Период движения по окружности формула: формулы и расчеты — OneKu

Содержание

Движение по окружности, период обращения и частота.

1. Равномерное движение по окружности

Внимание следует обратить на то, что криволинейные движения более распространены, чем прямолинейные. Любой криволинейное движение можно рассматривать как движение по дугам окружностей с разными радиусами. Изучение движения по кругу дает также ключ к рассмотрению произвольного криволинейного движения.

Мы будем изучать движение тел по окружности с постоянной по модулю скоростью. Такое движение называют равномерным движением по кругу.

Наблюдения показывают, что маленькие частицы, которые отделяются от тела, вращающегося летят с той скоростью, которой владели в момент отрыва: грязь из-под колес автомобиля летит по касательной к поверхности колес; раскаленные частицы металла отрываются при заточке резца о точильный камень, вращающийся также летят по касательной к поверхности камня.

Таким образом,

 Во время движения по кругу скорость в любой точке траектории направлена ​​по касательной к окружности в этой точке.

Необходимо обратить внимание учащихся, что при равномерном движении по окружности модуль скорости тела остается постоянным, но направление скорости все время меняется.

2. Период вращения и вращающаяся частота

Движение тела по окружности часто характеризуют не скоростью движения, а промежутком времени, за которое тело совершает один полный оборот. Эта величина называется периодом вращения.

Период обращения — это физическая величина, равная промежутку времени, за который тело равномерно вращается, делает один оборот.

Период вращения обозначается символом T. Например, Земля делает полный оборот вокруг Солнца за 365,25 суток.

При расчетах период обычно выражают в секундах. Если период обращения равен 1с, это означает, что тело за одну секунду делает один полный оборот. Если за время t тело сделало N полных оборотов, то период можно определить по формуле:

    \[T = \frac{t}{N}.\]

Если известен период обращения Т, то можно найти скорость тела v. За время t, равное периоду Т, тело проходит путь, равный длине окружности: l = 2 \pi R

. Итак,

    \[\nu = \frac{l}{T} = \frac{2 \pi R}{T}.\]

Движение тела по окружности можно характеризовать еще одной величиной — числом оборотов по кругу за единицу времени. Ее называют вращающейся частотой:

частота вращения равна количеству полных оборотов за одну секунду.

Частота вращения и период обращения связаны следующим соотношением:

    \[\nu=\frac{1}{T}\]

Частоту в СИ измеряют в

    \[\frac{1}{c}(c^{-1})\]

3. Вращательное движение

В природе довольно распространенный вращательное движение: вращение колес, маховиков, Земли вокруг своей оси и т. Д.

Важной особенностью вращательного движения является то, что все точки тела движутся с тем же периодом, но скорости различных точек могут существенно отличаться, поскольку разные точки движутся по кругам различных радиусов.

Например, при суточном вращении Земли быстрее других движутся точки, находящиеся на экваторе, так как они движутся по кругу крупнейшего радиуса — радиуса Земли. Точки же земной поверхности, находящиеся на других параллелях, движутся с меньшей скоростью, так как длина каждой из этих параллелей меньше длины экватора.

ПРОВЕРЬТЕ СЕБЯ

  1. Приведите два-три примера криволинейного движения.
  2. Приведите два-три примера равномерного движения по кругу.
  3. Что такое вращательное движение? Приведите примеры такого движения.
  4. Как направлена ​​мгновенная скорость при движении по кругу Приведите два-три примера.

1.Равномерное движение по кругу. Внимание учащихся следует обратить на то, что криволинейные движения более распространены, чем прямолинейные. Любой криволинейное движение можно рассматривать как движение по дугам окружностей с разными радиусами. Изучение движения по кругу дает также ключ к рассмотрению произвольного криволинейного движения. Мы будем изучать движение тел по окружности с постоянной по модулю скоростью. Такое движение называют равномерным движением по кругу. Наблюдения показывают, что маленькие частицы, которые отделяются от тела, вращающегося летят с той скоростью, которой владели в момент отрыва: грязь из-под колес автомобиля летит по касательной к поверхности колес; раскаленные частицы металла отрываются при заточке резца о точильный камень, вращающийся также летят по касательной к поверхности камня. Таким образом, • Во время движения по кругу скорость в любой точке траектории направлена ​​по касательной к окружности в этой точке. Необходимо обратить внимание учащихся, что при равномерном движении по окружности модуль скорости тела остается постоянным, но направление скорости все время изменяется.

2. Период вращения и частота вращения. Движение тела по окружности часто характеризуют не скоростью движения, а промежутком времени, за которое тело совершает один полный оборот. Эта величина называется периодом вращения. • Период вращения — это физическая величина, равная промежутку времени, за который тело равномерно вращается, делает один оборот. Период вращения обозначается символом T. Например, Земля делает полный оборот вокруг Солнца за 365,25 суток. При расчетах период обычно выражают в секундах. Если период обращения равен 1с, это означает, что тело за одну секунду делает один полный оборот. Если за время t тело сделало N полных оборотов, то период можно определить по формуле: если известен период обращения Т, то можно найти скорость тела v. За время t, равное периоду Т, тело проходит путь, равный длине окружности:. Итак, движение тела по окружности можно характеризовать еще одной величиной — числом оборотов по кругу за единицу времени. Ее называют вращающейся частотой: • вращающаяся частота равна количеству полных оборотов в одну секунду. Частота вращения и период обращения связаны следующим соотношением: \nu=\frac{1}{T} Частоту в СИ измеряют в обратных секундах.

3. Вращательного движения. В природе довольно распространенно вращательное движение: вращение колес, маховиков, Земли вокруг своей оси и т. д.Важной особенностью вращательного движения является то, что все точки тела движутся с тем же периодом, но скорости различных точек могут существенно отличаться, поскольку разные точки движутся по кругам различных радиусив. Например, при суточном вращении Земли быстрее других движутся точки, находящиеся на экваторе, так как они движутся по кругу самого большого радиуса — радиуса Земли. Точки же земной поверхности, находящиеся на других параллелях, движутся с меньшей скоростью, так как длина каждой из этих параллелей меньше длины экватора.

Движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Наряду с вектором перемещения  удобно рассматривать угловое перемещение Δφ (или угол поворота), измеряемое в радианах (рис. 1.6.1). Длина дуги связана с углом поворота соотношением

При малых углах поворота Δl ≈ Δs.

Рисунок 1.6.1.

Линейное  и угловое Δφ перемещения при движении тела по окружности

Угловой скоростью ω тела в данной точке круговой траектории называют предел (при Δt→0) отношения малого углового перемещения Δφ к малому промежутку времени Δt:

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

При равномерном движении тела по окружности величины υ и ω остаются неизменными. В этом случае при движении изменяется только направление вектора

Равномерное движение тела по окружности является движением с ускорением. Ускорение

направлено по радиусу к центру окружности. Его называют нормальным или центростремительным ускорением. Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

Для доказательства этого выражения рассмотрим изменение вектора скорости   за малый промежуток времени Δt. По определению ускорения

Рисунок 1.6.2.

Центростремительное ускорение тела  при равномерном движении по окружности

Векторы скоростей  и  в точках A и B направлены по касательным к окружности в этих точках. Модули скоростей одинаковы υA =υB = υ.

Из подобия треугольников OAB и BCD (рис. 1.6.2) следует:

При малых значениях угла Δφ = ωΔt расстояние |AB| =Δs ≈ υΔt. Так как |OA| = R и |CD| = Δυ, из подобия треугольников на рис. 1.6.2 получаем:

При малых углах Δφ направление вектора  приближается к направлению на центр окружности. Следовательно, переходя к пределу при Δt→0,  получаем:

При изменении положения тела на окружности изменяется направление на центр окружности. При равномерном движении тела по окружности модуль ускорения остается неизменным, но направление вектора ускорения изменяется со временем. Вектор ускорения в любой точке окружности направлен к ее центру. Поэтому ускорение при равномерном движении тела по окружности называется центростремительным.

В векторной форме центростремительное ускорение может быть записано в виде

где  – радиус-вектор точки на окружности, начало которого находится в ее центре.

Если тело движется по окружности неравномерно, то появляется также касательная (или тангенциальная) составляющая ускорения (см 1.1):

В этой формуле Δυτ = υ2 – υ1 – изменение модуля скорости за промежуток времени Δt.

Направление вектора полного ускорения  определяется в каждой точке круговой траектории величинами нормального и касательного ускорений (рис. 1.6.3).

Рисунок 1.6.3.

Составляющие ускорения  и   при неравномерном движении тела по окружности

Движение тела по окружности можно описывать с помощью двух координат x и y (плоское движение). Скорость тела в каждый момент можно разложить на две составляющие υx и υy (рис. 1.6.4).

При равномерном вращении тела величины x, y, υx, υy будут периодически изменяться во времени по гармоническому закону с периодом

Рисунок 1.6.4.

Разложение вектора скорости   по координатным осям

Движение по окружности: формулы и расчеты

Перемещение тел по окружности достаточно распространено в нашей жизни и в природе. Яркими примерами этого типа перемещения являются вращения ветровых мельниц, планет вокруг своих звезд и колес транспортных средств. В данной статье рассмотрим, какими формулами движение по окружности тел описывается.

Перемещение по окружности и по прямой линии в физике

Вращение колеса обозрения

В физике вопросами движения занимается кинематика. Она устанавливает связь между величинами, описывающими этот процесс. В динамике также уделяется внимание движению, однако она ориентирована на описание причин его возникновения. Другими словами, если для кинематики главными физическими величинами являются путь и скорость, то для динамики — это действующие на тела силы.

В физике принято выделять два идеальных типа траекторий движения:

  • прямая линия;
  • окружность.

Математический аппарат для описания движения по обоим типам траекторий развит настолько хорошо, что понимание формул, например для прямолинейного движения, автоматически приводит к пониманию выражений для движения по окружности. Единственная принципиальная разница между формулами указанных типов перемещения заключается в том, что для движения по окружности удобно использовать угловые характеристики, а не линейные.

Далее в статье будем рассматривать исключительно кинематические формулы движения по окружности тел, не вдаваясь в подробности динамики.

Угловые характеристики движения: угол поворота

Вращение валов

Прежде чем записывать формулы движения по окружности в физике, следует ввести величины, которые будут фигурировать в этих формулах.

Начнем с угла поворота. Будем обозначать его греческой буквой θ (тета). Поскольку вращение предполагает движение точки вдоль одной и той же окружности, то значение угла поворота θ за определенный промежуток времени можно использовать для определения количества оборотов, которое сделала эта точка. Напомним, что вся окружность равна 2*pi радиан, или 360o. Тогда формула для числа оборотов n через угол θ примет вид:

n = θ/(2*pi)

Здесь и далее во всех формулах угол выражается в радианах.

Пользуясь известным углом θ, также можно определить линейное расстояние, которое точка прошла вдоль окружности. Это расстояние будет равно:

L = θ*r

Здесь r — радиус рассматриваемой окружности.

Угловая скорость и ускорение

Вращение спортивного молота

Кинематические формулы движения по окружности точки предполагают также использование понятий угловой скорости и углового ускорения. Обозначим первую буквой ω (омега), а вторую буквой α (альфа).

Физический смысл угловой скорости ω прост: эта величина показывает, на какой угол в радианах поворачивается точка за каждую секунду времени. Данное определение имеет следующее математическое представление:

ω = dθ/dt

Эта формула скорости движения по окружности записана в дифференциальной форме. Полученная с ее помощью величина ω называется мгновенной скоростью. Ее удобно использовать, если движение не является равномерным, то есть происходит с переменной скоростью.

Угловое ускорение α — это величина, которая описывает быстроту изменения скорости ω, то есть:

α = dω/dt

Угловое ускорение измеряется в радианах в секунду квадратную (рад/с2). Так, 1 рад/с2 означает, что тело увеличивает за каждую секунду времени скорость на 1 рад/с.

Учитывая выражение для ω, записанное выше, равенство можно представить в такой форме:

α = d2θ/dt2

В зависимости от особенностей движения по окружности величина α может быть постоянной, переменной или нулевой.

Равномерное движение

Угловая скорость вращения

Когда на вращающееся тело не действует никакая внешняя сила, то угловая скорость будет оставаться постоянной сколь угодно длительное время. Такое движение получило название равномерного вращения. Оно описывается следующей формулой:

θ = ω*t

В этом выражении переменными являются всего две величины: t и θ. Скорость ω = const.

Следует отметить один важный момент: нулю равна лишь равнодействующая внешних сил на тело, внутренние же силы, действующие в системе, нулю не равны. Так, внутренняя сила заставляет вращающееся тело изменять свою прямолинейную траекторию на криволинейную (окружность). Эта сила приводит к появлению центростремительного ускорения. Последнее не изменяет ни скорость ω, ни линейную скорость v, оно лишь изменяет направление движения.

Равноускоренное движение по окружности

Формулы для этого типа перемещения можно получить непосредственно из приведенных математических выражений для величин ω и α. Равноускоренное движение предполагает, что за более-менее длительный промежуток времени модуль и направление ускорения α не изменяются. Благодаря этому можно проинтегрировать дифференциальное выражение для α и получить следующие две формулы:

ω = ω0 + α*t;

ω = ω0 — α*t

Очевидно, что в первом случае движение будет равноускоренным, во втором — равнозамедленным. Величина ω0 здесь — это некоторая начальная скорость, которой вращающееся тело обладало до появления ускорения.

Для равноускоренного движения не существует конечной скорости, поскольку она может возрастать сколь угодно долго. Для равнозамедленного движения конечным состоянием будет прекращение вращения, то есть ω = 0.

Теперь запишем формулы для определения угла θ при движении с постоянным ускорением. Эти формулы получаются, если произвести двойное интегрирование по времени для выражения α через θ. Получаются следующие выражения:

θ = ω0*t + α*t2/2;

θ = ω0*t — α*t2/2

То есть центральный угол θ, на который тело повернется за время t, будет равен сумме двух слагаемых. Первое слагаемое — это вклад в θ равномерного движения, второе — равноускоренного (равнозамедленного).

Связь между угловыми и линейными величинами

Линейные и угловые характеристики

При рассмотрении понятия угла поворота θ уже была приведена формула, которая его связывает с линейным расстоянием L. Здесь же рассмотрим аналогичные выражения для скорости ω и ускорения α.

Линейная скорость v при равномерном движении определяется как расстояние L, пройденное за время t, то есть:

v = L/t

Подставляя сюда выражение для L через θ, получаем:

v = L/t = θ/t*r = ω*r

Мы получили связь между линейной и угловой скоростью. Важно отметить, что удобство использования угловой скорости связано с тем, что она не зависит от радиуса окружности. В свою очередь, линейная скорость v возрастает линейно с увеличением r.

Остается записать связь между линейным ускорением a и его угловым аналогом α. Чтобы это сделать, запишем выражение для скорости v при равноускоренном движении без начальной скорости v0. Получаем:

v = a*t

Подставляем сюда полученное выражение связи между v и ω:

ω*r = a*t =>

a = ω/t*r = α*r

Как и скорость, линейное ускорение, направленное по касательной к окружности, зависит от радиуса.

Ускорение центростремительное

Выше уже было сказано несколько слов об этой величине. Здесь приведем формулы, которые можно использовать для ее вычисления. Через скорость v выражение для центростремительного ускорения ac имеет вид:

ac = v2/r

Через угловую скорость его можно записать так:

ac = ω2*r2/r = ω2*r

Величина ac не имеет никакого отношения к тангенциальному ускорению a. Центростремительное ускорение обеспечивает поддержание вращающегося тела на одной окружности.

Задача на определение угловой скорости вращения планеты

Вращение планеты Меркурий

Известно, что ближе всего к солнцу находится Меркурий. Полагая, что он вращается по окружности вокруг светила, мы можем определить его угловую скорость ω.

Для решения задачи следует обратиться к справочным данным. Из них известно, что планета делает полный оборот вокруг светила за 87 дней 23,23 часа земных. Это время называется периодом обращения. Учитывая, что движение происходит с постоянной угловой скоростью, запишем рабочую формулу:

θ = ω*t =>

ω = θ/t

Остается перевести время в секунды, подставить значение угла θ, соответствующее полному обороту (2*pi), и записать ответ: ω = 8,26*10-7 рад/c.

Движение по окружности с постоянной по модулю скоростью 🐲 СПАДИЛО.РУ

Понятия и определения

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Определение и формулы

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Определение и формулы

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Полезные факты

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты
  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Определение и формула

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с2). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙103 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙106. Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Задание EF17763

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

  • Радиус окружности R1 = R.
  • Радиус окружности R2 = 4R.
  • Центростремительное ускорение: aц.с. = a1 = a2.

Найти нужно ν2.

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Или:

Отсюда:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18273 Верхнюю точку моста радиусом 100 м автомобиль проходит со скоростью 20 м/с. Центростремительное ускорение автомобиля равно…

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор | оценить

формулы и решение типовой задачи :: SYL.ru

Умение описывать движение по окружности является важным для проведения расчетов технических характеристик вращающихся валов и шестерен. Этот вид движения также встречается в быту и природе, например вращение планет вокруг Солнца и фигуристов во время выступления на спортивных соревнованиях. В данной статье рассмотрим, как с точки зрения физики можно описать этот вид движения.

Динамика вращения

Момент силы

Движение по окружности — это вращение некоторого тела или материальной точки вокруг оси. Чтобы тело начало вращаться, необходимо наличие внешнего момента сил, действующего на рассматриваемую систему. Этот момент определяется по формуле:

M = F*d

Здесь F — сила, d — длина рычага (расстояние между осью и точкой приложения силы). Момент силы является величиной векторной. Приведенная формула используется для расчета модуля M.

Действие момента M отражается на системе в виде появления углового ускорения. То есть система начинает вращаться. Главная формула движения по окружности записывается в виде:

M = I*α

Здесь I — момент инерции, α — ускорение угловое. Обе величины имеют свои аналоги для линейного случая. Если с аналогом величины α все понятно, то для момента инерции I необходимо пояснить. Величина I отражает инерционные свойства вращающейся системы. То есть при вращении она играет такую же роль, как обычная масса тела.

Отметим, что приведенное выражение является аналогом второго закона Ньютона для вращения.

Центростремительная и центробежная силы, ускорение

Процесс вращения предполагает наличие некоторой внутренней силы, которая бы обеспечивала криволинейное движение тела. Эта сила называется центростремительной. Согласно названию, она направлена всегда от тела к оси вращения. Поскольку длина рычага d для нее равна нулю, то к возникновению углового ускорения α она не приводит. Тем не менее она изменяет вектор линейной скорости, то есть создает ускорение.

Ускорение при движении по окружности без изменения модуля линейной скорости называется центростремительным. Оно вычисляется по формуле:

ac = v2/r

Где v — линейная скорость материальной точки, вращающейся на расстоянии r от оси.

Помимо центростремительной, можно часто услышать и о центробежной силе. Последняя стремится вывести тело из круговой траектории на прямолинейную. Причиной ее появления являются инерционные свойства вращающейся системы.

При движении по окружности центростремительная и центробежная силы по модулю равны друг другу, а по направлению они противоположны.

Кинематические уравнения вращения

Кинематика характеристики движения по окружности

Движение по окружности, как и по прямой линии, может быть равномерным или происходить с ускорением. В первом случае справедлива формула:

θ = ω*t

То есть центральный угол θ, на который повернется тело за время t, прямо пропорционален угловой скорости ω. Угол θ выражается в радианах, а скорость ω — в радианах в секунду.

Если действует постоянный внешний момент сил на систему, то движение по окружности происходит с некоторым постоянным ускорением α. В таком случае будет справедливо следующее кинематическое выражение:

θ = α*t2/2

Если система сначала вращалась с некоторой скоростью ω0, а затем стала увеличивать частоту своего вращения с ускорением α, то, начиная с момента времени t, когда появилось ускорение, будет справедлива формула:

θ = ω0*t + α*t2/2

Заметим, что это выражение является линейной комбинацией двух предыдущих.

Связь линейных и угловых кинематических характеристик

Вращение Земли вокруг оси

Выше была приведена формула для центростремительного ускорения, записанная через линейную скорость v. Однако эту формулу можно записать также через соответствующую угловую характеристику ω.

Предположим, что вращающееся тело совершило один оборот по окружности за время t. Тогда для линейной и угловой скоростей можно записать:

v = 2*pi*r/t;

ω = 2*pi/t

Откуда видно, что модуль линейной скорости v в r раз больше модуля величины ω, то есть:

v = ω*r

Это равенство связывает угловую и линейную скорости. Используя его, можно записать формулу для ac через ω:

ac = ω2*r

Теперь вычислим в формуле со скоростями производную по времени для левой и правой частей равенства, получим:

dv/dt = dω/dt*r =>

a = α*r

Это равенство связывает направленное по касательной к окружности линейное ускорение a и его угловой аналог α.

Нетрудно доказать, что центральный угол поворота θ при движении по окружности связан с длиной ее дуги L, следующим выражением:

L = θ*r

Здесь, если θ будет равен 2*pi радиан (полный оборот), мы получим длину окружности L.

Решение задачи на определение центростремительной силы

Известно, что к веревке длиной 1 метр привязали камень массой 0,5 кг и стали его вращать с угловой частотой 3 об/с. Необходимо найти силу натяжения веревки Fc.

Сила натяжения веревки

Сила натяжения Fc является центростремительной. Ее можно вычислить по формуле:

Fc = m*ac

Масса камня m известна. Центростремительное ускорение ac можно рассчитать из знания угловой скорости ω. С заданной в задаче частотой f величина ω связана выражением:

ω = 2*pi*f

Тогда центростремительное ускорение будет рассчитываться так:

ac = 4*pi2*f2*r

Искомая сила Fc будет равна:

Fc = 4*pi2*f2*r*m

Если из условия задачи подставить данные в эту формулу, то получится значение силы Fc, приблизительно равное 177,5 Н.

Движение по окружности Википедия

О разновидности перекрёстков: см. Круговой перекрёсток.

В физике кругово́е движе́ние — это вращательное движение материальной точки или тела, когда ось вращения в выбранной системе отсчёта неподвижна и не проходит через центр тела. В этом случае траектория точки или тела является кругом, круговой орбитой. Оно может быть равномерным (с постоянной угловой скоростью) или неравномерным (с переменной угловой скоростью). Вращение трёхмерного тела вокруг неподвижной оси включает в себя круговое движение каждой его части. Мы можем говорить о круговом движении объекта только если можем пренебречь его размерами, так что мы имеем движение массивной точки на плоскости. Например, центр масс тела может совершать круговое движение.

Примеры кругового движения: искусственный спутник на геосинхронной орбите, камень на верёвке, вращающийся по кругу (см. метание молота), болид, совершающий поворот, электрон, движущийся перпендикулярно постоянному магнитному полю, зубчатое колесо, вращающееся внутри механизма.

Круговое движение является ускоренным, даже если происходит с постоянной угловой скоростью, потому что вектор скорости объекта постоянно меняет направление. Такое изменение направления скорости вызывает ускорение движущегося объекта центростремительной силой, которая толкает движущийся объект по направлению к центру круговой орбиты. Без этого ускорения объект будет двигаться прямолинейно в соответствии с законами Ньютона.

Формулы для равномерного кругового движения[ | ]

Рис. 1: Взаимосвязи векторов равномерного кругового движения; вектор Ω, представляющий вращение, перпендикулярен к плоскости орбиты.

Для движения по кругу радиуса R длина окружности будет C = 2π R. Если период вращения есть T, то угловая скорость вращения ω будет равна:

  • ω = 2 π T   . {\displaystyle \omega ={\frac {2\pi }{T}}\ .}

Скорость движения объекта равна

  • v = 2 π R T = ω R {\displaystyle v\,={\frac {2\pi R}{T}}=\omega R}

Угол поворота θ за время t равен:

Движение по кругу — Математика A-Level Версия

Эта страница описывает движение по кругу.

Угловая скорость

Представьте, что объект движется по круговой траектории.

Угловая скорость — это скорость изменения угла (который я пометил «a»). Таким образом, он измеряет, насколько быстро объект движется по кругу.

Угловая скорость обычно измеряется в радианах в секунду (рад / с -1 ), то есть на сколько радиан проходит частица за секунду.Или же его можно измерить в оборотах в секунду, т.е. сколько полных кругов объект проходит за секунду.

Существует формула, соединяющая «нормальную» скорость (обычно называемую «линейной скоростью») и угловую скорость:

где v — линейная скорость, r — радиус окружности, а w — угловая скорость.

Пример

Частица движется по окружности радиусом 10 см. Угловая скорость 2 рад с -1 .Найдите (линейную) скорость.

Нам нужен радиус в метрах, то есть 0,1 м. Используя формулу выше, получаем:

v = 0,1 × 2 = 0,2

Значит скорость 0,2 мс -1 .

Обратите внимание, что если вам дана угловая скорость в оборотах в секунду, вам сначала нужно будет преобразовать ее в радианы в секунду. Для этого помните, что 1 оборот в секунду равен 2p радианам в секунду, потому что в круге 2p радиана.

Радиальное ускорение

Если тело движется по окружности, даже если оно движется с постоянной скоростью, оно ускоряется.Это потому, что он меняет направление (не движется по прямой).

Направление этого ускорения — к центру круга, а его величина определяется выражением:

где v — скорость, а r — радиус круга.

Используя нашу формулу выше, это также можно записать как:

Какой из них вы будете использовать, будет зависеть от того, имеете ли вы дело со скоростью или угловой скоростью.

Ускорение происходит из-за действующей силы:

Представьте, что вы едете в машине, которая быстро свернет за поворот налево.Вы почувствуете силу, тянущую вас в сторону (левую сторону). Это сила, вызывающая ускорение. Сила действует по направлению к центру круга.

Конический маятник

Конический маятник выглядит примерно так:

P — частица. AP — это строка. P движется по синему кругу с угловой скоростью w.

Пример

Предположим, у нас есть конический маятник, как указано выше, где частица имеет массу 2 кг, а радиус круга, по которому движется частица, равен 0.5 м, а угол А составляет 45 градусов. Найдите угловую скорость P.

Масса 2 г (W = мг), где g — ускорение свободного падения.

Вертикальное разрешение: Tcos45 = 2g
Следовательно (√2T) / 2 = 2g, поэтому T = 2√2 g (1)

Теперь используйте 2-й закон Ньютона, чтобы найти уравнение движения в радиальном направлении:
(«F = m r w 2 «)
Tsin45 = 2 × 5 × w 2

Используйте (1), чтобы исключить T:
2√2 g × (√2) / 2 = 10w 2
g / 5 = w 2
Итак, w = √ (g / 5)

Принимая g = 9.8, мы находим, что угловая скорость составляет 1,4 рад с -1

Движение на береговой поверхности

Теперь рассмотрим движение частицы по «наклонной поверхности». Под этим я, например, имею в виду кольцевую гоночную трассу, которая наклонена вверх от центра, чтобы автомобили / мотоциклы не отставали от трассы на высоких скоростях.

Так вот, если машина едет очень быстро, она будет скользить по склону, двигаясь по кругу. Если он будет двигаться медленно, он поскользнется.

Если автомобиль не имеет тенденции к скольжению, силы и ускорение, действующие на кузов, будут такими, как на этой диаграмме (сила трения отсутствует):

Однако, если бы машина двигалась быстрее, она бы соскользнула по склону при движении по трассе. Поэтому сила трения будет действовать, пытаясь предотвратить это:

.

Окружность (периметр) круга с калькулятором

Окружность (периметр) круга с калькулятором — Math Open Reference

Расстояние по краю круга. Также «периферия», «периметр».

Попробуйте это Перетащите оранжевые точки, чтобы переместить и изменить размер круга. Окружность показана синим цветом. Обратите внимание на изменение радиуса, и длина окружности рассчитывается для этого радиуса.

Иногда вы видите слово «окружность», обозначающее изогнутую линию, идущую по окружности.В других случаях это означает длину этой линии, например, «окружность составляет 2,11 см».

Слово «периметр» также иногда используется, хотя обычно оно относится к расстоянию вокруг многоугольников, фигуры, составленные из отрезков прямых линий.


Если известен радиус

Учитывая радиус круга, окружность можно рассчитать по формуле где:
R — радиус окружности
π — Пи, приблизительно 3,142

См. Также Вывод формулы окружности


Если известен диаметр

Если вам известен диаметр окружности, длина окружности может быть найдена по формуле
, где:
D — диаметр окружности
π — Пи, приблизительно 3.142

См. Также Вывод формулы окружности


Если вы знаете район

Если вам известна площадь круга, длину окружности можно найти по формуле
, где:
A — площадь круга
π — Пи, приблизительно 3,142

См. Также Вывод формулы окружности

Калькулятор

Воспользуйтесь калькулятором выше, чтобы вычислить свойства круга.

Введите любое одно значение, и остальные три будут рассчитаны.Например: введите радиус и нажмите «Рассчитать». Будут рассчитаны площадь, диаметр и окружность.

Точно так же, если вы войдете в область, будет вычислен радиус, необходимый для получения этой области, а также диаметр и окружность.

Сопутствующие меры

  • Радиус Радиус — это расстояние от центра круга до любой точки по периметру. См. Радиус круга.
  • Диаметр Расстояние по окружности.Видеть Диаметр круга больше.

Другие темы кружка

Общий

Уравнения окружности

Углы по окружности

Дуги

(C) Открытый справочник по математике, 2011 г.
Все права защищены.

.

Круговые уравнения

Круг сделать легко:

Нарисуйте кривую на расстоянии
«радиуса» от центральной точки.

А так:

Все точки находятся на одинаковом расстоянии
от центра.

Фактически определение круга равно

Круг на графике

Нанесем на график окружность радиуса 5:

А теперь вычислим именно , где находятся все точки.

Делаем прямоугольный треугольник:

А затем используйте Пифагор:

x 2 + y 2 = 5 2

Таких точек бесконечное количество, вот несколько примеров:

х y x 2 + y 2
5 0 5 2 + 0 2 = 25 + 0 = 25
3 4 3 2 + 4 2 = 9 + 16 = 25
0 5 0 2 + 5 2 = 0 + 25 = 25
−4 −3 (−4) 2 + (−3) 2 = 16 + 9 = 25
0 −5 0 2 + (−5) 2 = 0 + 25 = 25

Во всех случаях точка на окружности подчиняется правилу x 2 + y 2 = радиус 2

Мы можем использовать эту идею, чтобы найти пропущенное значение

Пример: x значение 2 и радиус из 5

Начать с: x 2 + y 2 = r 2

Известные нам значения: 2 2 + y 2 = 5 2

Переставить: y 2 = 5 2 -2 2

Корень квадратный с обеих сторон: y = ± √ (5 2 -2 2 )

Решить: y = ± √21

у ≈ ± 4.58 …

( ± означает, что существует два возможных значения: одно с + , другое с )

А вот две точки:

Более общий случай

Теперь поставим центр на (a, b)

Итак, круг — это всех точек (x, y) , которые находятся на расстоянии «r», от центра (a, b) .

Теперь давайте определим, где находятся точки (используя прямоугольный треугольник и Пифагор):

Идея та же, что и раньше, но нам нужно вычесть a и b :

И это «Стандартная форма» для уравнения круга!

Он сразу показывает всю важную информацию: центр (a, b) и радиус r .

Пример: круг с центром в точке (3,4) и радиусом 6:

Начать с:

(x − a) 2 + (y − b) 2 = r 2

Вставьте (a, b) и r:

(x − 3) 2 + (y − 4) 2 = 6 2

Затем мы можем использовать наши навыки алгебры, чтобы упростить и изменить это уравнение, в зависимости от того, для чего оно нам нужно.

Попробуйте сами

«Общая форма»

Но вы можете увидеть уравнение круга, а не знать его !

Потому что это может не быть в аккуратной «Стандартной форме» выше.

В качестве примера поместим некоторые значения в a, b и r, а затем расширим их

Начнем с: (x − a) 2 + (y − b) 2 = r 2

Пример: a = 1, b = 2, r = 3: (x − 1) 2 + (y − 2) 2 = 3 2

Развернуть: x 2 — 2x + 1 + y 2 — 4y + 4 = 9

Соберите как термины: x 2 + y 2 — 2x — 4y + 1 + 4 — 9 = 0

И в итоге получаем:

x 2 + y 2 — 2x — 4y — 4 = 0

Это уравнение круга, но «замаскировано»!

Итак, когда вы видите что-то подобное, подумайте: «хм… что может быть кругом! »

Фактически, мы можем записать его в «Общая форма» , поместив константы вместо чисел:

x 2 + y 2 + Ax + By + C = 0

Примечание. Общая форма всегда имеет x 2 + y 2 для первых двух условий .

Переход от общей формы к стандартной

Теперь представьте, что у нас есть уравнение в общей форме :

x 2 + y 2 + Ax + By + C = 0

Как мы можем поместить его в стандартную форму вот так?

(x − a) 2 + (y − b) 2 = r 2

Ответ — пройти Квадрат (прочтите об этом) дважды… один раз для x и один раз для y :

Пример: x 2 + y 2 — 2x — 4y — 4 = 0

Начать с: x 2 + y 2 — 2x — 4y — 4 = 0

Совместите x с и y с: (x 2 — 2x) + (y 2 — 4y) — 4 = 0

Константа справа: (x 2 — 2x) + (y 2 — 4y) = 4

Теперь завершите квадрат для x (возьмите половину −2, возведите ее в квадрат и прибавьте к обеим сторонам):

(x 2 — 2x + (−1) 2 ) + (y 2 — 4y) = 4 + (−1) 2

И завершите квадрат y (возьмите половину −4, возведите ее в квадрат и прибавьте к обеим сторонам):

(x 2 — 2x + (−1) 2 ) + (y 2 — 4y + (−2) 2 ) = 4 + (−1) 2 + (−2) 2

Убрать:

Упростить: (x 2 — 2x + 1) + (y 2 — 4y + 4) = 9

Наконец: (x — 1) 2 + (y — 2) 2 = 3 2

И он у нас в Стандартном Бланке!

(Примечание: здесь использовался предыдущий пример a = 1, b = 2, r = 3, так что мы все поняли правильно!)

Единичный круг

Если мы поместим центр круга в (0,0) и установим радиус равным 1, то получим:

(x − a) 2 + (y − b) 2 = r 2

(x − 0) 2 + (y − 0) 2 = 1 2

x 2 + y 2 = 1

Каково уравнение единичной окружности

Как нарисовать круг вручную

1.Участок центр (а, б)

2. Нанесите 4 точки «радиусом» от центра вверх, вниз, влево и вправо.

3. Нарисуйте это!

Пример: График (x − 4) 2 + (y − 2) 2 = 25

Формула для круга: (x − a) 2 + (y − b) 2 = r 2

Итак, центр находится в (4,2)

И r 2 составляет 25 , поэтому радиус равен √25 = 5

Итак, мы можем построить:

  • Центр: (4,2)
  • Вверх: (4,2 + 5) = (4,7)
  • Вниз: (4,2−5) = (4, −3)
  • Слева: (4−5,2) = (−1,2)
  • Справа: (4 + 5,2) = (9,2)

А теперь просто нарисуйте в круге как можно лучше!

Как нарисовать круг на компьютере

Нам нужно изменить формулу так, чтобы получилось «y =».

У нас должно получиться два уравнения (верхняя и нижняя точки круга), которые затем можно построить.

Пример: График (x − 4) 2 + (y − 2) 2 = 25

Итак, центр находится в (4,2), а радиус √25 = 5

Переставьте, чтобы получить «y =»:

Начнем с: (x − 4) 2 + (y − 2) 2 = 25

Переместите (x − 4) 2 вправо: (y − 2) 2 = 25 — (x − 4) 2

Извлеките квадратный корень: (y − 2) = ± √ [25 — (x − 4) 2 ]

(обратите внимание на ± «плюс / минус»…
может быть два квадратных корня!)

Переместите «−2» вправо: y = 2 ± √ [25 — (x − 4) 2 ]

Итак, когда мы построим эти два уравнения, у нас должен получиться круг:

  • y = 2 + √ [25 — (x − 4) 2 ]
  • y = 2 — √ [25 — (x − 4) 2 ]

Попробуйте изобразить эти функции на графике функций.

Также можно использовать Equation Grapher, чтобы сделать все это за один раз.

.

Окружность круга (определение, формула и примеры)

    • Классы
      • Класс 1-3
      • Класс 4-5
      • Класс 6-10
      • Класс 11-12
    • КОНКУРСНЫЙ ЭКЗАМЕН
      • BNAT 000 NC
        • 000 NC Книги
          • Книги NCERT для класса 5
          • Книги NCERT для класса 6
          • Книги NCERT для класса 7
          • Книги NCERT для класса 8
          • Книги NCERT для класса 9
          • Книги NCERT для класса 10
          • Книги NCERT для класса 11
          • Книги NCERT для класса 12
        • NCERT Exemplar
          • NCERT Exemplar Class 8
          • NCERT Exemplar Class 9
          • NCERT Exemplar Class 10
          • NCERT Exemplar Class 11
          • NCERT 9000 9000
          • NCERT Exemplar Class
            • Решения RS Aggarwal, класс 12
            • Решения RS Aggarwal, класс 11
            • Решения RS Aggarwal, класс 10
            • 90 003 Решения RS Aggarwal класса 9
            • Решения RS Aggarwal класса 8
            • Решения RS Aggarwal класса 7
            • Решения RS Aggarwal класса 6
          • Решения RD Sharma
            • RD Sharma Class 6 Решения
            • Решения RD Sharma
            • Решения RD Sharma Class 8
            • Решения RD Sharma Class 9
            • Решения RD Sharma Class 10
            • Решения RD Sharma Class 11
            • Решения RD Sharma Class 12
          • PHYSICS
            • Механика
            • Оптика
            • Термодинамика Электромагнетизм
          • ХИМИЯ
            • Органическая химия
            • Неорганическая химия
            • Периодическая таблица
          • MATHS
            • Теорема Пифагора
            • 0004
            • 000300030004
            • 9000
            • Простые числа
            • Взаимосвязи и функции
            • Последовательности и серии
            • Таблицы умножения
            • Детерминанты и матрицы
            • Прибыль и убыток
            • Полиномиальные уравнения
            • Деление фракций
          • 000
          • 000
          • 000
          • 000
          • 000
          • 000 Microology
          • 000
          • 000 Microology
          • 000 BIOG3000
              FORMULAS
              • Математические формулы
              • Алгебраические формулы
              • Тригонометрические формулы
              • Геометрические формулы
            • КАЛЬКУЛЯТОРЫ
              • Математические калькуляторы
              • 0003000 PBS4000
              • 000300030002 Примеры калькуляторов химии
              • Класс 6
              • Образцы бумаги CBSE для класса 7
              • Образцы бумаги CBSE для класса 8
              • Образцы бумаги CBSE для класса 9
              • Образцы бумаги CBSE для класса 10
              • Образцы бумаги CBSE для класса 11
              • Образцы бумаги CBSE чел для класса 12
            • CBSE Контрольный документ за предыдущий год
              • CBSE Контрольный документ за предыдущий год Класс 10
              • Контрольный документ за предыдущий год CBSE, класс 12
            • HC Verma Solutions
              • HC Verma Solutions Class 11 Physics
              • Решения HC Verma, класс 12, физика
            • Решения Лакмира Сингха
              • Решения Лакмира Сингха, класс 9
              • Решения Лакмира Сингха, класс 10
              • Решения Лакмира Сингха, класс 8
            • Заметки CBSE
              • CBSE Notes
                  Примечания CBSE класса 7
                • Примечания CBSE класса 8
                • Примечания CBSE класса 9
                • Примечания CBSE класса 10
                • Примечания CBSE класса 11
                • Примечания CBSE класса 12
              • Примечания к редакции CBSE
                • Примечания к редакции
                  • CBSE Class
                    • Примечания к редакции класса 10 CBSE
                    • Примечания к редакции класса 11 CBSE 9000 4
                    • Примечания к редакции класса 12 CBSE
                  • Дополнительные вопросы CBSE
                    • Дополнительные вопросы по математике класса 8 CBSE
                    • Дополнительные вопросы по науке 8 класса CBSE
                    • Дополнительные вопросы по математике класса 9 CBSE
                    • Дополнительные вопросы по науке класса 9 CBSE
                    • Дополнительные вопросы по математике для класса 10
                    • Дополнительные вопросы по науке, класс 10 по CBSE
                  • CBSE, класс
                    • , класс 3
                    • , класс 4
                    • , класс 5
                    • , класс 6
                    • , класс 7
                    • , класс 8
                    • , класс 9 Класс 10
                    • Класс 11
                    • Класс 12
                  • Учебные решения
                • Решения NCERT
                  • Решения NCERT для класса 11
                    • Решения NCERT для класса 11 по физике
                    • Решения NCERT для класса 11 Химия
                    • Решения для биологии класса 11
                    • Решения NCERT для математики класса 11
                    • 9 0003 NCERT Solutions Class 11 Accountancy
                    • NCERT Solutions Class 11 Business Studies
                    • NCERT Solutions Class 11 Economics
                    • NCERT Solutions Class 11 Statistics
                    • NCERT Solutions Class 11 Commerce
                  • NCERT Solutions For Class 12
                    • NCERT Solutions For Класс 12 по физике
                    • Решения NCERT для химии класса 12
                    • Решения NCERT для класса 12 по биологии
                    • Решения NCERT для класса 12 по математике
                    • Решения NCERT Класс 12 Бухгалтерия
                    • Решения NCERT, класс 12, бизнес-исследования
                    • Решения NCERT, класс 12 Экономика
                    • NCERT Solutions Class 12 Accountancy Part 1
                    • NCERT Solutions Class 12 Accountancy Part 2
                    • NCERT Solutions Class 12 Micro-Economics
                    • NCERT Solutions Class 12 Commerce
                    • NCERT Solutions Class 12 Macro-Economics
                  • NCERT Solutions For Класс 4
                    • Решения NCERT для математики класса 4
                    • Решения NCERT для класса 4 EVS
                  • Решения NCERT для класса 5
                    • Решения NCERT для математики класса 5
                    • Решения NCERT для класса 5 EVS
                  • Решения NCERT для класса 6
                    • Решения NCERT для математики класса 6
                    • Решения NCERT для науки класса 6
                    • Решения NCERT для социальных наук класса 6
                    • Решения NCERT для класса 6 Английский
                  • Решения NCERT для класса 7
                    • Решения NCERT для класса 7 Математика
                    • Решения NCERT для класса 7 Наука
                    • Решения NCERT для класса 7 по социальным наукам
                    • Решения NCERT для класса 7 Английский
                  • Решения NCERT для класса 8
                    • Решения NCERT для класса 8 Математика
                    • Решения NCERT для класса 8 Science
                    • Решения NCERT для социальных наук 8 класса
                    • Решение NCERT ns для класса 8 Английский
                  • Решения NCERT для класса 9
                    • Решения NCERT для социальных наук класса 9
                  • Решения NCERT для математики класса 9
                    • Решения NCERT для математики класса 9 Глава 1
                    • Решения NCERT для Математика класса 9 Глава 2
                    • Решения NCERT для математики класса 9 Глава 3
                    • Решения NCERT для математики класса 9 Глава 4
                    • Решения NCERT
                    • для математики класса 9 Глава 5
                    • Решения NCERT для математики класса 9 Глава 6
                    • Решения NCERT для Математика класса 9 Глава 7
                    • Решения NCERT для математики класса 9 Глава 8
                    • Решения NCERT
                    • для математики класса 9 Глава 9
                    • Решения NCERT
                    • для математики класса 9 Глава 10
                    • Решения NCERT для математики класса 9 Глава 11
                    • Решения NCERT для Математика класса 9 Глава 12
                    • Решения NCERT для математики класса 9 Глава 13
                    • Решения
                    • NCERT для математики класса 9 Глава 14
                    • Решения NCERT для математики класса 9 Глава 15
                  • Решения NCERT для науки класса 9
                    • Решения NCERT для науки класса 9 Глава 1
                    • Решения NCERT для науки класса 9 Глава 2
                    • Решения NCERT для класса 9 Наука Глава 3
                    • Решения NCERT для Науки Класса 9 Глава 4
                    • Решения NCERT для Науки Класса 9 Глава 5
                    • Решения NCERT для Науки Класса 9 Глава 6
                    • Решения NCERT для Науки Класса 9 Глава 7
                    • Решения NCERT для Класса 9 Наука Глава 8
                    • Решения NCERT для Науки Класса 9 Глава 9
                    • Решения NCERT для Науки Класса 9 Глава 10
                    • Решения NCERT для Науки Класса 9 Глава 12
                    • Решения NCERT для Науки Класса 9 Глава 11
                    • Решения NCERT для Класса 9 Наука Глава 13
                    • Решения NCERT для класса 9 Наука Глава 14
                    • Решения NCERT для класса 9 по науке Глава 15
                  • Решения NCERT для класса 10
                    • Решения NCERT для класса 10 по социальным наукам
                  • Решения NCERT для математики класса 10
                    • Решения NCERT для математики класса 10 Глава 1
                    • Решения NCERT для математики класса 10 Глава 2
                    • Решения NCERT для математики класса 10 Глава 3
                    • Решения NCERT для математики класса 10 Глава 4
                    • Решения NCERT для математики класса 10 Глава 5
                    • Решения NCERT для математики класса 10 Глава 6
                    • Решения NCERT для математики класса 10 Глава 7
                    • Решения NCERT для математики класса 10 Глава 8
                    • Решения NCERT для математики класса 10 Глава 9
                    • Решения NCERT
                    • для математики класса 10 Глава 10
                    • Решения
                    • NCERT для математики класса 10 Глава 11
                    • Решения NCERT для математики класса 10 Глава 12
                    • Решения NCERT для математики класса 10 Глава 13
                    • NCERT Sol Решения NCERT для математики класса 10 Глава 14
                    • Решения NCERT для математики класса 10 Глава 15
                  • Решения NCERT для науки класса 10
                    • Решения NCERT для науки класса 10 Глава 1
                    • Решения NCERT для науки класса 10 Глава 2
                    • Решения NCERT для науки 10 класса, глава 3
                    • Решения NCERT для науки 10 класса, глава 4
                    • Решения NCERT для науки класса 10 Глава 5
                    • Решения NCERT для науки класса 10 Глава 6
                    • Решения NCERT для науки класса 10 Глава 7
                    • Решения NCERT для науки 10 класса, глава 8
                    • Решения NCERT для науки класса 10 Глава 9
                    • Решения NCERT для науки класса 10 Глава 10
                    • Решения NCERT для науки класса 10 Глава 11
                    • Решения NCERT для науки класса 10 Глава 12
                    • Решения NCERT для класса 1
            .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *