Переменный и постоянный ток: переменный и постоянный ток — это НЕ сложно

Содержание

Постоянный и переменный токи

Мы завершаем изучение темы «Постоянный электрический ток». Тем не менее, в этом параграфе мы рассмотрим и переменный ток. С чем это связано? Причина в самих терминах «постоянный ток» и «переменный ток», названия которых не вполне удачны, поскольку могут трактоваться по-разному в физике и электротехнике: так сложилось исторически. Обратимся к определениям.

В физике постоянным током называют электрический ток, не изменяющийся по силе и направлению с течением времени. Графиком такого «истинно постоянного» тока должна быть прямая, параллельная оси времени (см. рис. «а»). Тем не менее, в электротехнике постоянным током считают ток, который постоянен только по направлению, но может меняться по силе. Такой ток можно получить «выпрямлением» синусоидального переменного тока, например, того, который существует в домашней осветительной сети (см. рис. «б»). В результате получается пульсирующий однонаправленный ток (см. рис. «в»).

В физике переменным током называют электрический ток, изменяющийся с течением времени: по силе и/или направлению. С точки зрения физики, «пульсирующий» ток на рисунке «в» является переменным, поскольку меняется по силе (оставаясь постоянным по направлению). Такой однонаправленный ток в электротехнике считают «постоянным», так как по своим действиям он похож на настоящий постоянный ток. Например, он будет пригоден для зарядки аккумуляторов, работы электродвигателей, проведения электролиза. Переменный по направлению ток для этих целей непригоден.

Примечание. Почему ток в электрических сетях является именно синусоидальным и меняет своё направление 100 раз в секунду, мы расскажем позднее (см. § 10-ж). А пока рассмотрим, как из него можно получить однонаправленный пульсирующий ток – «постоянный» с точки зрения электротехники. Другими словами, как «перебросить» нижние части синусоиды вверх, то есть преобразовать форму тока без потери мощности этого тока? Для этого служат различные приборы, один из которых – полупроводниковый диод, пропускающий через себя ток лишь в одном направлении (см. § 09-и).

Ниже на левой схеме показано включение двух диодов в цепь переменного тока. При этом верхние части синусоиды проходят через верхний диод (по направлению его «стрелочки»), а нижние части синусоиды не проходят через нижний диод (против его «стрелочки»). Таким образом получается пульсирующий однонаправленный ток, и ровно половина исходной мощности не попадает к потребителю, так как образуются «равнины» с нулевым значением силы тока. Для особо интересующихся физикой заметим, что точно такой же результат будет, если оставить только один диод, причём, любой.

На правой схеме показано включение четырёх диодов по так называемой мостовой схеме. Она более выигрышна по сравнению с предыдущей: диоды попарно пропускают как верхние, так и нижние части синусоиды соответственно к клеммам «+» и «–». В результате из исходного переменного тока, на графике кторого можно условно выделить «холмы и овраги», на графике получающегося однонаправленного тока образуются «не холмы и равнины», а «удвоенные холмы». Это означает, что теперь к потребителю попадает вся мощность исходного тока.

И в заключение рассмотрим, как к непостоянному току можно применить закон Джоуля-Ленца Q=I²Rt, описывающий тепловое действие тока. Как быть, если сила тока постоянно меняется? Нужно её заменить на условно-постоянную силу тока, которая производит такое же тепловое действие. Такое условно-постоянное значение силы тока в физике называют эквивалентным (эффективным, действующим) значением силы непостоянного тока.

Определение: эквивалентное значение непостоянного тока равно значению такого постоянного тока, который, проходя через то же сопротивление, выделяет в нём то же количество теплоты за то же время. Именно эквивалентное значение тока показывают нам все амперметры. Аналогично и по отношению к напряжению и вольтметрам. Итак, определить эквивалентные значения непостоянных токов позволяют калориметрические измерения (см. § 06-в).

 

Отличие постоянного и переменного тока, преобразование тока

Электрическим током называют направленное, упорядоченное движение заряженных частиц.

Постоянный ток имеет устойчивые свойства и направление движения заряженных частиц, которые не изменяются со временем. Он используется многими электрическими устройствами в домах, а также в автомобилях. От постоянного тока работают современные компьютеры, ноутбуки, телевизоры и многие другие устройства. Для преобразования переменного тока в постоянный используются специальные блоки питания и трансформаторы напряжения.

Все электрические устройства и электрические инструменты, работающие от батарей и аккумуляторов считаются потребителями постоянного тока, так как батарея – это источник постоянного тока, который может быть преобразован в переменный с помощью инверторов.

Разница переменного тока от постоянного

Переменным называют электрический ток, который может изменяться по направлению движения заряженных частиц и величине с течением времени.

Важнейшими параметрами переменного тока считаются его частота и напряжение. В современных электрических сетях на разных объектах используется именно переменный ток, имеющий определенное напряжение и частоту. В России в бытовых электросетях ток имеет напряжение 220 В и частоту равную 50 Гц. Частота электрического переменного тока – это число изменений направления движения заряженных частиц за 1 секунду, то есть, при частоте в 50 Гц он меняет направление 50 раз в секунду. Таким образом, отличие переменного тока от постоянного заключается в том, что в переменном заряженные частицы могут менять направление движения.

Источниками переменного тока на объектах различного назначения являются розетки. К розеткам мы подключаем различные бытовые приборы, получающие необходимое напряжение. Переменный ток используется в электрических сетях потому, что величина напряжения может быть преобразована до необходимых значений с помощью трансформаторного оборудования с минимальными потерями. Другими словами, его гораздо проще и дешевле транспортировать от источников электроснабжения до конечных потребителей.

Передача переменного тока потребителям

Путь переменного тока начинается с электростанций, на которых устанавливаются мощнейшие электрические генераторы, из которых выходит электрический ток с напряжением на уровне 220-330 кВ. Через электрические кабели ток идет к трансформаторным подстанциям, устанавливаемым в непосредственной близости от объектов электрического потребления – домов, квартир, предприятий и других сооружений.

Подстанции получают электрический ток с напряжением около 10 кВ и преобразуют его в трехфазное напряжение 380 В. В некоторых случаях на питание объектов идет ток с напряжением 380 В, этого требуют мощные бытовые и производственные приборы, но чаще всего в месте ввода электричества в дом или квартиру, напряжение снижается до привычных нам 220 В.

Преобразование переменного тока в постоянный

Мы уже разобрались с тем, что в розетках бытовых электрических систем находится переменный ток, однако многие современные потребители электричества нуждаются в постоянном.

Преобразование переменного тока в постоянный осуществляется с помощью специальных выпрямителей. Весь процесс преобразования включает в себя три этапа:

  1. Подключение диодного моста с 4-мя диодами необходимой мощности. Такой мост может «срезать» верхние значения синусоид переменного тока или делать движение заряженных частиц однонаправленным.
  2. Подключение сглаживающего фильтра или специального конденсатора на выход с диодного моста. Фильтр способен исправить провалы между пиками синусоид переменного тока. Подключение конденсатора серьезно уменьшает пульсации и может довести их до минимальных значений.
  3. Подключение стабилизаторов напряжения для снижения пульсаций.

Преобразование тока может осуществляться в обоих направлениях, то есть, из постоянного тоже можно сделать переменный. Но этот процесс значительно сложнее и осуществляется он за счет использования специальных инверторов, которые отличаются высокой стоимостью.


По связанным темам посетите нашу страницу: Электричество и магнетизм

Другие темы для сравнения:

Разница между предохранителем и автоматическим выключателем в табличной форме

предохранитель и автоматический выключатель

Предохранители и автоматические выключатели — это устройства, используемые в электрических цепях для прерывания потока электроэнергии в случае перегрузки. Оба устройства можно рассматривать как системы безопасности, предотвращающие электрическую перегрузку от , вызывающую повреждение как устройств, так и электрической сети.
Разница между предохранителями и выключателями заключается в том, как они работают :

  • Предохранитель : состоит из металлического куска или нити накала, который ломается при нагревании выше определенной температуры. Когда он ломается, электрический ток прерывается. Предохранители срабатывают быстрее, чем выключатели, но поврежденные предохранители необходимо заменить новыми предохранителями
  • Автоматический выключатель : он имеет механизм переключения, который активируется при повышении электрического напряжения (напряжения).

Срабатывание предохранителя

Предохранители изготовлены из металлической нити , заключенной в стеклянный или керамический корпус.
В бытовых установках предохранители обычно располагаются в центральной коробке предохранителей , через которую проходят все кабели в здании. Коробки с предохранителями также часто встречаются в каждой комнате или, в более старых установках, в каждой розетке.
Предохранители пропускают электричество через нить накала, соединяющую различные цепи в установке.Если происходит перегрузка . Нить накала нагреется и расплавится, а нить сломается и не позволит продолжить ток электричества.
В целом, бытовые предохранители очень чувствительны, и при превышении уровня, для которого они были разработаны, им требуется очень мало времени, чтобы сломаться. После того, как предохранитель сломался, вам необходимо заменить его новым.
Есть предохранители, которые выдерживают разные напряжения. Лучше всего использовать предохранители с емкостью, немного превышающей ток, который обычно проходит через них.Таким образом мы можем адекватно защитить устройства и оборудование, подключенные к сети.

Срабатывание выключателя

Автоматические выключатели , также называемые автоматическими выключателями, таблеточными или автоматическими выключателями, также отключают питание при перегрузке, но делают это с помощью выключателя .
Используемый переключатель может использовать электромагнит или биметаллическую полосу . В обоих случаях принцип работы схож.
Когда переключатель находится во включенном положении, электрический ток может проходить от одной клеммы к другой через электромагнит или биметаллическую полосу.
Когда электрический ток превышает определенный уровень напряжения, магнитная сила на электромагните увеличивается до тех пор, пока он не сможет нажать на металлический рычаг внутреннего переключателя и прервать электрический поток.
В случае биметаллических лент они изгибаются до тех пор, пока не будет нажат рычаг переключателя.
В отличие от предохранителей, при перескоках автоматики его не нужно заменять на новый. Просто верните переключатель в положение включения.
Автоматические выключатели обычно находятся в коробке, где есть переключатели для разных частей электрической цепи.Например, в доме может быть выключатель для цепи освещения, а другой — для розеток или для разных частей дома.
Еще одним распространенным применением автоматических выключателей являются автоматические выключатели для обнаружения замыкания на землю . Эти переключатели реагируют на баланс электрического тока, а не на перегрузку.
Если электрический ток не сбалансирован, переключатель прерывает свой путь, избегая разрядов. Они очень полезны в ванных комнатах и ​​кухнях, где существует повышенный риск поражения электрическим током при постоянном использовании электроприборов рядом с водой.

Достоинства и недостатки предохранителей и выключателей

Предохранители и автоматические выключатели обладают рядом преимуществ и недостатков, из-за которых выбор того или другого зависит от конкретной ситуации.
Предохранители дешевы и очень быстро реагируют на перегрузки , предлагая большую защиту, что особенно важно для высокочувствительных или дорогих электронных устройств. На самом деле, часто самые чувствительные электроприборы имеют собственные предохранители.
Но высокая чувствительность предохранителей может стать недостатком, если мы находимся в цепи с регулярными пиками, которые часто достигают точки разрыва предохранителей.
Предохранители дешевы и очень быстро реагируют на перегрузки , предлагая большую защиту, что особенно важно для высокочувствительных или дорогих электронных устройств. На самом деле, часто самые чувствительные электроприборы имеют собственные предохранители.
Но высокая чувствительность предохранителей может стать недостатком, если мы находимся в цепи с регулярными пиками, которые часто достигают точки разрыва предохранителей.
При перегорании предохранители необходимо заменять новыми, что может стать серьезным неудобством, если в данный момент их нет в наличии.
Еще один недостаток — предохранители часто покупаются без консультации специалиста и устанавливаются самостоятельно. Легко и часто выбирают предохранители со слишком высокой емкостью, что приводит к тому, что они не выполняют своих защитных функций. Между тем автоматические выключатели
имеют гораздо больше преимуществ. Вы можете восстановить электрический ток так же легко, как снова включить выключатель, без необходимости замены каких-либо деталей.
Кроме того, вмешательство в выключатели намного безопаснее, чем установка предохранителя.
Недостатком автоматических выключателей является то, что они обычно дороже не только самого автоматического выключателя, но и его установки и ремонта, которые часто должны выполняться профессионалом.
Автоматические выключатели реагируют не так быстро, как предохранители, и электронные устройства, подключенные к цепи, могут быть повреждены до срабатывания автоматического выключателя из-за перегрузки.
Оба типа электрического прерывания нельзя поменять местами во всех ситуациях. Например, предохранитель нельзя использовать в качестве прерывателя цепи замыкания на землю. Электрик — это квалифицированный специалист, который определит, лучше ли использовать предохранитель или выключатель в той или иной ситуации.
Связанные темы:

Разница между скоростью и ускорением в табличной форме

Скорость и ускорение

Скорость и ускорение — два основных понятия движения.Скорость — это расстояние, которое объект преодолевает за единицу времени, а ускорение — это скорость изменения скорости. В этом посте мы объяснили разницу между скоростью и ускорением.

Что такое скорость?

Скорость — это физическая величина, которая представляет собой расстояние, пройденное объектом за определенный промежуток времени. Например, если объект прошел 6 метров за 30 секунд, его скорость будет именно такой, 6 метров каждые 30 секунд. В Международной системе единиц скорость выражается в метрах в секунду (м / с), поэтому эта скорость будет равна 0.2 м / с.

Одно из математических свойств скорости состоит в том, что это векторная величина, что означает, что она определяется вектором r, и поэтому необходимо учитывать направление движения. Если направление не принимается во внимание, в физике говорят о скорости или скорости, скалярной величине с теми же измерениями пространства и времени, что и скорость, но которая не является вектором.

Чтобы вычислить скорость, просто разделите пройденное расстояние на затраченное время:
v = s / t
Скорость также используется в других областях, кроме физики движения, с аналогичной концепцией.Например, в химии скорость или скорость реакции используется для измерения скорости, с которой субстраты превращаются в продукты, что также подразумевает направление вектора.

См. Также: Разница между скоростью и скоростью

Что такое ускорение?

Ускорение — это величина, связанная со скоростью, поскольку она измеряет скорость изменения скорости в заданный период. Продолжая предыдущий пример, если объект проходит 6 метров за 30 секунд, его средняя скорость будет равна 0.2 м / с, но это не означает, что объект постоянно двигался с этой скоростью в течение 30 секунд. В течение одной секунды он мог двигаться со скоростью 0,4 м / с, а в течение еще одной секунды он был способен нести скорость 0,1 м / с, хотя результат также составил 6 метров за 30 секунд.

Если объект меняет скорость, это изменение измеряется ускорением, которое рассчитывается как разница в скорости в единицу времени (скорость / время). Например, если объект переходит из состояния покоя (скорость 0 м / с) на скорость 0.2 м / с за 1 секунду, его ускорение составит 0,2 м / с 2 , что означает, что скорость объекта увеличивается на 0,2 м / с каждую секунду. Если теперь объект переходит с скорости 0,2 м / с на скорость 0,3 м / с и совершает этот переход за 2 с, ускорение будет:

0,3 — 0,2 = 0,1 / 2 = 0,05 м / с 2
Это означает, что скорость увеличивается на 0,05 метра каждую секунду. Можно сказать, что ускорение измеряет скорость изменения скорости . Ускорение может быть отрицательным, если скорость в конце рассматриваемого периода меньше скорости в начале, что известно как замедление или отрицательное ускорение.

Ускорение, в отличие от скорости, не подразумевает направление, в котором движется объект, поэтому не является векторной величиной . Если объект движется с постоянной скоростью, его ускорение равно нулю.

Ключевые отличия

  1. Скорость измеряет скорость движения объекта, то есть расстояние, пройденное за единицу времени.
  2. Acceleration измеряет скорость изменения скорости. , то есть изменение скорости между двумя разными моментами.

Связанные темы:

Разница между обратимым и необратимым процессом с примерами

Основное различие между обратимыми и необратимыми процессами состоит в том, что в обратимом процессе система остается в термодинамическом равновесии, в то время как в необратимом процессе система не остается в термодинамическом равновесии.

Обратимый процесс в термодинамике

«Процесс, который может быть отменен в точном обратном порядке без каких-либо изменений в окружающей среде, называется обратимым процессом».
В обратном процессе система проходит те же стадии, что и в прямом процессе, но тепловые и механические эффекты на каждой стадии прямо противоположны. Если тепло поглощается в прямом процессе, оно будет отдано в обратном процессе. Точно так же, если работа выполняется системой в прямом процессе, работа будет выполняться в системе в обратном процессе. Следовательно, система вернется в исходное состояние.

Условия обратимого процесса

Есть два важных условия для возникновения обратимого процесса.

  • Во-первых, процесс должен происходить за бесконечно малое время.
  • Во-вторых. все начальное и конечное состояния должны быть в равновесии друг с другом.

Обратимость в термодинамике

Явление обратимого изменения также называется обратимостью. На практике обратимый процесс никогда не происходит, поэтому это идеальный или гипотетический процесс.

Пример обратимого процесса

Хотя никакое реальное изменение не является полностью обратимым, процесс сжижения и испарения системы, выполняемый медленно, практически обратим.Точно так же медленное сжатие газа в цилиндре является обратимым процессом, поскольку газ можно медленно расширять, уменьшая вес поршня, чтобы изменить операцию.

Необратимый процесс в термодинамике

Процесс, который нельзя отменить в обратном порядке путем обращения управляющих факторов, называется необратимым процессом.
Большинство процессов в природе необратимы. Во время необратимого изменения система не всегда находится в равновесии.Необратимый процесс состоит из неравновесных состояний, которые невозможно представить на диаграмме P-V.
Все изменения, которые происходят внезапно или которые связаны с трением или рассеянием энергии за счет проводимости, конвекции или излучения, необратимы.
См. Также похожие темы на нашей странице: Термодинамика

Некоторые важные сведения о необратимом процессе

  • В необратимом процессе начальная стадия системы и окружения не может быть восстановлена ​​с конечной стадии.
  • Во время необратимого процесса различные состояния системы пути перехода от начальной стадии к конечному состоянию не находятся в равновесии друг с другом.
  • Во время необратимого процесса энтропия системы резко возрастает и не может быть уменьшена до исходного значения.
  • Явления системы, в которой происходят необратимые процессы, называются необратимостью.

Примеры необратимых процессов

  • Передача тепла от горячего тела к холодному.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *