и через пять лет на мой запрос ответа не последовало. Значит, я до сих пор нахожусь у них в черном списке. Поэтому я решил больше не воевать с ветряными мельницами, а публикую статью здесь на сайте. Конечно жалко, что подавляющее большинство школьников ее не увидит. Но тут я уже ничего поделать не могу. Итак, вот сама статья….

Почему горит лампочка?

Наверное, не найдется такого населенного пункта на нашей планете, где не будет электрических лампочек. Большие и маленькие, люминесцентные и галогенные, для карманных фонариков и мощных военных прожекторов – они настолько прочно вошли в нашу жизнь, что стали привычны также, как привычен нам воздух, которым мы дышим. Принципы действия электрических лампочек кажутся нам настолько ясными и очевидными, что практически никто не задумывается над механикой их работы. А тем не менее, в этом феномене таится огромная загадка, которая до сих пор не решена в полной мере. Попробуем разгадать ее сами.

Пусть у нас будет бассейн с двумя трубами, по одной из которых вода вливается в бассейн, по другой она из него выливается. Примем, что в бассейн каждую секунду поступает 10 килограммов воды, а в самом бассейне 2 килограмма из этих десяти каким-то волшебным способом перерабатывается в электромагнитное излучение и выбрасывается наружу. Вопрос: сколько воды уйдет из бассейна по другой трубе? Наверное, даже первоклассник ответит, что будет уходить 8 килограммов воды в секунду.

Немного изменим пример. Пусть вместо труб будут электрические провода, а вместо бассейна электрическая лампочка. И снова рассмотрим ситуацию. По одному проводу в лампочку входит, скажем, 1 миллион электронов в секунду. Если мы полагаем, что часть из этого миллиона преобразуется в световое излучение и выбрасывается из лампы в окружающее пространство, тогда по другому проводу будет уходить из лампы меньшее количество электронов. А что покажут измерения? Они покажут, что электрический ток в цепи не меняется. Ток – это поток электронов. И если электрический ток одинаков в обоих проводах, это означает, что количество уходящих из лампы электронов равно количеству электронов, входящих в лампочку. А световое излучение – это разновидность материи, которая не может появиться из совершенной пустоты, но может появиться только из другой разновидности. И если в данном случае световое излучение не может появиться из электронов, тогда откуда же появляется материя в форме светового излучения?

Этот феномен свечения электической лампочки также вступает в противоречие с одним очень важным законом физики элементарных частиц – законом сохранения так называемого лептонного заряда. Согласно данному закону, электрон может исчезнуть с испусканием гамма-кванта только в реакции аннигиляции со своей античастицей позитроном. Но в лампочке никаких позитронов как носителей антивещества быть не может. И тогда мы получаем буквально катастрофическую ситуацию: все электроны, входящие в лампочку по одному проводу, без всяких реакций аннигиляции уходят из лампочки по другому проводу, но при этом в самой лампочке возникает новая материя в форме светового излучения.

А вот еще интересный эффект, связанный с проводами и лампами. Много лет назад известный физик Никола Тесла выполнил загадочный эксперимент передачи энергии по одному проводу, который в наше время повторил российский физик Авраменко. Суть эксперимента состояла в следующем. Берем самый обыкновенный трансформатор и первичной обмоткой подключаем его к электрогенератору или сети. Один конец провода вторичной обмотки просто болтается в воздухе, второй конец тянем в соседнее помещение и там подсоединяем к мостику из четырех диодов с электролампочкой в середине. Подаем напряжение на трансформатор и лампочка загорелась. Но ведь к ней тянется всего один провод, а для работы электрической цепи нужно два провода. При этом, как утверждают исследующие этот феномен ученые, идущий к лампочке провод совершенно не нагревается. Настолько не нагревается, что вместо меди или алюминия можно использовать любой металл с очень высоким удельным сопротивлением, и он все равно останется холодным. Более того, можно толщину провода уменьшить до толщины человеческого волоса, и все равно установка будет работать без проблем и без выделения тепла в проводе. До сих пор этот феномен передачи энергии по одному проводу без каких-либо потерь так никто и не сумел объяснить. И сейчас я попробую дать свое объяснение данному явлению.

Есть в физике такое понятие – физический вакуум. Его не нужно путать с техническим вакуумом. Технический вакуум – это синоним пустоты. Когда мы удаляем из сосуда все молекулы воздуха, мы создаем технический вакуум. Физический вакуум – это совсем иное, это некий аналог всепроникающей материи или среды. Все ученые работающие в данной области, не сомневаются в существовании физвакуума, т.к. его реальность подтверждается многими хорошо известными фактами и явлениями. Спорят о наличии в нем энергии. Кто-то говорит об исключительно малом количестве энергии, другие склоняются к мысли о сверхогромном количестве энергии. Дать точное определение физвакууму невозможно. Но можно дать примерное определение через его характеристики. Например такое: физический вакуум – это особая всепроникающая среда, которая формирует пространство Вселенной, порождает вещество и время, участвует во многих процессах, имеет огромнейшую энергию, но не видима нами из-за отсутствия нужных органов чувств и потому кажущаяся нам пустотой. Надо особенно подчеркнуть: физвакуум не есть пустота, он только кажется пустотой. И если встать на такую позицию, тогда очень многие загадки достаточно легко решаются. Например, загадка инерции.

Что такое инерция – до сих пор не ясно. Более того, феномен инерции даже противоречит третьему закону механики: действие равно противодействию. По этой причине инерционные силы иной раз даже пытаются объявить иллюзорными и фиктивными. Но если мы в резко тормознувшем автобусе упадем под действием инерционных сил и набьем себе шишку на лбу, насколько эта шишка будет иллюзорна и фиктивна? В реальности инерция возникает как реакция физвакуума на наше движение.

Когда мы сидим в автомобиле и давим на газ, мы начинаем двигаться неравномерно (ускоренно) и таким движением гравитационного поля своего организма деформируем структуру окружающего нас физвакуума, сообщая ему некоторую энергию. А вакуум реагирует на это созданием сил инерции, которые тянут нас назад, чтобы оставить в состоянии покоя и тем самым исключить вносимую с него деформацию. Для преодоления сил инерции требуется затратить много энергии, что выливается в большой расход топлива на разгон. Дальнейшее равномерное движение никак не действует на физвакуум, и потому он сил инерции не создает, поэтому затраты топлива при равномерном движении меньше. А когда мы начинаем тормозить, мы снова движемся неравномерно (замедленно) и снова деформируем физвакуум своим неравномерным движением, и он снова реагирует на это созданием сил инерции, которые тянут нас вперед, чтобы оставить в состоянии равномерного прямолинейного движения, когда деформация вакуума отсутствует. Но теперь уже не мы передаем энергию вакууму, а он отдает ее нам, и эта энергия выделяется в форме тепла в тормозных колодках автомобиля.

Такое ускоренно-равномерно-замедленное движение автомобиля является не чем иным, как единичным тактом колебательного движения низкой частоты и огромной амплитуды. На стадии ускорения в вакуум вносится энергия, на стадии замедления вакуум энергию отдает. И самое интригующее состоит в том, что вакуум может отдать энергии больше, чем ранее принял ее от нас, т.к. он сам обладает огромным запасом энергии. При этом никакого нарушения закона сохранения энергии не происходит: сколько энергии вакуум нам отдаст, ровно столько энергии мы от него получим. Но вследствие того, что физвакуум кажется нам пустотой, нам будет казаться, что энергия возникает из ниоткуда. И такие факты кажущегося нарушения закона сохранения энергии, когда энергия появляется буквально из пустоты, в физике давно известны (например, при любом резонансе выделяется настолько огромная энергия, что резонирующий предмет может даже разрушиться).

Движение по окружности также является разновидностью неравномерного движения даже при постоянной скорости, т.к. в этом случае меняется положение вектора скорости в пространстве. Следовательно, такое движение деформирует окружающий физвакуум, который реагирует на это созданием сил сопротивления в форме центробежных сил: они всегда направлены так, чтобы распрямить траекторию движения и сделать ее прямолинейной, когда деформация вакуума отсутствует. И для преодоления центробежных сил (или для поддержания вызываемой вращением деформации вакуума) приходится тратить энергию, которая уходит в сам вакуум.

Теперь можно возвратиться к феномену свечения лампочки. Для ее работы в цепи обязательно должен присутствовать электрогенератор (даже если будет батарея, она все равно когда-то заряжалась от генератора). Вращение ротора электрогенератора деформирует структуру соседнего физвакуума, в роторе возникают центробежные силы, а энергия на преодоление этих сил уходит от первичной турбины или иного источника вращения в физвакуум. Что касается движения электронов в электрической цепи, это движение происходит под действием создаваемых вакуумом центробежных сил во вращающемся роторе. Когда электроны входят в нить накаливания электрической лампочки, они интенсивно бомбардируют ионы кристаллической решетки, и те начинают резко колебаться. В ходе таких колебаний структура физвакуума снова деформируется, и вакуум реагирует на это испусканием световых квантов. Так как сам вакуум является разновидностью материи, отмеченное ранее противоречие появления материи из ниоткуда снимается: одна форма материи (световое излучение) возникает из другой ее разновидности (физический вакуум). Сами же электроны в таком процессе не исчезают и не трансформируются во что-то иное. Поэтому сколько электронов в лампочку войдет по одному проводу, ровно столько же выйдет по другому. Естественно, что энергия квантов также берется из физвакуума, а не от входящих в нить накаливания электронов. Сама же энергия электрического тока в цепи не меняется и остается постоянной.

Таким образом, для свечения лампы нужны не электроны сами по себе, а резкие колебания ионов кристаллической решетки металла. Электроны играют всего лишь роль инструмента, который заставляет ионы колебаться. Но инструмент можно заменить. И в эксперименте с одним проводом как раз это происходит. В знаменитом эксперименте Николы Тесла по передаче энергии через один провод таким инструментом выступало внутреннее переменное электрическое поле провода, которое постоянно меняло свою напряженность и тем самым заставляло ионы колебаться. Поэтому выражение “передача энергии по одному проводу” в данном случае не удачно, даже ошибочно. Никакой энергии через провод не передавалось, энергия выделялась в самой лампочке из окружающего физвакуума. Вот по этой причине и сам провод не нагревался: невозможно нагреть предмет, если энергию к нему не подводить.

В итоге вырисовывается довольно заманчивая перспектива резкого снижения стоимости строительства линий электропередачи. Во-первых, можно обойтись одним проводом вместо двух, что сразу снижает капитальные затраты. Во-вторых, можно вместо сравнительно дорогой меди использовать любой самый дешевый металл, хоть ржавое железо. В-третьих, можно уменьшить сам провод до толщины человеческого волоса, а прочность провода оставить неизменной или даже повысить, заключив его в оболочку из прочного и дешевого пластика (кстати, это также защитит провод от атмосферных осадков). В-четвертых, из-за снижения общей массы провода можно увеличить расстояние между опорами и тем самым снизить количество опор на всю линию. Реально ли это осуществить? Конечно реально. Была бы политическая воля руководства нашей страны, а ученые не подведут.

Источник: nashaplaneta.su

Исследовательская работа «Почему загорается лампочка?»

Слайд 1

Почему загорается лампочка ? Выполнила: ученица 3 «А» класса МОУ «Лицей № 47» г. Саратова Кузнецова Анна Руководитель: Кюрджиева Н. А.

Слайд 2

Задачи: — узнать, как появилась электрическая лампочка; — узнать, что такое электричество; — узнать, как электрический свет попадает в дом; — провести практические опыты. Цель: исследовать процесс, при котором загорается электрическая лампочка.

Слайд 3

В давние — давние времена людям по ночам светил лишь огонь КОСТРА.

Слайд 4

Со временем люди догадались, что, если в костер опустить палку, она загорится, и с ней можно будет отойти туда, куда не доходит свет костра. Так появился факел.

Слайд 5

В домах использовали палочки поменьше: полено расщепляли на тоненькие щепки, лучины .

Слайд 6

Света от лучины было мало и появились свечи .

Слайд 7

Позже появились керосиновые лампы .

Слайд 8

В 19 веке изобрели лампочку.

Слайд 9

Изобретатели: Угольная лампочка А. Лодыгина «Электрический фонарь» П. Яблочкова

Слайд 10

Электрическая лампа Томаса Эдисона

Слайд 11

ЭЛЕКТРИЧЕСТВО

Слайд 12

Если янтарь потереть о шерсть, он искрит. Само слово «электричество» произошло греческого слова «электрон» — оно означает янтарь

Слайд 13

Электричество — это поток электронов. Практический опыт. Воздушный шарик, ткань, кусочки бумаги Потерла шарик о ткань

Слайд 14

Бумага поднялась и прилипла к шарику

Слайд 15

Откуда к нам в дом приходит электрический ток?

Слайд 16

Маршрут электрического тока до розетки в квартире. Практический опыт. Для опыта понадобятся батарейка, два изоляционных провода, лампочка.

Слайд 17

Провода я присоединила к батарейке. Двумя другими концами проводов я коснулась лампочки. В результате лампочка загорается .

Слайд 18

Это произошло потому, что электричество от батарейки прошло по проводам к лампочке по маршруту, создало движение электронов. Проходя через спираль лампочки, электроны накаливают ее до такой высокой температуры, что лампочка начинает светиться.

Слайд 19

Я поняла, что электрическая лампочка загорается в результате движения электрического тока. В процессе создания проекта я узнала, как люди освещали свой дом с древних времен, изучила историю изобретения электрической лампочки. Также я узнала, что такое электрический ток и откуда он появляется.

Слайд 20

Спасибо за внимание!

Лампочка ABS — Почему Горит Или Моргает, Основные Причины Неисправности, Ошибки, Проблемы с Датчиками, Что Делать, Как Починить Самостоятельно

Многие автолюбители, увидев, что на приборной панели загорелась лампочка ABS, начинают подозревать проблемы с тормозами и стремятся как можно быстрее их устранить. Но такое мнение ошибочно: подобный сигнал указывает на неисправность системы антиблокировки. В такой ситуации важно грамотно определить причину его появления. Иногда это можно сделать самостоятельно, но чаще всего не обойтись без компьютерной диагностики.

Лампочка АБС

Что делать, если лампочка АБС горит постоянно и не гаснет?

Причины появления ошибки ABS

Надо понимать, что для любого автомобиля считается нормальным, когда лампочка АБС загорается в момент включения зажигания и тухнет спустя несколько секунд. А вот если индикатор горит на протяжении всего движения, это уже говорит о неисправности. В большинстве случаев появление сигнала вызвано сбоями в работе элементов, не связанных с антиблокировочной системой.
Однако если разбираться досконально, то горит значок АБС по следующим причинам:

Засорение или поломка датчика ABS

Это одна из самых частых предпосылок к возникновению сигнала. В таком случае необходимо произвести компьютерную диагностику автомобиля и определить код ошибки, с последующим ремонтом либо заменой датчика.

Технические повреждения

Горит лампочка АБС и по техническим причинам:

  • Вышел из строя блок управления АБС;
  • Сломался ступичный подшипник;
  • Из-за обрыва провода нарушена связь с одним из датчиков.

Разблокировка колёс

В какой-то момент движения датчики зафиксировали необходимость экстренного торможения и запустили механизм. На это и указывает загоревшийся индикатор.

В высокотехнологичных моделях автомобилей, оснащённых несколькими системами безопасности, к примеру, ABS и ESP, такая ошибка будет устранена автоматически.

Сбой в работе бортового компьютера

Его поломка проявляется в безосновательном включении различных индикаторов, в том числе и АБС.

Некорректная работа системы

Появление такого значка также вызывается возникновением очагов коррозии на основных элементах датчика. Иными словами, на него попала грязь и ржавчина.

Пыль на датчике

Датчики могут быть покрыты пылью, из-за чего на бортовой компьютер поступает сигнал об ошибке

Неисправность предохранителя

Лампочка АБС загорается в случаях, когда предохранители выходят из строя и сигнал от датчика поступает напрямую в бортовой компьютер.

Неполадки в электросети автомобиля

Выход из строя некоторых потребителей электричества вполне может спровоцировать включение сигнала ABS. А также возможен вариант, что в автомобиле просто отходит провод и пропадает контакт в разъёме подключения.

Способы устранения ошибки ABS

Избавиться от загрязнения и ржавчины

Если в вашем автомобиле загорелась лампочка абс, опытные механики рекомендуют начать процесс устранения ошибки с посещения мойки. Зачастую сильным напором воды удаётся промыть тормозные диски, и если причина в наличии грязи и ржавчины, то подобной манипуляции будет достаточно для её устранения. Можно попробовать очистить датчики системы управления торможением. Необходимо приподнять автомобиль с помощью домкрата и снять колёса.

Если же лампочка продолжает гореть, следует проверить работу ступичного подшипника. Достаточно разогнать автомобиль до скорости 90 км/ч и внимательно прислушаться: лёгкий монотонный гул в области колёс, неважно, передних или задних, указывает на то, что причина неисправности в ступице. В таком случае самым верным решением будет обратиться за консультацией к опытному механику. Возможно, он подскажет, как устранить поломку самостоятельно.

Самостоятельный ремонт

Для самостоятельного устранения поломки можно выполнить следующие операции:

  • Поменять в блоке предохранителей элементы, отвечающие за исправность системы ABS;
  • Проверить электрику на предмет обрыва проводов;
  • Найти код ошибки, который поможет выявить неисправность системы;
  • Открыть капот, осмотреть электронный блок и убедиться, что в него не попала жидкость;
  • Обратиться на компьютерную диагностику в сервисный центр и произвести ремонт.
Перегоревший предохранитель

Зачастую причина неисправности кроется в перегоревшем предохранителе

Провода на электронном блоке

При проверке электронного блока важно убедиться, что провода нигде не отходят

Причём последний вариант, пусть и не из дешёвых, зато самый оправданный. Ведь только профессионалы смогут качественно устранить неисправность. Тем более что у рядового автолюбителя не всегда найдётся для этого необходимое оборудование.

Если же ремонт датчика был произведён самостоятельно, то по окончании проводится тест на определение работоспособности системы АБС. Для этого необходимо разогнать автомобиль до скорости 40–50 км/ч и резко затормозить. Если педаль завибрировала, а знак удалось потушить, значит, ошибка устранена.

Моргающая лампочка АБС

Лампочка АБС может периодически моргать — это тоже является сигналом о неисправности

Почему лампочка АБС моргает и хаотично включается

Такие хаотичные сигналы — признак одной из самых неприятных поломок. Это значит, что вышли из строя датчики антиблокировочной системы, компьютер получает неверную информацию, в результате подаёт неправильные команды другим системам.

Некоторые владельцы, боясь полностью потерять контроль над управлением, предпочитают отключить систему АБС. Но такое решение подходит преимущественно для отечественных автомобилей, оснащённых простой системой блокировки. Для большинства же иномарок подобные манипуляции — весьма трудоёмкий процесс. Поэтому отключение АБС не является оптимальным выходом из ситуации, так как датчики обеспечивают безопасность эксплуатации автомобиля. Тем более что правильно это может сделать только профессионал.

При некорректном отключении, бортовой компьютер будет постоянно выдавать новые коды диагностических ошибок.
Таким образом, в случае периодического моргания лампочки ABS, нужно как можно быстрее провести диагностику, причём всей бортовой электрической системы, и устранить неполадку.

Автомобиль без проблем с АБС

Полностью выявить и устранить проблему может только полная компьютерная диагностика

Как видите, ошибки, в результате которых загорелся значок АБС, решаются просто. Важно как можно быстрее произвести полную компьютерную диагностику автомобиля и выявить причину неисправности. Поэтому всегда нужно иметь под рукой координаты профессионального механика и проверенного автосервиса. Цена вопроса будет зависеть от комплектации и марки автомобиля.

Если у вас возникли вопросы — оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *