Сила и плотность тока. | Ťaháky-referáty.sk
4 вопрос Сила и плотность тока. ЭДС и напряжение
I. Любое упорядоченное (направленное) движение электрических зарядов называется ЭЛЕКТРИЧЕСКИМ ТОКОМ. При приложении внешнего электрического поля Е в проводнике начинается движение зарядов, т.е. возникает электрический ток. При этом положительные заряды движутся по полю, а отрицательные — против поля. За направление тока принимают направление движения положительных зарядов. Для возникновения и существования электрического тока необходимо выполнение двух условий :
1) наличие свободных носителей зарядов (т.е. вещество должно быть проводником или полупроводником при высоких температурах), 2) Наличие внешнего электрического поля.
Для количественного описания электрического тока вводится — СИЛА ТОКА – скалярная физическая велична, равная количеству электрического заряда, переносимосму за единицу времени через поперечное сечение проводника S.
I = q/t
— для постоянного тока, и
I = dq/dt
j =(I/S).n
— для постоянного тока, и
j =(I/S).n
— для переменного тока.
II. ЭДС Для того чтобы через рассматриваемый участок проводника проходил ток I, необходимо поддерживать постоянную разность потенциалов между рассматриваемыми точками проводника. Для того чтобы поддерживать постоянную разность потенциалов на концах проводника его необходимо подключить к источнику тока. Источник тока производит работу по перемещению электрических зарядов вдоль всей цепи. Эта работа совершается за счёт СТОРОННИХ СИЛ – сил неэлектростатического происхождения, действующих на заряды со стороны источника тока. Природа сторонних сил может быть различной (кроме неподвижных зарядов) : 1) химические реакции – в гальванических элементах (батарейках), аккумуляторах,
2) электромагнитной – в генераторах.
При этом генераторы могут использовать
а) механическую энергию – ГЭС,
б) ядерную – АЭС,
в) тепловую – ТЭС,
г) приливов и отливов – ПЭС,
д) ветровую – ВЭС и т.д.
3) использование фотоэффекта – фотоЭДС в калькуляторах и солнечных батареях,
4) пьезоэффект – пьезоЭДС, например, в пьезозажигалках,
5) контактная разность потенциалов – термоЭДС в термопарах и т.д.
Под действием поля сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, за счёт чего на клеммах источника тока поддерживается разность потенциалов и в цепи течёт ток. Источник тока характеризуется электродвижущей силой – Э. Д. С.= Elektromotorická sila
ɛ= A/q
[ɛ] = Joule/Coulomb= volt B
ЭДС определяется работой выполняемой сторонними силами по перемещению единичного положительного заряда вдоль замкнутой цепи.
Сторонняя сила равна :zvýraznene je vektor
Fст = q . Eст
где — E -напряженность поля сторонних сил. Работа сторонних сил по перемещению заряда q на замкнутом участке цепи равна:
A= integrál pozdĺž l Fст.dl = q.integrál pozdĺž l Eст. dl. Pravú aj ľavú stranu rovnice vydelíma :q
Potom A/t = integrál pozdĺž l Eст
т.е. ЭДС равна циркуляции вектора напряженности сторонних сил. На участке 1 – 2 (см. рисунок) кроме сторонних сил действует сила электростатического поля
Fe = q.E ,
т.е. результирующая сила на участке 1 — 2 равна
F = Fст + Fe = q (Eст + Ee)
тогда
A12 = q integrál od 1 do 2 Eстdl + q.
Для замкнутой цепи
AЭл.стат. поля = 0 v toho vyplýva A12 = q.ɛ
НАПРЯЖЕНИЕМ U на участке 1 -2 называется физическая величина, определяемая работой, совершаемой суммарным полем электростатических (кулоновских) и сторонних сил при перемещении единичного положительного заряда на данном участке цепи
U12 = A12/q = φ1 — φ2 + ɛ
U12 =φ1 — φ2 при ɛ= 0
Плотность тока — Справочник химика 21
Электрохимическая поляризация не зависит от плотности тока и возникает, когда на электродах выделяются продукты электролиза, отличные от материала самого электрода. Ее можно заметно уменьшить, прибавляя так называемые деполяризаторы, т. е. веще-[c.427]Нужно отметить, что при электролизе интересна не абсолютная величина силы тока, а плотность тока. Она представляет собой отношение силы тока (в а) к поверхности электрода (в см ), на котором происходит выделение данного элемента. Так, если сила тока 1,0 а, а поверхность катода 100 лi , то катодная плотность тока равняется 1,0 100 = 0,01 а/см . [c.436]
В качестве источника тока лучше пользоваться свинцовым аккумулятором с напряжением около 2 в. Пользуются и другими источниками тока, например щелочными аккумуляторами, сухими батареями или сетью постоянного тока, но тогда нужное напряжение 2 в устанавливают по вольтметру 5 с помощью включенного в цепь реостата 3 (см. рис. 61). Можно также пользоваться переменным током, но в этом случае применяют выпрямители (например, селеновые или купроксные). При обычной площади катода (около 100 сл 2) и указанных ниже количествах реактивов при напряжении — 2,0 в создается необходимая для нормального течения процесса плотность тока.
Приступая к подготовке прибора, нужно помнить, что с электродами необходимо обраш аться очень бережно и осторожно.
Напряжение на объекте, достаточное дл соддеряаиия устойчивого пассивного состояния при минимальной плотности тока, соста влявт
Значение плотности тока при электролизе. Ускоренный электролиз 439 [c.439]
Перенапряжение наблюдается и при выделении металлов. Однако при небольщих плотностях тока оно обычно так мало, что его можно во внимание не принимать. [c.431]
Нужно, однако, иметь в виду, что при слишком большой плотности тока осадок получается рыхлым (губчатым) н плохо держится на электроде, и потому часть его легко потерять. Кроме того, такие осадки, имея огромную поверхность, легче окисляются кислородом воздуха, что также является источником погрешности анализа.
Чем больше плотность тока, тем больше в единицу времени отлагается на поверхности электрода определяемого металла и тем быстрее закончится электролиз. [c.437]
Плотность тока, переносимая г-м видом ионов, составит (предполагается, что напряженность поля изменяется по оси х) [c.105]
Итак, вследствие медленности процесса диффузии ионов для получения хороших осадков приходится проводить электролиз при малых плотностях тока, что значительно замедляет электро- [c.437]
Таким образом, для определения плотности тока нужно знать величину поверхности электрода. Если электрод имеет форму прямоугольной пластинки или сплошного цилиндра, поверхность его, очевидно, будет равна удвоенной площади прямоугольника или удвоенной боковой поверхности цилиндра.
Из (15.15) можно найти концентрацию Си вблизи катода лри силе тока I или при плотности тока / [c.305]
Значение плотности тока при электрошзе. Ускоренный электролиз 437 [c.437]
ЛИЗ. При перемешивании можво работать со значительно большими плотностями тока, поэтому перемешивание весьма заметно ускоряет процесс электролиза. [c.438]
Плотностью тока называется сила тока, приходящаяся на единицу поверх- остч электрода. [c.427]
Потенциал пары 2Н+/Н2 при [Н+] = 1 равен нулю. Но поскольку в процессе электролиза катод окажется покрытым слоем меди, нужно учесть перенапряжение водорода на меди. Это перенапряжение равно —0,58 в (при плотности тока 0,01 aj M ). Таким образом, выделению водорода соответствует потенциал катода, равный —0,58 в, а выделению меди потенциал -f0,31 в. Следовательно, кислая среда не будет мешать выделению меди на катоде. Водород может начать выделяться только тогда, когда концентрация Си +-ионов понизится до величины, соответствующей потенциалу —0,58 в. Величину этой концентрации легко найти из уравнения [c.434]
В стакан опускают взвешенный сетчатый электрод и закрепляют его в одной из клемм штатива так, чтобы он не соприкасался ни с дном, ни со стенками стакана и находился везде на одинаковом расстоянии от них. Платиновую спираль (анод) закрепляют в другой клемме так, чтобы анод находился в центре сетчатого катода. Это важно потому, что иначе медь будет оседать преимущественно в тех точках поверхности катода, которые находятся ближе всего к аноду, плотность тока в этих точках будет значительно больше, чем в других следовательно, здесь может образоваться губчатый, легко осыпающийся осадок меди. Коичик спирали должен немного выступать из-под сетки и на несколько миллиметров не доходить до дна стакана. [c. 442]
Губчатая структура осадков металлов объясняется тем, что при большей плотности тока на катоде в единицу времени разряжается больше ионов металла, чем их успевает подходить к катоду из раствора. Поэтому раствор около катода обедняется определяемыми ионами настолько, что начинают разряжаться также Н+-Н0НЫ. Образующийся при этом газообразный водород покрывает поверхность катода пузырьками, которые при дальнейшем осаждении металла разрыхляют его слой. Металл оказывается при этом пронизанным огромным количеством мелких пор, и связь его с электродом становится непрочной. [c.437]
Кроме природы металла и состояния его поверхности перенапряжение зависит также от плотности тока и температуры. По-иышение температуры уменьшает перенапряжение. Наоборот, с увеличением плотности тока оно увеличивается. Так, при плотности тока 0,1 а см перенапряжение водорода на меди составляет —0,85 в, тогда как при 0,01 а см оно равно —0,58 в. [c.430]
Первое предположение о причинах данного явления сводится к тому, что различие между обратимой э. д.с. и напряжением возникает как результат омических потерь напряжения. В этом случае напряжение, необходимое для проведения какой-либо реакции в электролитической ванне, будет слагаться из обратимой э.д.с. Е (определяемой изменением изобарно-изотермического потенциала) и падения напряжения в электролите и в электродах Еом (зависящего от плотности тока). Такое предположение объясняет причину увеличения напряжения на аание при прохождении через нее тока по сравнению с обратимой э.д.с. той же системы. Точно так же уменьшение напряжения гальванического элемента при отборе от него тока можно отнести за счет того, что часть э.д.с. расходуется на преодоление сопротивления в утри самого элемента. Омические потери напряжения являются, таким образом, одной из причин различия между обратимой э.д.с. и рабочим напряжением. Опыт показывает, однако, чго [c.287]
Что такое плотность тока Какую роль она играет при электролизе В чем заключаются преимущества и недостатки применения электролиза при сравн 1тельно большой плотности тока [c. 457]
Плотность тока у, т. е. сила тока, отнесенная к еднннце иоверхности сечения системы, представляет собой алгебраическую сумму произведений потоков на заряды ионов [c.104]
При меньшнх плотностях тока убыль определяемых ионов у катода успевает пополняться в результате диффузии их из других частей раствора. Вследствие этого потенциал, образующийся на (атоде окислительно-восстановительной пары, например Си +Л и, все время поддерживается на необходимом уровне вплоть до практически полного осаждения Си +-ионов. Таким образом выделение водорода предотвращается, и на катоде образуется плотный блестящий слой меди, который держится на нем очень прочно и имеет меньшую поверхность. Ошибки, зависящие от потери части осадка и его окисления, при этом устраняются, и определение дает точный результат. [c.437]
Термодинамика электрохимических систем не может объяснить причины изменения э.д.с. при нх иероходе к необратимому состоянию и установить, как это изменение связано со скоростью протекания электрохимической реакции, т. е. с силой (или плотностью) тока, проходящего через электрохимическую систему. Поэтому ириходится прибегать к некоторым предположениям нетермодинамического характера. [c.287]
Основную причину изменения напряжения на электрохимической системе при подаче (или отборе) тока следует искать поэтому ие в омических потерях, а в иомепеиии электродных потенциалов с силой (или плотностью) тока. При наложении тока потенциал каждого нз двух электродов, входящих в электрохимическую систему, изменяется в направлеии]г, которое увеличивает напряжение иа ванне и снижает его на элементе. Суммарное изменение электродных иотеициалов под то1[c.288]
При увеличении катодной плотности тока диффузионное перенапряжение будет плавно возрастать до тех пор, пока произведение кл не станет близким к единице. В этих условиях даже незначн-тельное повышение плотности тока вызывает заметный сдвиг потенциала в сторону отрицательного значения и при йд/ = 1 катодное дифiфyзиoннoe перенапряжение должно сделаться бесконечно большой отрицательной величиной г д==—оо (рис. 15.3). Плотность тока, отвечающая этим условиям, называется предельной катодной диффузионной плотностью тока [c.306]
Характерной особенностью электр1зхимических реакций является то, что все они совершаются на 1 ран1ще раздела электрод — электролит и поэтому их скорость зависит от площади поверхности раздела 5. В связи с этим принято относить скорость электрохимической реакции к единице поверхности раздела и определять ее как плотность тока [c.283]
Из (15.15) можно также определить плотность тока /, которая отвечает ко1щентрации Ск в прикатодном слое [c.305]Используя электродные балансы, можно вывести уравнения, передающие связь между диффузионным перенапряжением и плотностью тока и для более сложных электродных реакций. Для каждого -го участника электродной реакции получается выражение, аналогичное (15.22), причем, как следует нз общего уравнения диф-фЗ зионного перенапряжения (15. 8), подлотарифмическое выражение будет входить в искомое уравнение в степени Vi, отвечающей стехиометрическому множителю данного вида частиц, т. е. в общем случае [c.306]
Прп равновесном потенциале такое соотношение достигается благодаря тому, что одни и те же частицы с одинаковой частотой переходят из электрода в раствор и из раствора на электрод. Для цинкового электрода такими частицами являются ионы цинка. Устойчивость подобного динамического равновесия определяется интенсивностью обмена, т. е. плотностью тока в двух противоположных иаиравлениях [c.290]
МОЖНО пренебречь лишь при малых скоростях электрохимической реакции, т. е. при малых плотностях тока. При высоких плотностях тока, напротив, стадии доставки могут определять скорость всего суммарного электродного прощ сса. [c.299]
Если учесть, что во втором слагаемом подлогарифмического выражения множитель перед плотностью тока не зависит от ес значения и для данной электродной реак г,ии и температуры является [c.305]
Теоретические основы аналитической химии 1987 (1987) — [ c.274 ]
Введение в электрохимическую кинетику 1983 (1983) — [ c.143 ]
Лабораторный практикум по теоретической электрохимии (1979) — [ c.23 , c.101 ]
Каталитические, фотохимические и электролитические реакции (1960) — [ c.0 ]
Двойной слой и кинетика электродных процессов (1967) — [ c.169 , c.172 , c.173 ]
Электрохимическая кинетика (1967) — [ c.0 , c.29 ]
Электрохимические системы (1977) — [ c.21 , c.194 , c.196 , c.206 , c.215 , c.220 , c.246 , c.249 , c.250 , c.281 , c.289 ]
Электрохимический синтез органических веществ (1976) — [ c.42 , c.44 ]
Теоретическая электрохимия (1965) — [ c.289 ]
Теоретическая электрохимия Издание 2 (1969) — [ c.284 ]
Теоретическая электрохимия Издание 3 (1975) — [ c.0 ]
Курс теоретической электрохимии (1951) — [ c.260 ]
Технология содопродуктов (1972) — [ c.189 , c.192 , c.195 , c.199 , c.204 , c.214 , c.218 , c.222 , c.231 , c.233 , c.241 , c.243 , c.246 ]
Физические и химические методы обработки воды на ТЭС (1991) — [ c.134 , c.137 , c.138 ]
Электрохимический синтез органических веществ (1976) — [ c.42 , c.44 ]
Химико-технические методы исследования Том 1 (0) — [ c.434 ]
Краткий справочник химика Издание 6 (1963) — [ c.437 ]
Теоретическая электрохимия (1981) — [ c.244 ]
Квантовая механика молекул (1972) — [ c.289 ]
Основы общей химической технологии (1963) — [ c.124 ]
Учебник физической химии (0) — [ c.334 ]
Общая химия Изд2 (2000) — [ c.279 ]
Краткий справочник химика Издание 4 (1955) — [ c.390 ]
Краткий справочник химика Издание 7 (1964) — [ c.437 ]
Курс общей химии (0) — [ c.203 ]
Курс общей химии (0) — [ c.203 ]
Предмет химии (0) — [ c.203 ]
Конвертер поверхностной плотности тока • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц измерения
Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисления.Конвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер плотности потока водяного параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с возможностью выбора опорного давленияКонвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер реактивной мощностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева
Введение
Заряды, помещенные в электростатическое поле с разностью потенциалов приходят в движение. Это движение называется электрическим током, который определяется как направленное (упорядоченное) движение заряженных частиц через любое поперечное сечение проводящей среды. Величина этого тока зависит от сопротивления проводящей среды этому движению зарядов, которое, в свою очередь, зависит от поперечного сечения проводника.
Следует отметить, что в электротехнике основные физические величины, то есть единица измерения силы электрического тока ампер и единица измерения электрического заряда кулон часто бывают связаны между собой с помощью единицы длины — метра. И это неспроста. Заряд, который протекает через поперечное сечение проводящей среды, часто бывает распределен неравномерно. Поэтому вполне естественно было бы определять поток заряженных частиц через единичное поперечное сечения или единичную длину, иными словами определять плотность тока. В этой статье мы сравним электрический ток и плотность тока, а также рассмотрим важность достижения, поддержания и измерения необходимой плотности тока в различных областях электротехники и электронной техники.
Определения
Электрический ток
Электрический ток I определяется как направленное движение электрических зарядов вдоль линии (например, тонкого провода), по поверхности (например, по листу проводящего материала) или в объеме (например, в электронной или газоразрядной лампе). В СИ единицей измерения силы электрического тока является ампер, определяемый как поток электрических зарядов через поперечное сечение проводника со скоростью один кулон в секунду.
Объемная плотность тока
Плотность тока (называемая также объемной плотностью тока) представляет собой векторное поле в трехмерном проводящем пространстве. В каждой точке такого пространства плотность тока представляет собой полный поток электрических зарядов в единицу времени, проходящий через единичное поперечное сечение. Обозначается объемная плотность векторным символом J. Если мы рассмотрим обычный случай проводника с током, то ток в амперах делится на поперечное сечение проводника. В СИ объемная плотность тока измеряется в амперах на квадратный метр (А/м²).
Например, если по мощной шине электрической подстанции с поперечным сечением 3 х 33,3 мм = 100 мм² = 0,0001 м² течет ток 50 ампер, то плотность тока в таком проводнике будет составлять 500 000 А/м².
Линейная плотность тока
Иногда в электронных устройствах ток течет через очень тонкую пленку металла или тонкий слой металла, имеющий переменную толщину. В таких случаях исследователей и конструкторов интересуют только ширина, а не общее поперечное сечение таких очень тонких проводников. В этом случае они измеряют линейную плотность тока — векторная величину, равную пределу произведения плотности тока проводимости, протекающего в тонком слое у поверхности тела, на толщину этого слоя, когда последняя стремится к нулю (это определение по ГОСТ 19880-74). В Международной системе единиц (СИ) линейная плотность тока измеряется в амперах на метр и в системе СГС в эрстедах. 1 эрстед равен напряжённости магнитного поля в вакууме при индукции 1 гаусс. Иначе линейную плотность тока определяют как ток, приходящийся на единицу длины в направлении, перпендикулярном току.
Например, если ток величиной 100 мА течет в тонком проводнике шириной 1 мм, то линейная плотность тока равна 0,0001 A : 0,001 m = 10 ампер на метр (А/м). Линейная плотность тока обозначается векторным символом А.
Поверхностная плотность тока
Линейная плотность тока тесно связана с понятием поверхностной плотности тока , которая определяется как сила электрического тока, протекающего через поперечное сечение проводящей среды единичной площади и обозначается векторным символом K. Как и линейная плотность тока, поверхностная плотность тока также является векторной величиной, модуль которой представляет собой электрический ток через поперечное сечение проводящей среды в данном месте, а направление перпендикулярно к площади поперечного сечения проводника. Такой проводящей средой может быть, например, проводник с током, электролит или ионизированный газ. В системе СИ плотность тока измеряется в амперах на квадратный метр.
Вектор или скаляр?
Отметим, что в отличие от векторной плотности тока, сам ток является скалярной величиной. Это можно объяснить тем фактом, что ток определяется как количество зарядов, перемещающихся в единицу времени; поэтому было бы нецелесообразно добавлять направление к величине, представляющей количество в единицу времени. В то же время, плотность тока рассматривается в объеме с множеством поперечных сечений, через которые проходит ток, поэтому имеет смысл определять плотность тока как вектор или как векторное пространство. Можно также отметить, что плотность тока является вектором в связи с тем, что это произведение плотности заряда на скорость его перемещения в любом месте пространства.
Плотность тока в электротехнике и электронике
Высокая линейная плотность тока в проводах приводит к неприятным последствиям. Все проводники электрического тока имеют конечное сопротивление, из-за которого при протекании тока они нагреваются и рассеивают энергию в форме тепла. В связи с этим плотность тока должна поддерживаться невысокой, чтобы проводник при эксплуатации не нагревался выше допустимой температуры и, тем более, не расплавлялся. Перегрев может привести к разрушению изоляции или изменению электрических свойств, например, из-за образования оксидного слоя. Такой оксидный слой уменьшает поперечное сечение проводника, что, в свою очередь, ведет к еще большему увеличению плотности тока через проводник.
Микропроцессор Pentium P54CS содержит 3,3 миллиона транзисторов на кристалле площадью 90 кв. миллиметров или около 40 тысяч транзисторов на квадратный миллиметр
Линейная плотность тока широко используется при расчете и конструировании электронных и электрических систем. Она важна, например, при расчете интегральных микросхем, плотность элементов которых (количество элементов на единицу объема) постоянно повышается. Несмотря на то, что каждый элемент потребляет весьма малые токи, плотности тока в микросхеме могут быть очень высокими для достижения максимально возможного количества элементов в одной микросхеме. На заре развития микроэлектроники количество элементов в интегральных схемах удваивалось каждый год. Сейчас (в 2016 году) оно удваивается приблизительно раз в два года. Эта закономерность называется Законом Мура по имени одного из основателей Intel, который в 1965 году пришел к выводу об экспоненциальном росте производительности вычислительных устройств и сделал соответствующий прогноз на ближайшие десять лет. Позже, в 1975 году, Мур пересмотрел свой прогноз и предсказал, что производительность микропроцессоров будет удваиваться каждые два года.
Например, в выпущенном в 1971 году четырехбитном микропроцессоре Intel 4004 было всего 2300 транзисторов на кристалле площадью 3х4 мм или 12 кв. мм, что составляло всего около 200 транзисторов на квадратный миллиметр. Для сравнения, в выпущенном в 2013 году 12-ядерном микропроцессоре Power8 4,2 миллиарда транзисторов располагаются на кристалле размером 650 кв. мм. То есть на каждом кв. миллиметре расположено около 6,5 млн. транзисторов. При этом каждый транзистор потребляет определенный, хоть и весьма малый ток. Поскольку все они расположены в очень малом объеме, во весь рост встает проблема охлаждения таких микросхем.
Катушки магнитных антенн радиовещательных приемников средневолнового и длинноволнового диапазонов обычно наматывают литцендратом в шелковой или иной изоляции для уменьшения потерь, связанных со скин-эффектом
На переменном токе, особенно на высоких частотах, проводящая зона проводов находится только в их поверхностном слое, в результате чего увеличивается плотность тока в проводах, что приводит к потерям энергии на нагрев или даже на расплавление провода. Это явление уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводника называется скин-эффектом или поверхностным эффектом. Для уменьшения потерь на высоких частотах проводники покрывают серебром или золотом — материалами с малым удельным сопротивлением. Также часто вместо одного толстого провода используют несколько (от трех до тысячи и более) изолированных тонких проводов (литцендрат). В частности, именно литцендратом наматывают катушки индуктивности в индукционных печах.
При высоких плотностях тока происходит реальное перемещение материалов в соединениях, называемое электромиграцией . Такое перемещение вызвано дрейфом ионов материла, возникающем вследствие обмена количеством движения при столкновениях между носителями проводимости и атомной решеткой проводника. Эффект электромиграции играет существенную роль в тех случаях, когда токи имеют большую плотность, например, все в той же микроэлектронике, о которой говорилось выше. Чем большая достигнута плотность больших интегральных микросхем, тем более заметен этот эффект. В результате электромиграции может произойти как полное разрушение проводника, так и возникнуть новый проводник там, где его не должно быть, то есть происходит короткое замыкание. Таким образом, повышенная плотность тока приводит к уменьшению надежности интегральных схем. При конструировании микросхем обычно учитывают влияние электромиграции, поэтому современные микросхемы большой степени интеграции редко выходят из строя по этой причине.
Термин «плотность тока» или, более конкретно, поверхностная плотность тока в мА/см², вырабатываемая единичной площадью фотоэлемента солнечной батареи, часто используется в описании характеристик солнечных батарей. Плотность тока короткого замыкания фотоэлемента является важной характеристикой эффективности преобразования солнечной энергии в электрическую. Такой подход полезен для сравнения солнечных батарей различных изготовителей. В то время, как напряжение солнечной батареи определяется количеством индивидуальных фотоэлементов, ток, отдаваемый батареей, зависит главным образом от площади поверхности батареи, освещаемой солнечным светом, и эффективности фотоэлементов. Фотоэлементы часто выпускаются размером 100×100 мм = 100 см² и позволяют получить ток 3,5 А или плотность тока 3,5 : 100 = 35 мА/см² от каждого фотоэлемента. Отметим, что определение поверхностной плотности тока в фотоэлементах отличается от приведенного выше определения поверхностной плотности тока.
Хромированная душевая головка; поверхность пластмассы вначале покрывается в гальванической ванне слоем меди, затем никеля и последним наносится слой хрома
Плотность тока является одной из основных характеристик, определяющих качество изделий с гальваническим покрытием хромом и другими металлами. При хромировании на изделие из металла или пластмассы наносится тонкий слой хрома, который обладает декоративными свойствами и высокой стойкостью к коррозии. Хромирование используется также для увеличения твердости и износостойкости поверхностей и для уменьшения трения и повышения стойкости к коррозии в парах трения, работающих в жестких условиях. Также хромирование применяется для наращивания изношенных поверхностей деталей с целью восстановления их исходных размеров.
Для использования в автомобильной промышленности на стальные изделия наносят несколько гальванических покрытий, которые обеспечивают стойкость деталей к изменениям температуры и влажности при эксплуатации на открытом воздухе. Обычно используется тройное покрытие: первый слой меди, затем никель и, наконец, хром. Температура и плотность тока в ванне влияет на однородность хромового покрытия, что обеспечивает его чистоту, и, следовательно, отражающую способность.
Измерение плотности тока
Гальваническая ванна, в которой наносятся покрытия металлами — как раз то место, где необходимо измерять плотность тока в жидкой проводящей среде — электролите в гальванической ванне. При этом необходимо рассчитать или измерить площадь поверхности покрываемой металлом детали, а также измерить ток, протекающий в ванне от анода к детали. Выпускаются приборы, позволяющие непосредственно измерить плотность тока в любой точке ванны. Они позволяют работникам гальванического цеха точно измерить как идет процесс покрытия металлом в каждой точки изделия. Измеритель плотности тока электролита чаще всего состоит из датчика с маленькой тороидальной катушкой и измерительного блока с дисплеем, который измеряет ток, индуцированный в катушке током в электролите внутри нее. Процессор таких приборов определяет значение плотности тока в точке измерения исходя из измеренного тока и площади катушки и выводит его на дисплей прямо в А/фут² или A/дм².
Еще одним примером измерения плотности тока являются солнечные батареи. Обычно плотности токов короткого замыкания распределены неравномерно по поверхности фотоэлементов. Различия в плотностях тока могут быть обусловлены различными сроками существования носителей в фотоэлементе, различными расстояниями до выводов и другими факторами. Исследователям интересно получить карту распределения плотностей токов по всей площади фотоэлемента. Для измерения плотности тока фотоэлемент освещают очень узким потоком электронов или лучом света, который сканирует поверхность фотоэлемента. При этом регистрируется возникающий фототок. Таким образом создается карта плотностей тока, которую в дальнейшем можно использовать для оптимизации устройства.
Автор статьи: Анатолий Золотков
Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.
5.1 Вектор плотности тока. Закон Ома
Глава 5. Постоянный электрический ток.
§ 5.1 Вектор плотности тока. Закон Ома.
Движение заряженных частиц в проводниках под действием приложенного электрического поля назвали электрическим током.
Подвижными заряженными частицами в металлах являются электроны. Носители тока в полупроводниках — также электроны; в электролитах – ионы, в плазме – ионы и электроны.
Основной характеристикой тока является плотность тока :
, (5.1)
где — средняя скорость электрона. Видно, что вектор направлен вдоль скорости движения положительных зарядов.
Через площадку за единицу времени протекает количество электронов (количество электричества):
. (5.2)
Рекомендуемые файлы
Тогда — сила тока, проходящего через площадку . Единицей измерения плотности тока является , силы тока — А (ампер).
Рассмотрим произвольную замкнутую поверхность (рис.5.1) и найдем поток вектора сквозь эту поверхность:
, (5.3)
где — изменение заряда в единицу времени.
.
Знак “-” показывает, что если число положительных зарядов в объеме уменьшается, то поток направлен из объема наружу.
;
. (5.4)
Уравнение (5.4) представляет собой уравнение непрерывности, выражающее закон сохранения заряда в объеме.
Сравним его с теоремой Гаусса в дифференциальной форме:
;
Смысл уравнения в том, что источниками являются заряды . Значит, из уравнения непрерывности следует, что источником тока является временное изменение заряда, токовые силовые линии начинаются там, где .
Для постоянного тока , , то есть , : токовые линии всегда замкнуты для постоянного тока.
Выясним условия, при которых может существовать постоянный ток. Для этого нужны сторонние источники, создающие направленное движение зарядов (). Связь с (напряженность стороннего поля) предполагается линейной:
— (5.5)
Здесь — коэффициент электропроводности; . Эта формула верна в точке проводника, где и постоянны, то есть имеет локальный характер, и носит название закона Ома в дифференциальной форме. Открыт Омом в 1827 г. Кавендиш установил экспериментально пропорциональность тока и напряжения еще в 1770 г., но никому об этом не сообщил.
Исследуем выражение (5.5) и найдем следствия из него. С учетом (5.1) имеем:
.
Оценим величину .
Для Cu: , и если ; то .
Скорость теплового движения при : ; тогда . Так как , то , т.е. движение электронов является равномерным, а должно быть равноускоренным, потому что происходит под действием силы. Чтобы объяснить это противоречие, запишем уравнение движения электронов:
, (5.6)
где второе слагаемое учитывает столкновение электронов с решеткой в виде “эффективной силы трения“. Решение уравнения (5.6) имеет вид:
;
найдем подстановкой решения в уравнение; — из начальных условий: , :
, .
Таким образом: , (5.7)
где параметр называется временем релаксации.
При скорость электронов становится постоянной:
.
Тогда:
. — (5.8)
Эта зависимость электропроводности от плотности электронов называется формулой Друде.
Оценим время релаксации.
Для :
Ясно, что установление постоянного значения после включения происходит очень быстро.
Куда уходит энергия, получаемая электронами в процессе разгона? На преодоление сил ”трения”, то есть на столкновения электронов с решеткой, что приводит к ее нагреванию. При движении заряда совершается работа . В единице объема выделится энергия:
(5.9)
Значит, за единицу времени в единице объема выделится энергия:
. (5.10)
Данная величина носит название тепловой мощности. Иначе:
. (5.11)
Закон Джоуля (1841г.), Ленца (1842 г.) в дифференциальной форме, записанный выше, верен в локальной точке проводника.
Интегральный вид этого закона можно вывести, зная количество тепла, выделившегося в проводнике объема за время . Введем величину удельного сопротивления:
. (5.12)
Тогда, используя (5.9), запишем:
. (5.13)
Для линейного проводника , где — площадь сечения, — элемент длины, . С учетом этого выражение (5.13) примет следующий вид:
;
;
, (5.14)
где величина характеризует сопротивление проводника. Подставляя выражение (5.14) в (5.11), получаем окончательно выражение для тепловой мощности:
. (5.11’)
Единицей измерения мощности является ватт .
В основе всех приведенных выше формул лежит закон Ома. Область применимости этого закона связана с линейной зависимостью, т.е. должно быть достаточно малым, чтобы ограничиться первым членом ряда:
.
Здесь единственная величина, которая может быть ограничена, это : .
—
тепловая скорость электронов. Тогда .
Информация в лекции «14 Скорость точки в полярных координатах» поможет Вам.
Только начиная с таких полей могут проявляться нелинейные эффекты в законе Ома при прохождении тока в металлах. Технически допустимые значения можно определить по максимальному значению допустимой плотности тока в металлических проводах. Так, для меди :
; (5.15)
. (5.16)
Таким образом, технически используемые величины в раз меньше тех, которые ограничивают область применения в законе Ома.
В плазме закон Ома не соблюдается, так как при низких давлениях величина велика (почти нет столкновений): { при гораздо большем токе, чем в металлах}.
Электрический ток, сила и плотность тока
| на главную | доп. материалы | физика как наука и предмет | электричество и электромагнетизм |
Организационные, контрольно-распорядительные и инженерно-технические услуги
в сфере жилой, коммерческой и иной недвижимости. Московский регион. Официально.
В электродинамике — разделе учения об электричестве, в котором рассматриваются явления и процессы, обусловленные движением электрических зарядов или макроскопических заряженных тел, — важнейшим понятием является понятие электрического тока. Электрическим током называется любое упорядоченное (направленное) движение электрических зарядов. В проводнике под действием приложенного электрического поля Е свободные электрические заряды перемещаются: положительные — по полю, отрицательные — против поля (рис. 146, а), т. е. в проводнике возникает электрический ток, называемый током проводимости. Если же упорядоченное движение электрических зарядов осуществляется перемещением в пространстве заряженного макроскопического тела (рис. 146, б), то возникает так называемый конвекционный ток.
Для возникновения и существования электрического тока необходимо, с одной стороны, наличие свободных носителей тока — заряженных частиц, способных перемещаться упорядоченно, а с другой — наличие электрического поля, энергия которого, каким-то образом восполняясь, расходовалась бы на их упорядоченное движение. За направление тока условно принимают направление движения положительных зарядов.
Количественной мерой электрического тока служит сила тока I скалярная физическая величина, определяемая электрическим зарядом, проходящим через поперечное сечение проводника в единицу времени:
Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным. Для постоянного тока
где Q — электрический заряд, проходящий за время t через поперечное сечение проводника. Единила силы тока — ампер (А).
Физическая величина, определяемая силой тока, проходящего через единицу площади поперечного сечения проводника, перпендикулярного направлению тока, называется плотностью тока:
Выразим силу и плотность тока через скорость ávñ упорядоченного движения зарядов в проводнике. Если концентрация носителей тока равна n и каждый носитель имеет элементарный заряд е (что не обязательно для ионов), то за время dt через поперечное сечение S проводника переносится заряд dQ=ne ávñ S dt. Сила тока
а плотность тока
(96.1)
Плотность тока — вектор, ориентированный по направлению тока, т. е. направление вектора j совпадает с направлением упорядоченного движения положительных зарядов. Единица плотности тока — ампер на метр в квадрате (А/м2).
Сила тока сквозь произвольную поверхность S определяется как поток вектора j, т. е.
(96.2)
где dS=ndS (n — единичный вектор нормали к площадке dS, составляющей с вектором j угол a).
Конвертер плотности поверхностного тока
• Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц
Конвертер длины и расстояния Конвертер массы Конвертер сухого объема и общих измерений при варке Конвертер топливной экономичности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы валютЖенская одежда и размеры обувиМужская одежда и размеры обувиПреобразователь угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаПреобразователь энергии инерции Конвертер сгорания (на массу) Конвертер удельной энергии, теплоты сгорания (на объем) re Конвертер интерваловКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиКонвертер плотности тепла, плотности пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициентов теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потока (Конвертер молярной концентрации) Конвертер вязкости Конвертер натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяных паровКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиПреобразователь световой интенсивностиКонвертер яркостиКонвертер разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоптрическая мощность) Конвертер диоптрий) в увеличение (X) E Преобразователь электрического токаЛинейный преобразователь плотности зарядаПреобразователь поверхностной плотности зарядаПреобразователь уровня объёмного зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПоверхностный преобразователь плотности токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь электрического сопротивленияПреобразователь электрической проводимости в дБПреобразователь электрической проводимости в дБ Ватты и другие единицы измеренияПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности суммарной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Типографские и цифровые единицы изображения Конвертер единиц измерения объема древесины Конвертер молярной массыПериодическая таблица
Введение
Если заряды помещаются в электростатическое поле с разностью потенциалов, заряды начинают двигаться. Это движение представляет собой электрический ток, который определяется как скорость потока заряда через любую площадь поперечного сечения проводящей среды.Величина этого тока зависит от сопротивления движению зарядов, которое, в свою очередь, зависит от площади поперечного сечения проводника.
В электротехнике, когда необходимо измерить важные физические переменные, как ампер, который является единицей электрического тока, так и кулон, который является единицей электрического заряда, связаны со счетчиком, который является единицей измерения длина. Заряд, протекающий по площади, может быть неоднородным. Он может варьироваться по количеству и направлению в зависимости от положения на территории.Поэтому было бы вполне естественно определить поток заряда в терминах тока на единицу площади или длины, который называется плотностью тока. В этой статье мы рассмотрим разницу между электрическим током и плотностью тока, а также важность достижения, поддержания и измерения надлежащей плотности тока в различных приложениях электротехники и электронной техники.
Определения
Электрический ток
Электрический ток I определяется как движение электрического заряда (электронов или ионов, или того и другого) вдоль линии (например, тонкой проволоки) по поверхности (например, лист проводящего материала) или в объеме (например, в вакуумной трубке или газоразрядной лампе).Единицей измерения электрического тока в системе СИ является ампер, который определяется как поток электрического заряда через поверхность со скоростью один кулон в секунду.
Объемная плотность тока
Когда поток заряда происходит в трехмерной области, он описывается объемной плотностью тока , определяемой как ток на единицу площади, перпендикулярной потоку. Ее также называют объемной плотностью тока или просто плотностью тока. Плотность тока представляет собой векторное поле в трехмерном проводящем пространстве.Для каждой точки этого пространства плотность тока представляет собой общий равномерный поток заряда в единицу времени (то есть ток), проходящий через единицу площади поперечного сечения. Обозначается векторным символом J . Если мы рассмотрим обычный случай проводника, по которому течет ток, амперная мера этого тока делится на площадь поперечного сечения проводника. В SI плотность объемного тока измеряется в амперах на квадратный метр (А / м²).
Например, если шина на электрической подстанции сечением 3 х 33.3 мм = 100 мм² = 0,0001 м² проходит постоянный ток 50 ампер, плотность тока через этот провод составляет 500 000 A / м².
Линейная плотность тока
Иногда электрический ток протекает через очень тонкие металлические пленки или слои переменной толщины. В таких случаях исследователей интересует ширина, а не общее поперечное сечение таких тонких проводников, и они измеряют линейную плотность тока , которая является векторным значением, равным пределу произведения плотности ток, протекающий через тонкий поверхностный слой проводника, и толщина этого слоя при приближении последнего к нулю.Линейная плотность тока измеряется в СИ в амперах на метр (А / м) и в СГС в эрстедах. В вакууме, если напряженность намагничивающего поля составляет 1 Э, то плотность магнитного потока составляет 1 Гс. Знаменателем этой дроби является ширина, перпендикулярная направлению тока в проводящей тонкой пленке или листе.
Например, если ток в 100 микроампер протекает по тонкому проводнику шириной 1 мм, то линейная плотность тока составляет 0,0001 A: 0,001 м = 10 ампер на метр.Линейная плотность тока обозначена векторным символом A .
Плотность поверхностного тока
Когда заряд течет по поверхности, это обычно описывается плотностью поверхностного тока , K , которая определяется как ток на единицу ширины, перпендикулярный потоку. В разных точках поверхности K будет меняться, отражая изменения плотности поверхностного тока и скорости движущегося заряда. Другими словами, плотность поверхностного тока — это предел очень большой плотности тока, распределенной по очень тонкому слою, прилегающему к поверхности.
Скаляр в сравнении с вектором
Обратите внимание, что, в отличие от плотности тока, ток является скаляром, потому что он определяется как скорость , с которой протекает заряд, и поэтому нет особого смысла добавлять направление к значению, которое выражает ставку. С другой стороны, плотность тока включает в себя объем с множеством малых поперечных сечений, через которые проходит заряд, поэтому имеет смысл определить плотность тока как вектор. Это также вектор, потому что мы можем определить плотность тока как произведение плотности заряда и скорости для любого места в пространстве.
Плотность тока в различных приложениях
Плотность тока является важной характеристикой, которую необходимо учитывать при проектировании электрических и электронных систем. Высокая плотность тока в проводниках имеет нежелательные последствия. Все электрические провода имеют конечное сопротивление, что приводит к нагреву и рассеиванию энергии в виде тепла. По этой причине плотность тока должна быть достаточно низкой. Это предотвращает изменение свойств проводника. Например, при нагревании сопротивление нагретой части проводника увеличивается, что приводит к большему нагреву и, как следствие, к разрушению изоляционного материала.Электрические свойства проводника могут измениться из-за нагрева. Например, может быть образован оксид, уменьшающий площадь поперечного сечения проводника, что, в свою очередь, приведет к увеличению плотности тока.
Микропроцессор Pentium P54CS содержит 3,3 миллиона транзисторов в кристалле площадью 90 квадратных миллиметров или около 40 тысяч транзисторов на каждый квадратный миллиметр
Линейная, поверхностная и объемная плотность тока широко используется при расчетах и проектировании электрических и электронных систем. особенно интегральные схемы, где плотность компонентов (количество компонентов в единице объема) постоянно увеличивается.Несмотря на то, что каждый компонент потребляет очень низкий ток, плотность тока в кристалле может стать довольно высокой для достижения максимально возможного количества компонентов в одном кристалле. На заре развития микроэлектроники количество компонентов в интегральных схемах ежегодно удваивалось. Сейчас (в 2016 году) он увеличивается вдвое примерно каждые два года. Этот шаблон называется законом Мура в честь одного из основателей Intel и Fairchild Semiconductor, который в 1965 году пришел к выводу, что рост производительности вычислительных устройств будет экспоненциальным.Позже, в 1975 году, он пересмотрел свой прогноз и предсказал, что производительность микропроцессора будет удваиваться каждые два года.
Например, на микросхеме 4-битного микропроцессора Intel 4004, выпущенного в 1971 году, было всего 2300 транзисторов с площадью 3х4 мм или всего 12 квадратных миллиметров, что составляет всего около 200 транзисторов на квадратный миллиметр. Для сравнения: в 12-ядерном микропроцессоре Power8, разработанном IBM и выпущенном в 2013 году или 42 года спустя, на кристалле размером 650 квадратных миллиметров размещено 4,2 миллиарда транзисторов.То есть на каждом квадратном миллиметре расположено 6,5 миллиона транзисторов. Обратите внимание, что каждый транзистор потребляет определенный, хотя и очень небольшой, ток. Поскольку они расположены в очень маленьком объеме, очевидно, что для таких микросхем требуется хорошее охлаждение.
Рамочные ферритовые антенны для радиовещания AM обычно наматывают литцевым проводом, обернутым натуральным шелком или другим волокном для уменьшения потерь на скин-эффект
Переменный ток, особенно на высоких частотах, имеет тенденцию к неравномерному распределению в проводнике, так что проводящая зона находится только в своем поверхностном слое, тем самым увеличивая плотность тока в проводах, что, в свою очередь, приводит к потерям энергии при нагревании или даже плавлении проволоки.Это явление уменьшения амплитуды электромагнитных волн по мере того, как они проникают глубже в проводник, называется скин-эффектом или поверхностным эффектом . Чтобы уменьшить потери на высоких частотах, проводники покрывают серебром или золотом — материалами с очень низким удельным сопротивлением. Для уменьшения потерь часто вместо одного толстого проводника используют несколько (от трех до тысячи и более) тонких изолированных проводов. Этот вид кабеля называется Litz wire (от нем. Litzendraht или плетеный провод).В частности, литц-проволока используется для изготовления индукторов в индукционных плитах.
При высокой плотности тока может происходить фактическое перемещение материалов в соединениях. Это называется электромиграция . Это движение вызвано дрейфом ионов к материалу или от него в результате обмена импульсом во время столкновений между носителями проводимости и кристаллической решеткой проводника. Эффект электромиграции играет значительную роль в случаях, когда токи имеют более высокую плотность, например, в микроэлектронике, как обсуждалось выше.Чем больше плотность достигается в крупномасштабной или очень крупномасштабной интегральной схеме, тем заметнее эффект. В результате электромиграция может привести к полному разрушению проводника, либо новый проводник может появиться там, где его не должно быть, тем самым замкнув эту часть цепи. Обе ситуации, конечно, могут привести к неисправности интегральной схемы. Таким образом, повышенная плотность схемы приводит к снижению надежности интегральных схем. Однако в современных электронных устройствах интегральные схемы редко выходят из строя из-за эффектов электромиграции.Это связано с тем, что при правильном проектировании учитываются эффекты электромиграции.
Термин «плотность тока» или, в частности, поверхностная плотность тока в мА / см² или ток, производимый на единицу площади элемента, часто используется для описания характеристик солнечных элементов. Плотность тока короткого замыкания фотоэлектрического элемента является важным параметром, характеризующим эффективность преобразования энергии элемента. Такой подход полезен тем, что позволяет сравнивать элементы различных производителей.В то время как напряжение от фотоэлектрического модуля определяется количеством отдельных солнечных элементов, ток от модуля в основном зависит от площади поверхности элемента, подверженной солнечному свету, и эффективности солнечных элементов. Монокристаллические солнечные элементы часто имеют размер 100 × 100 мм = 100 см² и вырабатывают ток 3,5 А или плотность тока 3,5: 100 = 35 мА / см² от одного модуля. Обратите внимание, что определение плотности поверхностного тока в солнечных элементах не то же самое, что определение плотности поверхностного тока выше.
Хромированная лейка для душа; поверхность пластмассовой детали покрыта медью, затем никелем, а последний слой — хромом.
Плотность тока — одна из основных характеристик, определяющих качество конечного продукта при хромировании и других методах гальваники. Во время хромирования на металлический или пластиковый предмет наносится тонкий слой хрома. Хромированный слой может быть декоративным, эстетичным, прочным и устойчивым к коррозии. Хромирование также используется для повышения твердости поверхности.Твердый хром, также известный как промышленный или технический хром, используется для уменьшения трения и повышения долговечности за счет повышения износостойкости, устойчивости к истиранию и стойкости к окислению. Гальваническое покрытие твердым хромом также иногда используется для восстановления первоначальных размеров изношенных деталей.
Для использования в автомобильной промышленности сталь подвергается нескольким процессам гальваники, чтобы выдерживать изменения температуры и погодных условий, которым подвержен автомобиль на открытом воздухе и во время эксплуатации. Обычно используется процесс тройного покрытия, который включает в себя сначала покрытие медью, затем никель и хром, который наносится последним слоем.Температура и плотность тока в ванне хрома влияют на яркость и равномерность осаждения хрома.
Измерение плотности тока
Распространенным примером измерения плотности тока является гальваника, когда плотность тока измеряется в жидкой проводящей среде (электролите электролитической ванны). Это включает в себя расчет или измерение площади поверхности детали, покрытой металлом, и измерение тока, протекающего через гальваническую ванну. В продаже имеется несколько измерителей плотности тока.Они позволяют специалистам по нанесению гальванических покрытий точно знать скорость осаждения материала на заготовке. Измеритель плотности тока электролита обычно состоит из небольшого тороидального зонда с катушкой и цифрового дисплея, который измеряет ток, протекающий через катушку, индуцированный током в электролите, протекающем внутри нее. Процессор таких измерителей рассчитывает и указывает плотность поверхностного тока в точке измерения в А / фут² или А / дм² путем измерения тока, протекающего через катушку, и с учетом площади катушки.
Другой пример измерения плотности поверхностного тока — производство солнечных батарей. Плотность тока короткого замыкания в фотоэлементе часто неоднородна. Различие в плотностях поверхностного тока может быть связано с разным временем жизни носителей заряда в разных областях ячейки, разным расстоянием до металлических контактов и другими факторами. Чтобы измерить плотность поверхностного тока через ячейку, их можно облучить сфокусированным очень узким электронным или световым лучом. Световое пятно очень маленького диаметра сканирует поверхность ячейки и точно измеряет выделенный фототок.Таким образом создается карта локальной плотности поверхностного тока короткого замыкания, которую можно использовать для оптимизации фотоэлектрического устройства.
Эту статью написал Анатолий Золотков
У вас возникли трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.
Диаметр электрода и плотность тока
Разоблаченный миф: диаметр электрода и плотность токаВыбор правильного диаметра проволоки для сварки MIG, дуговой сварки под флюсом (SAW) и дуговой сварки под флюсом (FCAW) может оказаться сложной задачей.Это связано с тем, что существует два (часто неправильно понимаемых) утверждения, связанных с диаметром электрода:
- Проволока меньшего диаметра дает мало провара и может не подходить для толстого материала
- Проволока большего диаметра обеспечивает более глубокое проникновение и осаждает больше металла
В обоих этих утверждениях есть доля правды, но будьте осторожны; Ни одно из этих утверждений не является полностью верным. Чтобы принять наилучшее решение о том, какой диаметр проволоки использовать, необходимо понять, как диаметр проволоки и влияние силы тока, протекающей через проволоку, влияют на наплавку.
Влияние силы токаПредположим, у вас есть провод SAW 3/32 дюйма и провод SAW 5/32 дюйма, оба работают на 600 ампер. Какой провод дает самое глубокое проникновение? Поскольку сила тока течет через провод меньшего диаметра, плотность (или концентрация) тока больше, чем тот же ток, протекающий через провод большего диаметра. Чем больше плотность тока, тем глубже проникновение. В результате проволока меньшего диаметра будет проникать глубже, чем проволока большего диаметра при том же токе (при условии, что все другие факторы, такие как скорость движения, остаются постоянными).Рисунок 6.31 демонстрирует эту концепцию.
Однако каждый провод имеет определенную пропускную способность по плотности тока. Если сила тока, протекающая через проволоку, становится слишком большой, сварочная дуга становится нестабильной и неустойчивой. На этом этапе пора увеличить диаметр проволоки. Это снизит плотность тока и стабилизирует дугу. И наоборот, если сила тока слишком мала для диаметра проволоки, дуга будет «лопаться», залипать и производить чрезмерное разбрызгивание. На этом этапе проблему может решить проволока меньшего диаметра.
Скорость наплавкиЧто касается скорости наплавки (количество наплавленного металла, которое может быть наплавлено в фунтах / час), проволока меньшего диаметра должна иметь большую скорость подачи, чтобы обеспечить такую же силу тока у проволоки большего диаметра. Например, для проволоки диаметром 3/32 дюйма, описанной ранее, скорость подачи проволоки составляет 150 дюймов в минуту для достижения тока 600 ампер. Проволока 5/32 дюйма имеет скорость подачи примерно 45 дюймов в минуту. В результате увеличения скорости подачи проволоки диаметром 3/32 дюйма она будет оседать около 17.3 фунта / час. Электрод диаметром 5/32 дюйма при токе 600 ампер наносит примерно 14,7 фунта в час. Большая скорость наплавки при использовании проволоки диаметром 3/32 дюйма меньшего диаметра может обеспечить более высокую скорость перемещения и потенциально увеличить производительность.
Хотя в приведенных выше примерах использовалась проволока под флюсом, те же принципы справедливы для сварки MIG и FCAW. Обращение внимания на рекомендуемые производителем процедуры для проволоки может помочь оптимизировать производительность и качество за счет выбора проволоки правильного диаметра для работы.
Фотография предоставлена Lincoln ElectricЕсли у вас есть какие-либо вопросы по этой теме, обязательно обратитесь к своим представителям в General Air.
Автор: Стив Дурен
Зона покрытия с высокой плотностью тока
Объяснение зон покрытия с высокой плотностью тока
Меднение достигается путем погружения производственной панели в раствор сульфата меди и подачи электроэнергии на ванну, измеряемой в амперах. Ампер рассчитывается путем умножения коэффициента 11 ампер на квадратный фут на квадратные футы открытой площади производственной панели.
Например, если производственная панель состоит из 10 частей заказчика, и каждая часть имеет 0,1 SF площади меди, тогда панель имеет 1 SF площади меди, и мы приложим 11 ампер к этой стороне панели. Аналогичный расчет необходимо произвести для другой стороны панели.
Часто встречаются конструкции, в которых редко встречаются схемы и / или элементы из меди с более тяжелыми элементами из меди на других участках платы. Хотя общие квадратные футы и результирующие амперы рассчитываются на основе суммы этих характеристик, сила тока не всегда равномерно распределяется по каждой функции в зависимости от ее площади.
Запасные области, такие как изолированные цепи, превращаются в так называемую зону гальваники с высокой плотностью тока, что означает, что они будут привлекать больше, чем справедливую долю силы тока, что приводит к гораздо более тяжелому медному покрытию поверхности. Благодаря небольшому размеру и теперь более высокому профилю эти цепи более подвержены механическим сбоям в процессе обращения, а также в случае неправильного обращения.
Наше предложение для решения этой проблемы состоит в том, чтобы добавить фиктивное воровство меди во все области из стекловолокна платы рядом с этими изолированными медными элементами.Это не только поможет сбалансировать силу тока и снизить профиль этих цепей, но и окружающая медь также поможет защитить эти изолированные элементы.
Ниже приведены примеры того, что мы предлагаем делать, до и после. Мы сохранили все фиктивные медные элементы на 25 мил от активных медных элементов, чтобы предотвратить «шум».
Верх
Низ
Как плотность тока связана с законом об амперах
Результаты листинга Как плотность тока связана с законом об амперах
Как магнитное поле связано с законом Ампера и создаваемое им магнитное поле.Этот закон утверждает, что
интеграл плотности магнитного поля (B) вдоль воображаемого замкнутого пути равен произведению тока, заключенного на пути, и проницаемости среды. Расчетное время чтения: 1 мин. Предварительный просмотр / Показать ещеПредварительный просмотр / Показать еще
Размещено в : Law CommonsПоказать подробности
Закон Ампера — University Physics Volume 2
Just Now Следовательно, плотность тока части провода равна плотности тока на всей площади.Используя закон Ампера , получаем и магнитное поле внутри провода равно Вне провода, ситуация идентична ситуации с бесконечным тонким проводом из предыдущего примера; то есть, вариант B с r…
Preview / Показать еще
Опубликовано в : University LawShow details
Решение проблем 5: Закон Ампера Бесплатный онлайн-курс
9 часов назад из-за бесконечного плита по току , используя Закон Ампера .На рисунке показана пластина с током с плотностью тока 2 ˆ J = Jye dz G, где единицы Je — это амперы на квадратный метр. Сляб , ток бесконечен в направлениях x и z и имеет толщину d в направлении y.
«PDF / Adobe Acrobat»
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Электромагнетизм Плотность тока по закону ампер
3 часа назад Если B-поле имеет вид, вы предположить, что подходит для магнитного поля вне провода, тогда ротор равен нулю.Это имеет смысл, поскольку за пределами провода нет плотности тока .. Поле B внутри провода имеет другую форму и имеет ненулевую z-компоненту в его завитке. Связь между завитком B и плотность тока применяется в точке.
Обзоры: 8
Предварительный просмотр / Показать еще
Размещено в : Закон формы Показать подробности
Как закон Ампера связан с теорией относительности
5 часов назад Одно из уравнений Максвелла, Ампера Закон, связывает ротор магнитного поля с плотностью тока, а особенно полезен для распределений тока с высокой степенью симметрии.Закон Био-Савара требует суммирования множества бесконечно малых элементов тока и, таким образом, позволяет напрямую вычислять любые. Предварительный просмотр / Показать еще
Предварительный просмотр / Показать еще
Опубликовано в : Law Commons Показать подробности
AMPERE’S LAW Illinois Institute технологии
Just Now — замкнутая сетка , ток равен нулю — магнитное поле перпендикулярно выбранному пути в любой точке — магнитное поле равно нулю • Закон Ампера может быть полезен при вычислении магнитных полей с током распределения с высокой степенью симметрии (аналогично симметричным распределениям заряда в…
«PDF / Adobe Acrobat»
Предварительный просмотр / Показать еще
Опубликовано в : Law Commons Показать подробности
74 Расчет поля с использованием метода Ампера Закон ITTC
5 часов назад Плотность тока в полом цилиндре однородна, таким образом, мы можем выразить плотность тока Дж (r) как: 2 0 0 rˆ 0 zb Amps Ja bc mc ρ ρ ρ ⎧ <⎪ ⎪ ⎪ ⎡ ⎤ = ⎨ << ⎢ ⎥ ⎪ ⎪ ⎪⎩> JQ: What магнитный поток плотность B (r) создается этим плотностью тока J (r)? A: Мы могли бы использовать Закон Био-Саварта для определения B (r), но
«PDF / Adobe Acrobat»
Предварительный просмотр / Показать больше
Добавлено в : Форма Закона Показать подробности
Как выполнить закон Ампера с НЕОДНОРОДНЫМ током…
3 часа назад Закон Ампера — это ярлык для поиска магнитных полей для длинных прямых проводов.Но когда по проводу течет неоднородная плотность тока , th
Автор: Марк Вондрачек
Просмотры: 7.8K
Предварительный просмотр / Показать еще
Добавлено в : Форма ЗаконПоказать подробности
Использование закона ампера с плотностью тока Физика Форумы
4 часа назад Использование закона ампера с плотностью тока Автор темы и вид сверху.Провод и проводящая оболочка переносят противоположные токи I внутрь и наружу с плотностью тока , как J. Внешняя оболочка имеет радиус 2R, а внутренний провод — радиус R от центра. Рассчитайте магнитное поле. в центре провода
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Закон Ампера: определение, уравнение и применение
5 часов назад Закон Ампера или схема Ампера Закон , закон , представляет собой математическое утверждение, используемое в электромагнетизме, которое устанавливает связь между током и магнитным полем, которое он генерирует.Магнитное поле, создаваемое электрическим током , пропорционально величине тока с константой пропорциональности, равной проницаемости свободного пространства (μ o), универсальной константе в физике.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Закон Ампера Определение, утверждение, примеры, уравнение
8 часов назад Что такое закон Ампера? Согласно закону Ампера, магнитных полей связаны с производимым в них электрическим током.Закон определяет магнитное поле, которое связано с данным током или наоборот, при условии, что электрическое поле не меняется со временем. Закон Ампера можно сформулировать как:
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Doc V Физика: Закон Ампера с НЕЕнифицированной плотностью тока
2 часа назад Закон Ампера NON -Униформа Плотность тока . Вот пример того, как реализовать наихудший сценарий с законом Ампера (для длинного прямого провода): НЕОДНОРОДНАЯ плотность тока , протекающая через площадь поперечного сечения провода. Плотность тока — это просто ток / (площадь поперечного сечения, через которую протекает ток ).
Предварительный просмотр / Показать еще
Размещено в : Закон формы Показать подробности
Закон Ампера Определение, уравнения, производные
3 часа назад Закон определяет взаимосвязь между текущим и магнитным полем, которое он создает вокруг себя. Этот закон был назван в честь ученого Андре Мари Ампер , открывшего это явление.Ампер провел несколько экспериментов, чтобы понять, как силы действуют на провода, по которым проходит ток.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Юридическая практика Ампера — Гипертекст по физике
6 часов назад практическая задача 2. Используйте закон Ампера для определения напряженности магнитного поля … . на расстоянии r от бесконечно длинного проводящего ток провода. в любом месте по обе стороны от бесконечного плоского листа с поверхностной плотностью тока σ.внутри соленоида с n витками на единицу длины. внутри тороида (тороидального соленоида) всего N витков.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Циркулярный закон Ампера: что это такое? Electrical4U
Только сейчас, 24 февраля 2012 г. Автор: Electrical4U. Закон Циркуля Ампера устанавливает взаимосвязь между током и создаваемым им магнитным полем.Этот закон утверждает, что интеграл от плотности (B) магнитного поля вдоль воображаемого замкнутого пути равен произведению тока , заключенного на пути, и проницаемости среды.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
12,5 Ampère’s Law University Physics Volume 2 OpenStax
7 часов назад Мы можем рассмотреть это соотношение, потому что плотность тока J постоянна по всей площади провода.Следовательно, плотность тока на части провода равна плотности тока на всей площади. Используя закон Ампера, получаем B (2 π r) = μ 0 (r 2 a 2) I 0, а магнитное поле внутри провода B = μ 0 I …
Preview / Show more
Опубликовано в : Университетское право Показать подробности
Закон Ампера — гипертекст по физике
2 часа назад Закон Ампера . С законом Ампера все лучше (почти все).Андре-Мари Ампер (1775–1836) Франция. Закон Закон в интегральной форме. ∮B · ds = μ 0 I. Закон в дифференциальной форме. ∇ × B = μ 0 J. Эти формы закона являются неполными. Полный закон имеет добавленный член, называемый током смещения .
Предварительный просмотр / Показать еще
Опубликовано в : Form Law Показать подробности
Определение формулы плотности тока, уравнения, примеры
Just Now Плотность тока или электрическая плотность тока очень сильно связана с электромагнетизму.Он определяется как количество электрического тока , протекающего через единицу площади поперечного сечения. В этой статье мы обсудим формулу для плотности тока с примерами. Начнем учиться!
Предварительный просмотр / Показать еще
Размещено в : Form Law Показать подробности
Окружной закон Ампера и модификация Максвелла — QuantumStudy
1 час назад Окружной закон Ампера утверждает, что.∮ B →. d l → = μ 0 I. Наблюдение Максвелла: ток проводимости I и ток смещения I D вместе обладают свойством непрерывности на любом замкнутом пути. Следовательно. ∮ B →. d l → = μ 0 (I + I D) ∮ B →. d l → = μ 0 (I + ϵ 0 d ϕ E d t) Это закон Ампера-Максвелла . Помните:
Предварительный просмотр / Показать еще
Размещено в : Закон о собственности, Закон об исследованиях Показать подробности
Определение плотности тока, что такое ток, Типы
2 часа назад
1 .Мы можем определить ток как поток электрически заряженных частиц, в основном в тех атомах, в которых отсутствуют электроны. Стандартный символ тока — заглавная I. Стандартная единица тока — ампер, обозначается буквой A. И наоборот, ток в один ампер — это один кулон заряда (6,24 x 1018 носителей заряда), проходящий через заданную точку в секунду. По словам физиков, считается, что ток движется от относительно положительных точек к отрицательным, и это называется обычным током. Электроны, как известно, являются обычными носителями отрицательного заряда и циркулируют от относительно отрицательных точек к положительным.В этой статье мы подробно узнаем о концепции плотности тока.Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Электрический ток, плотность тока, удельное сопротивление и сопротивление.
4 часа назад Количество бесплатных зарядов в томе: бесплатных зарядов в томе С точки зрения этого, ток равен ̅ Определите плотность тока как ⃗ ⃗ Пример Y&F 25 .1 вычисляет типичный плотность тока и скорость дрейфа. Медный провод имеет диаметр , свободный электронов плотность , и пропускает ток .
Предварительный просмотр «PDF / Adobe Acrobat»
Предварительный просмотр / Показать еще
Опубликовано в : Law Commons Показать подробности
Как преобразовать закон Максвелла Ампера в дифференциальную форму
5 часов назад ротор магнитного поля в любой точке совпадает с плотностью тока там. Другой способ сформулировать этот закон состоит в том, что плотность тока является источником ротора магнитного поля. 🔗. В начале этой недели, Закон Ампера…
Предварительный просмотр / Показать еще
Размещено в : Форма Закона Показать подробности
Закон о силе амперов
8 часов назад Закон об амперах Force ITTC. 5 часов назад 29.09.2005 Закон амперов Force.doc 1/4 Джим Стайлз Univ. Канзасского департаментазакона силы Ампера EECS Рассмотрим случай с двумя нитями тока , расположенными в космосе. Одна нить накала имеет ток I 1, протекающий по дифференциальному расстоянию смещения dA 1, а другая — ток I 2, протекающий по dA 2.
Предварительный просмотр / Показать еще
Опубликовано в : Law Commons Показать подробности
Уравнения Максвелла: закон Гаусса, закон Фарадея и ампер поля.Но в результате ожидается, что изменение магнитного поля вызовет электрическое поле.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Знаете ли вы о законе Ampere Circuital
Just Now How Is Ampere S Circuital Law related to Gauss Law . 1 час назад Каким образом ампер Циркулярный Закон связан с уравнениями Максвелла. 9 часов назад Закон Ампера Закон контура Ампера гласит: линейный интеграл магнитного поля по замкнутому контуру или петле умножается на общий ток , заключенный в этом замкнутом контуре.Мы выражаем этот закон с помощью математического выражения: где, I — сеть
Предварительный просмотр / Показать еще
Опубликовано в : Law Commons Показать подробности
Закон Ампера 12 класс Физика Примечания NEB Notes
9 часов назад Закон Ампера является альтернативным методом закона Био и Савара для измерения магнитного поля, обусловленного током , несущим проводник. Закон Ампеля можно определить как линейный интеграл магнитного поля, поскольку любая близкая площадь поверхности равна.Математически, Доказательство Закона Ампера . Рассмотрим прямой проводник с током I, как показано на рисунке.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
PhysicsLAB: Закон Ампера
7 часов назад 1 amp = 6,25 x 10 18 электронов / сек. Внутри проводника часто бывает полезно определить ток в терминах его плотности тока или j.Единицы измерения j равны амперам / м 2. Ток иногда называют «потоком плотности тока » по площади поперечного сечения.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Закон Ампера Государственный университет Джорджии
3 часа назад Закон Ампера Закон . Магнитное поле в пространстве вокруг электрического тока пропорционально электрическому току , который служит его источником, точно так же, как электрическое поле в пространстве пропорционально заряду, который служит его источником.Закон Ампера гласит, что для любого пути замкнутого контура сумма элементов длины, умноженная на магнитное поле в направлении элемента длины, равна
Preview / Show more
Опубликовано в : University LawShow details
Циркулярный закон Ампера: Обычная и нерегулярная катушка, Видео
8 часов назад
Предварительный просмотр / Показать еще
Размещено в : Law CommonsПоказать подробности
Закон Ампера: Заявление, применение к соленоиду
Just Now Следовательно, общий электрический ток , протекающий по прямоугольному пути, равен nLI.Согласно закону Ампера . Ближе к концам соленоида линии поля скучены. В остальном же пространстве линии так широко разнесены, что магнитным полем можно пренебречь. Это выражение для магнитной индукции в точке на оси
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Проницаемость в законе Гаусса и законе Ампера Форумы по физике
7 часов назад В диэлектрической среде закон Гаусса принимает форму.∇⋅D = q общ. где D теперь определяется как электрический поток , плотность . D связан с электрическим полем E через. D = εE. где ε — диэлектрическая проницаемость этой среды. В вакууме эти отношения становятся. D = ε 0 E. и вы получите закон Гаусса , который мы знаем и любим.
Предварительный просмотр / Показать еще
Размещено в : Form Law Показать подробности
Электромагнетизм Почему нет закона индукции Фарадея
6 часов назад Мне было интересно, почему закон Фарадея индукции и закон Максвелла-Ампера Закон (без источников) не полностью симметричен в том смысле, что закон Максвелла-Ампера имеет член $ \ epsilon_0 \ mu_0 $ справа (в единицах СИ), а закон Фарадея — нет, поскольку симметрия важная особенность большинства физических законов.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Как получить закон Ампера Quora
9 часов назад Следовательно, локон должен быть пропорционален плотности тока при заданной точка, поскольку связано с значением линейного интеграла вокруг бесконечно малого цикла. Запишем: × B = μ 0 J, где ∇ × обозначает ротор. Дифференциальная и интегральная формы закона Ампера эквивалентны, что можно показать, применив теорему Стокса.
Предварительный просмотр / Показать еще
Размещено в : Form Law Показать подробности
ФУНДАМЕНТАЛЬНЫЕ СВОЙСТВА СОЛНЕЧНЫХ ЭЛЕМЕНТОВ
1 час назад Ток короткого замыкания зависит от ряда факторов, которые описаны ниже: площадь солнечного элемента. Чтобы устранить зависимость площади ячейки, обычно указывается плотность тока короткого замыкания (Jsc в мА / см2), а не ток короткого замыкания ; количество фотонов (т.е.д., мощность падающего источника света
«PDF / Adobe Acrobat»
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Урок закона Ампера TeachEngineering
2 часа назад A демонстрация класса знакомит учащихся с силой между двумя петлями, несущими ток , ток , сравнивая притяжение и отталкивание между петлями и между двумя магнитами. После лекции по закону Ампера (включая некоторые примеры и задачи) студенты начинают использовать эти концепции для расчета магнитного поля вокруг петли.Это применяется для определения магнитного поля тороида,…
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Определение плотности тока, формула, пример, единица измерения и часто задаваемые вопросы
7 часов назад Теперь, когда вы знаете формулу расчета, взгляните на приведенный ниже пример, чтобы получить более четкое представление. Пример. 10 мм2 медного провода пропускают ток и ток 2 мА. Определите эту плотность тока , используя формулу плотности тока .Решение — В этом примере ток (I) =…
Предварительный просмотр / Показать еще
Размещено в : Форма Закон Показать подробности
Плотность тока Википедия
5 часов назад Электрический ток грубая, средняя величина, показывающая, что происходит во всем проводе. В позиции r в момент времени t распределение протекающего заряда описывается плотностью тока : где j (r, t) — вектор плотности тока , vd (r, t) — средняя скорость дрейфа частиц ( Единица СИ: м ∙ с −1), и.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Калькулятор плотности тока Бесплатный онлайн-калькулятор
5 часов назад Процедура использования калькулятора плотности тока следующая: Шаг 1: Введите текущий , площадь и x для неизвестного значения в поле ввода. Шаг 2: Теперь нажмите кнопку «Рассчитать неизвестное», чтобы получить плотность тока . Шаг 3: Наконец, плотность тока проводника будет отображаться в поле вывода.
Предварительный просмотр / Показать еще
Опубликовано в : Law Commons Показать подробности
Таблица размеров проводников американского калибра
1 час назад Для данного тока вы можете использовать отмеченное сопротивление и применить Ом Закон для расчета падения напряжения на проводнике. Ток (допустимая нагрузка) Примечания: Номинальные значения тока , указанные в таблице, относятся к передаче энергии и были определены с использованием правила 1 ампер на 700 круговых милов, что является очень консервативным показателем.
«PDF / Adobe Acrobat»
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Формула закона Ампера Softschools.com
9 часов назад Закон Ампера позволяет нам вычислять магнитный закон поля из отношения между электрическими токами, которые создают эти магнитные поля. В нем говорится, что для замкнутого пути сумма элементов составляющей магнитного поля равна электрическому току , умноженному на проницаемость пустого.
Предварительный просмотр / Показать еще
Размещено в : Form Law Показать подробности
Низкая плотность тока обзор Темы ScienceDirect
8 часов назад Уэйн М. Саслоу, Электричество, магнетизм и свет, 2002 7.13. 5 Неомическое поведение. При низкой плотности тока Дж все несверхпроводящие материалы являются омическими. Однако для больших Дж закон Ома больше не выполняется; J, при котором это происходит, зависит от материала.Обычно, чем ниже плотность носителей n, тем ниже критический ток J c, при котором система становится неомической.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Влияет ли плотность металла на протекающий ток
4 часа назад Ответ (1 из 5): В: Плотность металла влияет на ток , протекающий по металлической проволоке? A: Это интересный вопрос: какова связь между проводимостью и плотностью .Итак, я построил зависимость для 24 проводников. Вот она: Эта желтая линия представляет ОЧЕНЬ слабую корреляцию.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
11 HCC Learning Web
Только сейчас Укажите радиус (d), (e) , ток , и (f) , плотность тока на A2. Количество заряда q (в кулонах), прошедшего через поверхность площадью 2,00 см2, изменяется со временем в соответствии с уравнением q = 4t3 + 5t + 6, где t выражается в секундах.
Предварительный просмотр / Показать еще
Размещено в : Law Commons Показать подробности
Resistor Calculator Calculator.net: Бесплатные онлайн-калькуляторы
1 часов назад Этот бесплатный калькулятор резисторов преобразует значение сопротивления и допуск на основе Цвет резистора кодирует и определяет сопротивление резисторов, подключенных параллельно или последовательно, а также сопротивление проводника. Поэкспериментируйте с падением напряжения и законом Ома …
Предварительный просмотр / Подробнее
Опубликовано в : Law Commons Показать подробности
Тип фильтра: Все время Последние 24 часа Прошлая неделя Прошлый месяц
Пожалуйста, оставьте свои комментарии здесь:
|
|
Возвращение к плотности тока | Продукция Отделочные
Вопрос:
Анодизаторы постоянно поднимают вопрос об анодировании (серной кислотой) по зависимости плотности тока от напряжения. Они не всегда могут спрашивать напрямую, но когда у них возникают проблемы с получением правильной или постоянной толщины покрытия, они задаются вопросом, почему это происходит.Хотя почти все анодизаторы слышали о работе по плотности тока, многие точно не знают, как это сделать. Есть также те, кто полагает, что это потребует больше работы. Вы можете обратиться к этой теме? Б.Г.
Ответ:
Просматривая статьи за почти девять лет, я могу найти только еще одну статью, в которой рассматривается анодирование по плотности тока (май 2005 г., «Hardcoat Anodizing Controls»). Эта тема требует повторного рассмотрения.
Некоторые анодизаторы, с которыми я разговаривал, думали, что анодирование по плотности тока применимо только к анодированию твердым покрытием (Тип III).Не правда. Использование метода анодирования с постоянной плотностью тока может значительно упростить вашу жизнь в качестве анодизатора, а также повысить качество и стабильность вашей работы.
Как я заявлял несколько лет назад, если известное количество тока пропускается через детали в контролируемых условиях химического состава и температуры, время анодирования до желаемой толщины покрытия может быть точно рассчитано. Химический состав и температура являются важными частями этого уравнения, поэтому становится важным тщательно контролировать обе эти переменные.
Это то, что имеется в виду, когда мы говорим о контроле над процессом. Процесс либо находится под контролем, либо выходит из-под контроля. Между ними нет. Вы устанавливаете параметры для управления процессом на собственной линии анодирования. Как только вы определитесь с реалистичными контрольными пределами для химического состава, с надлежащей периодичностью анализа ванны и «честными» химическими добавками, ванну можно будет контролировать в этих пределах, используя принципы статистического контроля процесса (SPC) и отображая результаты вашего анализа. на простой диаграмме «X bar R».Разместите его так, чтобы анодизаторы могли его видеть каждый день. Это можно сделать вручную или загрузить программное обеспечение, простое в использовании и по умеренной цене.
Контроль температуры в линии анодирования иногда является проблемой. Здесь могут сорваться многие процессы анодирования. Резервуары, нуждающиеся в охлаждении, обычно представляют большую проблему, чем резервуары с подогревом. Это связано с тем, что обычно система охлаждения либо имеет недостаточный размер, либо неправильно спроектирована. Важно контролировать все температуры технологической ванны в заданном диапазоне.
Если температура нагреваемых резервуаров сильно колеблется, возможно, даже вероятно, что будут получены противоречивые результаты в отношении качества и / или внешнего вида деталей. Контроль температуры ванны для анодирования является наиболее важным, и разумный диапазон регулирования составляет плюс-минус 2 ° F (1 ° C). Эта степень контроля важна во всем диапазоне цикла анодирования, и система охлаждения должна быть рассчитана и рассчитана на достижение этого в условиях постоянной «полной нагрузки».
Существуют некоторые анодированные нагрузки, которые, кажется, бросают вызов практическим ограничениям расчета площади поверхности деталей при этих нагрузках.Это могут быть единичные детали неправильной формы и, в лучшем случае, небольшие количества. Вероятно, более 95% всех анодированных деталей повторяются, и их площадь поверхности можно легко рассчитать. Мы говорим именно об этих частях. Да, сначала сделать это сложнее, но результат стоит затраченных усилий. Независимо от того, имеется ли площадь поверхности уже на чертежах деталей, созданных компьютером, или используется рулетка и портативный калькулятор для оценки площади поверхности, зная, что общая площадь поверхности, подлежащая анодированию для каждой нагрузки, приведет к соотношению нагрузки к нагрузке. последовательность.Контроль параметров ванны приводит к лучшей воспроизводимости от партии к партии.
В то время как твердые покрытия (Тип III) обычно обрабатываются с использованием 24–40 asf (2,6–4,3 asd), Тип II, прозрачные или окрашенные «коммерческие» и декоративные части обычно обрабатываются с использованием 10–18 asf (1,1–1,9 asd). Очевидно, что нагрузка должна соответствовать мощности выпрямителя. Например, если у вас есть выпрямитель на 5000 А, 24 В и вы хотите анодировать при 12 asf для достижения толщины покрытия 0,35–0,40 мил (8,75–10 мкм) или любой толщины покрытия, можно использовать следующие формулы для рассчитать необходимое время анодирования:
Мы также знаем, что при 12 asf (1.3 asd), максимальная площадь поверхности, которую мы можем приложить к этой теоретической нагрузке 5000 А, составляет:
Обратите внимание, что площадь поверхности груза включает площадь стойки. Если стойка титановая, то это не нужно учитывать.
Для 95% повторяющихся деталей записывайте их площадь поверхности. Разовые детали могут иметь чертеж детали, сгенерированный компьютером, а площадь поверхности может быть рассчитана с помощью программного обеспечения. Это очень просто.
, спросите вы, как заставить выпрямитель работать от силы тока, а не напряжения? Рад, что вы задали этот вопрос, потому что это действительно легко сделать.Вот как:
- Когда выпрямитель находится в режиме ожидания без нагрузки в баке, поверните потенциометр до упора вправо. Это устанавливает максимальное напряжение и по существу снимает напряжение с цепи управления.
- Убедитесь, что потенциометр установлен на ноль или до упора влево.
- Если у вас цифровое управление вместо аналогового, введите максимальное выходное напряжение выпрямителя. Это снимает напряжение с цепи управления.Убедитесь, что сила тока установлена на ноль. (Если в баке нет деталей, он будет равен нулю.)
- Поместите нагрузку в бак и включите выпрямитель.
- С помощью регулятора силы тока (или автоматического управления линейным изменением) увеличьте силу тока до полного значения силы тока нагрузки, определяемого желаемой плотностью тока, умноженной на общую площадь поверхности деталей (и стоек, если они алюминиевые). Это дает силу тока нагрузки.
- Используйте приведенные выше формулы, чтобы определить продолжительность анодирования.
- Когда цикл анодирования закончен, вы можете промыть детали, высушить небольшой участок чистой тряпкой и измерить толщину покрытия. Или подождите, пока груз будет запломбирован, и проверьте толщину покрытия в зоне снятия с крепления.
- Если покрытие не совсем то, что вам нужно, немного увеличьте или уменьшите время анодирования.
Если вы выполните эту процедуру и не добьетесь нужной толщины покрытия, вы можете проверить следующее:
- Проверьте свои математические данные.
- Проверьте расчет площади поверхности для каждого номера детали. Возможно, фактическая площадь поверхности немного отличается от того, что вы рассчитали.
- Проверьте калибровку измерителей силы тока и напряжения. (Это элемент планового обслуживания и калибровки, который следует выполнять по стандарту не реже одного раза в 6 месяцев.)
- Убедитесь, что химический состав находится в пределах допустимого диапазона.
- Убедитесь, что температура поддерживается в пределах диапазона регулирования на протяжении всего цикла анодирования.Если условия в резервуаре изменяются с начала цикла до конца цикла, возможно, вы увидите изменение результатов.
Что нужно помнить об анодировании:
- Сила тока (плотность тока в единицу времени) определяет покрытие и определяет конечную толщину покрытия.
- Напряжение — это сила, необходимая для проталкивания силы тока через детали при заданном наборе условий обработки.
Приведенные выше правила относятся к силе тока, а не к напряжению, поскольку напряжение в большинстве случаев является случайным.Если вы сделаете ванну более проводящей, повысив концентрацию и / или температуру, но при этом продолжите работу с той же плотностью тока, напряжение, связанное с этой конкретной плотностью тока, будет ниже (возможно, лишь незначительно).
И наоборот, если вы сделаете ванну менее проводящей, снизив концентрацию и / или температуру, но сохранив ту же плотность тока, соответствующее напряжение будет лишь немного выше для достижения требуемого тока.
Итак, вы можете видеть, что если вы обрабатываете только напряжением, плотность тока будет меняться в зависимости от условий концентрации и температуры ванны.Это изменит итоговую толщину покрытия — по мере увеличения толщины анодного покрытия, если напряжение фиксировано, ток может упасть от небольшого до большого. Это заставляет нагрузку работать дольше, чтобы достичь желаемой толщины покрытия, потому что плотность тока падает по мере того, как нагрузка продолжает работать. Это обречено на провал, когда для достижения большой толщины покрытия (требуемой многими спецификациями твердого покрытия) требуется от 60 до 90 минут или больше, а иногда невозможно достичь вообще.
Последнее замечание. Традиционно некоторые процессы анодирования выполняются под напряжением. Два коммерческих анодных покрытия, которые обычно работают под напряжением, — это анодирование хромовой кислотой (Тип I) и анодирование фосфорной кислотой. Даже они могут управляться плотностью тока, но обычно это не так, просто потому, что точная толщина покрытия не является целью для этих финишных покрытий.
Передающий
Сила ключ Важно понять, что сила и сопротивление имеют обратную зависимость: большее усилие приведет к меньшему сопротивлению, и наоборот.Уравнение имеет отношение к поверхностному контакту, который относится к определенной области на детали, которых касаются электроды. Поверхность контакт будет рассмотрен далее в следующем разделе, но следующие пример начнет иллюстрировать эту взаимосвязь: если вы исследуете свою кончик пальца под увеличительным стеклом, то, что сначала кажется гладким Поверхность на самом деле представляет собой массу грубоватых гребней и неровностей. Одинаковый верно для электродов и заготовок.Наконечники электродов и поверхность деталей может выглядеть гладкой и в хорошем состоянии, но на самом деле их поверхность довольно шероховатая, особенно если электроды старые и изношенные или загрязненные детали. Путем подачи заявки давление на эти шероховатые поверхности, любые микроскопические несоответствия (например, грязь или жир на заготовке и / или ямки и трещины на электродах) сжимаются и поверхность фактически выравнивается.Это приводит к улучшению (увеличенный) поверхностный контакт между наконечниками электродов и заготовкой, и между самими заготовками. Когда поверхностный контакт увеличивается, ток может легче течь от наконечников через заготовки, что означает, что сопротивление было понижено. Сила также это то, что помогает сохранить целостность сварного шва в процессе его формирования. В качестве ток выделяет тепло, металл заготовки начинает плавиться.Хороший аналогия с этим процессом — ребенок ест эскимо жарким летом день. Когда эскимо тает, оно не остается на палочке — оно капает где угодно. Когда металл плавится, он хочет сделать то же самое, однако потому что это расплавленный металл, а не жидкое эскимо, это не просто капать. Он вырывается из заготовки. Вот почему правильная сила сварки так важен: он буквально заставляет расплавленный металл оставаться на месте, поэтому затем он может остыть, образуя сварной шов. Без достаточной силы, металл будет делать то, что он хочет, а это то, что вызывает изгнание. Изгнание — это не что иное, как маленькие кусочки расплавленного металл вырывается из сварного шва, потому что они не удерживаются должным образом дюйм. Проблема с высылкой в том, что весь металл вылетает из Сварной шов — это металл, который не попадает в сварной шов; сварка не может быть сделана прочнее, удалив с него металл. Определение правильного количества сила полностью зависит от приложения.С RMWA можно связаться для дополнительные рекомендации и руководства. Охлаждение
Заготовка Поверхность
Контакт сравнить электроды к ленте и заготовке к бумаге. Чистый скотч лучше всего приклеивается к чистой бумаге, так же, как ухоженная, чистая электроды имеют лучший контакт с чистой заготовкой. Лента приклеивается так себе к бумаге с солью, точно так же, как электроды будут иметь так себе контакт с заготовкой, если она грязная, жирная и т. д.Наконец, лента, которая была приклеена к ковру, а затем снова приклеена к бумаге вероятно, совсем не прилипает, как изношенные или покрытые ямками электроды не имеют хорошего контакта с заготовкой. Максимально увеличивая поверхность контакт, плотность тока увеличена. Оба эти фактора играют ключевую роль роли в обеспечении выработки достаточного количества тепла для достижения максимальной цель формирования сварного шва. Текущий
Плотность Размер, форма и общее состояние электродов влияют на площадь поверхности на связи. Отсутствуют мелкие детали на кончиках электродов (точечная коррозия) приведет к увеличению плотности тока из-за уменьшенной поверхности площадь. Такое же количество тока проходит через меньшую площадь поверхности может вызвать небольшие горячие точки, из которых выходит расплавленный металл (вытеснение), и / или может привести к получению сварных швов меньшего размера.И наоборот, если электрод кончики грибов и становятся больше, плотность тока ниже. Например, Предположим, на сварочном аппарате есть круглые наконечники диаметром 6 мм. Площадь каждого наконечник около 28 мм2. (Площадь круга pr2: 32 * 3,14 «28). Предположим, наконечники подают на деталь 10 кА. Плотность тока равна силе тока делится на площадь поверхности, поэтому плотность тока будет 0,36 кА, или 36 А на каждый квадратный миллиметр поверхности (10 кА / 28 мм2 = 0.36 кА / мм2). Что будет, если кончики грибов измерить 7-миллиметровыми (около 0,040 дюймов больше в диаметре)? Хотя один миллиметр не кажется значительное увеличение, рассмотрим, что происходит с плотностью тока: Наконечники диаметром 7 мм теперь имеют площадь поверхности около 38 мм2 (3,52 * 3,14 дюйма 38). Разделив силу тока на площадь поверхности, получим 0,26 кА или 26 ампер. на каждый квадратный миллиметр поверхности. Разница между 36 Ампер на мм2 и 26 А на мм2 — это довольно значительное снижение на 28% плотность тока! (36 ампер — 26 ампер = разница в 10 ампер; 10 ампер — это 27.78% от 36 Ампер). Разрешая электроды для грибов только на миллиметр больше, более четверти плотности тока было потеряно, хотя такое же количество ток проходит через наконечники. Представьте себе размер убытка, если они выросли на 2, 3 и даже 4 миллиметра! Контроль постоянного тока или сварочный шаговый двигатель может использоваться для регулирования количества используемого тока, но контроллер или шаговый двигатель не отслеживают изменение площади поверхности.Таким образом, даже если ток регулируется, плотность тока не учитывается. К сожалению, недостаточная плотность тока обычно приводит к неадекватным сварные швы. Соблюдение надлежащих графиков профилактического обслуживания может помочь обеспечить достаточная плотность тока, гарантируя, что электроды остаются в хорошее состояние. Как доказано в приведенном выше примере очень важно иметь правильную плотность тока. на участке, где будет производиться сварка.В зависимости от материалов однако при сварке «правильная» плотность тока на самом деле представляет собой диапазон, а не одну конкретную сумму. Инженеры-сварщики называют эту линейку сварной шов. Каждый параметр, участвующий в сварке (ток, напряжение, сопротивление и т. д.) имеет свой диапазон или долю. Сделаны качественные сварные швы когда процесс сварки остается в пределах лепестка. В следующей главе мы обсудим сварные выступы и допуски, позволяющие гарантировать, что процесс сварки не выпадает за пределы доли. |