Постоянный и переменный токи
Мы завершаем изучение темы «Постоянный электрический ток». Тем не менее, в этом параграфе мы рассмотрим и переменный ток. С чем это связано? Причина в самих терминах «постоянный ток» и «переменный ток», названия которых не вполне удачны, поскольку могут трактоваться по-разному в физике и электротехнике: так сложилось исторически. Обратимся к определениям.
В физике постоянным током называют электрический ток, не изменяющийся по силе и направлению с течением времени. Графиком такого «истинно постоянного» тока должна быть прямая, параллельная оси времени (см. рис. «а»). Тем не менее, в электротехнике постоянным током считают ток, который постоянен только по направлению, но может меняться по силе. Такой ток можно получить «выпрямлением» синусоидального переменного тока, например, того, который существует в домашней осветительной сети (см. рис. «б»). В результате получается пульсирующий однонаправленный ток (см. рис. «в»).
В физике переменным током называют электрический ток, изменяющийся с течением времени: по силе и/или направлению. С точки зрения физики, «пульсирующий» ток на рисунке «в» является переменным, поскольку меняется по силе (оставаясь постоянным по направлению). Такой однонаправленный ток в электротехнике считают «постоянным», так как по своим действиям он похож на настоящий постоянный ток. Например, он будет пригоден для зарядки аккумуляторов, работы электродвигателей, проведения электролиза. Переменный по направлению ток для этих целей непригоден.
Примечание. Почему ток в электрических сетях является именно синусоидальным и меняет своё направление 100 раз в секунду, мы расскажем позднее (см. § 10-ж). А пока рассмотрим, как из него можно получить однонаправленный пульсирующий ток – «постоянный» с точки зрения электротехники. Другими словами, как «перебросить» нижние части синусоиды вверх, то есть преобразовать форму тока без потери мощности этого тока? Для этого служат различные приборы, один из которых – полупроводниковый диод, пропускающий через себя ток лишь в одном направлении (см. § 09-и).
Ниже на левой схеме показано включение двух диодов в цепь переменного тока. При этом верхние части синусоиды проходят через верхний диод (по направлению его «стрелочки»), а нижние части синусоиды не проходят через нижний диод (против его «стрелочки»). Таким образом получается пульсирующий однонаправленный ток, и ровно половина исходной мощности не попадает к потребителю, так как образуются «равнины» с нулевым значением силы тока. Для особо интересующихся физикой заметим, что точно такой же результат будет, если оставить только один диод, причём, любой.
На правой схеме показано включение четырёх диодов по так называемой мостовой схеме. Она более выигрышна по сравнению с предыдущей: диоды попарно пропускают как верхние, так и нижние части синусоиды соответственно к клеммам «+» и «–». В результате из исходного переменного тока, на графике кторого можно условно выделить «холмы и овраги», на графике получающегося однонаправленного тока образуются «не холмы и равнины», а «удвоенные холмы». Это означает, что теперь к потребителю попадает вся мощность исходного тока.
И в заключение рассмотрим, как к непостоянному току можно применить закон Джоуля-Ленца Q=I²Rt, описывающий тепловое действие тока. Как быть, если сила тока постоянно меняется? Нужно её заменить на условно-постоянную силу тока, которая производит такое же тепловое действие. Такое условно-постоянное значение силы тока в физике называют эквивалентным (эффективным, действующим) значением силы непостоянного тока.
Определение: эквивалентное значение непостоянного тока равно значению такого постоянного тока, который, проходя через то же сопротивление, выделяет в нём то же количество теплоты за то же время. Именно эквивалентное значение тока показывают нам все амперметры. Аналогично и по отношению к напряжению и вольтметрам. Итак, определить эквивалентные значения непостоянных токов позволяют калориметрические измерения (см. § 06-в).
Отличие постоянного и переменного тока, преобразование тока
Электрическим током называют направленное, упорядоченное движение заряженных частиц.
Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения.
Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.
Разница переменного тока от постоянного
Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени.
Источниками переменного тока на объектах различного назначения являются розетки. К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.
Передача переменного тока потребителям
Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.
Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.
Преобразование переменного тока в постоянный
Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном.
- Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
- Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
- Подключение стабилизаторов напряжения для снижения пульсаций.
Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.
youtube.com/embed/hB5KxADW5vY» frameborder=»0″ allowfullscreen=»allowfullscreen»/>
ПОСТОЯННЫЙ И ПЕРЕМЕННЫЙ ТОК
В 21-веке электроника стала очень популярной. Многие люди хотят узнать больше о радиотехнике и начинают читать специальные книги, хотя многое в книгах не понятно. И поэтому начинают путаться, задавать много вопросов. Не могут найти подходящие и понятные сайты о электронике, где можно вкратце и просто понять что к чему. Но что-то мы далеко ушли, ладно давайте приступим к делу. Задача — рассказать всё подробнее и понятнее о постоянном и переменном токе.
Постоянный ток
До того времени, когда не было радиоприёмников и радиосвязи, был ток который тёк в одну сторону — его назвали постоянным, на графике он изображается прямой линией, как показано на рисунке ниже.
Давайте разберёмся, каков принцип работы этого тока, а он очень прост. Потому что постоянный ток течёт только в одну сторону. На мощных электростанциях вырабатывается переменный ток, его нужно сделать в постоянный.
Переменный ток
Теперь переходим к переменному току, всё радиосвязь появилась, переменный ток стал изюминкой. Рассмотрим график переменного тока. Вы сразу обратили внимание на эти странные буквы, они нам не нужны, кроме одной – Т. У переменного тока есть особенность, он может менять своё направление, например: он, движется то в одну сторону, потом в другую. Этот процесс называется колебанием или периодом. На рисунке период обозначен этой самой буквой Т. Видно, что выше оси t волна, и ниже её, тоже волна. Это значит, что выше оси это движение к плюсу, а ниже, движение к минусу, проще говоря, это положительный полупериод, почему полупериод, потому что два полупериода равны T, то есть равны периоду, значит они всё таки полупериоды.
Запомните: В розетке всегда 220 В переменного тока — он очень опасный. Один удар может даже убить человека, поэтому соблюдайте осторожность!
В памяти у вас должно отложиться: движение постоянного и переменного тока; графики постоянного и переменного тока; что такое частота, полупериод, период.
Кстати забыл сказать, в чём измеряется частота. Запомните: частота измеряется в
Переменный и постоянный ток — электровозы и запчасти: производство, тендеры
Использование двух родов тока в системе тягового электроснабжения железных дорог сложилось исторически. Все дело в том, что на заре электрификации на ЭПС использовались тяговые электродвигатели (ТЭД) исключительно постоянного тока. Это связано с их конструктивными особенностями, возможностью достаточно простыми средствами регулировать скорость и вращающий момент в широких пределах, возможностью работать с перегрузкой и т.д. Говоря техническим языком, электромеханические характеристики двигателей постоянного тока идеально подходят для целей тяги. Двигатели же переменного тока (асинхронные, синхронные) имеют такие характеристики, что без специальных средств регулирования их применение для электротяги становится невозможным. Таких средств регулирования на начальном этапе электрификации еще небыло и поэтому, естественно, в системах тягового электроснабжения применялся постоянный ток при напряжении сначала 1500, а затем 3000 В, или как принято говорить у электриков, 1,5 или 3 кВ. Строились тяговые подстанции, назначением которых является понижение переменного напряжения питающей сети до необходимого значения, и его выпрямление, т.




ПРЕИМУЩЕСТВА ПОСТОЯННОГО ТОКА:
Во-первых подвижной состав в полтора раза дешевле. Во-вторых удельный расход у ЭР2 на холмистом профиле, типичном для московской области порядка 20-21 Вт, у ЭР9 — где-то в районе 28-30. Что касается второго пункта, то не забывайте, что вам придется учитывать также и стоимость электровозов\ электропоездов, которая у машин переменного тока существенно (на 30-50 процентов) выше. Отсюда несложно сделать вывод, что чем больше размеры движения по участку, чем больше убытки от использования переменного тока. Необходимые же расчеты можете сделать самостоятельно. Стоимость электрификации 100 км переменным током на однопутной линии при 2 подстанциях и одностороннем питании будет 65-70 млн долл.,постоянным током при расстоянии между подстанциями в 20 км — порядка 80 млн долл. при таких затаратах на капстроительство текучкой можно смело пренебречь, а цена подвижного состава вам известна — 3,5 млн долл ЭД9, 2,2 млн долл — ЭД4М, 1,4 млн долл — ЭП1. Расчетную цену за электровоз постоянного тока можно взять 1 млн. долл — столько стоит коллекторная машина у Бомбардье. Если использовать асинхронники, то разница в цене достигнет 2 млн долл.за машину. Официальные цифры на 80-е годы показывали , что на участках переменного тока удельный расход на 6-15 процентов выше(не по показаниям счетчиков машин, а именно по ТП). Вкратце — в основном из-за потерь в выпрямительной установке электровоза. Причем потери эти настолько велики — у Вл60 больше трети теряется, что даже система постоянки 1,65 кВ в этом смысле эффективнее переменки 2*25 Кв. ответ: Вы бы ещё электромашинные преобразователи вспомнили. ВЛ60, разработанный фактически в середине 50-х, имеет совершенно доисторические ртутные выпрямители с водяным охлаждением. Впрочем, на тяговых подстанциях линий постоянного тока стояли аналогичные выпрямители. ОБЩЕИЗВЕСТНО, и занесено в учебники со схемами и графиками потребления электроэнергии, что расход электроэнергии на постоянном токе ВСЕГДА меньше при равных условиях.Что и послужило причиной его сохранения как единственной системы на обычных линиях, например в НИдерландах, несмотря на напряжение 1,65 кВ. Что касается цифр, то даже группа безумных сторонников переменки во ВНИИЖТе, травившая ртутью машинистов, в конечном итоге вынуждена была признать как минимум шестипроцентный перерасход электроэнергии на единицу работы при переменном токе. И то — это при сравнении самого эффективного переменника с ВЛ8 при неучете возврата электроэнергии в сеть на постоянке. Реальные же цифры в зависимости от конкретных условий -10-15 процентов. Что и подтвердил недавний перевод участка Лоухи -Мурманиск на переменку. Несмотря на громогласные утверждения тех же придурков, что в свое время поработали с внедрением ртути, что вот мол сейчас все увидят, как эффективен переменный ток. И что получилось? Несмотря на более полное использование мощности локомотива при переменке, что должно было привести к уменьшению удельного расхода электроэнергии, все произошло с точностью до наоборот — расход увеличился, эксплуатационные расходы выросли — в общем история не учит только этих самых… у ВЛ80 потери также достаточно велики. В том же учебники вы прчитаете — расход э\энергии у электровозов переменного тока существенно выше, но у них выше скорость, что дает несравнимое преимущество. Но на практике этого то преимущества у них и нет. Сами знаете, какие на РЖД участковые скорости у грузовых. Значит смысла в электрификации переменным током немного?- мысл в увеличении скорости и не только — мощность 4 осного переменника такая же как у 6-осного постоянника. По системам тока — полигон постоянки и переменки на обычных линиях в ЗапЕвропе примерно одинаков. Ресурс электровозов постоянного тока в значительной мере выработан, электропоездов там почти нет, расходы при переходе с постоянного на переменный ток невелики и делается это быстро. Ну взяли бы голландцы, итальянцы, бельгийцы и перешли бы на переменный ток. Ан нет, Итальянские дороги заказали огромную партию НОВЫХ постоянников -почти 300 штук, что им мешало перейти на переменку, а заодно бы и локомотивный парк сменился бы . Нет, они упорно эксперементируют с постоянным током повышенного напряжения. в России не собираются переводить все участки на переменный ток.
Что перевели на переменный ток?
Участок Зима — Слюдянка. Но ведь он уникален, там самый сложный профиль, чем где бы то ни было. Из-за уклона до 19 тыс. потребляемая мощность велика и это привело к тому, что расстояние между подстанциямив среднем на участке Иркутск — Слюдянка составляет 11 км, а кое-где 7 (!!!) км. При этом площадь сечения проводов достигал 600 кв. мм. Контактная сеть усливалась третьими и даже четвртыми проводами, а количество тяговых подстанций увеличилось по сравнению с первым годом после электрификации в 2 раза. Подыскать в мире похожие примеры достаточно сложно и уж Италия и Бельгия здесь явно не пример. Увеличивать и дальше количество тяговых подстанций и сечение проводов стало невозможным. И это как раз наглядный пример сферы применения именно тяги переменного (повышенной мощности) тока. Так что информация о снижении расходов после перевода вполне правдоподобна. Причины перевода на переменный ток целого направления Мурманск — Кемь мне не известны. Указывается, что на момент перевода износ по системе электроснабжения составил 70%, необходима была замена всего трансформаторно — выпрямительного оборудования на тяговых подстанциях, замена опор, контактной сети и изоляторов. Решили, что лучше всё менять одновременно с вводом переменного тока. Профиль на этом участке мягче, чем на ВСЖД, поэтому, возможно, здесь и увеличился расход энергии. После Мурманск — Кемь хотели перевести на переменный ток и участок Данилов — Ярославль-Гл. — Александров, Ярославль — Кострома, но в последний момент от этой идеи отказались. Здесь проводится реконструкция системы электроснабжения с сохранением системы постоянного тока. Планами предусматривается замена системы тока лишь на двух участках: Мин. Воды — Кисловодск — здесь понятно почему: парк электровозов двойного питания изношен, заменить их нечем, а также с целью ликвидации короткого тягового плеча; Гор. Ключ — Кривенковская и Белоречеснкая — Адлер: тяжёлый профиль (хотя и почти нет грузового движения) и желание увеличить тяговые плечи. Постоянный ток преимущества перед переменным не имеет. По этой причине при новом строительстве линий (и при электрификации линий на автономной тяге) дают предпочтение переменномку току.
Преимущества переменной электротяги:
Уменьшение силы тока в КС за счет применения высокого напряжения 25кВ. Следствие — более длинные интервалы между тяговыми подстанциями и уменьшение количества самих подстанций. Любое необходимое напряжение на электровозе и электропоезде можно получить за счет трансформатора, который имеет кпд, близкий к 100% и очень высокую надежность. (при постоянном токе для этих целей используются электромашинные преобразователи (мотор-генераторы) или электронные статические преобразователи, которые дОроги и ненадежны. На переменном токе на электровоз можно передавать гораздо большую мощность, чем на постоянном. Отсюда и ограничение 200км/ч для скоростных поездов на постоянном токе. КС переменного тока можно использовать, как резервное питание для устройств СЦБ. На постоянном токе кроме основной ВСЛСЦБ на опоры КС еще вешают ВЛПЭ. На переменном токе проще погасить электрическую дугу, которая возникает при проходе секционных изоляторов, при пробое воздушных промежутков (молниезащита), при переключениях мачтовых разъединителей, поскольку дуга может сама погаснуть при переходе фазы через нулевое значение, причем вне зависимости от наличия в цепи реактивных сопротивлений. (На постоянном токе наличие реактивных сопротивлений только усугубляет ситуацию с дугогашением). Проще конструкция тяговых подстанций. Нетрудно догадаться, что один мощный выпрямитель гораздо ненадежнее, чем выпрямитель на порядок меньшей мощности на каждом электровозе/мотор-вагоне. Есть еще ряд мелких преимуществ…
Постоянный ток. Определение и параметры
Постоянный ток (DC — Direct Current) — электрический ток, не меняющий своей величины и направления с течением времени.
В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.
Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.
Постоянная составляющая тока и напряжения.
DC Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации — изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.
В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным. В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.
Постоянная составляющая DC — величина, равная среднему значению тока за период.
AVG — аббревиатура Avguste — Среднее.
Переменная составляющая AC — периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения .
Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин — постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.
Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .
Отличие постоянного тока от переменного
По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление.
В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей.
А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей.
Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.
Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий — постоянная его величина,
которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей.
Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.
Для переменного тока (напряжения) в большинстве случаев бывает важен критерий — отсутствие постоянной составляющей, когда среднее значение равно нулю.
Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети.
В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.
Параметры постоянного тока и напряжения
Сразу следует отметить, что устаревший термин «сила тока» в современной отечественной технической литературе используется уже нечасто и
признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.
Основным параметром для постоянного тока является величина тока.
Единица измерения тока — Ампер.
Величина тока 1 Ампер — перемещение заряда 1 Кулон за 1 секунду.
Единица измерения напряжения — Вольт.
Величина напряжения 1 Вольт — разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.
Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:
Размах пульсаций напряжения (тока) — величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций — величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.
Похожие статьи: Параметры переменного тока.
Замечания и предложения принимаются и приветствуются!
Каким образом происходит выпрямление переменного тока
Каким образом происходит выпрямление переменного тока
Переменный ток — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.
Как известно, электростанции вырабатывают переменный ток. Переменный ток легко преобразуется с помощью трансформаторов, он передается по проводам с минимальными потерями, на переменном токе работают многие электродвигатели, в конце концов, все промышленные и бытовые сети работают сегодня именно на переменном токе.
Однако для некоторых применений переменный ток принципиально не годится. Заряжать аккумуляторы необходимо постоянным током, электролизные установки питаются постоянным током, светодиоды требуют постоянного тока, и много где еще просто не обойтись без постоянного тока, не говоря уже о гаджетах, где изначально используются аккумуляторы. Так или иначе, иногда приходится добывать постоянный ток из переменного путем его преобразования, для решения этой задачи и прибегают к выпрямлению переменного тока.
Для выпрямления переменного тока используют диодные выпрямители. Простейшая схема выпрямителя, содержащая всего один полупроводниковый диод, называется однополупериодным выпрямителем. Переменный ток здесь проходит через первичную обмотку трансформатора, вторичная обмотка которого одним своим выводом соединена с анодом диода, а другим — с цепью нагрузки, которая в свою очередь, будучи присоединена к катоду диода, замыкает вторичную цепь трансформатора.
Рассмотрим, что происходит в первый момент времени, когда к аноду диода приложено положительное, относительно его катода, напряжение, действующее в течение первого полупериода переменного тока.
В этот момент электроны движутся от катода к аноду диода, через провод вторичной обмотки трансформатора, через дроссель и далее через нагрузку, — так замыкается цепь. Когда начинается противоположный полупериод, электроны от анода к катоду проникнуть не могут, поэтому тока в цепи во время этого полупериода нет. С наступлением следующего полупериода процесс повторяется.
Итак, поскольку ток в цепи течет лишь во время одного из полупериодов, такой тип выпрямления называется однополупериодным выпрямлением. А по причине того, что во время отрицательных полупериодов ток в цепь нагрузки не попадает, форма его получается пульсирующей, ведь действует он в одном направлении, хотя и изменяется по величине.
Сглаживающий фильтр, состоящий из дросселя (катушки индуктивности) и конденсаторов, применяется в данной схеме для того, чтобы снизить уровень пульсаций на нагрузке, и сделать ток почти идеально постоянным. Практически переменную составляющую схема фильтра в нагрузку не пропускает, пропускает лишь постоянную составляющую.
Катушка обладает индуктивным сопротивлением, которое зависит от частоты тока, и чем выше частота — тем больше индуктивное сопротивление катушки, поэтому переменной составляющей пульсирующего тока катушка сопротивляется. Постоянную составляющую катушка пропускает легко.
Конденсатор же пропускает переменную составляющую, но не пропускает постоянную, и чем выше частота тока, тем сильнее конденсатор ее пропускает. В общем и целом чем больше емкость конденсатора и чем выше индуктивность катушки дросселя — тем меньше ненужной переменой составляющей в постоянном токе, текущем конкретно через нагрузку.
Итак, когда в цепи действует положительная полуволна тока, первый конденсатор заряжается до амплитудной величины переменного напряжения вторичной обмотки (минус падение напряжения на диоде). Когда действует отрицательная полуволна, электричество в конденсатор не поступает, и он, разряжаясь на нагрузку, поддерживает в ней постоянный ток.
Если бы не было дросселя, то поскольку напряжение на конденсаторе в ходе данного процесса уменьшалось бы, ток на нагрузке так или иначе имел бы сильные пульсации. Чтобы пульсации понизить, в цепь и добавляется дроссель (катушка), да еще и с дополнительным конденсатором, расположенным за ним. Второй конденсатор принимает на себя ток, идущий через дроссель, который уже почти не содержит пульсаций.
Чтобы пульсации сгладить еще лучше, применяют двухполупериодный выпрямитель. Двухполупериодный выпрямитель может быть реализован одним из двух способов. Он может быть выполнен по мостовой схеме (состоящей из четырех диодов), либо включать в себя всего два диода, но тогда вторичная обмотка трансформатора должна иметь удвоенное количество витков и вывод посередине между половинами обмоток.
Двухполупериодный выпрямитель работает следующим образом. В течение одного из полупериодов (допустим, положительного) ток направлен от анода к катоду верхнего по схеме диода, а нижний по схеме диод ток в это время не пропускает, он заперт (так же ведет себя единственный диод в однополупериодном выпрямителе во время отрицательной полуволны тока).
Ток замыкается через фильтр, нагрузку, и далее — через средний вывод на обмотку трансформатора. Когда наступает второй полупериод, полярность тока такова, что нижний по схеме диод пропускает ток через фильтр и через нагрузку, а верхний диод заперт. Далее процессы повторяются.
Поскольку ток здесь подается к нагрузке в течение каждого из двух периодов, такое выпрямление называется двухполупериодным выпрямлением, а выпрямитель — двухполупериодным выпрямителем. Пульсации на выходе здесь вдовое меньше, чем у однополупериодного выпрямления, поскольку частота выпрямленных импульсов вдвое больше, индуктивное сопротивление дросселя получается вдвое большим, а конденсаторы не успевают значительно разряжаться.
Ранее ЭлектроВести писали о переменном и постоянном токе в индустрии красоты.
По материалам electrik.info.
Переменный и постоянный ток соотношение. Преимущества высоковольтных ЛЭП постоянного тока
И . Прежде чем подробно разбирать эти термины следует вспомнить, что понятие электрического тока заключается в упорядоченном движении частиц, имеющих электрические заряды. Если электроны постоянно осуществляют движение в одном направлении, то ток носит название постоянного. Но, когда электроны в один момент времени двигаются в одном направлении, а в другой момент осуществляется движение в другом направлении, то это является упорядоченным движением заряженных частиц, двигающихся без остановки. этот ток называют переменным. Существенным различием между ними считают то, что у постоянного значения «+» и «-» постоянно находятся на одном определенном месте.
Что такое постоянное напряжение
В качестве примера постоянного напряжения служит обычная батарейка. На корпусе любой батарейки есть обозначения «+» и «-». Это говорит о том, что при постоянном токе эти значения имеют постоянное местоположение. У переменного наоборот, значения «+» и «-» изменяются через определенные короткие промежутки времени. Поэтому обозначение постоянного тока применяется в виде одной прямой линии, а обозначение переменного — в виде одной волнистой линии.
Отличие постоянного тока от переменного
Большинство устройств, использующих постоянный ток, не позволяют при подключении источника питания путать контакты, поскольку в таком случае прибор может просто выйти из строя. При переменном этого не произойдет. Если вставить вилку в розетку любой стороной, то прибор все равно будет работать. Кроме того, существует такое понятие, как частота переменного тока. Она показывает, сколько раз в течение секунду меняются местами «минус» с «плюсом». Например, частота в 50 герц означает, изменение полярности напряжения за секунду 50 раз.
На представленных графиках видно изменение напряжения в различные временные моменты. На графике слева, для примера показано напряжение на контактах лампочки карманного фонарика. На отрезке времени с «0» до точки «а» напряжение вообще отсутствует, так как фонарик выключен. В точке времени «а» возникает напряжение U1, которое не меняется в промежутке времени «а» — «б», когда фонарик включен. При выключении фонарика в момент времени «б» напряжение снова становится равным нулю.
На графике переменного напряжения можно наглядно увидеть, что напряжение в различных точках, то поднимается до максимума, то становится равным нулю, то падает до минимума. Это движение происходит равномерно, через одинаковые промежутки времени и повторяется до тех пор, пока не отключат свет.
Переменный ток , в отличие от , непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.
Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению.
Такие источники называются генераторами переменного тока.
На рис. 1 показана схема устройства (модель) простейшего .
Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле . Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).
Рисунок 1. Схема простейшего генератора переменного тока
Убедимся в том, что такое устройство действительно является источником переменной ЭДС.
Предположим, что магнит создает между своими полюсами , т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б .
Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.
В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.
В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки .
Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.
Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.
Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.
Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.
ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.
Используя , можно получить переменную ЭДС и, следовательно, переменный ток.
Переменный ток для промышленных целей и вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.
Графическое изображение постоянного и переменного токов
Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.
Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).
На рис. 2 графически изображены постоянный и переменный токи . В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.
Рисунок 2. Графическое изображение постоянного и переменного токаСама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.
Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.
Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.
То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.
Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.
Перейдем теперь к изучению графика переменной ЭДС . На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.
Рисунок 3. Построение графика переменной ЭДС
Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.
В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.
При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).
По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.
Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).
При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.
График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение.
Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5)
На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.
Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.
Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.
Полученная нами волнообразная кривая называется синусоидой , а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными .
Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.
Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.
Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока .
Период, амплитуда и частота — параметры переменного тока
Переменный ток характеризуется двумя параметрами — периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.
Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.
Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.
Мы прежде всего обратили внимание на , однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.
Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.
i, е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.
Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока; полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.
Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения; но уже в обратном на правлении, по истечении времени, равного 3/4 Т.
Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.
Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.
Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды , необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f
Измеряется единицей, называемой герцем.
Если мы имеем переменный ток , частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.
Итак, мы определили параметры переменного тока — период, амплитуду и частоту , — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.
При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту .
Круговая частота обозначается связана с частотой f соотношением 2пиf
Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается рамка в 1 секунду, и выражает собой скорость вращения рамки, которую принято называть угловой или круговой скоростью.
Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна 360°f.
Итак, мы пришли к выводу, что 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2пи радиан, где пи=3,14. Таким образом, окончательно получим 2пиf. Следовательно, чтобы определить круговую частоту переменного тока (), надо частоту в герцах умножить на посто янное число 6,28.
Люди, мало-мальски знакомые с электротехникой, без труда ответят на вопрос о том, какой ток в розетке. Конечно же переменный. Этот вид электричества гораздо проще производить и передавать на большие расстояния, а потому выбор в пользу переменного тока очевиден.
Виды тока
Существует два вида тока — постоянный и переменный. Чтобы понять разницу и определить, постоянный или переменный ток находится розетке, следует вникнуть в некоторые технические особенности. Переменный ток имеет свойство изменяться по направлению и величине. Постоянный же ток обладает устойчивыми качествами и направлением передвижения заряженных частиц.
Переменный ток выходит из генераторов электростанции с напряжением, составляющим 220–440 тысяч вольт. При подходе к многоквартирному зданию ток уменьшается до 12 тысяч вольт, а на трансформаторной станции преобразуется в 380 вольт. Напряжение между фазами именуют линейным. Низковольтный участок понижающей подстанции выдает три фазы и нулевой (нейтральный) провод. Подключение энергопотребителей осуществляется от одной из фаз и нулевого провода. Таким образом, в здание заходит переменный однофазный ток с напряжением 220 вольт.
Схема распределения электроэнергии между домами представлена ниже:
В жилище электричество поступает на счетчик, а далее — через автоматы на коробки каждого помещения. В коробках имеется разводка по комнате на пару цепей — розеточную и осветительной техники. Автоматы могут предусматриваться по одному для каждого помещения или по одному для каждой цепи. С учетом того, на сколько ампер рассчитана розетка, она может быть включена в группу или быть подключенной к выделенному автомату.
Переменный ток составляется примерно 90% всей потребляемой электроэнергии. Столь высокий удельный вес вызван особенностями этого вида тока — его можно транспортировать на значительные расстояния, изменяя на подстанциях напряжение до нужных параметров.
Источниками постоянного тока чаще всего являются аккумуляторные батареи, гальванические элементы, солнечные панели, термопары. Постоянный ток широко используется в локальных сетях автомобильного и воздушного транспорта, в компьютерных электросхемах, автоматических системах, радио- и телевизионной аппаратуре. Постоянный ток применяется в контактных сетях железнодорожного транспорта, а также на корабельных установках.
Обратите внимание! Постоянный ток используется во всех электронных приборах.
На схеме, представленной ниже, показаны принципиальные отличия между постоянным и переменным токами.
Параметры домашней электрической сети
Основными параметрами электричества являются его напряжение и частота. Стандартное напряжение для домашних электросетей — 220 вольт. Общепринятая частота — 50 герц. Однако в США используется другое значение частоты — 60 герц. Параметр частоты задается генерирующим оборудованием и является неизменным.
Напряжение в сети конкретного дома или квартиры может быть отличным от номинала (220 вольт). На данный показатель влияет техническое состояние оборудования, сетевые нагрузки, загруженность подстанции. В результате напряжение может отклоняться от заданного параметра в ту или другую сторону на 20–25 вольт.
Скачки напряжения отрицательно сказываются на работоспособности электробытовой техники, поэтому подключения в домашней сети рекомендуется осуществлять через стабилизаторы напряжения.
Токовая нагрузка
Все розетки имеют определенную маркировку, по которой можно судить о допустимой токовой нагрузке. Например, обозначение «5A» указывает на максимальную силу тока в 5 ампер. Допустимые показатели следует соблюдать, поскольку в противном случае возможен выход оборудования из строя, в том числе его возгорание.
Маркировка на розетках показана на рисунке внизу:
Ко всем легально продаваемым электроприборам прилагается паспорт, где указана потребляемая мощность или номинал токовой нагрузки. Крупнейшими потребителями электроэнергии являются такие электробытовые приборы, как кондиционеры, микроволновые печи, стиральные машины, кухонные электроплиты и духовки. Таким приборам для нормальной работы понадобится розетка с нагрузкой не меньше 16 ампер.
Если же в документации к электробытовой технике отсутствуют сведения о потребляемых амперах (сила тока в розетке), определение нужных величин осуществляется по формуле электрической мощности:
Показатель мощности имеется в паспорте, напряжение сети известно. Чтобы определить потребление электричества, нужно показатель мощности (указывается только в ваттах) разделить на величину напряжения.
Разновидности розеток
Розетки предназначены для создания контакта между электрической сетью и бытовой техникой. Они изготовлены так, чтобы обеспечить надежную защиту от случайных прикосновений к токоведущим элементам. Современные модели чаще всего оснащены защитным заземлением, представленным в виде отдельного контакта.
По способу монтажа существует два вида розеток — открытые и скрытые. Выбор разновидности розетки во многом определяется типом монтажа. К примеру, при организации наружной проводки используют накладные открытые розетки. Такая фурнитура проста в монтаже и не нуждается в нишах для подрозетников. Встроенные же модели более привлекательны с эстетической точки зрения и более безопасны, поскольку токоведущие элементы находятся внутри стены.
Розетки отличаются по токовой величине. Большая часть устройств предназначена для работы с 6, 10 или 16 амперами. Старые образцы советского производства рассчитаны только на 6,3 ампера.
Обратите внимание! Максимально возможный для розетки ток должен находиться в соответствии с мощностью потребителя, подключаемого к электросети.
Методы измерения напряжения и тока
Чтобы измерить показатели напряжения и тока применяются следующие способы:
- Наиболее простой метод — подключение к розетке электрического прибора соответствующего напряжения. Если в розетке есть ток, электроприбор будет функционировать.
- Индикатор напряжения. Это приспособление может быть однополюсным и представлять собой специальную отвертку. Также выпускаются двухполюсные индикаторы с парой контакторов. Однополюсное устройство определяет фазу в розеточном контакте, но не обнаруживает наличие или отсутствие нуля. Двухполюсный же индикатор показывает ток между фазами, а также между нулем и фазой.
- Мультиметр (мультитестер). С помощью специального тестера проводятся измерения любого типа тока, присутствующего в розетке — как переменного, так и постоянного. Также мультиметром проверяют уровень напряжения.
- Контрольная лампа. С помощью лампы определяют наличие электричества в розетке при условии, что лампочка в контрольном приборе соответствует напряжению в тестируемой розетке.
Перечисленной выше информации вполне достаточно для общего понимания принципов организации электрической сети в доме. Приступать к проведению любых электротехнических работ следует только с соблюдением всех мер безопасности и при наличии соответствующей квалификации.
Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.
Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.
Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.
Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:
АС: Электростанции и генераторы переменного тока производят переменный ток.
DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.
Применение переменного и постоянного тока:
АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.
DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.
Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.
Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.
Среди видов электрического тока различают:
Постоянный ток:
Обозначение (-) или DC (Direct Current = постоянный ток).
Переменный ток:
Обозначение (
) или AC (Alternating Current = переменный ток).
В случае постоянного тока (-) ток течет в одном направлении. Постоянный ток поставляют, например, сухие батарейки, солнечные батареи и аккумуляторы для приборов с небольшим потреблением электротока. Для электролиза алюминия, при дуговой электросварке и при работе электрифицированных железных дорог требуется постоянный ток большой силы. Он создается с помощью выпрямления переменного тока или с помощью генераторов постоянного тока.
В качестве технического направления тока принято, что он течет от контакта со знаком «+» к контакту со знаком «-».
В случае переменного тока (
) различают однофазный переменный ток, трехфазный переменный ток и высокочастотный ток.
При переменном токе ток постоянно изменяет свою величину и свое направление. В западноевропейской энергосети ток за секунду меняет свое направление 50 раз. Частота изменения колебаний в секунду называется частотой тока. Единица частоты — герц (Гц). Однофазный переменный ток требует наличия проводника, проводящего напряжение, и обратного проводника.
Переменный ток применяется на стройплощадке и в промышленности для работы электрических машин, например ручных шлифовальных устройств, электродрелей и круговых пил, а также для освещения стройплощадок и оборудования стройплощадок.
Генераторы трехфазного переменного тока вырабатывают на каждой из своих трех намоток переменное напряжение частотой 50 Гц. Этим напряжением можно снабжать три раздельные сети и при этом использовать для прямых и обратных проводников всего шесть проводов. Если объединить обратные проводники, то можно ограничиться только четырьмя проводами
Общим обратным проводом будет нейтральный проводник (N). Как правило, он заземляется. Три другие проводника (внешние проводники) имеют краткое обозначение LI, L2, L3. В единой энергосистеме Германии напряжение между внешним проводником и нейтральным проводником, или землей, составляет 230 В. Напряжение между двумя внешними проводниками, например между L1 и L2, составляет 400 В.
О высокочастотном токе говорят, когда частота колебаний значительно превышает 50 Гц (от 15 кГц до 250 МГц). С помощью высокочастотного тока можно нагревать токопроводящие материалы и даже плавить их, например металлы и некоторые синтетические материалы.
Преобразователи переменного постоянного тока. Устройство.
Василий Сонькин
Если вдоль всего Садового кольца встанут люди, возьмутся за руки, и одновременно будут шагать в одну сторону, то через каждый перекресток будет проходить много людей. Это постоянный ток. Если же они будут делать пару шагов вправо, потом влево, через каждый перекресток пройдет много людей, но это будут одни и те же люди. Это переменный ток.
Ток – это движение электронов в определенном направлении. Оно нужно, чтобы в наших устройствах тоже двигались электроны. Откуда берется ток в розетке?
Электростанция преобразует кинетическую энергию электронов в электрическую. То есть, гидроэлектростанция использует проточную воду для вращения турбины. Пропеллер турбины вращает клубок меди между двух магнитов. Магниты заставляют электроны в меди двигаться, из-за этого начинают двигаться электроны в проводах, которые присоединены к клубку меди — получается ток.
Генератор — как насос для воды, а провод – как шланг. Генератор-насос качает электроны-воду через провода-шланги.
Переменный ток — это тот ток, который у нас в розетке. Он называется переменным, потому что направление движения электронов постоянно меняется. У переменного тока из розеток бывает разная частота и электрическое напряжение. Что это значит? В российских розетках частота 50 герц и напряжение 220 вольт. Получается, что за секунду поток электронов 50 раз меняет направление движения электронов и заряд с положительного на отрицательный. Смену направлений можно заметить в флуоресцентных лампах, когда их включаешь. Пока электроны разгоняются, она несколько раз мигает — это и есть смена направлений движения. А 220 вольт — это максимально возможный «напор», с которым движутся электроны в этой сети.
В переменном токе постоянно меняется заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Если бы напряжение было 100% постоянно, то понадобился бы провод огромного диаметра, а с меняющимся зарядом провода могут быть тоньше. Это удобно. По небольшому проводу электростанция может отправить миллионы вольт, потом трансформатор для отдельного дома забирает, например 10000 вольт, и в каждую розетку выдает по 220.
Постоянный ток — это ток, который у вас в телефонном аккумуляторе или батарейках. Он называется постоянным, потому что направление движения электронов не меняется. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в аккумуляторах.
Что такое переменный ток и чем он отличается от тока постоянного
Переменный ток. в отличие от тока постоянного. непрерывно изменяется как по величине, так и по направлению, причем изменения эти происходят периодически, т. е. точно повторяются через равные промежутки времени.
Чтобы вызвать в цепи такой ток, используются источники переменного тока, создающие переменную ЭДС, периодически изменяющуюся по величине и направлению. Такие источники называются генераторами переменного тока.
На рис. 1 показана схема устройства (модель) простейшего генератора переменного тока.
Прямоугольная рамка, изготовленная из медной проволоки, укреплена на оси и при помощи ременной передачи вращается в поле магнита. Концы рамки припаяны к медным контактным кольцам, которые, вращаясь вместе с рамкой, скользят по контактным пластинам (щеткам).
Рисунок 1. Схема простейшего генератора переменного тока
Убедимся в том, что такое устройство действительно является источником переменной ЭДС.
Предположим, что магнит создает между своими полюсами равномерное магнитное поле. т. е. такое, в котором плотность магнитных силовых линий в любой части поля одинаковая. вращаясь, рамка пересекает силовые линии магнитного поля, и в каждой из ее сторон а и б индуктируются ЭДС.
Стороны же в и г рамки — нерабочие, так как при вращении рамки они не пересекают силовых линий магнитного поля и, следовательно, не участвуют в создании ЭДС.
В любой момент времени ЭДС, возникающая в стороне а, противоположна по направлению ЭДС, возникающей в стороне б, но в рамке обе ЭДС действуют согласно и в сумме составляют обшую ЭДС, т. е. индуктируемую всей рамкой.
В этом нетрудно убедиться, если использовать для определения направления ЭДС известное нам правило правой руки.
Для этого надо ладонь правой руки расположить так, чтобы она была обращена в сторону северного полюса магнита, а большой отогнутый палец совпадал с направлением движения той стороны рамки, в которой мы хотим определить направление ЭДС. Тогда направление ЭДС в ней укажут вытянутые пальцы руки.
Для какого бы положения рамки мы ни определяли направление ЭДС в сторонах а и б, они всегда складываются и образуют общую ЭДС в рамке. При этом с каждым оборотом рамки направление общей ЭДС изменяется в ней на обратное, так как каждая из рабочих сторон рамки за один оборот проходит под разными полюсами магнита.
Величина ЭДС, индуктируемой в рамке, также изменяется, так как изменяется скорость, с которой стороны рамки пересекают силовые линии магнитного поля. Действительно, в то время, когда рамка подходит к своему вертикальному положению и проходит его, скорость пересечения силовых линий сторонами рамки бывает наибольшей, и в рамке индуктируется наибольшая ЭДС. В те моменты времени, когда рамка проходит свое горизонтальное положение, ее стороны как бы скользят вдоль магнитных силовых линий, не пересекая их, и ЭДС не индуктируется.
Таким образом, при равномерном вращении рамки в ней будет индуктироваться ЭДС, периодически изменяющаяся как по величине, так и по направлению.
ЭДС, возникающую в рамке, можно измерить прибором и использовать для создания тока во внешней цепи.
Используя явление электромагнитной индукции. можно получить переменную ЭДС и, следовательно, переменный ток.
Переменный ток для промышленных целей и для освещения вырабатывается мощными генераторами, приводимыми во вращение паровыми или водяными турбинами и двигателями внутреннего сгорания.
Графическое изображение постоянного и переменного токов
Графический метод дает возможность наглядно представить процесс изменения той или иной переменной величины в зависимости от времени.
Построение графиков переменных величин, меняющихся с течением времени, начинают с построения двух взаимно перпендикулярных линий, называемых осями графика. Затем на горизонтальной оси в определенном масштабе откладывают отрезки времени, а на вертикальной, также в некотором масштабе, — значения той величины, график которой собираются построить (ЭДС, напряжения или тока).
На рис. 2 графически изображены постоянный и переменный токи. В данном случае мы откладываем значения тока, причем вверх по вертикали от точки пересечения осей О откладываются значения тока одного направления, которое принято называть положительным, а вниз от этой точки — противоположного направления, которое принято называть отрицательным.
Рисунок 2. Графическое изображение постоянного и переменного тока
Сама точка О служит одновременно началом отсчета значений тока (по вертикали вниз и вверх) и времени (по горизонтали вправо). Иначе говоря, этой точке соответствует нулевое значение тока и тот начальный момент времени, от которого мы намереваемся проследить, как в дальнейшем будет изменяться ток.
Убедимся в правильности построенного на рис. 2, а графика постоянного тока величиной 50 мА.
Так как этот ток постоянный, т. е. не меняющий с течением времени своей величины и направления, то различным моментам времени будут соответствовать одни и те же значения тока, т. е. 50 мА. Следовательно, в момент времени, равный нулю, т. е. в начальный момент нашего наблюдения за током, он будет равен 50 мА. Отложив по вертикальной оси вверх отрезок, равный значению тока 50 мА, мы получим первую точку нашего графика.
То же самое мы обязаны сделать и для следующего момента времени, соответствующего точке 1 на оси времени, т. е. отложить от этой точки вертикально вверх отрезок, также равный 50 мА. Конец отрезка определит нам вторую точку графика.
Проделав подобное построение для нескольких последующих моментов времени, мы получим ряд точек, соединение которых даст прямую линию, являющуюся графическим изображением постоянного тока величиной 50 мА.
Построение графика переменной ЭДС
Перейдем теперь к изучению графика переменной ЭДС. На рис. 3 в верхней части показана рамка, вращающаяся в магнитном поле, а внизу дано графическое изображение возникающей переменной ЭДС.
Рисунок 3. Построение графика переменной ЭДС
Начнем равномерно вращать рамку по часовой стрелке и проследим за ходом изменения в ней ЭДС, приняв за начальный момент горизонтальное положение рамки.
В этот начальный момент ЭДС будет равна нулю, так как стороны рамки не пересекают магнитных силовых линий. На графике это нулевое значение ЭДС, соответствующее моменту t = 0, изобразится точкой 1.
При дальнейшем вращении рамки в ней начнет появляться ЭДС и будет возрастать по величине до тех пор, пока рамка не достигнет своего вертикального положения. На графике это возрастание ЭДС изобразится плавной поднимающейся вверх кривой, которая достигает своей вершины (точка 2).
По мере приближения рамки к горизонтальному положению ЭДС в ней будет убывать и упадет до нуля. На графике это изобразится спадающей плавной кривой.
Следовательно, за время, соответствующее половине оборота рамки, ЭДС в ней успела возрасти от нуля до наибольшей величины и вновь уменьшиться до нуля (точка 3).
При дальнейшем вращении рамки в ней вновь возникнет ЭДС и будет постепенно возрастать по величине, однако направление ее уже изменится на обратное, в чем можно убедиться, применив правило правой руки.
График учитывает изменение направления ЭДС тем, что кривая, изображающая ЭДС, пересекает ось времени и располагается теперь ниже этой оси. ЭДС возрастает опять-таки до тех пор, пока рамка не займет вертикальное положение. Затем начнется убывание ЭДС, и величина ее станет равной нулю, когда рамка вернется в свое первоначальное положение, совершив один полный оборот. На графике это выразится тем, что кривая ЭДС, достигнув в обратном направлении своей вершины (точка 4), встретится затем с осью времени (точка 5).
На этом заканчивается один цикл изменения ЭДС, но если продолжать вращение рамки, тотчас же начинается второй цикл, в точности повторяющий первый, за которым, в свою очередь, последует третий, а потом четвертый, и так до тех пор, пока мы не остановим вращение рамки.
Таким образом, за каждый оборот рамки ЭДС, возникающая в ней, совершает полный цикл своего изменения.
Если же рамка будет замкнута на какую-либо внешнюю цепь, то по цепи потечет переменный ток, график которого будет по виду таким же, как и график ЭДС.
Полученная нами волнообразная кривая называется синусоидой. а ток, ЭДС или напряжение, изменяющиеся по такому закону, называются синусоидальными.
Сама кривая названа синусоидой потому, что она является графическим изображением переменной тригонометрической величины, называемой синусом.
Синусоидальный характер изменения тока — самый распространенный в электротехнике, поэтому, говоря о переменном токе, в большинстве случаев имеют в виду синусоидальный ток.
Для сравнения различных переменных токов (ЭДС и напряжений) существуют величины, характеризующие тот или иной ток. Они называются параметрами переменного тока.
Период, амплитуда и частота — параметры переменного тока
Переменный ток характеризуется двумя параметрами — периодом и амплитудо й, зная которые мы можем судить, какой это переменный ток, и построить график тока.
Рисунок 4. Кривая синусоидального тока
Промежуток времени, на протяжении которого совершается полный цикл изменения тока, называется периодом. Период обозначается буквой Т и измеряется в секундах.
Промежуток времени, на протяжении которого совершается половина полного цикла изменения тока, называется полупериодом. Следовательно, период изменения тока (ЭДС или напряжения) состоит из двух полупериодов. Совершенно очевидно, что все периоды одного и того же переменного тока равны между собой.
Как видно из графика, в течение одного периода своего изменения ток достигает дважды максимального значения.
Максимальное значение переменного тока (ЭДС или напряжения) называется его амплитудой или амплитудным значением тока.
Im, Em и Um — общепринятые обозначения амплитуд тока, ЭДС и напряжения.
Мы прежде всего обратили внимание на амплитудное значение тока. однако, как это видно из графика, существует бесчисленное множество промежуточных его значений, меньших амплитудного.
Значение переменного тока (ЭДС, напряжения), соответствующее любому выбранному моменту времени, называется его мгновенным значением.
i. е и u — общепринятые обозначения мгновенных значений тока, ЭДС и напряжения.
Мгновенное значение тока, как и амплитудное его значение, легко определить с помощью графика. Для этого из любой точки на горизонтальной оси, соответствующей интересующему нас моменту времени, проведем вертикальную линию до точки пересечения с кривой тока полученный отрезок вертикальной прямой определит значение тока в данный момент, т. е. мгновенное его значение.
Очевидно, что мгновенное значение тока по истечении времени Т/2 от начальной точки графика будет равно нулю, а по истечении времени — T/4 его амплитудному значению. Ток также достигает своего амплитудного значения но уже в обратном на правлении, по истечении времени, равного 3/4 Т.
Итак, график показывает, как с течением времени меняется ток в цепи, и что каждому моменту времени соответствует только одно определенное значение как величины, так и направления тока. При этом значение тока в данный момент времени в одной точке цепи будет точно таким же в любой другой точке этой цепи.
Число полных периодов, совершаемых током в 1 секунду, называется частотой переменного тока и обозначается латинской буквой f.
Чтобы определить частоту переменного тока, т. е. узнать, сколько периодов своего изменения ток совершил в течение 1 секунды. необходимо 1 секунду разделить на время одного периода f = 1/T. Зная частоту переменного тока, можно определить период: T = 1/f
Частота переменного тока измеряется единицей, называемой герцем.
Если мы имеем переменный ток. частота изменения которого равна 1 герцу, то период такого тока будет равен 1 секунде. И, наоборот, если период изменения тока равен 1 секунде, то частота такого тока равна 1 герцу.
Итак, мы определили параметры переменного тока — период, амплитуду и частоту. — которые позволяют отличать друг от друга различные переменные токи, ЭДС и напряжения и строить, когда это необходимо, их графики.
При определении сопротивления различных цепей переменному току использовать еще одна вспомогательную величину, характеризующую переменный ток, так называемую угловую или круговую частоту.
Круговая частота обозначается буквой #969 и связана с частотой f соотношением #969 = 2#960 f
Поясним эту зависимость. При построении графика переменной ЭДС мы видели, что за время одного полного оборота рамки происходит полный цикл изменения ЭДС. Иначе говоря, для того чтобы рамке сделать один оборот, т. е. повернуться на 360°, необходимо время, равное одному периоду, т. е. Т секунд. Тогда за 1 секунду рамка совершает 360°/T оборота. Следовательно, 360°/T есть угол, на который поворачивается р а мка в 1 секунду, и выражает собой ско р ость вращения рамки, которую принято называть угловой или круговой скоростью.
Но так как период Т связан с частотой f соотношением f=1/T, то и круговая скорость может быть выражена через частоту и будет равна #969 = 360°f.
Итак, мы пришли к выводу, что #969 = 360°f. Однако для удобства пользования круговой частотой при всевозможных расчетах угол 360°, соответствующий одному обороту, заменяют его радиальным выражением, равным 2 #960 радиан, где #960 =3,14. Таким образом, окончательно получим #969 = 2 #960 f. Следовательно, чтобы определить круговую частоту переменного тока (ЭДС или напряжения), надо частоту в герцах умножить на постоянное число 6,28.
Наш сайт в Facebook:
Читайте также…
Что такое переменный и постоянный ток?
Что такое переменный и постоянный ток?- A постоянный ток течет только в одном направлении в цепи.
- Величина постоянного тока может быть
(а) постоянная
(б) изменяется со временем - На рисунке показан график зависимости тока от времени для некоторых постоянных токов.
- Переменный ток течет туда-сюда в двух противоположных направлениях в цепи.
- На рисунке показан переменный ток постоянной величиной 3 А.
- На рисунке показан переменный ток, величина которого изменяется со временем.
(a) Амплитуда тока или пиковый ток I p = 5 A
(b) Время одного цикла T = 0,04 с
(c) Частота переменного тока определяется по формуле: - На рисунке приведены другие примеры переменных токов.
- Переменный ток может течь как через резистор, так и через конденсатор, тогда как постоянный ток может течь только через резистор.
Люди тоже спрашивают
- Что такое электромагнитная индукция?
- Что такое закон Фарадея?
- Каковы законы электромагнитной индукции?
- Что такое закон электромагнитной индукции Ленца?
- Каков принцип работы генератора переменного тока?
- Каков принцип работы генератора постоянного тока?
- Каков принцип работы двигателя постоянного тока?
- Опишите эффект поворота катушки с током в магнитном поле
- Что такое магнитная сила на проводнике с током?
- Что означает магнитная сила?
- Какие факторы влияют на силу электромагнита?
- Что такое магнитное поле?
- Что такое магнитное действие электрического тока?
- Эксперимент Эрстеда по магнитному действию тока
- Как определить направление магнитного поля?
Цель: Сравнить выходной сигнал, генерируемый источником постоянного и переменного тока.
Материалы: Две лампы 2,5 В, патроны
Аппаратура: Держатель батареи с двумя сухими элементами, источник питания переменного тока, вилочный ключ, электронно-лучевой осциллограф (C.R.O.), соединительные провода
Метод:
- Две цепи настроены, как показано на рисунке.
- Настройки электронно-лучевого осциллографа регулируются таким образом, чтобы на экране был четкий след.
- Наблюдаются и сравниваются следы, образованные выходом из аккумуляторной батареи и источником переменного тока.
- Кривая, отображаемая на экране осциллографов, зарисовывается.
Наблюдение: Обсуждение:
- Батарея, состоящая из двух сухих элементов, является источником постоянного тока. Источник питания, подключенный к сети, выдает переменный ток.
- Горят обе лампочки. Следовательно, постоянный ток и переменный ток могут протекать через нить накала лампы и вызывать эффект нагрева.
- Постоянный ток течет только в одном направлении.Направление переменного тока меняется со временем.
- Величина постоянного тока остается постоянной. Величина переменного тока изменяется от нуля до максимального значения.
Вывод:
Постоянный ток течет только в одном направлении, но направление переменного тока меняется со временем.
Что такое переменный ток? — Основы схемотехники
В статье Что актуально? , мы обсудили два основных типа тока — постоянный и переменный ток, уделяя особое внимание постоянному току.В этой статье мы сосредоточимся на переменном токе.
Переменный токЭлектрический ток определяется как поток заряда. В отличие от постоянного тока, который представляет собой поток заряда в одном направлении, переменный ток — это электрический ток, который периодически меняет направление.
Вот графическое представление зависимости постоянного тока от переменного тока :
Переменный ток — это основа наших систем передачи электроэнергии.Еще в конце 1880-х годов Никола Тесла и Томас Эдисон спорили о том, следует ли нам использовать системы передачи переменного или постоянного тока для подачи электроэнергии. И это было известно как «Война токов», когда Эдисон поддерживал постоянный ток, а Тесла — переменный.
К сожалению, с постоянным током возникла серьезная проблема, и преобразовать его в более высокие или более низкие напряжения было непросто. Для уменьшения потерь мощности требовалось высокое напряжение. С другой стороны, переменный ток может легко достигать высоких напряжений за счет использования трансформаторов.
Сегодня в наших домах широко используется переменный ток. Тем не менее, постоянный ток, несомненно, возвращается, поскольку он питает компьютеры, электромобили, фотоэлементы и т. Д. Причина этого заключается в том, что постоянный ток намного легче хранить.
Генератор
Генератор — это электрический генератор, вырабатывающий переменный ток. Его раннее развитие произошло благодаря Майклу Фарадею и Ипполиту Пиксии. Генераторы обычно вырабатывают переменный ток за счет вращения ротора; однако в 1830-х годах от кондиционера было мало толку.Учитывая это, коммутаторы, поворотный электрический переключатель, использовались для преобразования выходного сигнала в постоянный ток.
(Генератор переменного тока, Источник)Генератор включает вращение катушки в магнитном поле. Когда одна сторона движется вверх, другая движется вниз через магнитное поле. Ток индуцируется, когда катушка разрезает перпендикулярно линиям магнитного поля. В результате направление тока постоянно меняется, так как его частота зависит от скорости ротора.
AC
Форма сигналаФорма волны переменного тока имеет амплитуду и волновой цикл.Амплитуда соответствует пиковому напряжению. Частота волны — это количество волновых циклов, которые происходят в секунду, а период волны — это время, необходимое для завершения одного цикла.
Теперь, как нам точно измерить напряжение волны переменного тока, учитывая, что оно постоянно меняется?
Мы можем точно измерить волновое напряжение переменного тока, измерив среднеквадратичное значение, известное как RMS. Обратите внимание, что большинство значений переменного тока также являются значениями RMS. Розетки от сети подают 240 В электричества, что является среднеквадратичным значением напряжения сети переменного тока.А чтобы рассчитать среднеквадратичное значение, мы можем использовать следующий метод.
Давайте возьмем для примера первые 180 градусов волнового цикла. Разделив кривую на 180 / n градусов промежутка между средними ординатами (n = количество средних ординат), мы получим следующую диаграмму:
Используя эту информацию, мы можем вычислить среднеквадратичное значение напряжения для кривой, используя следующее уравнение:
Среднеквадратичное значение напряжения также полезно при преобразовании переменного тока в постоянный. Среднеквадратичное значение — это то, что в конечном итоге является стабильным напряжением постоянного тока.
Трансформатор
Трансформаторы предназначены для изменения напряжения переменного тока в электрической цепи. Как упоминалось ранее, одна из причин, по которой для питания электрической сети было выбрано переменное напряжение, заключается в том, что оно легко повышается и понижается. Это означает, что напряжение можно изменить с помощью трансформатора.
Закон индукции Фарадея объясняет, как работает трансформатор. Этот закон гласит, что индуцированное напряжение в цепи (вторичной обмотке) пропорционально скорости изменения во времени магнитного потока, проходящего через эту цепь, а изменяющийся ток в первичной катушке создает другой магнитный поток в сердечнике трансформатора.Проще говоря, ток в первичной обмотке вызывает индуцированный ток во вторичной обмотке. Ниже показано соотношение между напряжением, током и обмотками катушек.
Преобразование переменного тока в постоянный
Самый простой способ преобразовать переменный ток в постоянный — использовать компонент, известный как выпрямитель. Один из самых распространенных типов выпрямителей — это мостовой выпрямитель, схему которого можно увидеть ниже.
Мостовой выпрямитель состоит из 4 диодов в мостовой конфигурации.Диод — это компонент схемы, который позволяет току течь только в одном направлении. Его использование заключается в преобразовании переменного тока в постоянный, потому что постоянный ток — это ток, который движется только в одном направлении. Это приводит к следующему преобразованию волны:
Рассматривайте волну постоянного тока выше как пульсирующую волну. Благодаря этому ее можно быстро решить, добавив в схему сглаживающий конденсатор, как показано ниже. Сглаживающий конденсатор обеспечивает более стабильный и постоянный источник напряжения за счет зарядки при пиках и разрядки при падении напряжения.
График сглаженной волны:
Более гладкая волна обеспечивает более стабильный источник постоянного напряжения, что позволяет схеме питать множество устройств и компонентов. Переменный ток по-прежнему имеет решающее значение в нашей повседневной жизни, даже если мы этого не замечаем.
Постоянный ток (DC) и переменный ток (AC)
Постоянный ток, постоянный ток
При постоянном токе (DC) ток течет только в одном направлении проводника.Например, поскольку клеммы батареи всегда поддерживают постоянный полюс, ток в электрической цепи течет только в одном направлении. Большая часть электронов внутри проводов приводится в движение беспорядочным движением, и они постепенно перемещаются к полюсу (+) батареи из-за напряжения, приложенного к цепи. Аккумуляторы, вырабатывающие постоянное напряжение, или детали, работа которых зависит от полярности цепи, имеют собственную маркировку полярности.
Переменный ток, перем. Ток
Переменный ток (AC) только колеблется без определенного направления.Это потому, что напряжение в цепи периодически меняется.
Поскольку в быту используется источник питания переменного тока, отметка полярности в месте подключения вилки отсутствует. Частота переменного тока в Корее составляет 60 Гц. Другими словами, напряжение дважды меняет направление и возвращается в исходное состояние, повторяя 60 раз в секунду. Для электронных устройств, работающих от переменного тока, маркировка полярности не требуется, поэтому вам не нужно беспокоиться о полярности (+) и (-) при подключении.
Причина, по которой электрическая цепь с использованием аккумулятора постоянного тока
Причину, по которой в электрической цепи, в которой используется аккумулятор, используется постоянный ток, можно определить, исследуя структуру аккумулятора.Химические элементы предназначены для перемещения электронов за счет непрерывной химической реакции веществ.
В центре марганцевой батареи 1,5 В угольный стержень образует (+) полюс, а цинковая пластина образует (-) полюс снаружи. Разбавленный хлорид аммония содержится в пасте между угольным стержнем и цинковой пластиной.
Структура обычно используемой марганцевой батареи
Характеристики цепи переменного тока
Когда напряжение в определенном направлении применяется как постоянный ток, электроны могут двигаться в одном направлении, тогда как в цепи переменного тока электроны не перемещаются.Электроны только колеблются вперед и назад.
Бытовая электрическая розетка — это соединение, по которому поступают электроны?
Это не так. Электроснабжение дома — переменный ток. В переменном токе электроны колеблются. Суть того, что было доставлено из бытовой розетки, — это энергия, а не материальное вещество, такое как электроны.
История постоянного тока и обмена
Концепция подачи электроэнергии с использованием переменного тока была предложена Теслой из США (1856-1943).По иронии судьбы, пока Тесла работал на электростанции постоянного тока (DC) Эдисона, он разработал переменный ток (AC), но Эдисон не интересовался системой питания переменного тока Теслы. В конце концов Тесла покинул эту компанию и начал работать самостоятельно. Осознавая рыночный потенциал электроэнергии переменного тока, Джордж Вестингауз приобрел патентное право Tesla. Эдисон пытался остаться в постоянном токе, но отстал от сети переменного тока. В настоящее время вся электроэнергия в мире в основном питается от сети переменного тока Tesla.
Разница между переменным и постоянным током в табличной форме — Физика О
Переменный ток против постоянного токаОсновное различие между переменным и постоянным током состоит в том, что переменный ток меняет свое направление при протекании в цепи, в то время как постоянный ток не меняет своего направления.Переменный ток генерирует частоту, в то время как постоянный ток имеет нулевую частоту.
Сейчас!
Узнаем подробно о переменном и постоянном токе. Продолжайте читать …… ..
Содержание
- Введение в переменный и постоянный ток
- Определения переменного и постоянного тока
- Преимущества переменного тока перед постоянным током
- Таблица сравнения
- Применение постоянного и переменного тока
- Заключение
Введение:
переменного тока и постоянного тока
Постоянный ток (DC) вырабатывается источником напряжения, клеммы которого имеют фиксированную полярность.Следовательно, они обеспечивают ток, направление которого не меняется со временем. Однако этот постоянный ток может быть постоянным. Главное, чтобы направление потока оставалось неизменным, то есть от положительной клеммы источника напряжения к ее отрицательной клемме.
Примеры источников напряжения:
- Ячейка
- Аккумулятор
- Генераторы постоянного тока
Переменный ток (a.c) вырабатывается источником напряжения, полярность выводов которого меняется во времени.Какая положительная клемма в один момент становится отрицательной клеммой, а иногда позже становится положительной клеммой в какой-то другой момент?
В результате постоянного изменения полярности источника напряжения направление тока в цепи также меняется на обратное. В дополнение к изменению своего направления, ток постоянно меняет свое значение со временем от нуля до максимума в одном направлении и обратно до нуля, а затем снова обратно до нуля. Очевидно, что источник переменного напряжения вызовет переменный ток.
Попутно можно отметить, что электричество переменного тока не лучше электричества постоянного тока, как думают некоторые люди. Переменные напряжения и токи имеют свои собственные области применения, которых нет у постоянного тока, и наоборот. В любом случае важно иметь в виду, что переменный ток не заменяет постоянный ток, переменный ток обычно используется в электронных схемах, большинство из которых, однако, управляются напряжением постоянного тока.
Наиболее распространенным источником переменного напряжения является генератор переменного тока.
См. Также: Разница между двигателем переменного тока и двигателем постоянного тока
Разница между переменным и постоянным током в табличной форме
Переменный ток (А.В) | Постоянный ток (DC) |
Определение | |
Переменный ток — это ток, который меняет свое направление после 180 0 . | Постоянный ток — это ток, не меняющий периодичности своего направления. Он остается постоянным. |
Количество переносимой энергии | |
А.В настоящее время C безопасно путешествует на большие расстояния, не теряя при этом много энергии. | Постоянный ток не проходит безопасно на большие расстояния, потому что постоянный ток теряет много энергии по сравнению с переменным током |
Частота | |
Частота переменного тока не равна нулю. | Частота постоянного тока остается нулевой. |
Звездная величина | |
Величина переменного тока меняется со временем. | Величина постоянного тока не меняется со временем. |
Источники | |
Переменный ток вырабатывается в основном генераторами. | Постоянный ток вырабатывается батареей или элементом и т. Д. |
Коэффициент мощности | |
В А.Текущий коэффициент мощности C всегда находится в пределах от 0 до 1. | При постоянном токе коэффициент мощности всегда остается 1. |
Типы сигналов | |
Формы сигналов переменного тока представляют собой синусоидальные, треугольные, квадратные, квазиквадратные волны. | Формы сигналов постоянного тока пульсирующие и чистые. |
Пассивные параметры | |
Импеданс | Только сопротивление |
Приложения | |
Используется в домах, на производстве и т. Д. | Используется в холодильниках, телевизорах и т. Д. |
Какое более опасное течение.AC ИЛИ DC?
Переменный ток (AC) более опасен, чем постоянный ток (D.C), потому что высокое напряжение связано с переменным током.
Постоянный и переменный ток по-разному влияют на человеческое тело, оба опасны при превышении определенного уровня напряжения.
См. Также: Разница между напряжением и током
Какой ток в батарее — постоянный или переменный?
Ток в аккумуляторе постоянный.
Почему мы используем источник переменного тока в наших домах?
Ответ: Мы используем источник переменного тока в наших домах, потому что мы можем изменить A.C легко с трансформатором. Высокое напряжение вызывает гораздо меньшие потери энергии в длинных каналах или линиях передачи, а для безопасного использования в домашних условиях напряжение можно снизить с помощью понижающего трансформатора.
Математическое доказательство:
Потери мощности в проводе определяются как:
L = I 2 R
Где L — мощность, теряемая на нагрев, I — ток, а R — сопротивление. Передаваемая мощность определяется соотношением:
P = VI
В этом отношении P — мощность, V — напряжение.
Таким образом, если вы увеличиваете напряжение (V) и ток (I) немного, таким образом вы можете передавать ту же мощность, уменьшая потери мощности. Такое высокое напряжение дает лучшую производительность. По этой причине в наших домах мы используем переменный ток вместо постоянного тока.
Примечание:
Высокое напряжение также может передаваться по постоянному току, но для безопасного использования дома трудно снизить напряжение.
В наши дни передовые преобразователи постоянного тока используются для снижения постоянного напряжения.
Часто задаваемые вопросы
Почему переменный ток считается более эффективным, чем постоянный ток?
Ответ: Потому что переменный ток можно легко преобразовать в постоянный, а потери мощности переменного тока на большом расстоянии меньше, чем постоянный.
Почему нельзя хранить переменный ток в батареях?
AC нельзя хранить в батареях, потому что, когда вы заряжаете батарею от источника переменного тока, она не будет заряжаться.
Следует запомнить:
Переменный ток имеет переменный характер, а постоянный ток — постоянный. Во время положительного полупериода переменного тока батарея заряжается, а в течение отрицательного полупериода переменного тока батарея разряжается. Таким образом аккумулятор не будет заряжаться даже на 0,00000001%.
Каковы преимущества переменного тока?
- Распределение, генерация и передача переменного тока проще, чем постоянного тока. Источник переменного тока
- можно легко повышать и понижать.
Каковы преимущества постоянного тока?
- Батарейный элемент обеспечивает питание постоянного тока. Нет аккумуляторной батареи, обеспечивающей питание переменного тока.
- Почти все электронные компоненты работают от постоянного тока.
Какой ток был изобретен первым, постоянный или переменный?
Постоянный ток изобретен намного раньше переменного тока.
Как преобразовать переменный ток в постоянный?
Мы можем преобразовать переменный ток в постоянный, используя схему выпрямителя, за которой следует фильтр.
Предлагаемое видео
По связанным темам посетите нашу страницу: Электричество и магнетизм
Другие темы для сравнения:
Разница между предохранителем и автоматическим выключателем в табличной форме
предохранитель и автоматический выключатель Предохранители и автоматические выключатели — это устройства, используемые в электрических цепях для прерывания потока электроэнергии в случае перегрузки. Оба устройства можно рассматривать как системы безопасности, предотвращающие электрическую перегрузку от , вызывающую повреждение как устройств, так и электрической сети.
Разница между предохранителями и выключателями заключается в том, как они работают :
- Предохранитель : состоит из металлического куска или нити накала, который ломается при нагревании выше определенной температуры. Когда он ломается, электрический ток прерывается. Предохранители срабатывают быстрее, чем выключатели, но поврежденные предохранители необходимо заменить новыми предохранителями
- Автоматический выключатель : он имеет механизм переключения, который активируется при повышении электрического напряжения (напряжения).
Срабатывание предохранителя
Предохранители изготовлены из металлической нити , заключенной в стеклянный или керамический корпус.
В бытовых установках предохранители обычно располагаются в центральной коробке предохранителей , через которую проходят все кабели в здании. Коробки с предохранителями также часто встречаются в каждой комнате или, в более старых установках, в каждой розетке.
Предохранители пропускают электричество через нить накала, соединяющую различные цепи в установке.Если происходит перегрузка . Нить накала нагреется и расплавится, а нить сломается и не позволит продолжить ток электричества.
В целом, бытовые предохранители очень чувствительны, и при превышении уровня, для которого они были разработаны, им требуется очень мало времени, чтобы сломаться. После того, как предохранитель сломался, вам необходимо заменить его новым.
Есть предохранители, которые выдерживают разные напряжения. Лучше всего использовать предохранители с емкостью, немного превышающей ток, который обычно проходит через них.Таким образом мы можем адекватно защитить устройства и оборудование, подключенные к сети.
Срабатывание выключателя
Автоматические выключатели , также называемые автоматическими выключателями, таблеточными или автоматическими выключателями, также отключают питание при перегрузке, но делают это с помощью выключателя .
Используемый переключатель может использовать электромагнит или биметаллическую полосу . В обоих случаях принцип работы схож.
Когда переключатель находится во включенном положении, электрический ток может проходить от одной клеммы к другой через электромагнит или биметаллическую полосу.
Когда электрический ток превышает определенный уровень напряжения, магнитная сила на электромагните увеличивается до тех пор, пока он не сможет нажать на металлический рычаг внутреннего переключателя и прервать электрический поток.
В случае биметаллических лент они изгибаются до тех пор, пока не будет нажат рычаг переключателя.
В отличие от предохранителей, при перескоках автоматики его не нужно заменять на новый. Просто верните переключатель в положение включения.
Автоматические выключатели обычно находятся в коробке, где есть переключатели для разных частей электрической цепи.Например, в доме может быть выключатель для цепи освещения, а другой — для розеток или для разных частей дома.
Еще одним распространенным применением автоматических выключателей являются автоматические выключатели для обнаружения замыкания на землю . Эти переключатели реагируют на баланс электрического тока, а не на перегрузку.
Если электрический ток не сбалансирован, переключатель прерывает свой путь, избегая разрядов. Они очень полезны в ванных комнатах и кухнях, где существует повышенный риск поражения электрическим током при постоянном использовании электроприборов рядом с водой.
Достоинства и недостатки предохранителей и выключателей
Предохранители и автоматические выключатели обладают рядом преимуществ и недостатков, из-за которых выбор того или другого зависит от конкретной ситуации.
Предохранители дешевы и очень быстро реагируют на перегрузки , предлагая большую защиту, что особенно важно для высокочувствительных или дорогих электронных устройств. На самом деле, часто самые чувствительные электроприборы имеют собственные предохранители.
Но высокая чувствительность предохранителей может стать недостатком, если мы находимся в цепи с регулярными пиками, которые часто достигают точки разрыва предохранителей.
Предохранители дешевы и очень быстро реагируют на перегрузки , предлагая большую защиту, что особенно важно для высокочувствительных или дорогих электронных устройств. На самом деле, часто самые чувствительные электроприборы имеют собственные предохранители.
Но высокая чувствительность предохранителей может стать недостатком, если мы находимся в цепи с регулярными пиками, которые часто достигают точки разрыва предохранителей.
При перегорании предохранители необходимо заменять новыми, что может стать серьезным неудобством, если в данный момент их нет в наличии.
Еще один недостаток — предохранители часто покупаются без консультации специалиста и устанавливаются самостоятельно. Легко и часто выбирают предохранители со слишком высокой емкостью, что приводит к тому, что они не выполняют своих защитных функций. Между тем автоматические выключатели
имеют гораздо больше преимуществ. Вы можете восстановить электрический ток так же легко, как снова включить выключатель, без необходимости замены каких-либо деталей.
Кроме того, вмешательство в выключатели намного безопаснее, чем установка предохранителя.
Недостатком автоматических выключателей является то, что они обычно дороже не только самого автоматического выключателя, но и его установки и ремонта, которые часто должны выполняться профессионалом.
Автоматические выключатели реагируют не так быстро, как предохранители, и электронные устройства, подключенные к цепи, могут быть повреждены до срабатывания автоматического выключателя из-за перегрузки.
Оба типа электрического прерывания нельзя поменять местами во всех ситуациях. Например, предохранитель нельзя использовать в качестве прерывателя цепи замыкания на землю. Электрик — это квалифицированный специалист, который определит, лучше ли использовать предохранитель или выключатель в той или иной ситуации.
Связанные темы:
Разница между скоростью и ускорением в табличной форме
Скорость и ускорениеСкорость и ускорение — два основных понятия движения.Скорость — это расстояние, которое объект преодолевает за единицу времени, а ускорение — это скорость изменения скорости. В этом посте мы объяснили разницу между скоростью и ускорением.
Что такое скорость?
Скорость — это физическая величина, которая представляет собой расстояние, пройденное объектом за определенный промежуток времени. Например, если объект прошел 6 метров за 30 секунд, его скорость будет именно такой, 6 метров каждые 30 секунд. В Международной системе единиц скорость выражается в метрах в секунду (м / с), поэтому эта скорость будет равна 0.2 м / с.
Одно из математических свойств скорости состоит в том, что это векторная величина, что означает, что она определяется вектором r, и поэтому необходимо учитывать направление движения. Если направление не принимается во внимание, в физике говорят о скорости или скорости, скалярной величине с теми же измерениями пространства и времени, что и скорость, но которая не является вектором.
Чтобы вычислить скорость, просто разделите пройденное расстояние на затраченное время:
v = s / t
Скорость также используется в других областях, кроме физики движения, с аналогичной концепцией.Например, в химии скорость или скорость реакции используется для измерения скорости, с которой субстраты превращаются в продукты, что также подразумевает направление вектора.
См. Также: Разница между скоростью и скоростью
Что такое ускорение?
Ускорение — это величина, связанная со скоростью, поскольку она измеряет скорость изменения скорости в заданный период. Продолжая предыдущий пример, если объект проходит 6 метров за 30 секунд, его средняя скорость будет равна 0.2 м / с, но это не означает, что объект постоянно двигался с этой скоростью в течение 30 секунд. В течение одной секунды он мог двигаться со скоростью 0,4 м / с, а в течение еще одной секунды он был способен нести скорость 0,1 м / с, хотя результат также составил 6 метров за 30 секунд.
Если объект меняет скорость, это изменение измеряется ускорением, которое рассчитывается как разница в скорости в единицу времени (скорость / время). Например, если объект переходит из состояния покоя (скорость 0 м / с) на скорость 0.2 м / с за 1 секунду, его ускорение составит 0,2 м / с 2 , что означает, что скорость объекта увеличивается на 0,2 м / с каждую секунду. Если теперь объект переходит с скорости 0,2 м / с на скорость 0,3 м / с и совершает этот переход за 2 с, ускорение будет:
0,3 — 0,2 = 0,1 / 2 = 0,05 м / с 2
Это означает, что скорость увеличивается на 0,05 метра каждую секунду. Можно сказать, что ускорение измеряет скорость изменения скорости . Ускорение может быть отрицательным, если скорость в конце рассматриваемого периода меньше скорости в начале, что известно как замедление или отрицательное ускорение.
Ускорение, в отличие от скорости, не подразумевает направление, в котором движется объект, поэтому не является векторной величиной . Если объект движется с постоянной скоростью, его ускорение равно нулю.
Ключевые отличия
- Скорость измеряет скорость движения объекта, то есть расстояние, пройденное за единицу времени.
- Acceleration измеряет скорость изменения скорости. , то есть изменение скорости между двумя разными моментами.
Связанные темы:
Разница между обратимым и необратимым процессом с примерами
Основное различие между обратимыми и необратимыми процессами состоит в том, что в обратимом процессе система остается в термодинамическом равновесии, в то время как в необратимом процессе система не остается в термодинамическом равновесии.
Обратимый процесс в термодинамике
«Процесс, который может быть отменен в точном обратном порядке без каких-либо изменений в окружающей среде, называется обратимым процессом».
В обратном процессе система проходит те же стадии, что и в прямом процессе, но тепловые и механические эффекты на каждой стадии прямо противоположны. Если тепло поглощается в прямом процессе, оно будет отдано в обратном процессе. Точно так же, если работа выполняется системой в прямом процессе, работа будет выполняться в системе в обратном процессе. Следовательно, система вернется в исходное состояние.
Условия обратимого процесса
Есть два важных условия для возникновения обратимого процесса.
- Во-первых, процесс должен происходить за бесконечно малое время.
- Во-вторых. все начальное и конечное состояния должны быть в равновесии друг с другом.
Обратимость в термодинамике
Явление обратимого изменения также называется обратимостью. На практике обратимый процесс никогда не происходит, поэтому это идеальный или гипотетический процесс.
Пример обратимого процесса
Хотя никакое реальное изменение не является полностью обратимым, процесс сжижения и испарения системы, выполняемый медленно, практически обратим.Точно так же медленное сжатие газа в цилиндре является обратимым процессом, поскольку газ можно медленно расширять, уменьшая вес поршня, чтобы изменить операцию.
Необратимый процесс в термодинамике
Процесс, который нельзя отменить в обратном порядке путем обращения управляющих факторов, называется необратимым процессом.
Большинство процессов в природе необратимы. Во время необратимого изменения система не всегда находится в равновесии.Необратимый процесс состоит из неравновесных состояний, которые невозможно представить на диаграмме P-V.
Все изменения, которые происходят внезапно или которые связаны с трением или рассеянием энергии за счет проводимости, конвекции или излучения, необратимы.
См. Также похожие темы на нашей странице: Термодинамика
Некоторые важные сведения о необратимом процессе
- В необратимом процессе начальная стадия системы и окружения не может быть восстановлена с конечной стадии.
- Во время необратимого процесса различные состояния системы пути перехода от начальной стадии к конечному состоянию не находятся в равновесии друг с другом.
- Во время необратимого процесса энтропия системы резко возрастает и не может быть уменьшена до исходного значения.
- Явления системы, в которой происходят необратимые процессы, называются необратимостью.
Примеры необратимых процессов
- Передача тепла от горячего тела к холодному.