Плотность тока тем больше чем больше – вопрос Как зависит плотность тока от площади поперечного сечения проводника при одинаковом токе?

Единица измерения плотности электротока: вектор и формула вычисления

Проходя по длине проводникового элемента, электроток распределяется по его поверхности неравномерно. Плотность электрического тока характеризует распределение токовых зарядов по поперечному сечению проводящего материала.

Неравномерное распределение электротока по проводнику

Неравномерное распределение электротока по проводнику

Виды электротока, условия протекания

Частицы, несущие заряд, могут перемещаться в толще проводника беспорядочно или целенаправленно двигаться в определенном направлении. Во втором случае говорят о наличии электрического тока. Основная его характеристика – наличие вектора перемещения. Вектор токового движения идентичен направлению заряженных частиц.

Хаотичное и направленное перемещение заряженных частиц

Хаотичное и направленное перемещение заряженных частиц

Важно! Токовый ход может быть постоянным и переменным. В первом случае поток частиц перемещается четко в одном направлении по прямой, без колебаний и возмущений. Во втором – имеют место синусоидальные колебания с определенной частотой. Для трансформации (выпрямления) переменного электротока применяют специальные устройства. Вообще для существования константного тока требуется, чтобы с одного конца проводникового элемента все время имел место избыток отрицательно заряженных частиц, а со второго – дефицит. Также требуется сила, которая будет эти заряды перемещать.

Переменный ток, в противоположность постоянному, не требует соблюдения полярности. В отличие от постоянного, он имеет частоту – так называется количество смен направления перемещения частиц за единицу времени. В стандартной бытовой сети число таких смен равно 50 в секунду. Различные приборы, питающиеся от аккумуляторных элементов и батарей, а также бытовая техника, ноутбуки, стационарные компьютеры потребляют постоянный электроток. Сама батарея является генератором постоянного токового хода, но его можно инвертировать в переменный с помощью специальных устройств.

Ток, вызываемый электрополем, принято называть током проводимости. Элементарные частицы, переносящие заряд, отличаются у разных типов проводниковых материалов. В случае металлических элементов это свободные электроны, у части полупроводниковых материалов – целенаправленно движущиеся ионы. В электролитах (в том числе применяемых в аккумуляторных батареях) ионы с плюсовым и минусовым зарядами движутся в разные стороны. Последнее характерно для всех проводников, представляющих собой жидкости.

В конвекционном электротоке электроны перемещаются под действием инерции. Еще одна разновидность тока – протекающий в вакуумных условиях (такое явление применяется в электронных лампочках). Основными характеристиками электротока являются сила и плотность тока.

Направленное перемещение электронов в проводнике

Направленное перемещение электронов в проводнике

Плотность тока и мощность

Работа, которую электрополе совершает над источниками токового движения, может быть охарактеризована плотностью мощности (она равна энергии, деленной на произведение объема проводника и временного периода). Самый распространенный путь данной мощности – рассеивание во внешнее пространство в качестве тепловой энергии. Но некоторая ее доля может превращаться в механическую энергию (например, при работе электрического двигателя) или в разные типы излучения.

Закон Ома

Для токопроводящей среды, обладающей изотропными характеристиками, данный закон имеет следующий вид:

j=E* σ,

где j – плотность идущего электротока, Е – полевая напряженность в рассматриваемой точке (скалярная величина, как и предыдущая), а σ – удельная проводимость средового окружения.

Что касается работы электрополя для такой среды (w), то она может быть выражена следующими формулами:

w= E2* σ=j2/σ=p*j2 (p здесь – удельное сопротивление).

Выражение для работы в этом случае примет вид:

w=E* σ *E=j*p*j (E и j в данном случае – скалярные величины).

В матрице справа налево умножают столбчатый вектор на строчной и на матрицу. Тензорные величины р и σ генерируют релевантные им квадратичные формы.

Единица измерения плотности электротока

Для выражения плотностной величины применяется производная от единиц измерения токовой силы (Ампер) и площади поперечного разреза (квадратный метр), а также дольных и кратных указанным. Обычно плотность измеряется в амперах, разделенных на квадратный метр (А/м2). Вместо слова «плотность» иногда используют «насыщенность электрического тока».

Важно! Поскольку величина имеет направление, она относится к категории векторных (или скалярных). Этот вектор проходит вдоль оси электрического тока.

Формула вычисления

Рассматриваемая величина находится в обратной зависимости от размеров сечения (чем больше площадь, тем меньше плотность тока) и временного периода прохождения электрозаряда и в прямой – от величины этого заряда.

Это можно записать так:

j=Δq/ΔtΔS (q тут – элементарно малый заряд, t – бесконечно малый промежуток времени, а S – площадь сечения).

Так как токовая сила выражается как частное заряда и временного промежутка его прохода, формулу можно записать и так:

j= I/ΔS.

Формула плотности тока с опорой на параметры перемещающихся зарядов будет выглядеть так:

j=q*n*V (V тут – скорость, а n – концентрация электронных частиц).

4-вектор плотности тока

Данное обозначение из теории относительности призвано обобщать явление плотности на пространственно-временной континуум, оперирующий четырьмя измерениями. Такой четырехвектор включает в себя трехвекторное выражение токовой плотности (скалярной величины) и имеющей объем плотности электрического заряда. Использование четырехвектора дает возможность формулировать электродинамические уравнения ковариантным образом.

Рассматриваемая величина необходима для описания концентрации и равномерности распределения заряженных микрочастиц по проводниковому материалу, в котором существует та или иная форма электротока. При оперировании с выражениями, содержащими величину, нужно не забывать о ее скалярности.

Видео

Расчет сечения провода по мощности и по плотности тока: формулы и примеры

Грамотный подбор кабеля для восстановления или прокладки электропроводки гарантирует безупречную работу системы. Приборы будут получать питание в полноценном объеме. Не случится перегрева изоляции с последующими разрушительными последствиями. Разумный расчет сечения провода по мощности избавит и от угроз воспламенения, и от лишних затрат на покупку недешевого провода. Давайте разберемся в алгоритме расчетов.

Упрощенно кабель можно сравнить с трубопроводом, транспортирующим газ или воду. Точно так же по его жиле перемещается поток, параметры которого ограничены размером данного токоведущего канала. Следствием неверного подбора его сечения являются два распространенных ошибочных варианта:

  • Слишком узкий токоведущий канал, из-за которого в разы возрастает плотность тока. Рост плотности тока влечет за собой перегрев изоляции, затем ее оплавление. В результате оплавления по минимуму появятся «слабые» места для регулярных утечек, по максимуму пожар.
  • Излишне широкая жила, что, в сущности, совсем неплохо. Причем, наличие простора для транспортировки электро-потока весьма положительно отражается на функционале и эксплуатационных сроках проводки. Однако карман владельца облегчится на сумму, примерно вдвое превышающую по факту требующиеся деньги.

Первый из ошибочных вариантов представляет собой откровенную опасность, в лучшем случае повлечет увеличение оплаты за электроэнергию. Второй вариант не опасен, но крайне нежелателен.

«Протоптанные» пути вычислений

Все существующие расчетные способы опираются на выведенный Омом закон, согласно которому сила тока, помноженная на напряжение, равняется мощности. Бытовое напряжение – величина постоянная, равная в однофазной сети стандартным 220 В. Значит, в легендарной формуле остаются лишь две переменные: это ток с мощностью. «Плясать» в расчетах можно и нужно от одной из них. Через расчетные значения тока и предполагаемой нагрузки в таблицах ПУЭ найдем требующийся размер сечения.

Обратите внимание, что сечение кабеля рассчитывают для силовых линий, т.е. для проводов к розеткам. Линии освещения априори прокладывают кабелем с традиционной величиной площади сечения 1,5 мм².

Если в обустраиваемом помещении нет мощного диско-прожектора или люстры, требующей питания в 3,3кВт и больше, то увеличивать площадь сечения жилы осветительного кабеля не имеет смысла. А вот розеточный вопрос – дело сугубо индивидуальное, т.к. подключать к одной линии могут такие неравнозначные тандемы, как фен с водонагревателем или электрочайник с микроволновкой.

Тем, кто планирует нагрузить силовую линию электрической варочной поверхностью, бойлером, стиральной машиной и подобной «прожорливой» техникой, желательно распределить всю нагрузку на несколько розеточных групп.

Правила устройства проводки и расчет сечения провода

Плотность тока формула

Электрическое поле воздействует на заряды, в результате, они начинают упорядоченно перемещаться. Такое перемещение получило определение электрического тока. Как правило, заряды двигаются в какой-либо среде, называемой проводником, и являются носителями тока.

Одной из основных характеристик движения зарядов является плотность тока, формула которого описывает электрический заряд, переносимый за 1 секунду через сечение проводника, которое перпендикулярно направлению этого тока.

Чем определяется плотность тока

Понятие плотности тока определяется количеством электричества, протекающим через сечение проводника в течение одной секунды. Направление электротока является перпендикулярным сечению проводника.

Если взять однородный проводник цилиндрической формы, в котором ток имеет равномерное распределение по всему сечению, то его плотность будет выражаться в виде формулы: J = I / S, где I является силой тока, а S – площадью поперечного сечения. Единицей измерения этой величины служит А/м2 (ампер на метр квадратный). Данная величина является векторной. Ее направление совпадает с направлением напряженности электрического поля.

Использование плотности тока на практике

Очень часто возникает вопрос о возможности использования конкретного провода для тех или иных целей. То есть, способен ли он выдержать определенную нагрузку. В этих случаях, очень важно определить плотность электротока с допустимой величиной.

Данный показатель очень важен, поскольку в каждом проводнике возникает сопротивление току, протекающему через него. Происходят потери тока, из-за чего проводник начинает нагреваться. При слишком больших потерях, наступает критическое нагревание, вызывающее расплавление проводника. Чтобы исключить подобные ситуации, каждому прибору или потребителю устанавливается наиболее оптимальная плотность тока, формула которой позволит рассчитать нужное сечение провода.

Когда возникает необходимость выбрать нужное сечение провода или кабеля, необходимо учитывать допустимое значение плотности электротока. Для практических расчетов во время проектирования используются специальные таблицы и формулы, позволяющие получить желаемый результат.

Для разных металлов существуют различные значения плотности. В настоящее время используются только медные провода, в которых плотность электротока не должна превышать 6-10 А/мм2. Это особенно актуально для долговременной эксплуатации, когда проводке обеспечивается облегченный режим. Допускается эксплуатация и при повышенных нагрузках, только на очень короткое время.

Что такое плотность тока 🚩 допустимая плотность тока для меди 🚩 Естественные науки

Плотность постоянного электрического тока можно сравнить с плотностью газа, текущего в трубе под давлением. Плотность тока равна отношению силы тока в амперах (А) к площади поперечного сечения проводника в квадратных миллиметрах (Поз. 1 на рисунке). От материала проводника ее значение не зависит. Сечение проводника берется по нормали (перпендикулярно) к его продольной оси.

Если, допустим, провод имеет диаметр D = 1 мм, то площадь его поперечного сечения будет S = 1/4(πD^2) = 3,1415/4 = 0,785 кв. мм. Если по такому проводу течет ток I в 5 А, то его плотность j будет равна j = I/S = 5/0,785 = 6,37 А/кв. мм.

Хотя само значение плотности тока от материала проводника не зависит, в технике его выбирают, исходя из его удельного электрического сопротивления и длины провода. Дело в том, что при большой плотности тока проводник с ним нагревается, его сопротивление от этого возрастает, и потери электроэнергии в проводке или обмотке увеличиваются.

Однако, если взять провода слишком толстыми, то и вся проводка получится чрезмерно дорогой. Поэтому расчет бытовой проводки ведут, исходя из так называемой экономической плотности тока, при которой общие долговременные расходы на электросеть минимальны.

Для квартирной проводки, провода в которой не очень длинные, берут значение экономической плотности в пределах 6-15 А/кв. мм. в зависимости от длины проводов. Медный провод диаметром 1,78 мм (2,5 кв. мм) в ПВХ изоляции, замурованный под штукатурку, выдержит и 30, и даже 50 ампер. Но при потребляемой квартирой мощности в 5 кВт плотность ток в нем будет (5000/220) = 23 А, а его плотность в проводке – 9,2 А/кв. мм.

Экономическая плотность тока в линиях электропередач много ниже, в пределах 1-3,4 А/кв. мм. В электрических машинах и трансформаторах промышленной частоты 50/60 Гц – от 1 до 10 А/кв. мм. В последнем случае ее вычисляют, исходя из допустимого нагрева обмоток и величины электрических потерь.

Плотность тока высоких частот (теле и радиосигналы, например) рассчитывают с учетом так называемого скин-эффекта (skin – по-английски «кожа»). Суть его в том, что электромагнитное поле оттесняет ток к поверхности провода, поэтому для получения нужной его плотности приходится брать диаметр провода больше, а чтобы не тратить лишней меди, делать его пустотелым, в виде трубки.

Скин-эффект имеет значение не только при передаче больших мощностей. Если, допустим, сделать разводку кабельного телевидения по квартире слишком тонким коаксиальным кабелем, то потери в нем из-за скин-эффекта во внутреннем проводе могут оказаться чрезмерно велики. Аналоговые каналы при этом будут рябить, а цифровые – рассыпаться в квадратики.

Глубина скин-эффекта зависит от частоты сигнала, и плотность тока при этом плавно падает до нуля в центре провода. В технике для упрощения расчетов глубину залегания скин-поверхности считают там, где плотность тока падает в 2,72 раза по сравнению с поверхностной (Поз. 2 на рисунке). Величина 2,72 выводится в технической электродинамике из соотношения электрической и магнитной постоянной, что облегчает расчеты.

Ток смещения довольно сложное понятие электродинамики, но именно благодаря ему переменный ток проходит через конденсатор, и антенна излучает сигнал в эфир. Ток смещения тоже имеет свою плотность, но определить ее не так-то просто.

Даже в очень хорошем конденсаторе электрическое поле слегка «выпирает» в стороны между пластинами (Поз. 3 на рисунке), поэтому к пересекаемой током смещения поверхности нужно давать некоторую добавку. Для конденсатора ее величиной еще можно пренебречь, но если речь об антенне, то там эта виртуальная, пересекаемая током смещения поверхность значит все.

Чтобы найти плотность тока смещения, приходится решать сложные уравнения электродинамики или производить компьютерное моделирование процесса. К счастью, для многих случаев инженерной практики знать ее величину не требуется.

Ток, плотность тока

Электрический ток (ток проводимости) – упорядоченное движение свободных зарядов под воздействием электрического поля.

Рассмотрим систему, в которой к границе раздела между вакуумом и проводящим веществом подведены два электрода, соединенные с источником электрического тока (рисунок Рисунок 20 ). Очевидно, что линии тока внутри вещества распределятся таким образом, что наибольшая часть пройдет по области, представляющей для тока наименьшее сопротивление; гораздо меньшая часть ответвится вглубь тела.

  1. −К определению понятия плотности тока

Из рисунка видно, что для исчерпывающей характеристики состояния данной системы недостаточно указать лишь величину тока , протекающего во внешней цепи. Здесь необходимо располагать сведениями об интенсивности и направлении движения носителей заряда в каждой точке области. С этой целью принято вводить понятие плотности тока проводимости, определяя ее следующим образом (рисунок Рисунок 21 ): плотность объемного тока равна заряду, проходящему в единицу времени через единицу площади поверхности, перпендикулярной линиям тока.

  1. −Поток тока через поверхность S

Выделим внутри тела, по которому течет ток, трубку, боковая поверхность которой состоит из линий тока. Заряженные частицы при движении не пересекают стенку трубки. Рассмотрим заряд, переносимый частицами через поперечное перпендикулярное сечение трубки . Скорость-й частицы обозначим вектором, а ее заряд −. Пусть общее количество частиц в объемеравно. Тогда из объемачерез площадкуза времявсе частицы переносят заряд, равный, где− единичный вектор нормали к поверхности. Тогда, где− вектор объемной плотности тока. Если скорости носителей заряда равны средней, то, где− объемная плотность заряда в объеме. Таким образом, в единицу времени через единичную поверхность, перпендикулярную линиям тока, переносится заряд, определяемый как плотность объемного тока. Единицей измеренияявляется А/м2:.

Наряду с объемной плотностью тока, применяются понятия поверхностной и линейной плотности тока.

Электрический ток определяется как поток вектора плотности объемного тока через площадь поверхности :

.

Здесь − вектор, представляющий элементарную площадку поверхности. Таким образом, ток равен заряду, проходящему сквозьза одну секунду. Единицей измерения силы тока является ампер:.

Пусть объем тела ограничен замкнутой поверхностьюи в этом объеме находится заряд. Если заряд не остается постоянным, (т.е., уменьшается или увеличивается), то объяснить это следует тем, что поверхность пересекают носители заряда. Иными словами, через поверхностьпроходит ток, и его величина должна быть связана с зарядом соотношением

.

то есть при уменьшении заряда ток положителен. Так как заряд в объеме определяется по его объемной плотности как , то можно записать:

.

Это выражение называется законом сохранения электрического заряда в интегральной форме, или уравнением непрерывности в интегральной форме.

      1. Векторы электромагнитного поля

Понятие электромагнитного поля открывает единую основу для всего множества явлений электромагнетизма. Поле описывают при помощи следующих векторных функций координат и времени:

напряженность магнитного поля

напряженность магнитного поля

электрическая индукция

магнитная индукция

Здесь символ радиуса-вектора обозначает зависимость от пространственных координат,t− от времени. Таким образом, каждый из указанных векторов может формировать нестационарное (непостоянное по времени) векторное поле.

Рассмотрим подробнее сущность каждого из этих векторов.

Величина и плотность тока

Дата публикации: .
Категория: Электротехника.

Величина тока

Из курса физики известно, что электрический ток есть упорядоченное движение электрических зарядов (Q).

Если через поперечное сечение проводника проходит некоторое количество электрических зарядов (количество электричества) Q за время t секунд, то количество электрических зарядов, прошедшее через поперечное сечение проводника в течение одной секунды, называется величиной тока и обозначается буквой I.

Единицей величины тока является 1 ампер, определяемый как количество зарядов в 1 кулон, прошедших через поперечное сечение проводника в 1 секунду, то есть

Внешний вид амперметра
Рисунок 1. Внешний вид амперметра

Ток в цепи измеряется электрическим прибором – амперметром, внешний вид которого представлен на рисунке 1.

Тысячные доли ампера – миллиамперы измеряются миллиамперметром. Если количество зарядов, проходящих (протекающих) по проводнику, будет меняться, то величина тока также будет меняться.
В этом случае среднее значение тока за данный промежуток времени определяется по формуле:

Внешний вид амперметра

где ΔQ – изменение количества зарядов; Δt – изменение времени.

Чем меньше промежуток времени Δt, тем меньше среднее значение тока будет отличаться от истинного мгновенного значения тока в данный момент.

Ток, не изменяющийся по величине и по направлению, называется постоянным током.
Постоянный ток дают нам гальванические элементы, аккумуляторы, генераторы постоянного тока, если условия работы электрической цепи не меняются.

Видео 1. Сила электрического тока

Плотность тока

Отношение величины тока I к площади поперечного сечения проводника S называется плотностью тока и обозначается буквой j, ранее плотность тока обозначалась греческой буквой δ (дельта).

Внешний вид амперметра

так как обычно площадь сечения проводника дается в квадратных миллиметрах, то плотность тока измеряется в а/мм².

Видео 2. Плотность тока

Источник: Кузнецов М. И., «Основы электротехники» – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Экономичная плотность тока | Техника и Программы

Можно иначе сформулировать задачу о самой выгодной электропередаче. Предположим, что линия передачи задана, сечение ее проводников известно, а требуется найти силу тока, которую выгоднее всего пропускать по этой линии.

Чем больше сила тока, тем выше полная передаваемая по линии мощность, и тем меньшая доля расходов

Фиг. 7-5. Плотности то^а для проводника сечением 95 мм2.

на амортизацию линии падает на каждый передаваемый киловаттчас Но зато чем больший ток проходит по линии, тем больше стоимость теряемой энергии.

И вновь решение задачи на оптимум дает уже известный ответ: выгоднее всего эксплоатировать линию, когда расходы на амортизацию равны стоимости потерь.

Плотность тока, соответствующая этому требованию, и будет самой экономичной плотностью тока. Для наших условий, для линий передач, нагруженных равномерно в течение круглого года, принято считать эту оптимальную плотность тока равной примерно 2 а на каждый квадратный миллиметр сечения медного проводника линии.

И более высокие, и более низкие плотности тока невыгодны.

Математические формулировки

Обозначим сечение проводника линии передачи через л*. Стоимость амортизации линии возрастает, а электрически^ потери уменьшаются с увеличением сечения. Поэтому можно записать, что суммарные расходы на передачу электроэнергии равны:

рде А и В — коэффициенты, пропорциональные стоимости 1 т проводникового материала и 1 квтч электроэнергии.

Когдато суммарные расходы будут наимень шими, равными 2 VАВ. Падающая и растущая с сечением составляющие расходов в точности равны одна другой.

Но могут быть и другие виды зависимости потерь от сечения проводника. Стоимость линии может расти не только как Ах, но и какЭлектрические потери в линии также не всегда изменяются как В бесконтактных подземных сетях высокочастотного транспорта, например, потери иногда падают как, так как там, помимо потерь в самих проводниках, есть еще потери в окружении.

Более общая формула для суммарной стоимости передачи электрической энергии будет:

где пят могут быть как целые, так и дробные числа.

Для этой формулы оптимальное сечение проводников будет равно:

При этом сечении полная стоимость передачи будет наименьшая, а возрастающий и падающий члены в этой полной стоимости будут относиться как:

Для сетей высокочастотного транспорта, например, выгодно, чтобы расход на амортизацию проводников был в два раза меньше стоимости потерь электроэнергии. .

Источник: Электричество работает Г.И.Бабат 1950-600M

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *